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Abstract

Determination of a protein’s structure can facilitate an understanding of how the structure
changes when that protein combines with other proteins or smaller molecules. In this paper
we study a semidefinite programming (SDP) relaxation of the (NP-hard) side chain positioning
problem (SCP) presented in Chazelle et al. [4]. We show that the Slater constraint qualification
(SCQ) fails for the SDP relaxation. We then show the advantages of using facial reduction to
regularize the problem. In fact, after applying facial reduction, we have a smaller problem that
is more stable both in theory and in practice.
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1 Introduction

Determination of a protein’s structure can facilitate an understanding of how the structure changes
when that protein combines with other proteins or smaller molecules. These studies are necessary
first steps in the understanding of protein functionality. Applications include protein design [11, 12],
protein-protein interactions [15, 19, 21], and protein docking (structure based drug design).

From the model in [4] we study the formulation of side chain positioning (SCP), i.e., we start
with a fixed backbone and a protein sequence and we look for the lowest energy conformation of
the protein’s side chains on the given backbone. This is an important component of the protein-
structure-prediction problem.

We consider a semidefinite programming, SDP, relaxation of SCP and study the proper pre-
processing for efficient implementation. In particular, we find that the strict feasibility constraint
qualification, the Slater constraint qualification (SCQ), fails. This results in numerical problems.
We then apply facial reduction to the SDP relaxation. Our numerical tests indicate that facial
reduction provides a regularization of the SDP relaxation. The new problem is both smaller and
more stable.

1.1 Problem definition

For our purposes, a protein macromolecule is a chain of amino acids that fold into a stable structure
with a minimal potential energy. An amino acid has three components: an amino group (H2N-)
and a carboxylic acid group (-COOH) that are bonded to an “alpha” carbon (-Cα-) that is attached
to a third atom group called a side-chain. Amino acids are linked to form a protein chain by a
condensation reaction that links the amino group of one amino acid to the carboxylic acid group of
the next acid. In this reaction, the amino acid gives up a hydrogen atom which combines with the
freed (-OH) atoms of the carboxyl group to produce water. Consequently, atoms in the backbone of
the protein form a repetitive sequence of triplets: · · ·NCαC NCαC NCαC NCαC · · · with
each CN bonding being the result of a condensation reaction. We can now visualize the protein
chain as this repetitive sequence of atoms with side chain groups sprouting from the alpha carbon
atoms. Solving the famous protein folding problem requires an accurate prediction of all atomic
positions for the folded minimal energy conformation of such a chain. The problem is known to be
NP-hard [1] and so heuristic strategies are typically employed. To make the prediction of protein
structure more tractable, the determination of atomic positions is typically subdivided into two sub-
problems: a) calculate the positions of atoms in the backbone, b) given the positions of backbone
atoms, calculate the conformations of all side-chains. Various techniques such as homology modeling
and fold recognition can be used to provide a reasonable assessment of the backbone conformation,
see [16].

If we are given the fixed positions of the back-bone atoms, the problem reduces to the simpler
(although still NP-hard [1]) side-chain packing problem SCP. As expected, a solution of SCP
involves predicting the side-chain conformations that will minimize the potential energy of the
protein. The assumption of a fixed backbone gives us reasonable initial conditions for a heuristic
solution, although in reality, the conformation of the backbone is dependent on the primary sequence
of amino acids and any changes in the side chain positions will produce small perturbations of the
positions of the back-bone atoms.
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1.1.1 Rotamericity

Even though the problem has been reduced in scope, we will nonetheless utilize a further approx-
imation in an effort to reduce the computational load. This approximation is a discretization of
side-chain conformations that capitalizes on the phenomenon of rotamericity. Small side-chains such
as glycine and alanine have very simple conformations that are not complicated by the presence of
dihedral angles. However, more complicated side-chains contain dihedral angles that can change
leading to an infinite set of possibilities for the 3D conformation of the side-chain. Fortunately, it
has been observed that a side-chain will typically have a tendency to adopt a conformation that is
close to a member of a small set of possible conformations. Each conformation (called a rotamer)
is characterized by a particular discrete setting of each dihedral angle in the side-chain.

1.1.2 Discretization via rotamers (rotamer libraries)

Various studies [14, 20] have produced libraries that store the rotamer sets for each of the 20
amino acids. The number of rotamers in a set will depend on the number of dihedral angles in the
side-chain. In this paper the more complicated side-chains have rotamer sets with as many as 81
members. There is a computational trade-off involved in this discretization. If the statistical binning
employs a larger number of rotamers we will get a higher level of accuracy for the final calculated
conformation but there will be a much higher computational cost that grows in a combinatorial
fashion with the sizes of the rotamer sets.

1.1.3 Pre-processing to eliminate rotamers

As a preparatory step to reduce the size of the input passed to our algorithm each set of rotamers was
filtered using a dead end elimination strategy [6, 14]. Briefly stated, a rotamer can be eliminated
from the set associated with some amino acid position if it can be shown that there is another
member of the rotamer set that always gives a lower energy value independent of the rotamer
choices for the neighbouring amino acids. There are various strategies to do this. We have adopted
the approach described in [1, 10].

1.2 Outline

We continue below and present some preliminary notation. Then the model formulation as a
{0, 1}-programming problem follows in Section 2. We derive the semidefinite programming (SDP)
relaxation in Section 3. This is done both directly and using the dual of the Lagrangian relaxation.
In addition, we show the relationships with the relaxation in [4]. The facial reduction is presented
in Section 4; finding feasible rounded solutions appears in Section 5.2. The numerical tests are
presented in Section 6. Concluding remarks are given in Section 7.

1.3 Preliminaries

Let G = (V, E , E) be a weighted, undirected graph with node set V =
⋃p

i=1 Vi, where each subset
Vi is a set consisting of rotamers, and the edge set E has weights Euv, with edge uv ∼= (u, v) ∈ E .

We work in the vector space of t × t symmetric matrices, St , equipped with the trace inner-
product 〈S, T 〉 = traceST and with the Löwner partial order induced by the cone of positive
semidefinite matrices St+, i.e., S � T if S − T � 0, is positive semidefinite.
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We work with several linear transformations between St and Rs. For v ∈ Rs, Diag(v) ∈ Ss

is the diagonal matrix with diagonal elements taken from v. The adjoint linear transformation
Diag∗(S) = diag(S) ∈ Rs is the vector formed from the diagonal of the matrix S. For the appro-
priate inner products, the adjoint satisfies

〈diag(S), v〉 = 〈S,Diag(v)〉, ∀v ∈ Rs,∀S ∈ Ss.

We let ē = ēp, ēmi
denote the vectors of ones of appropriate size. We use the bar to distinguish

from the unit vectors. We ignore the subscript when the dimension of ē is clear. Ēk is the k × k
matrix of ones. We use x ◦ y to denote the Hadamard (elementwise) product of x, y ∈ Rs×t.

2 Model Formulation

We need to choose exactly one rotamer from each set Vi based on minimizing the sum of the
weights on the edges given in E. The off-diagonal edge weights Euv, u 6= v, represent the pairwise
interaction energy between the particular pair of rotamers u, v chosen. The diagonal weight Euu is
the energy from the interaction between the backbone and the chosen rotamer u. Without loss

of generality, we let the size of the subsets mk := |Vk| ≥ 1,∀k, and we let m :=
(

m1 . . . mp

)T

denote the vector of cardinalities of the subsets Vi. We then set n0 = |V| (=
∑

k mk), to be the
total number of rotamers (i.e., nodes in G); then n := n0 + 1 is the size of matrices in the SDP
relaxation below.

2.1 Quadratic integer programming model

Computing the global minimum-energy conformation (GMEC) is equivalent to solving the following
quadratic integer programming problem

(IQP)

valIQP = min
∑

(u,v)∈E

Euvxuxv

s.t.
∑

u∈Vk

xu = 1, ∀k = 1, . . . , p

xu ∈ {0, 1},∀u ∈ V.

(2.1)

To rewrite IQP using matrix notation, we first label the n0 nodes in V as:

V1 ∼= {1, . . . ,m1} ,V2 ∼= {m1 + 1, . . . ,m1 +m2} , . . . ,Vp ∼=

{(

p−1
∑

k=1

mk

)

+ 1, . . . , n0

}

. (2.2)

By abuse of notation, we complete the definition of the weight matrix E = [Euv]u,v∈V ∈ S
n0 by

setting Euv = 0 if (u, v) /∈ E . We define the matrix

A :=















ēTm1
0 0 · · · 0

0 ēTm2
0 · · · 0

0 0 ēTm3
· · · 0

...
...

...
. . .

...
0 0 0 · · · ēTmp















∈ {0, 1}p×n0 .
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The matrix A satisfies

ATA =















Ēm1 0 0 · · · 0
0 Ēm2 0 · · · 0
0 0 Ēm3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ēmp















, AAT =















m1 0 0 · · · 0
0 m2 0 · · · 0
0 0 m3 · · · 0
...

...
...

. . .
...

0 0 0 · · · mp















.

We can now rewrite IQP as

(IQP)

valIQP = min xTEx
s.t. Ax− ēp = 0 ∈ Rp

x =
[

vT1 vT2 · · · vTp
]T
∈ {0, 1}(m

T ē)

vk ∈ {0, 1}
mk , k = 1, . . . , p.

(2.3)

We would like to obtain an SDP relaxation of IQP. We accomplish this by using QQP below, an
equivalent quadratically constrained quadratic problem. We replace the linear equality constraint
Ax− ēp = 0 by the quadratic ‖Ax− ēp‖

2 = 0. The 0, 1 constraints are modelled using x◦x−x = 0.
We add two redundant quadratic constraints in QQP within the brackets {}.

(QQP)

valIQP = valQQP = minx xTEx

s.t. ‖ēp −Ax‖2 = 0
x ◦ x− x = 0
{ (

ATA− I
)

◦
(

xxT
)

= 0
(xxT )ij ≥ 0, ∀ (i, j) ∈ I,

}

where I ⊆ {(i, j) : 1 ≤ i < j ≤ n0} is fixed. (Note that the elementwise inequality xxT ≥ 0 is a valid
inequality for IQP.) The two redundant quadratic constraints in QQP within the brackets {} are
useful for restricting the feasible matrices Y in the SDP relaxation. We see below: the redundant
Hadamard multiplicative constraint helps to guarantee that the diagonal blocks in the feasible
matrices Y are in fact diagonal matrices; the nonnegativity constraints provide a useful cutting
plane approach. It is interesting to note that the paper [4] specifically tries to use a minimum
number of constraints to model their quadratic problem for IQP; in direct contrast, we add many
redundant constraints. We emphasize that adding redundant constraints can significantly improve
the Lagrangian relaxation and so the SDP relaxation, as we see below. After we obtain the SDP
relaxation, we then remove redundant linear constraints by enforcing linear independence.

In addition, note that we could use p separate norm constraints for each row of ēp − Ax = 0,
rather than the single norm constraint. But, as we see below in Section 4.3, the relaxations end up
being equivalent.

3 Lagrangian and SDP Relaxations

We now derive our SDP relaxation using QQP. Our derivation differs from that in [4]. Rather than
squaring each side of the linear equality constraint in (2.1), we move the 1 in each constraint to
the left and use the norm squared of the complete equation. Furthermore, instead of using the
usual lifting approach, we use Lagrangian duality to obtain the SDP relaxation. In addition, we
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show that the Slater constraint qualification (SCQ), i.e., the existence of a strictly feasible point,
fails for this SDP relaxation, and so also for the SDP relaxation in [4]. This generally results in
severe numerical difficulties for SDP solvers, and can also result in a duality gap. To remove these
difficulties we project the problem onto the minimal face in order to obtain an SDP relaxation that
satisfies SCQ. Thus, we obtain both a smaller model, as well as a more stable program.

3.1 Forming the SDP relaxation

Starting with the quadratic-quadratic model in QQP, we now follow the four steps in [22, 23], see
also the recipe in [18]:

1. form the Lagrangian relaxation;

2. apply homogenization;

3. simplify to obtain the dual and an equivalent SDP;

4. take the dual to obtain the SDP relaxation of the original IQP.

Let λ ∈ R, w ∈ Rn0 ,Λ ∈ Sn0 , η ∈ R|I|. Define the projection

PI : Sn0 → R|I| : X 7→ [Xij ](i,j)∈I .

The adjoint P
∗
I : R|I| → Sn0 is essentially half the inverse mapping, i.e., with X symmetric and

Xij = 0,∀(i, j) /∈ I. The Lagrangian for QQP is

L(x, λ,w,Λ, η) = xTEx+ λ ‖ēp −Ax‖2 + wT (x ◦ x− x)
+〈Λ, (ATA− I) ◦ (xxT )〉 −

∑

(i,j)∈I ηij(xx
T )ij

=















xTEx+ λxTATAx+ wT (x ◦ x)
+〈Λ, (ATA− I) ◦ (xxT )〉 − 〈η,PI(xx

T )〉 quadratic

−2λēTp Ax− wTx linear

+λp. constant

3.1.1 Lagrangian relaxation and homogenization

We begin with the Lagrangian relaxation. We use a homogenizing variable x0 ∈ R and an additional
Lagrange multiplier t ∈ R. The Lagrangian relaxation with homogenization becomes

d∗ := max
λ,w,Λ,η≥0

{

min
x

L(x, λ,w,Λ)
}

= max
λ,w,Λ,η≥0

{

min
x,x2

0=1
xTEx+ λxTATAx+ wT (x ◦ x) + 〈Λ, (ATA− I) ◦ (xxT )〉

−〈P
∗
I (η), xx

T 〉 − 2λx0ē
T
p Ax− x0w

Tx+ λp
}

= max
λ,w,Λ,η≥0,t

{

min
x,x0

xTEx+ λxTATAx+ wT (x ◦ x) + 〈Λ, (ATA− I) ◦ (xxT )〉

−〈P
∗
I (η), xx

T 〉 − 2λx0ē
T
n0
x− x0w

Tx+ λp+ t(1− x20)
}

.

(3.1)
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If x0 = −1 in the second equality, then it can be replaced by x0 = +1 if we change the sign x← −x
as well. The last equality holds by the strong duality of the trust region subproblem, e.g., [9]. Note
also that ēTp A = ēTn0

.
The homogenization allows us to write the inner minimization problem in the last expression

in (3.1) as

λp+ t+min
x,x0

[

x0 xT
]

[

−t
(

−λēTn0
− 1

2w
T
)

(

−λēn0 −
1
2w
)

(

E + λATA+Diag(w) + Λ ◦ (ATA− I)− P
∗
I (η)

)

]

[

x0
x

]

,

i.e., an unconstrained homogeneous quadratic. Therefore, the minimum is attained at x0 = 0, x = 0,
both zero, under the hidden/implicit constraint that the Hessian with respect to x0, x is positive
semidefinite.

Therefore, the Lagrangian relaxation of QQP in (3.1) is equivalent to our first SDP:

(SDP-1)

d∗ = max t+ pλ

s.t.

[

t
(

λēTn0
+ 1

2w
T
)

(

λēn0 +
1
2w
)

(

−λATA−Diag(w)− Λ ◦ (ATA− I) + P
∗
I (η)

)

]

�

[

0 0
0 E

]

η ≥ 0

λ, t ∈ R, w ∈ Rn0 ,Λ ∈ Sn0 , η ∈ R|I|.
(3.2)

Recall that the additional Lagrange multiplier Λ arises from the redundant constraint (ATA− I) ◦
(xxT ) = 0, i.e., we could fix Λ = 0 in SDP-1. Similarly we could set η = 0. However, having extra
dual variables means that the lower bound d∗ might be larger (i.e., better). More precisely, it is
not clear that these redundant constraints will remain redundant in the SDP relaxation of QQP.
Once we have the SDP relaxation, the constraints are linear and one can then determine accurately
which constraints are redundant by ensuring linear independence.

3.1.2 Linear transformations and their adjoints

We now rewrite the constraints in SDP-1 in a clearer form using the following linear transformations
acting on v ∈ Rn0 , S ∈ Sn0 . By abuse of notation, the definitions change depending on whether
they act on a scalar, vector, or matrix. We include the adjoints as well. The left-hand side of the
constraint for SDP-1 can be written using the following linear transformations, thus defining them
implicitly.

LHS =

[

t λēTn0
+ 1

2w
T

λēn0 +
1
2w −λATA−Diag(w)− Λ ◦ (ATA− I) + P

∗
I (η)

]

=

[

t 0
0 0

]

+

[

0 λēTn0

λēn0 −λATA

]

−

[

0 −1
2w

T

−1
2w Diag(w)

]

−

[

0 0
0 Λ ◦ (ATA− I)

]

+

[

0 0

0 P
∗
I (η)

]

=: 1O(t) + eBDiag(λ)−Arrow(w)− dBDiag(Λ) + P ∗
I (η).

(3.3)

We partition Y =

[

Y00 yT

y Ȳ

]

∈ Sn, Ȳ ∈ Sn0 . And we define PI(Y ) by extending PI(Ȳ ),

i.e., PI(Y ) = PI(Ȳ ). We can derive the adjoints of the linear transformations in (3.3) as fol-
lows:
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1. 1O
∗
(Y ) = Y00

2. ebdiag(Y ) := eBDiag∗(Y ) = −〈Ȳ , ATA〉+ 2ēTn0
y

3. arrow(Y ) := Arrow∗(Y ) = diag(Ȳ )− y

4. dbdiag(Y ) := dBDiag
∗
(Y ) = Ȳ ◦ (ATA− I)

The operator in Item 4 is a so-called gangster operator as it shoots holes/zeros in the matrix Ȳ
when it guarantees that the diagonal blocks are themselves diagonal matrices, see [22, 23].

An alternative representation of the constraint matrix in (3.3) uses linear combinations of the
following matrices.

At =

[

1 0
0 0

]

; Aλ =

[

0 ēTn0

ēn0 −ATA

]

; Aj =

[

0 1
2e

T
j

1
2ej −Diag(ej)

]

. (3.4)

3.1.3 SDP relaxation from dual of Lagrangian relaxation

Recall that the Lagrangian relaxation with the linear transformations introduced above is equivalent
to the following SDP.

(SDP-1)

d∗ = max t+ pλ

s.t. 1O(t) + eBDiag(λ)−Arrow(w)− dBDiag(Λ) + P ∗
I (η) �

[

0 0
0 E

]

η ≥ 0

λ, t ∈ R, w ∈ Rn0 ,Λ ∈ Sn0 , η ∈ R|I|.

(3.5)

We now take the Lagrangian dual of SDP-1 to obtain the SDP relaxation of QQP.

(DSDP-1)

d∗∗ := min
Y

〈[

0 0
0 E

]

, Y

〉

= 〈E, Ȳ 〉

s.t. Y00 = 1
ebdiag(Y ) = p
arrow(Y ) = 0
dbdiag(Y ) = 0
PI(Y ) ≥ 0

Y =

[

Y00 yT

y Ȳ

]

� 0.

(3.6)

An equivalent form of DSDP-1 in (3.6) that uses the explicit matrices in (3.4) is given in the
following.

(DSDP-1)

d∗∗ = min
Y

〈[

0 0
0 E

]

, Y

〉

s.t. 〈At, Y 〉 = 1
〈Aλ, Y 〉 = p
〈Aj , Y 〉 = 0, ∀ j = 1, . . . , n0

Ȳ ◦ (ATA− I) = 0
Ȳij ≥ 0, ∀ (i, j) ∈ I

Y =

[

Y00 yT

y Ȳ

]

� 0.

(3.7)
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Proposition 3.1. Strong duality holds for SDP-1, i.e., d∗ = d∗∗ and d∗∗ is attained.

Proof. The results follow since SCQ holds for SDP-1 as both w, t are free variables.

We shall see below and in Section 4 that, on the other hand, SCQ fails for DSDP-1.

Remark 3.2. We now describe some properties for the constraints in (3.6) (equivalently in (3.7)).

• The first constraint guarantees that Y00 = 1.

• The second constraint guarantees that the elements of the diagonal blocks sum to the elements
of the first row (and column).

• The third constraint implies that the matrix Y has the arrow property, i.e., the first row is
equal to the diagonal. This with the second constraint implies that the

off-diagonal elements of the diagonal blocks sum to 0.

This means that if we include a nonnegativity constraint that Y ≥ 0, then the diagonal
blocks of Y are, in fact, diagonal matrices. This means that

∑p
i=1(mi − 1)mi/2 elements are

restricted to be 0. This gangster constraint is a strong constraint on the matrix Y . However,
we note that we assumed Y ≥ 0 to guarantee this.

• The fourth constraint guarantees that the off-diagonal elements of the diagonal blocks are
indeed all 0. We see that this holds without any nonnegativity requirements on Y .

• The fifth constraint imposes nonnegativity constraints on some of the elements of Y , indexed
by {(i+ 1, j + 1) : (i, j) ∈ I}. While we can always pick I = {(i, j) : 1 ≤ i < j ≤ n0}, so that











Ȳij ≥ 0, ∀ (i, j) ∈ I

arrow(Y ) = 0

Y � 0

=⇒ Y ≥ 0,

such a choice of I would lead to n0(n0 − 1)/2 inequalities, meaning that DSDP-1 has many
more inequality constraints.

Note that feasible points for DSDP-1 exhibit extra structure that is not obvious. First, Y
feasible implies that Y has constant trace. Also, as we see in Theorem 4.6, the elements of each
diagonal block of Y sums to one.

Proposition 3.3. If Y is feasible for (3.7), then

trace Ȳ = p, where Y =

[

Y00 yT

y Ȳ

]

. (3.8)

Proof. The arrow constraint arrow(Y ) = 0 together with Ȳ ◦ (ATA− I) = 0 implies that

p = 〈Aλ, Y 〉 = 2ēTn0
y −

〈

Ȳ , ATA
〉

= 2 trace Ȳ − trace Ȳ = trace Ȳ .

This proves (3.8).
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Recall that n = 1+ n0 is the dimension of DSDP-1, i.e., Y ∈ Sn+ = S1+n0
+ , the cone of positive

semidefinite matrices. And, note the semidefiniteness of the following matrix (see [22])

0 6= Ap,λ :=

[

p 0
0 0

]

−Aλ =

[

p −ēTn0

−ēn0 ATA

]

� 0.1 (3.9)

Then, for Y � 0, feasible for DSDP-1, we get

〈Ap,λ, Y 〉 = p〈At, Y 〉 − 〈Aλ, Y 〉 = p− p = 0. (3.10)

Therefore R(Y ) ⊆ Null(Ap,λ) ( S
n, i.e., SCQ fails. In fact, on the feasible set of DSDP-1, we have

rank (Y ) ≤ n− rank (Ap,λ) = n− rank (A)− 1 = n− p− 1 < n. (3.11)

It is now clear that SCQ fails for the SDP relaxation DSDP-1 in (3.7), i.e., the semidefiniteness
of both Ap,λ and Y in the constraint 〈Ap,λ, Y 〉 = 0 means that Y is singular for all Y in the feasible
set of (3.7). We will take advantage of this rank deficiency below when we do facial reduction, see
Section 4.

4 Facial Reduction of the SDP Relaxation

We have seen in (3.9) that the matrix 0 6= Ap,λ � 0. Moreover, this matrix is formed from two
constraints so that Y feasible implies that 〈Ap,λ, Y 〉 = 0. Since feasibility implies that Y � 0, we
conclude that Y is singular. Therefore, we see that the SDP relaxation DSDP-1 does not satisfy
the standard SCQ, see Proposition 4.3. This can cause serious problems for interior point methods,
which is the method of choice for many current SDP solvers. In fact, the range of a feasible Y is
restricted, i.e. R(Y ) ⊆ Null(Ap,λ). We can take advantage of this and facially reduce the problem.
The main result in this section from the facial reduction is that DSDP-1 is equivalent to the smaller
SDP

min
X∈Sn−p

〈

Ê,X
〉

s.t. arrow(X) = 0,
dbdiag(X) = 0,
X00 = 1,
X � 0,
(WXW T )ij ≥ 0 ∀ (i, j) ∈ I,

(4.1)

1To see that Ap,λ is positive semidefinite, we consider its Schur complement

A
T
A−

1

p
ēn0

ē
T
n0

.

For any x = [x(1);x(2); . . . ;x(p)] ∈ Rn0 with x(i) ∈ Rmi for i = 1, . . . , p, we have

(

ē
T
n0
x
)2

=

(

p
∑

i=1

ē
T
mi

x
(i)

)2

≤

(

p
∑

i=1

∣

∣

∣ē
T
mi

x
(i)
∣

∣

∣

)2

≤ p

p
∑

i=1

(

ē
T
mi

x
(i)
)2

= p‖Ax‖2 = px
T
A

T
Ax.

This shows that xT
(

ATA− 1
p
ēn0

ēTn0

)

x ≥ 0 for all x ∈ Rn0 .
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whose dual is given by

max
t,w,Λ,ξ

t

s.t. 1O(t) + Arrow(w) + dBDiag(Λ) +
∑

(i,j)∈I W
T (eie

T
j + eje

T
i )Wξij � Ê

ξ ≥ 0, ξ ∈ R|I|.

(4.2)

First, we need to introduce a few concepts on facial reduction.

Definition 4.1. A set K in a vector space is a convex cone if K ⊆ K+K and λK ⊆ K,∀λ ≥ 0. A
convex cone T ⊆ K is a face of the convex cone K, denoted T �K, if

x, y ∈ K, x+ y ∈ T =⇒ x, y ∈ T .

If in addition T 6= K, then we denote this by T �K.

Definition 4.2. The minimal face of DSDP-1 in (3.7) is the smallest face containing the feasible
set FD of DSDP-1 and is denoted

fD =
⋂

{T � Sn+ : FD ⊆ T }.

Proposition 4.3. The minimal face fD of (3.7) is a proper face

fD � Sn+ . (4.3)

Proof. Let Y ∈ FD, the feasible set of DSDP-1. Since 0 6= Ap,λ � 0, Y � 0 and 〈Ap,λ, Y 〉 = 0 in
DSDP-1 (see (3.10)), we conclude that R(Y ) ⊆ Null(Ap,λ), i.e., the feasible set is a subset of the
proper face {Ap,λ}

⊥ ∩ Sn+ � Sn+ .

The failure of the SCQ is equivalent to (4.3), since DSDP-1 has a feasible solution Y ≻ 0 if
and only if the minimal face fD containing the feasible region of DSDP-1 is Sn+ itself. To avoid
the failure of the SCQ and the difficulties that this causes for interior point solvers, we find the
minimal face containing the feasible set and facially reduce our problem [23]. We reformulate our
problem and eliminate the equality constraints in advance.

4.1 Minimal face of SDP relaxation when I = ∅

In this section, we show that when we choose I = ∅, then DSDP-1 is equivalent to

min
X∈Sn−p

〈

Ê,X
〉

s.t. arrow(X) = 0,
dbdiag(X) = 0,
X00 = 1,
X � 0,

(4.4)

where Ê := W T

[

0 0
0 E

]

W with W defined below in (4.8). In addition, the dual of (4.4) is given

by
max
t,w,Λ

t

s.t. 1O(t) + Arrow(w) + dBDiag(Λ) � Ê.
(4.5)

12



We will show that (4.4) and (4.5) both satisfy the SCQ.
Let

Bk :=

[

Ik−1

−ēTk−1

]

∈ Rk×(k−1). (4.6)

We take the convention that any matrix B ∈ Rs×t is a vacuous matrix whenever s or t = 0. In
particular, B1 is a vacuous matrix. Note that for any integer k ≥ 2,

{ēk}
⊥ = R (Bk) . (4.7)

Define the n× (n− p) block arrow matrix W by

W =















1 m1−1 m2−1 mp−1

1 1 0 0 · · · 0
m1 em1 Bm1 0 · · · 0
m2 em2 0 Bm2 · · · 0

...
...

...
. . .

...
mp emp 0 0 · · · Bmp















, (4.8)

and for convenience let w ∈ Rn be the first (0-) column of W . Indeed, the range of W is the
nullspace of Ap,λ.

Lemma 4.4.

Null (Ap,λ) = span

(

{w} ∪

{

(

0
q0

)

: q0 ∈

p
⊗

i=1

{ēmi
}⊥
})

= R (W ) , (4.9)

where L1
⊗

L2 := {(x1, x2) : xi ∈ Li, i = 1, 2} for any linear subspaces L1, L2.

Proof. By (4.7),

p
⊗

i=1

{ēmi
}⊥ = span

{

ei ⊗ zi : zi ∈ {ēmi
}⊥ , ei ∈ Rp, i = 1, . . . , p

}

= span {ei ⊗Bmi
: mi > 1, i = 1, . . . , p} ,

where C⊗D denotes the Kronecker product of matrices C and D. This proves the second equality.
As a side note, observe that

dim

(

p
⊗

i=1

{ēmi
}⊥
)

=

p
∑

i=1

dim {ēmi
}⊥ =

p
∑

i=1

(mi − 1) .

Now we prove the first equality. It is immediate that each column of W is in the nullspace
of Ap,λ. We show that the n − p columns of W form a basis of Null (Ap,λ). First note that W
is full column rank. Observe also that the range of Ap,λ has dimension at least p. Now for each
i = 1, . . . , p, let

ui :=





















−1
0m1

...
ēmi

...
0mp





















.
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The set {u1, . . . , up} ∈ R (Ap,λ) is linearly independent. This implies that rank (Ap,λ) ≥ p. Hence
dim (Null (Ap,λ)) = n− p, and the columns of W form a basis of Null (Ap,λ). This proves the first
equality.

Next, we show that the feasible set of DSDP-1 is contained in WSn−p
+ W T . Define

B :=
{

(i, j) : i < j, (ATA)ij = 1
}

(4.10)

= {(i, j) : i < j, i− 1, j − 1 ∈ Vk for some k} , (4.11)

and, for k = 1, . . . , p,

m̄k :=

{

0 if k = 1,
∑k−1

l=1 ml if k > 1.
(4.12)

Lemma 4.5. For j = 1, . . . , n0,

W TAjW =







































1
2 (e1e

T
j−k+2 + ej−k+2e

T
1 )− ej−k+2e

T
j−k+2 if j 6= m̄k +mk for any k,

∑

i∈Vk

1

2
(e1e

T
i−k+2 + ei−k+2e

T
1 )− ei−k+2e

T
i−k+2

−
∑

(i−1,l−1)∈Vk ,
i<l

ei−k+1e
T
l−k+1 + el−k+1e

T
i−k+1 if j = m̄k +mk.

(4.13)

For (i, j) ∈ B, i.e., for i− 1, j − 1 ∈ Vk (where k ∈ {1, . . . , p}) with i < j,

W T (eie
T
j + eje

T
i )W

=































ei−k+1e
T
j−k+1 + ej−k+1e

T
i−k+1 if j < m̄k +mk + 1,

e1e
T
i−k+2 + ei−k+2e

T
1 − 2ei−k+2e

T
i−k+2

−
∑

l−1∈Vk\{i−1},
l 6=m̄k+mk+1

ei−k+1e
T
l−k+1 + el−k+1e

T
i−k+1 if j = m̄k +mk + 1.

(4.14)

Proof. We compute W TAjW (for j = 1, . . . , n0). From (2.2),

Vk = {m̄k + 1, m̄k + 2, . . . , m̄k +mk} , ∀ k = 1, . . . , p.

By definition of W in (4.8), we have

W T e1 = e1 ∈ Rn−p.

For any i ∈ {2, . . . , n}, we have i− 1 ∈ Vk for some k ∈ {1, . . . , p}.

• If i− 1 < m̄k +mk, then
eTi W = eTi−k+1.

Hence

W TAi−1W =
1

2
(W T e1e

T
i W +W T eie

T
1 W )−W T eie

T
i W

=
1

2
(e1e

T
i−k+1 + ei−k+1e

T
1 )− ei−k+1e

T
i−k+1

= Ai−k ∈ S
n−p .
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• If i− 1 = m̄k +mk, then

eTi W = eTm̄k+mk+1W =
[

1 m1−1 mk−1 mp−1

1 0 · · · −ēT · · · 0
]

= eT1 −

m̄k+mk−k+1
∑

l=m̄k−k+3

eTl

= eT1 −
∑

l−1∈Vk,
l 6=m̄k+mk+1

eTl−k+1

Hence

W TAi−1W =
1

2
(W T e1e

T
m̄k+mk+1W +W T em̄k+mk+1e

T
1 W )−W T em̄k+mk+1e

T
m̄k+mk+1W

=

















1 · · · −1
2 ē

T · · · 0
...

...
...

−1
2 ē · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0

















−

















1 · · · −ēT · · · 0
...

...
...

−ē · · · Ē · · · 0
...

...
...

0 · · · 0 · · · 0

















=
∑

l∈Vk

Al−k+1 −
∑

l−1,j−1∈Vk, l<j

el−k+1e
T
j−k+1 + ej−k+1e

T
l−k+1.

This proves (4.13).
Now we compute W TEijW for (i, j) ∈ B. For all i− 1, j − 1 ∈ Vk with i < j < m̄k +mk + 1,

W T eie
T
j W +W T eje

T
i W = ei−k+1e

T
j−k+1 + ej−k+1e

T
i−k+1.

If i− 1, j − 1 ∈ Vk with i < j = m̄k +mk + 1, then

W T eie
T
j W +W T eje

T
i W

= ei−k+1e
T
1 + e1e

T
i−k+1 −

∑

l−1∈Vk,
l 6=m̄k+mk+1

ei−k+1e
T
l−k+1 + el−k+1e

T
i−k+1

= 2Ai−k+1 −
∑

l−1∈Vk\{i−1},
l 6=m̄k+mk+1

ei−k+1e
T
l−k+1 + el−k+1e

T
i−k+1.

We now see that the dual program is equivalent to a surprisingly simple program. Note that
except for the arrow constraint the other constraints are trivial in the sense that either the variable
is free or fixed at 0. (And X00 = 1.)

Theorem 4.6. When I = ∅, DSDP-1 is equivalent to

min
X∈Sn−p

〈

Ê,X
〉

s.t. arrow(X) = 0,
dbdiag(X) = 0,
X00 = 1,
X � 0,

(4.15)
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where Ê := W T

[

0 0
0 E

]

W .

Proof. It is immediate that

〈Ap,λ, Y 〉 = 0, Y � 0 ⇐⇒ Y = WXW T for some X ∈ Sn−p
+ .

By definition of A and B, we then have

Ȳ ◦ (ATA− In0) = 0 ⇐⇒ Yij = 0,∀ (i, j) ∈ B.

Moreover,
(WXW T )00 = eT1 WXW T e1 = eT1 Xe1 = X00.

Therefore, when I = ∅, Y ∈ Sn is feasible for DSDP-1 if, and only if,

Y = WXW T ,
〈

W TAjW,X
〉

= 0, ∀ j = 1, . . . , n0
〈

W T (eie
T
j + eje

T
i )W,X

〉

= 0, ∀ (i, j) ∈ B,

X00 = 1,
X � 0.

(4.16)

Also, for any X ∈ Sn−p , by (4.13) and (4.14),

〈

W TAjW,X
〉

= 0, ∀ j = 1, . . . , n0
〈

W T (eie
T
j + eje

T
i )W,X

〉

= 0, ∀ (i, j) ∈ B,
(4.17)

if, and only if,
〈

e1e
T
j+1 + ej+1e

T
1 − 2ej+1ej+1,X

〉

= 0, ∀ j = 1, . . . , n− p− 1

Xi−k+1,j−k+1 = 0, ∀ (i, j) ∈ B with j 6= m̄k +mk + 1 for any k,
(4.18)

if, and only if, arrow(X) = 0 and dbdiag(X) = 0. Therefore, when I = ∅, Y is feasible for DSDP-1
if, and only if, Y = WXW T for some X such that

arrow(X) = 0,
dbdiag(X) = 0,

X00 = 1,
X � 0.

(4.19)

This shows that DSDP-1 is equivalent to (4.15) when I = ∅.

Next we show that (4.15) and its dual both satisfy the SCQ.

Proposition 4.7. The dual of (4.15) is given by

maxt,w,Λ t

s.t. 1O(t) + Arrow(w) + dBDiag(Λ) � Ê,
(4.20)

and both (4.15) and (4.20) satisfy SCQ.
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Proof. The fact that (4.20) is the dual of (4.15) simply follows from the definition of the linear
operators 1O, Arrow and dBDiag and their respective adjoints X 7→ X00, arrow and dbdiag. To
see that (4.15) satisfies the SCQ, note that

X̂ = 1O(1) +
1

2(n0 − p)
Arrow(ēn0−p) (4.21)

is a Slater point for (4.15), as

1

2(n0 − p)
In0−p −

1

4(n0 − p)2
ēn0−pē

T
n0−p �

1

2(n0 − p)
In0−p −

1

4(n0 − p)2
λmax

(

ēn0−pē
T
n0−p

)

=
1

4(n0 − p)
In0−p.

To see that (4.20) satisfies the SCQ, take any positive α > λmin(Ê), and

t = −
α− λmin(Ê)

λmin(X̂)
, w = −

α− λmin(Ê)

2(n0 − p)λmin(X̂)
ēn0−p , Λ = 0.

Then

Ê − 1O(t)−Arrow(w) − dBDiag(Λ) = Ê +
α− λmin(Ê)

λmin(X̂)
X̂

� Ê + (α− λmin(Ê))I

� αI.

Hence (t, w,Λ) is a Slater point for (4.20).

A consequence of Proposition 4.7 is that each of the diagonal blocks of any feasible point sum
to one.

Corollary 4.8. For k = 1, . . . , p, let χk ∈ Rn denote the characteristic vector of Vk, i.e.,

(χk)0 = 0 and (χk)u =

{

1 if u ∈ Vk

0 if u /∈ Vk
for u ∈ V.

Then if Y is feasible for DSDP-1, we get
〈

χkχ
T
k , Y

〉

= 〈Diag(χk) , Y 〉 = 1, for k = 1, . . . , p. (4.22)

Proof. For k = 1, . . . , p, since each column of Bk sums to zero, we have that W Tχk = e1 and
〈

χkχ
T
k , Y

〉

=
〈

W Tχkχ
T
kW,X

〉

=
〈

e1e
T
1 ,X

〉

= 1;

〈Diag (χk) , Y 〉 = χT
k diag(Y )

= χT
k (WXW T ):1

= χT
k (WX)(W T ):1

= (W Tχk)
TXe1

= eT1 Xe1 = 1.
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Corollary 4.8 implies that when I = {(i, j) : 1 ≤ i, j ≤ n}, DSDP-1 is indeed equivalent to the
SDP program that appeared in [4]:

d∗∗ ≥ min

〈[

0 0
0 E

]

, Y

〉

s.t. 〈Diag(χi) , Y 〉 = 1, ∀ i = 1, . . . , p
〈

χiχ
T
i , Y

〉

= 1, ∀ i = 1, . . . , p
〈Aj , Y 〉 = 0, ∀ j = 1, . . . , n0

Y00 = 1,
Y ∈ Sn+ , Y ≥ 0.

(4.23)

4.2 Minimal face of DSDP-1 in the presence of nonnegativity constraints

In this section, we remove the previous assumption that I is empty, and show that DSDP-1 is
equivalent to (4.15) with the additional constraints (WXW T )ij ≥ 0 for all (i, j) ∈ I, provided that

I ⊆ I≥0 := {(i, j) : 1 < i < j ≤ n, (i− 1, j − 1) /∈ B} ,

and B is defined in (4.10). To prove our claim, consider

d∗∗≥0 = min
Y

〈[

0 0
0 E

]

, Y

〉

s.t. Y00 = 1
trace Ȳ = p
ebdiag(Y ) = p
arrow(Y ) = 0
dbdiag(Y ) = 0
Y � 0
Yij ≥ 0 ∀ (i, j) ∈ I≥0,

(4.24)

Observe that since Y � 0 implies diag(Y ) ≥ 0 and Y satisfies dbdiag(Y ) = 0 as well as arrow(Y ) =
0, if Y is feasible for (4.24), then Y ≥ 0. Also,

valIQP ≥ d∗∗≥0 ≥ d∗∗. (4.25)

By Theorem 4.6, the problem (4.24) is equivalent to

minX∈Sn−p

〈

Ê,X
〉

s.t. arrow(X) = 0,
dbdiag(X) = 0,
X00 = 1,
X � 0,
(WXW T )ij ≥ 0 ∀ (i, j) ∈ I≥0.

(4.26)

The dual of (4.26) is given by

maxt,w,Λ,y t s.t. 1O(t) + Arrow(w) + dBDiag(Λ) +
∑

(i,j)∈I≥0
W T (eie

T
j + eje

T
i )Wyij � Ê

y ≥ 0,
(4.27)

and satisfies the SCQ by Proposition 4.7. We claim that (4.26) also satisfies the SCQ.
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Proposition 4.9. Define

D = ēn−pē
T
n−p −

1O(1) −Arrow(ē)− dBDiag(ēn0−pē
T
n0−p) ∈ S

n−p .

Then there exists α > 0 such that X̂+αD is strictly feasible for (4.26), where X̂ is defined in (4.21).
(That is, in addition to being feasible for (4.26), we have the inequalities are satisfied strictly).

Proof. By definition of D,

dbdiag(D) = 0, arrow(D) = 0, D00 = 0.

Since X̂ is a positive definite matrix as pointed out in Proposition 4.7, for sufficiently small α > 0
X̂+αD is feasible for (4.15). In fact, noting that D is indefinite, we have λmin(X̂)/(−λmin(D)) > 0
and if 0 < α < λmin(X̂)/(−λmin(D)), then

λmin(X̂ + αD) ≥ λmin(X̂) + αλmin(D) > 0.

Now we show that for small α > 0, we indeed have Y = W (X̂ + αD)W T satisfies Yij ≥ 0 for all
0 < i < j. Write

Ŷ := WX̂W T =















1 m1 m2 ··· mp

1 1 Ŷ01 Ŷ02 · · · Ŷ0p

m1 Ŷ10 Ŷ11 Ŷ12 · · · Ŷ1p

m2 Ŷ20 Ŷ21 Ŷ22 · · · Ŷ2p
...

...
...

...
. . .

...

mp Ŷp0 Ŷp1 Ŷp2 · · · Ŷpp















.

Then for i = 1, . . . , p, 2(n0 − p) =
∑p

i=1 2(mi − 1) so

Ŷi0 =

[

1
2(n0−p) ēmi−1

1− mi−1
2(n0−p)

]

> 0

Ŷii = Diag(Yi0)

and Ŷij =

[

mj−1 1

mi−1 0 1
2(n0−p) ēmi−1

1
1

2(n0−p) ē
T
mj−1 1−

mi+mj−2
2(n0−p)

]

(i 6= j).

Next note that

Ỹ := WDW T =















1 m1 m2 ··· mp

1 0 0 0 · · · 0

m1 0 0 Ỹ12 · · · Ỹ1p

m2 0 Ỹ21 0 · · · Ỹ2p
...

...
...

...
. . .

...

mp 0 Ỹp1 Ỹp2 · · · 0















,

where for i 6= j,

Ỹij =

[

mj−1 1

mi−1 ēmi−1ē
T
mj−1 −(mj − 1)ēmi−1

1 −(mi − 1)ēTmj−1 (mi − 1)(mj − 1)

]

.
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Hence when 0 < α < 1
2(n0−p)2

we have that for all 0 < i < j, (Ŷ + αỸ )ij > 0. Therefore, for

sufficiently small α > 0, we indeed have that Y = W (X̂+αD)W T is strictly feasible for (4.26).

As a remark, note that (4.26) and its dual remain strictly feasible even when I≥0 is replaced
by one of its proper subsets. Due to the high cost of adding all the nonnegativity constraints, our
implementation chooses a special subset to add.

4.3 Equivalence of two relaxations

The inequality (4.25) suggests that by requiring that (WXW T )ij ≥ 0 for all (i, j) ∈ I≥0, we
can potentially get a better optimal solution in the SDP. Nonetheless, the number of inequality
constraints would then be O(n2

0), meaning that solving (4.26) would be a challenge for standard
SDP solvers even if n0 is not too big. To ensure a faster runtime, we adopt a cutting plane strategy.

5 Implementation

This section discusses our heuristics used for obtaining near optimal solutions of IQP. First we dis-
cuss the cutting plane technique, which adds nonnegativity constraints over a number of iterations
to produce tighter SDP relaxations and at the same time attempts to keep the computation costs
low. Then we outline the techniques we use for obtaining integral solution feasible for IQP from
the SDP solutions.

5.1 Cutting plane technique

While the constraint (WXW T )ij ≥ 0 is valid for all (i, j) ∈ I≥0, it is extremely expensive to solve
the SDP relaxation with all such constraints (i.e., the SDP in (4.26)). To balance the tradeoff
between computation costs and adding in as many useful valid constraints as possible, we employ
the following cutting plane technique. We start with a small initial set I ⊂ I≥0 and solve

minX∈Sn−p

〈

Ê,X
〉

s.t. arrow(X) = 0,
dbdiag(X) = 0,
X00 = 1,
X � 0,
(WXW T )ij ≥ 0 ∀ (i, j) ∈ I.

(5.1)

Then we find the most violated constraints, that is, (i, j) ∈ I≥0\I such that (WXW T )ij is negative
and the value Eij(WXW T )ij is very negative (which happens when Eij >> 0), and update I to
include these new indices resulting in a slightly larger index set, and finally we resolve (5.1).

We fix the number of “cuts” (i.e., nonnegativity constraints (WXW T )ij ≥ 0) to be added in
each iteration. The number of cuts incremented has to be chosen with care: the number being
too small would lead to slow progress, and the number being too large would add unnecessary
computation cost to get to the final solution. We observe that the larger the problem size is, the
larger increment of cuts is required in each iteration in order to reach a nearly optimal solution
efficiently.
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5.2 Rounding to integral solution

From the solution of the SDP relaxation, we need to obtain a good approximation for the original
problem IQP. We adopt the two techniques introduced in [4]:

• Perron-Frobenius rounding : let u ∈ Rn be an eigenvector corresponding to the largest eigen-
value of the optimal solution Y ∗ of DSDP-1. It was proved in [4] that the normalized vector

u′ := p
u2+...+un







u2
...
un






satisfies the constraint Au′ = ēp, and u′ ≥ 0 if Y ∗ is nonnegative. Even

without the constraint Y ≥ 0 in DSDP-1, u′ is still empirically found to be nonnegative.2

• Projection rounding : the diagonal

(

1
u′′

)

of the optimal solution Y ∗ is used. Again, u′′ satisfies

Au′′ = ēp, u
′′ ≥ 0.

When given a fractional solution c (obtained from either of the above mentioned techniques),
we can compute a nearest integral solution x, i.e., x is the nearest vector to c among all feasible
solutions of IQP. The nearest integral solution can be found via a simple linear program.

Proposition 5.1. For any c ∈ Rn0, the integer program

min
x
‖x− c‖ s.t. Ax = ēp, x ∈ {0, 1}n0 (5.2)

is equivalent to a linear program.

Proof. Observe that for any feasible solution x of (5.2), the equality constraint xTx = p is satisfied,
so ‖x− c‖2 = −2cTx+ (‖c‖2 + p). Hence (5.2) is equivalent to the linear integer program

min
x

(−c)Tx s.t. Ax = ēp, x ∈ {0, 1}n0 . (5.3)

Since the columns of A are drawn from the identity matrix Ip, A is totally unimodular. This implies
that (5.3) is equivalent to the linear program

min
x

(−c)Tx s.t. Ax = ēp, x ∈ [0, 1]n0 , (5.4)

which has an integral optimal solution.

Observe that (5.4) essentially produces a greedy solution, in the sense that for each partition
k = 1, . . . , p, xk = eik , where ik is an index such that the maximum entry of the subvector ck lies
in the ik-th position.

2We note that the Perron-Frobenius rounding is equivalent to the best rank-one approximation as given by the
Eckart-Young Theorem, [8].
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5.3 Summary of algorithm

This section gives an overview of the algorithm we use for performing the SDP relaxation with a
cutting plane technique, followed by a rounding to get an approximate solution to IQP.

Below is a list of parameters:

• numcuts : number of cuts added each time (dependent on problem size)

• tol : zero tolerance on the entries of Y (currently at -1e-8, same as the tolerance of linear
infeasibility in SDPT3)

• maxiter : maximum number of cutting plane iterations

• r : number of times the same rounded solution is allowed to repeat consecutively (i.e., if the
same rounded solution can only appear at most r times in a row)

• ceil E : the ceiling on the values of E (currently 1e5)

Below is the list of the inputs needed:

• E ∈ Sn0 : energy matrix

• m ∈ Rp : vector of sizes of residues

• p : number of residues

• I ⊂ {(i, j) : 1 < i < j ≤ n} : the set of indices such that the nonnegativty constraint (WXW T )ij
is to be added to the SDP (4.12) for all (i, j) ∈ I.

At the end of the algorithm we have a collection of rounded solutions v1, v2 which empirically give
progressively better objective values.

6 Numerical Tests

We now present some numerical results on proteins from the Protein Data Bank (PDB) [3]. For a
sidechain packing problem with p partitions of sizes m1, . . . ,mp, the size of the matrix variable in
the facially reduced SDP relaxation is (n− p)× (n− p), where n =

∑p
i=1 mi + 1; and, the number

of linear equality constraints is n− p+
∑p

i=1
(mi−1)(mi)−2

2 . In the particular case where mi = m̄ is

constant for i = 1, . . . , p, we have that the number of constraints equals n− p+ p(m̄−1)(m̄−2)
2 .

6.1 Relative differences between objective value in IQP and dual SDP optimal

value

We measure the quality of the rounded solution using the relative difference between the optimal
value from (4.20) and the objective value of a feasible solution for IQP generated by the rounding
techniques introduced in Section 5.2. (See also the relative gap introduced in [4].) Observe that
for any instance of IQP, if we obtain (approximately) optimal primal-dual solutions (X∗; t∗, w∗,Λ∗)
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for the SDP relaxation (4.15)-(4.20) and use the rounding procedure as in Section 5.2 to obtain a
feasible solution x for IQP, then

xTEx ≥ valIQP ≥ d∗∗ = d∗ = d̃∗ := t∗, (6.1)

where d̃∗ is the objective value of the dual (4.20) attained by (t∗, w∗,Λ∗). We then measure the
quality of the integral solution obtained from rounding the SDP solution by using the following
relative difference

xTEx− d̃∗

1
2

∣

∣

∣xTEx+ d̃∗
∣

∣

∣

. (6.2)

6.2 Computation results on proteins from PDB

First we present some detailed results on the protein triose phosphate isomerase (1TIM) [2]. We
then present a summary of results on 26 proteins. The tests are conducted using SDPT3-4.0 on
MATLAB version R2012a, on a Linux machine with Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz
and 46.76 GB RAM.

Our experiments used a selection of proteins from the Protein Data Bank [3] to get the coordi-
nates of atoms in the backbone. To illustrate the processing applied to these proteins, we consider
one example: the protein triose phosphate isomerase [2] (PDB identifier: 1TIM). Extraction of the
protein coordinates was done using a Python script that executed in the UCSF Chimera molecular
modeling environment [17]. Chimera scripts allow one to make substitutions of sidechains with
rotamers that are available from a library provided by the Dunbrack Laboratory [7]. The script
calculated both intrinsic energies and the potential energies between interacting rotamers by using
an energy function that was implemented with parameter values taken from the research done by
Cornell et al. [5]. There are some implementation details involved in the programming of this
function and in an effort to provide the same energy calculations as Chazelle et al., we followed the
suggestions contained in Kingsford’s thesis (see section 3.2.7) [13].

6.2.1 Protein example (PDB ID = 1TIM)

We report on the computation results for the protein triose phosphate isomerase (1TIM) , using
different number of cut increments. Table 1 gives the basic information about 1TIM.

To avoid overflow due to the large values in E, we set 105 as a ceiling on the elements of E.
And we use I =

{

(i, j) : 1 < i < j ≤ n, Eij > 104
}

as the set of initial nonnegativity constraint
indices. Table 2 compares the results from different choices of cut increments.

Figure 1a shows the optimal values of the SDP relaxation DSDP-1 over the iterations (with
increasingly many nonnegativitiy constraints). In the three different choices of numcut, the optimal
value increases and reaches a constant order (∼ 1000) towards the end of the algorithm. Figure
1b shows the rank of X over the iterations. (Tolerance for zero is set at 1e-5.) We can see a
decreasing trend in the rank of X over the iterations. In all different choices of cut increments,
we get rank (X) = 1 at termination which implies that we have indeed found the optimal integer
solution with no rounding needed.
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(a) Optimal value of DSDP-1
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Figure 1: results of DSDP-1

6.2.2 Summary of results on 26 proteins from PDB

Table 3 shows a summary of the numerical results on different proteins, using the cutting plane
technique versus the SDP relaxation (4.23) introduced in [4]. A total of 26 proteins of various sizes
(n0) are tested, and the computational results are shown in Tables 3 (for proteins with small n0),
4 (for medium-sized proteins with n0) and 5. Hyphens in the tables refer to tests that cannot be
completed (because of insufficient memory).

In the numerical tests, SCPCP consistently produces better integral solutions in a shorter time
than the method proposed in [4]. SCPCP consistently uses only a fraction of the computation time.
The accuracy of the SDP solution is also higher in the SCPCP output, and more importantly, the
integer solutions resulting from rounding is essentially optimal because they are usually very close
to the dual SDP optimal value, which is a lower bound on the optimal value of IQP.

A few metrics are reported:

• run time. In the numerical tests, there is a significant difference in the run time. Even though
SCPCP requires the solution of multiple SDPs, the fact that in each SDP only a relatively small
amount of nonnegativity constraints are imposed reduces the amount of computation work
needed.

• dual SDP optval, the optimal value of (4.2). Only the final iterate of SCPCP is reported. Since
(4.2) is the dual of the SDP relaxation (4.1) of IQP, the optimal value of (4.2) serves as a
lower bound of the optimal value of IQP.

• objval in IQP, the objective value of the integer solution obtained from Perron-Frobenius
rounding.

• relative diff, relative difference between the objective value in IQP and the optimal value of
(4.2). (See (6.2).) As mentioned in Section 6.1, the smaller the relative difference is, the more
we can be sure that the integer solution is indeed optimal for IQP.

• relative gap, the relative duality gap of the SDP solution. This serves as a measure of how
accurate the SDP was solved.
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Algorithm 1: SCPCP

Parameters(numcuts, tol, maxiter, r, ceil E);
Input(E, m, p, I);
Output(v1, v2: feasible solutions for IQP obtained from Perron-Frobenius and projection
roundings);

Initialization;
n←

∑

imi + 1;
E ← min{E, ceil E} (elementwise);
Inonneg ← {(i, j) : 1 < i < j ≤ n, (i− 1, j − 1) /∈ B, i, j integral} ;

First iteration;

SUBROUTINE

• solve

minX
〈

W TEW,X
〉

s.t. X00 = 1, arrow(X) = 0, dbdiag(X) = 0,
(WXW T )ij ≥ 0 ∀ (i, j) ∈ I,
X � 0,

(5.5)

for optimal solution X∗

• Y ∗ ←WX∗W T

• obtain v1 from Perron-Frobenius rounding, and v2 from projection rounding

for k = 1 : maxiter do
if Y ∗

ij < tol for some i, j then

Inew ← Inonneg ∩
{

(i, j) : Y ∗
ij < tol

}

;

if |Inew| >numcut then
if EijYij ≥ 0 for all (i, j) ∈ Inew then
Inew ← the set of indices (i, j) ∈ Inonneg with i < j corresponding to the
numcut-most negative Yij

else
Inew ← the set of indices (i, j) ∈ Inew with i < j corresponding to the
numcut-most negative EijYij

end
I ← I ∪ Inew

end
repeat SUBROUTINE;
if v1, v2 are the same as in the previous r iterates then

STOP

end

end

end
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Table 1: Information on input data for 1TIM

Total number of residues / partitions 249

Total number of rotamers / nodes 819

Number of energy values / edges 66520

maxi,j Ei,j 5.80e+15

mini,j Ei,j -7.7783

Number of valid nonnegativity constraints 329760
(

= 1
2

(

n2
0 −

∑p
k=1m

2
k

) )

Table 2: Information on output for 1TIM

Increments in cuts 100 120 180

Total time elapsed (hr) 2.51 2.16 1.36

Number of iterations 12 11 9

Final number of nonneg. constr. 2306 2247 2217

Percentage of valid nonneg. constr. used 0.70 % 0.68 % 0.67%

dual SDP optval 685.61 685.61 685.61

objval for IQP 685.61 685.61 685.61

relative diff 5.81e-12 8.68e-12 4.62e-13
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Table 3: Results on small proteins

run time (sec) dual SDP optval objval in IQP relative diff relative gap
Protein n0 p

SCPCP [4] SCPCP [4] SCPCP [4] SCPCP [4] SCPCP [4]

1AAC 117 85 6.58 296.06 -206.33 -206.33 -206.33 -206.33 5.75E-11 1.72E-05 1.30E-09 4.21E-04

1AHO 108 54 7.97 364.73 33.53 33.53 33.53 33.53 8.44E-11 4.95E-05 2.45E-09 4.68E-04

1BRF 130 45 14.96 977.08 -31.11 -31.11 -31.11 -31.11 3.92E-11 2.27E-05 3.08E-09 1.24E-04

1CC7 160 66 28.60 1059.06 -63.76 -2.30E+07 -63.76 3.73E+04 1.13E-11 2.01 1.27E-09 1.11

1CKU 115 60 5.46 815.18 113.83 113.83 113.83 113.83 7.17E-11 4.79E-05 3.42E-09 1.13E-04

1CRN 65 37 12.76 46.42 -14.87 -14.87 -14.87 -14.87 1.64E-12 3.05E-05 2.20E-10 3.66E-04

1CTJ 153 61 16.15 777.31 -129.53 -6.69E+06 -129.53 174.65 2.98E-11 2.00 2.29E-09 1.07

1D4T 188 89 41.32 2775.34 -173.03 -2.96E+07 -173.03 291.13 3.88E-11 2.00 1.35E-09 1.20

1IGD 82 50 5.51 189.04 -69.25 -69.25 -69.25 -69.25 4.79E-10 2.74E-06 5.76E-09 3.39E-05

1PLC 129 82 14.32 1766.03 -1.50 -1.50 -1.50 -1.50 1.28E-11 7.28E-04 4.60E-10 1.09E-03

1VFY 134 63 23.49 1765.36 -90.09 -90.09 -90.09 -90.09 1.67E-11 -1.11E-05 9.15E-10 3.79E-05

4RXN 98 48 18.44 366.48 -21.65 -21.65 -21.65 -21.65 1.48E-11 2.62E-05 4.19E-10 6.67E-05

Table 4: Results on medium-sized proteins

run time (min) dual SDP optval objval in IQP relative diff relative gap
Protein n0 p

SCPCP [4] SCPCP [4] SCPCP [4] SCPCP [4] SCPCP [4]

1B9O 265 112 0.64 254.85 -140.24 -5.63E+07 -140.24 1.91E+06 1.19E-11 2.14 1.45E-09 1.24

1C5E 200 71 2.59 70.63 -131.75 -6.46E+04 -131.75 148.82 4.93E-11 2.01 5.02E-09 1.00

1C9O 207 53 2.15 66.50 -83.55 -1.88E+06 -83.55 1628.10 3.35E-12 2.00 2.77E-10 1.02

1CZP 237 83 1.90 143.95 -37.88 -2.26E+04 -37.88 1254.42 8.30E-11 2.24 1.03E-08 1.00

1MFM 216 118 0.19 102.11 -201.29 -7.36E+07 -201.29 1369.92 2.01E-11 2.00 1.24E-09 1.09

1QQ4 365 143 5.70 - -102.40 - -102.40 - 6.49E-11 - 2.27E-08 -

1QTN 302 134 5.04 - -178.77 - -178.77 - 2.24E-11 - 4.12E-09 -

1QU9 287 101 7.55 - -124.96 - -124.96 - 1.80E-11 - 5.52E-09 -
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Table 5: Results on large proteins (SCPCP only)

Protein n0 p run time dual SDP Objval rel. diff rel. gap numcut # iter Final
(hr) optval in IQP # cuts

1CEX 435 146 0.08 140.20 140.20 1.26E-11 5.57E-09 40 9 485
1CZ9 615 111 3.96 497.46 497.46 2.98E-13 6.37E-10 60 25 1997
1QJ4 545 221 0.15 -286.83 -286.83 5.31E-12 1.14E-09 60 14 1027
1RCF 581 142 0.85 -191.54 -191.54 3.71E-12 1.15E-08 60 17 1305
2PTH 930 151 29.65 -159.41 -159.41 8.69E-09 7.63E-06 120 34 7247
5P21 464 144 0.31 -135.75 -135.75 1.39E-12 7.33E-10 40 16 822

7 Conclusion

We applied facial reduction to the SDP relaxation of the side chain positioning problem. We ended
up with a smaller, more rigorous relaxation, as seen in our numerical tests, i.e., our optimal solutions
were generally better and obtained in a shorter time than those obtained from the approach in [4].
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Index

Ap,λ, constraint matrix, 11
Arrow, 8
Arrow∗, 9
dBDiag, 8
dBDiag

∗
, 9

eBDiag, 8
eBDiag∗, 9
Diag(x), diagonal matrix, 5, 6
Sn+ , positive semidefinite matrices, 11
Vi, set of rotamers, 5
arrow, 9
Ēk, k × k matrix of ones, 5, 6
dbdiag, 9
ebdiag, 9
0I, 8
0I

∗
, 9

◦, Hadamard (elementwise) product, 5, 6
〈S, T 〉 = traceST , trace inner product, 4
ē, vector of ones, 5, 6
PI , projection for nonnegativity constraints, 7
1O, 8
1O

∗
, 9

m =
(

m1 . . . mp

)

, cardinalities, 5
n, size of SDP relaxation, 5, 11
n0, number of nodes in graph, 5
E, objective in IQP, 5
St, symmetric matrices, 4, 5

adjoint, 5

convex cone, 12

diagonal matrix, Diag(x), 5, 6

face, 12
facial reduction, 3, 11

global minimum-energy conformation, GMEC, 5
GMEC, global minimum-energy conformation, 5
graph, G = (V, E , E), 4

Hadamard (elementwise) product, ◦, 5, 6

IQP, 5, 6

Lagrangian relaxation, 7

positive semidefinite matrices, Sn+ , 11

redundant constraints, 6
rotamer, 5

SCP, side chain positioning, 3
SCQ, Slater constraint qualification, 7
SDP, semidefinite programming, 3
SDP-1, 8
semidefinite programming, SDP, 3
set of rotamers, Vi, 5
side chain positioning, SCP, 3
Slater constraint qualification, SCQ, 7
symmetric matrices, St, 4, 5

trace inner product, 〈S, T 〉 = traceST , 4
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