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Abstract

This paper provides a simple approach for solving a semidefinite program, SDP.
As is common with many other approaches, we apply a primal-dual method that uses
the perturbed optimality equations for SDP, F),(X,y,Z) = 0, where X,Z are n x n
symmetric matrices and y € R"™. However, as in Kruk et al [I9], we look at this as an
overdetermined system of nonlinear (bilinear) equations on vectors X, y, Z which has
a zero residual at optimality. We do not use any symmetrization on this system. That
the vectors X, Z are symmetric matrices is ignored. What is different in this paper is a
preprocessing step that results in one single, well-conditioned, overdetermined bilinear
equation. We do not form a Schur complement form for the linearized system. In
addition, asymptotic g-quadratic convergence is obtained with a crossover approach
that switches to affine scaling without maintaining the positive (semi)definiteness of
X and Z. This results in a marked reduction in the number and the complexity of the
iterations.

We use the long accepted method for nonlinear least squares problems, the Gauss-
Newton method. For large sparse data, we use an inexact Gauss-Newton approach
with a preconditioned conjugate gradient method applied directly on the linearized
equations in matrix space. This does not require any operator formations into a Schur
complement system or matrix representations of linear operators.
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To illustrate the approach, we apply it to the well known SDP relaxation of the
Max-Cut problem. The cost of an iteration consists almost entirely in the solution

of a (generally well-conditioned) least squares problem of size n? x (n; 1). This

system consists of one large (sparse) block with columns (one CG iteration

n
2
cost is one sparse matrix multiplication) and one small (dense) block with n columns
(one CG iteration cost is one matrix row scaling). Exact primal and dual feasibility
are guaranteed throughout the iterations. We include the derivation of the optimal
diagonal preconditioner. The numerical tests show that the algorithm exploits sparsity

and obtains g-quadratic convergence.
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1 Introduction

The many applications, elegant theory, and practical algorithms for Semidefinite Program-
ming (SDP) has, arguably, made SDP the hottest area of optimization during the last five
years. It’s popularity, however, remains concentrated among specialists rather than main-
stream nonlinear programming practitioners and users. Most of the current algorithmic
approaches use symmetrizations and apply Newton’s method. The next (complicated and
costly) step is to construct the matrix for the Schur complement system. In general, this
results in a dense ill-conditioned system. There is a lack of SDP solvers that can efficiently
exploit sparsity and avoid the ill-conditioning of the Schur complement system. This raises



doubts whether SDP will replace the simpler Linear Programming (LP) even in the cases
where SDP provides stronger relaxations.

The main purpose of this paper is to illustrate a simple alternative algorithmic develop-
ment for SDP completely based on standard principles from numerical analysis, i.e. on the
(inexact) Gauss-Newton method with preconditioned conjugate gradients. The only addi-
tional tool we use is the definition of a linear operator and its adjoint. There is no need to
construct matrix representations of operators. And, no ill-conditioned system is formed. We
illustrate this approach on the well-known Max-Cut problem.

The primal SDP we consider is

p*:= max traceCX
(PSDP) st. AX =0 (1.1)
X > 0.
Its dual is
d*:= min by
(DSDP) st. Ay—2=C (1.2)
Z =0,

where X, 7 € 8", 8" denotes the space of n x n real symmetric matrices, and > denotes
positive semidefiniteness. A : 8™ — R™ is a linear operator and A" is the adjoint operator.

SDP looks just like a linear program and many of the properties from linear programming
follow through. (We discuss the similarity with linear programming and its influence on
the algorithmic development for SDP in Section [.1 below.) Weak duality p* < d* holds.
However, as in general convex programming, strong duality can fail; there can exist a nonzero
duality gap at optimality p* < d* and/or the dual may not be attained. (Strong duality can
be ensured using a suitable constraint qualification.)

The primal-dual pair leads to the elegant primal-dual optimality conditions, i.e. primal
feasibility, dual feasibility, and complementary slackness.

Theorem 1.1 Suppose that suitable constraint qualifications hold for (PSDP), (DSDP). The
primal-dual variables (X, y, Z), with X, Z = 0, are optimal for the primal-dual pair of SDPs
of and only iof
Ay—72-C
F(X,y,7) = AX -0 =0. (1.3)
ZX

Note that F' : 8" xR xS" — 8" xR x M"™, where M™ is the space of nxn matrices, since
the product ZX is not necessarily symmetric. (Z, X are diagonal matrices in the LP case.
This is one of the differences between SDP and LP that, perhaps, has had the most influence
on algorithmic development for SDP.) Currently, the successful primal-dual algorithms
are path following algorithms that use Newton’s method to solve (symmetrizations of) the



perturbed optimality conditions:

Ay -7 —-C
F.(X,y,Z):= AX —b = 0. (1.4)
ZX — ul

1.1 Historical Remarks and Motivation

Though studied as early as the 1960s, the popularity of SDP increased tremendously in the
early 1990s, see e.g. the historical summary in [27]. This was partly a result of the many
powerful applications and elegant theory of this area; but the main influence followed from
the knowledge that interior-point methods can solve SDPs; and, the field of optimization
had just completed a tremendous upheaval following the great success and excitement of
interior-point methods for Linear Programming, (LP), developed in the 1980s. Many of the
researchers from the LP area moved into SDP.

As in LP, the early successful algorithms were developed using the log-barrier approach.
The optimality conditions of the log-barrier problems led to the

X —pZ =0 (1.5)

form of the perturbed complementary slackness equation. However, it was quickly discovered
that the algorithms based on this form were inefficient, i.e. the result was slow convergence
with numerical difficulties arising from ill-conditioning when the barrier parameter p was
close to 0. Premultiplication by Z (a form of preconditioning) led to the ZX — ul = 0 form
in ([[.4) given above, i.e. the form that paralleled the classical approach in Fiacco-McCormick
[T2], and the one that exhibited great success for LPs.

However, one could not apply Newton’s method to the nonsquare system ([[.4) and New-
ton’s method was the driving force for the success in interior-point methods for LP. There-
fore, the effort was then put into symmetrization schemes so that techniques from LP could
be applied. Furthermore, after the symmetrization schemes are applied, the Schur com-
plement approach reduces the size of the linear system to be solved. Often, forming this
Schur complement system requires more work than solving the resulting reduced system of
linear equations. Moreover, both the symmetrized system and this reduced system are, in
general, ill-conditioned even if the original system was not. And, contrary to the case of
linear programming, it is not easy to avoid this ill-conditioning.

These symmetrization schemes can be considered from the view of preconditioning of the
optimality conditions ([[.4), with the form ([[.§), using some preconditioner. Suppose that
we start with the optimality conditions that arise from the log-barrier problem.

Ay—7-C
AX -0 = 0. (1.6)
X —pzt

Premultiplication by Z (a form of preconditioning) leads to a less nonlinear system, avoids
the ill-conditioning, and results in the more familiar (ZX — pl) form.

I 0 0 Ay—7-C Ay—72-C
0 I O AX —b = AX —D = 0. (1.7)
0 0 Z X —pz1 ZX —pul



We now precondition a second time using the linear operator P with symmetrization operator

I 0 0 I 0 0 A*y—7Z—-C
PF,(x,y,Z)=|(0 I 0 01 0 AX —b = 0. (1.8)
0o 0 S 0o 0 Z X —pz1

However, the symmetrizations used in the literature, in general, reverse the previous process,
i.e. after the symmetrization the ill-conditioning problem has returned. This framework
encompasses many different symmetrized systems with various acronyms, similar to the area
of quasi-Newton methods, e.g. AHO, HKM, NT, GT, MTW. The survey of search directions
by Todd [25] presented several search directions and their theoretical properties, including:
well-definedness, scale invariance, and primal-dual symmetry. For example, section 4 in that
paper studies twenty different primal-dual search directions. (Though the Gauss-Newton
direction studied here is not included.)

The point of view and motivation taken in this paper is that the framework of sym-
metrization in itself (contrary to the premultiplication by Z) can be counterproductive. This
can be seen from basic texts in Numerical Analysis and the preconditioning point of view in
(L.8). Let us ignore that some of the variables are in matrix space, and look at the overde-
termined nonlinear system ([.4), F,(z,y, Z) = 0, with zero residual. Then the approach in
any standard text (e.g. [9]) is to apply the Gauss-Newton method. This method has many
desirable features. Preconditioning (from the left, since it is scale invariant from the right)
is recommended if it results in improved conditioning of the problem, or in a problem that is
less monlinear. This view can be used to motivate our GN approach, i.e. the symmetrization
schemes used in the literature are not motivated by conditioning considerations. But, on the
other hand, they attempt to recreate the LP type framework. In instances studied in [19],
theoretical and empirical evidence shows that conditioning worsened for these symmetriza-
tion schemes, i.e. the opposite effect of preconditioning was observed. In particular, many of
the symmetrized directions are ill-posed (singular Jacobian) at p = 0, resulting in numerical
difficulties in obtaining high accuracy approximations of optimal solutions.

Further motivation for GN arises from the need to exploit sparsity in many applications
of SDP. The symmetrizations and the corresponding Schur complement systems make it
extremely difficult to exploit sparsity. Many attempts have been made. But in each case the
matrix problem is changed to a vector problem and then the structure of the original problem
is used in the vector problem. For the GN method, a standard approach to solving large
sparse problems is to use a preconditioned conjugate gradient method. Again, as above, this
does not need to take into account that some of the variables are in a matrix space. There
is no need to change back and forth between matrices and vectors. One should consider the
function as an operator between vector spaces, i.e. a black box for the Gauss-Newton (GN)
method with preconditioned conjugate gradients (PCG). To fully exploit this approach, we
eliminate the linear equations from the optimality conditions in a preprocessing phase.

For simplicity, we restrict ourselves in this paper to the semidefinite relaxation of the
Max-Cut problem; and, we derive and use the optimal diagonal preconditioner in the PCG
method. Our approach is currently being applied to several other problems with more
sophisticated preconditioners, see e.g. [1, 24, [15)].



1.1.1 Related Work

Several recent papers have concentrated on exploiting the special structure of the SDP
relaxation for the Max-Cut problem (see (P) below). A discussion of several of the methods
is given in Burer-Montreiro [5]. In particular, Benson et al [3] present an interior-point
method based on potential-reduction and dual-scaling; while, Helmberg-Rendl [I7] use a
bundle-trust approach on a nondifferentiable function arising from the Lagrangian dual.

Both of these methods exploit the small dimension n of the dual problem compared to the
dimension (n ; 1) = n(n + 1)/2 of the primal problem. Moreover, the dual feasibility
equation is sparse if the matrix of the quadratic form () is sparse. Therefore each iteration
is inexpensive. However, these are not primal-dual methods and do not easily obtain high
accuracy approximations of optimal solutions without many iterations.

The method in [5] uses the transformation X = VV7 and discards the semidefinite con-
straint. The problem reduces to a first order gradient projection method. They argue for
using a search direction based on first order information only (rather than second order
information as used in interior-point methods) since this results in fast and inexpensive it-
erations. However, the cost is that they need many iterations, contrary to interior-point
methods which need relatively few. Therefore, their approach is useful in obtaining opti-

n) = n(n — 1)/2 variables

mal solutions to moderate accuracy. Their formulation has 9

(unknowns).

n—2|— variables. However, it is based on the primal-
dual framework. We make the opposite arguement, (common in nonlinear programming),
i.e. 1t is important to start with a good search direction. We find a Gauss-Newton search
direction using a PCG approach. We use an inexact Newton framework, e.g. [8], to lower
the cost of each iteration. In fact, restricting CG to one iteration results in a first order
method with the same cost per iteration as that in [6]. In our algorithm, we try to stay
well-centered until we reach the region of quadratic convergence for affine scaling. Since
we have a well-posed system, (full rank Jacobian at optimality), we can obtain g-quadratic
convergence and highly accurate approximations of optimal solutions. The cost of each CG
iteration is a sparse matrix multiplication (essentially ZAX) and a matrix scaling (essentially

Diag (Ay)X).

Similarly, Our algorithm has

1.2 Further Background and Notation

The Max-Cut problem, e.g. [[1], consists in finding a partition of the set of vertices of a
given undirected graph with weights on the edges so that the sum of the weights of the
edges cut by the partition is maximized. This NP-hard discrete optimization problem can
be formulated as the following (quadratic) program (e.g. @ is a multiple of the Laplacian
matrix of the graph).

*

p* = max vTQu

(MCO0) st. vi=1 i=1,...,n

(1.9)



Using Lagrangian relaxation, (see e.g. [2]), one can derive the following semidefinite relax-
ation of (MCO).
< v*:= max trace @QX
(P) s.t. diag(X)=e (1.10)
X>0,Xes",

where diag denotes the vector formed from the diagonal elements and e denotes the (column)
vector of ones. For our purposes we assume, without loss of generality, that diag (Q) = 0.
This relaxation has been extensively studied. It has been found to be suprisingly strong

both in theory and in practice. (See e.g. the survey paper [[3].)
We work with the trace inner product in matrix space

(M, N) = trace M' N, M,N € M".

This definition follows through to 8™, the space of n x n symmetric matrices. The induced
norm is the Frobenius norm, ||M|p = Vtrace MT M. Upper case letters M, X, ... are used
to denote matrices; while lower case letters are used for vectors.

1.2.1 Adjoint Operators; Generalized Inverses; Projections

We define several linear operators on vectors and matrices. We also need the adjoints when
finding the dual SDP and also when applying the conjugate gradient method. Though not
essential for our development, we include information on generalized inverses and projections.

Mll
M21

v=vec(M):=| My | € 9?”2, columnwise if M € M,,,

takes the general rectangular matrix M and forms a vector from its columns. The inverse
1

mapping Mat := vec ~.
X2
| enl®)

xr = u2svec (X) := V2 | Xy | eR\2 (columnwise, strict upper triangular if X € S™)
X14

is /2 times the vector obtained columnwise from the strictly upper triangular part of the

symmetric matrix X; (g) = "("2_1). (The multiplication by v/2 makes the mapping an

isometry. Define vector ¢ similarly, ¢ = u2svec (Q).) Let u2sMat := u2svec’ denote the
Moore-Penrose generalized inverse mapping into 8™. This is an inverse mapping if we
restrict to the subspace of matrices with zero diagonal.



The adjoint operator u2sMat * = u2svec, since

(u2sMat (v),S) = traceu2sMat (v)S
vTu2svec (S) = (v, u2svec (S)).

Let
offDiag (S) := S — Diag (diag (5)),

where diag (S) denotes the diagonal of S and diag*(v) = diag'(v) = Diag(v) is the ad-
joint operator, i.e. the diagonal matrix with diagonal elements from the vector v. Then
diag Diag = I on R",

Diag diag * = Diag diag '

is the orthogonal projection on the subspace of diagonal matrices in 8™, the range of Diag,
and
u2sMat u2sMat * = u2sMat u2sMat T = offDiag = offDiag *,

is the orthogonal projection onto the subspace of matrices with 0 diagonal, the range of
u2sMat .

For a linear constraint A (X) = b, where the linear operator A is rank m, let the linear
n+1

operator N : §R< 2 >7m — 8™ have range equal to the null space of A. (We assume,
without loss of generality that A4 is onto.) Then

AX)=0b iff X=AT4+ (- AAHW, for some W € S"
("5 1) (1.11)
iff X =AT0+ N (w), forsomew e R\ 2

When we apply ([.IT]) to (P), we obtain

diag(X) =e iff X :=T4u2sMat(x), for some x € §R<2> (1.12)

Below, we equate X := u2sMat (z) + I, Z := Diag(y) — Q. The following operators
map §" — R°. These are the two operators used in the optimality conditions and in the
Gauss-Newton method.

X(-) :=vec(Diag (-)X); Z(-) := vec(Zu2sMat (-)). (1.13)

We evaluate the adjoint operators. Let A o B denote the Hadamard (elementwise) product
of the matrices A, B. Let w = vec (W).

(w, X(v)) = trace W' Diag (v)X
trace Diag (v) X W7
vTdiag (XMat (w)”)
(el'(X o Mat (w)"))v
((X o Mat (w))e)Tv
= (X" (w),v).

8



(w,Z(v)) = trace WTZuZSMat( )
= traceu2sMat (v {ZW + WTZ}

1
= vTﬁuZSvec {ZMat (w) + Mat (w)" Z}

= (Z"(w),v).

Summary:

X*(w) = diag (XMat (w)T) = (X o Mat (w))e; (1.14)

Z*(w) = su2svec {ZMat (w) + (ZMat (w))"'} . '
2 Duality and Optimality Conditions
Recall the primal SDP.

vt = max trace QX
(P) subject to diag (X) =e (2.1)
X = 0.

To obtain optimality conditions we use a dual problem. Slater’s constraint qualification
(strict feasibility) holds for (P), which implies that we have strong duality with the La-
grangian dual (e.g. [23])

v = min ely
(D) subject to Diag(y) — Z =Q (2.2)
Z = 0.

Weak duality for feasible variables can be expressed as:
0 < efy—trace QX = e’y —trace (Diag (y)—Z)X = (e—diag (X)) y-+trace ZX = trace ZX.

Therefore, a zero duality gap is equivalent to trace ZX = 0. Moreover, since X, Z > 0, this
is equivalent to ZX = 0. Since Slater’s condition is also satisfied for the dual program, we
have primal attainment and get the following well-known characterization of optimality for

(P).

Theorem 2.1 The primal-dual variables X,y, Z with X = 0,7 = 0 are optimal for (P),(D)
if and only if
Diag (y) — Z = Q (dual feasibility)
diag (X) =e¢ (primal feasibility)
ZX =0 (complementary slackness)



2.1 Preprocessing

Since the diagonal of X is fixed, we can use the constant K = e’diag (Q) in the objective
function. We could also set diag (@) = 0 so that K = 0. Therefore we assume without loss
of generality that

Diag (Q) = 0.

The simplicity of the primal feasibility equation yields an equivalent problem to (P) with the
representation x = u2svec (X), X = u2sMat (z) + I. This representation is a key element
in our approach, i.e. we found an initial positive solution using an operator whose range
is the null space of A. In the general SDP notation, we found A X = b is equivalent to
X =N(z)+ X, where A is a linear operator with range equal to the null space of A and
Xisa particular solution that satisfies X = N (z) + X = 0. This approach can be directly
applied to general problems with constraints of the form AX < b, X > 0. Obtaining an
initial feasible starting point can be done using the self-dual embedding e.g. [8, [].

We can now substitute for both Z, X and eliminate the first two (linear) blocks of equa-
tions. We obtain the following single block of equations for optimality. (By abuse of
notation, we keep the symbol F' for the nonlinear operator. The meaning is clear from the
context.)

Theorem 2.2 The primal-dual variables X,y, 7, with X = u2sMat(z +1) = 0, Z =
(Diag (y) — Q) = 0, are optimal for (P),(D) if and only if they satisfy the single bilinear
optimality equation

F(z,y) := (Diag (y) — Q)(u2sMat (x) + I) =0, F(z,y): §R<2> X ®*— M. (2.3)

This leads to the single perturbed optimality conditions that we use for our primal-dual
method.

n

F,(z,y) == (Diag (y) — Q)(u2sMat (z) + 1) —pul =0, F,(z,y): §R<2) xR — M". (24)

When we implement GN we use vec (F),(z,y)) = 0.
This is a nonlinear (bilinear) overdetermined system. The linearization (or Gauss-Newton
equation) for the search direction Az, Ay is (vec is understood)

~Flo) = Fllo) (5r)

= Z(Ax)+ X(Ay)
= (Diag(y) — Q)u2sMat (Az) + Diag (Ay)(u2sMat (z) + I).

(2.5)

This is a linear, full rank, overdetermined system and we find the least squares solution.
We note that the first part Z(Az) is the large part of the system since it has n(n — 1)/2
variables. However, the operator Z is sparse if the data () is sparse. The second part is the

10



small part since it only has n variables, though the operator X is usually dense. This is the
size of the Schur complement system that arises in the standard approaches for SDP. Sparse
least squares techniques can be applied. In particular, the distinct division into two sets of
columns can be exploited using projection and multifrontal methods, e.g. [4, 4, 20, 1.

The above system is full rank at each iteration, and, in addition, it has the strong
property of being full rank at optimality, i.e. it does not necessarily get ill-conditioned as
w1 approaches 0. This is seen empirically by our numerical tests. We now prove this for a
general primal-dual SDP pair.

Theorem 2.3 Consider the primal-dual SDP pair (PSDP),(DSDP). Suppose that A is onto
(full rank), N defines the null space as in (I.11), and X,y, Z are primal-dual optimal solu-
tions for (P) and (D) that satisfy strict complementary slackness, i.e. X +Z = 0. Then the
matrix of the system

—Fu(z,y) = Fi(z,y) 2; (2.6)

= (A*(y) — QN (Az) + A (Ay)(N (z) + A'b)
(F', Jacobian of F(x,y)) is full rank.

Proof. That the original overdetermined system F'(X,y, Z) is full rank is proved in [T9].
We observe that the system is obtained by block Gaussian elimination, which is equivalent
to premultiplication by invertible operators. [ ]

3 Primal-Dual Interior-Point Algorithm
The primal-dual framework we use is given by the following.

Algorithm 3.1 (p-d; GN with PCG)

e Initialization:

ee Input data: a real symmetric n x n matriz Q@ (set diag (Q) =0)
ee Positive tolerances: 0, (relative duality gap), 92 (accuracy for lss)
ee Find initial feasible points:

set: a*=0; 4° =2Diag(q) — Q,
where q; = HQ:,jﬂz;
(guarantees: both X := (u2sMat (x) + 1), Z := (diag (y) — Q) > 0.

ee Set initial parameters:

gap = trace ZX; pu=gap/n; optval =trace@QX; k =0.

3 gap
e while {W} > (51

11



1
. . i 3.1 .
ee solve for the search direction (to tolerance max {%, %}, in a least

squares sense with PCG, using k-th iterate (z,y) = (=¥, y*))

, Ax
Fa,u(xvy) (Ay) = _Fcru('ruy>7

where oy centering, py, = trace (Diag (y) — Q)(u2sMat () + I)/n

o =4+ apAr, TP =y + apAy; oy >0,
so that both (X := u2sMat (z*t1) + I), (Z := Diag (y*™!) — Q) = 0, before the
crossover; so that sufficient decrease in | Z X ||r is guaranteed, after the crossover.
ee update
k<«—k+1 and then update

tr, 0 (ok = 0 after the crossover).

e end (while).
e Conclusion: optimal X is approz. u2sMat (x) + [

We use equation (B.4) and the linearization (2.5) to develop the primal-dual interior-point
Algorithm B, (This modifies the standard approach in e.g. [?8].) We include a centering
parameter oy (rather than the customary predictor-corrector approach). Our approach dif-
fers in that we have eliminated, in advance, the primal and dual linear feasibility equations.
We work with an overdetermined nonlinear system rather than a square symmetrized sys-
tem; thus we use a Gauss-Newton approach, [T9]. We use a crossover step, i.e. we use affine
scaling, ¢ = 0, and we do not backtrack to preserve positive definiteness of Z, X once we
have found the region of quadratic convergence. The search direction is found using a pre-
conditioned conjugate gradient method, Isqr [22]. The cost of each CG iteration is a (sparse)
matrix multiplication and a diagonal matrix scaling, see e.g. (B.5).

There are many advantages for this algorithm:
ePrimal and dual feasibility is exact during each iteration (assuming that the the basis for
the null space was computed precisely);
ethere is no (costly, dense) Schur complement system to form;
eThere is no need to find Z~! (which becomes ill-conditioned as u goes to 0);
ethe sparsity of the data () is exploited completely;
eby the robustness of the algorithm, there is no need to enforce positivity of Z, X once pu
gets small enough; g-quadratic convergence is obtained;
ethe entire work of the algorithm lies in finding the search direction at each iteration by
solving a (sparse) least squares problem using a CG type algorithm. Each iteration of the
CG algorithm involves a (sparse) matrix-matrix multiplication and a diagonal row scaling
of a matrix. The more efficiently we can solve these least squares problems, the faster our
algorithm will be. Better preconditioners, better solvers, and better parallelization in the
future will improve the algorithm;
ethe techniques can be extended directly to general SDPs, depending on efficient (sparse)
representations of the primal (and/or dual) feasibility equation.

12



3.1 Preconditioning
3.1.1 Optimal Diagonal Column Preconditioning

We begin with the simplest of the preconditioners. This has been identified as a successful
preconditioner for least squares problems, see [I6, Sect. 10.5], [26], and [0, Prop. 2.1(v)].
In the latter reference, it was shown to be the optimal diagonal preconditioner in the sense
that, for A,m x n,m > n a full rank matrix, the solution of the optimization problem
minw((AD)T(AD)), over all positive diagonal matrices D, with condition number w(K) =

trace (K)/n +., . . .. .
%, is given by D;; = m. And, w is a measure of the condition number, in the sense
et n 3

that it is bounded above and below by a constant times the standard condition number
(ratio of largest to smallest singular values).

We first find the columns of the operator F'(z,y) = Z(z) + X(y). The columns are
ordered using k = 1,2, ... where k represents (i,7), 1 <i < j < n for the upper triangular
part of X; and then represents ¢ = 1,...,n for the elements of y.

1.
Z(ey) = vec(Diag(y) — Q)u2sMat (ex)
%vec (Diag (y) — Q) (esel + ejel)
= %VGC {(yieie? + yjeje;fp) - (Q:z'@jT + Q:jegp)} :

Therefore )
|12 (ex)[IF

e = QP+ lle, — Q1) )
2 LRl + 1@yl + v + 47},
since diag (Q)) = 0 by assumption. We see that this calculation is inexpensive since

one need only find the norms and sums of the columns of the sparse matrix () once, at
the beginning of the algorithm.

X (e;) = Diag (e;)(u2sMat (x) + I).

Therefore
12 (e 7 = 11 X117 (3.2)

3.2 Crossover Criteria

Advantages of the GN approach include full rank of the Jacobian at optimality and a zero
residual. Therefore, there is a local neighbourhood of quadratic convergence and once in
this neighbourhood, we can safely apply affine scaling with step lengths of one without back-
tracking to maintain positive definiteness. Standard convergence results, e.g. [9, 18] show
that the Gauss-Newton method applied to F(z,y) = 0 is locally q-quadrically convergent,
since the Jacobian at the optimum is full column rank (one to one operator). We follow
the notation in [9, Theorem 10.2.1] and discuss several constants used to determine the re-

Ax
Ay

gion of quadratic convergence. We let As = ( ) Since we have a zero residual, the
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corresponding constant ¢ = 0. Since

| F'(As)|| r || Zu2sMat (Az) + Diag (Ay) X || ¢

| Zu2sMat (Azx)||r + ||Diag (Ay) X || r

1 Z || rllu2sMat (Az) || F + [|Diag (Ay) || <[ X || 7
1Z]|r|Az][2 + |Ayll2]| X[ 7

VIZI% + | X% ]|Asll2, (by Cauchy-Schwartz inequality)

IA I INIA

the bound on the norm of the Jacobian is

o = \/121% + I X3

1F"(s — 5)(As)|lp I(Z — Z)u2sMat (Az) + Diag (Ay)(X — X[ _
I(Z —Z))IIFIIIlQSl\/Iat (Az)| r + [[Diag (Ay)|| o[ (X = X))l
—y

| (y ll2l|Az[[2 + || Ayl2||(z — Z)]|2.

Therefore the Lipschitz constant is

IHIA

v =1 (3.3)

Now suppose that the optimum s* is unique and the smallest singular value satisfies
Omin(F'(s)) > VK, for all s in an e neighbourhood of s*, for some constant K > 0.
Following [0, Page 223], we define

. 1 } . 1
€:=min\« €1, ——— ¢ = mMIN « €y, .
{ Kay { K\/HZ*H%H!X*H%}

Then g-quadratic convergence is guaranteed once the current iterate is in this e neigh-
bourhood of the optimum. One possible heuristic for this is to start the crossover if
omin(F'(8)) > 2|[[ZX]|ls. In our tests we started the crossover when the relative duality
gap % < .1. This simpler heuristic never failed to converge, though g-quadratic
convergence was not immediately detected.

4 Numerical Tests

We have performed preliminary testing to illustrate some of the features of the method. We
see that the crossover to using a steplength of 1, not maintaining interiority, and using affine
scaling, has a significant effect on both the number of iterations and the conditioning of the
linear system. The number of iterations are approximately halved. The best results were
obtained by staying well-centered before the crossover. This is in line with what we know
from the theory. This appeared to help with the conditioning of the Jacobian and lowered
the number of CG iterations. For simplicity, the crossover was done when the relative duality
gap was less than .1 and we used a steplength of 1 after the crossover, rather than a line
search to guarantee sufficient decrease in ||ZX||r. In all our tests on random problems, we
never failed to converge to a high accuracy solution.

The tests were done using MATLAB 6.0.0.88 (R12) on a SUNW, Ultra 5 — 10 with one
GB of RAM using SunOS 5.8 (denoted by SUN), as well as on a Toshiba Pentium II, 300
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MHZ, with 128 MB of RAM (denoted by PII). 99% of the cputime was spent on finding the
search direction, i.e. in the PCG part of the code in finding the (approximate) least squares
solution of the Gauss-Newton equation. Randomly generated problems of size up to n = 550
were solved in a reasonable time to high accuracy. To prevent zero columns in @), the first
upper (lower) diagonal of ) was set to a vector of ones.

The cost for the early iterations was very low, e.g. 21,50 CG iterations, 24, 58 cpu seconds
for the first two iterations for n = 365 on the SUN. This cost increased as the relative duality
gap (and the requested tolerance for the least squares solution) decreased. Low accuracy
solutions were obtained quickly, e.g. one decimal accuracy after 4 to 5 iterations. The cost
per iteration increased steadily and then levelled off near the optimum.

In Table f1 we show the decrease in the number of iterations compared to the crossover
tolerance, i.e. an earlier crossover leads to faster convergence. However, there can be loss of
positive definiteness at the end, as observed by the small (less than the tolerance in absolute
value) negative eigenvalues. The low number of iterations and high accuracy in the solution
are notable. In Tables .2 to .G we see the effect of preconditioning, dimension, and density
on the cputime of the algorithm. The density is 1/n and 3/n, i.e. the density is increasing
since the number of variables is order n?. We used two machines with different RAM to
illustrate that sparsity is exploited. (The Pentium IT had only 128 MB RAM.) We were able
to solve very large problems as long as the data (matrix Q) was sparse. Tables [I.5 and [.§
illustrate the importance of the optimal diagonal preconditioning.

A typical plot of the number of iterations versus the values of —logio(||ZX]||F) is given
in Figure 1. Figure f.2 illustrates the number of nonzeros in ) versus the increase in total
cputime (when dimension runs from 15 to 105 with increments of 10).

4.1 Tables and Figures

Crossover toler. | nmbr of major | norm(ZX) at end | min. eig. pos. violation

in relative gap iterations in Z, X
1.0e-1 11 3.6281e-12 -4.6478e-12
1.0e-3 14 1.9319e-13 -2.1580e-13
1.0e-5 16 2.0917e-11 -2.2839%¢-11
1.0e-7 18 1.8293e-13 -1.5546e-13
1.0e-9 20 7.2534e-10 6.7006e-12
1.0e-11 20 7.2544e-10 6.7004e-12

Table 4.1: Size of Q, n = 25; Requested Accuracy in relative duality gap: 1.0e-10; Density

is %; Optimal Value is 5.7041e+01.

5 Conclusion

We have presented an alternative approach to solving SDPs and applied it to the SDP
relaxation of the Max-Cut problem. The approach is based on the strong/robust primal-dual
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Dimension of @) | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
55 6.6000e+-01 11 9.0884e-09 -1.7515e-08
65 1.1234e+02 11 7.2081e-10 -2.5326e-09
75 1.9134e+-02 13 2.1361e-11 -1.7416e-10

1

Table 4.2: Requested Accuracy in relative duality gap: 1.0e-10; Density is ; crossover
tolerance 1.0e-01; optimal values of order 150; SUN computer.

Dimension of @) | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X

165 2635 14 7.7056¢-14 -2.775e-14

175 6778.6 15 8.0369e-14 -2.5371e-14

185 6908.8 15 9.0987e-14 -4.011e-14

195 11397 15 1.7324e-12 -3.2036e-11

205 8958.5 15 1.0029e-13 -3.7858e-14

Table 4.3: Requested Accuracy in relative duality gap: 1.0e-14; Density is %; Crossover
tolerance 1.0e-01; optimal values of order 1000; SUN computer.

Dimension of @ | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
15 7.75 9 1.7535e-014 -3.0863e-015
25 17.36 10 1.9291e-013 -1.5217e-013
35 30.43 10 1.1044e-012 -8.4977e-013
45 59.87 11 2.7926e-011 -2.763e-011
55 86.89 12 4.0912e-011 -3.7568e-011
65 131.11 11 4.9924e-012 -5.0519e-012
75 275.89 12 1.0448e-008 -1.4504e-008
85 468.46 14 8.6208e-011 -3.4404e-010
95 414.03 11 7.4253e-011 -3.0935e-010
105 878.64 15 7.5993e-010 -1.4946e-008

Table 4.4: Requested Accuracy in relative duality gap: 1.0e-10; Density is %; crossover
tolerance 1.0e-01; optimal values of order 150; PII computer.
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plot of —log10(norm(ZX))
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Figure 4.1: n = 55. Crossover at iteration 7.
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Dimension of ) | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
15 30.1 11 1.9039e-011 -3.5098e-012
25 134.13 15 1.9742e-009 -2.7465e-010
35 117.27 12 2.5534e-010 -8.8532e-011
45 174.34 11 1.3799e-008 -1.9154e-008
55 373.6 14 7.3741e-009 -3.1854e-009
65 1388.1 19 9.6109e-009 -2.7634e-009
75 507.46 13 3.5887e-009 -3.3886e-009
85 1856.1 16 6.4806e-011 -4.7964e-011

Table 4.5: Without preconditioning; Requested Accuracy in relative duality gap: 1.0e-10;

Density is %; crossover tolerance 1.0e-01; optimal values of order 150; PII computer.

Dimension of @ | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
155 5493.6 14 6.068e-014 -4.3061e-013
165 4595.4 13 3.8625¢-014 -2.8454e-013

Table 4.6: Requested Accuracy in relative duality gap: 1.0e-14; Density is %; Crossover
tolerance 1.0e-01; optimal values of order 150; PII computer.

path-following interior-point framework. But, it can still exploit sparsity in the data. Neither
the symmetrization step nor the Schur complement system are used. The method uses
basic tools that are successful for solving an overdetermined system of nonlinear equations
with zero residual, i.e. PCG applied to the GN method. We have shown how to derive
preconditioners for this approach and, in particular, derived the optimal diagonal column
scaling preconditioner. The total cost of an iteration lies in the solution of a linear least
squares problem. This least squares problem is solved using the (preconditioned) conjugate
gradient type method of Paige and Saunders [22]. The cost of each CG iteration is a sparse
matrix multiplication (essentially ZAX) and a matrix scaling (essentially Diag (Ay)X).

Numerical tests are ongoing as are extensions to more general SDPs. This includes a
comparison between using first order methods and an inexact GN framework, i.e. solving
the least squares problem to a desired accuracy so that the work is of the same order as one
iteration of first order methods.

Ongoing research involves: further testing on the SDPLIB problem set; developing im-
proved block diagonal and partial Cholesky preconditioners; parallelization of the PCG ap-
proach; purification techniques to recover positive semi-definiteness; and proving convergence
for the crossover technique.
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A Current Numerical Results

The matlab codes have been polished up since the paper was submitted. Though the code
is still just in matlab (no mex files), the times have improved dramatically. In addition, the
SDPLIB test problems have been solved. This page contains the latest numerical results.

Dim @ | cpu sec | major | rel. opt. | rel. norm(ZX) rel. viol. nnz
n iter. at end at end eig. pos. Z, X |in Q)
165 1120 14 869.61 8.9414e-17 -3.3566e-17 476
175 1891 15 928.97 8.5746e-17 -3.2607e-17 | 504
185 3079.6 15 1041.8 8.9598e-17 -3.7512e-17 538
195 3251.9 14 1045.7 8.2733e-17 -4.2463e-17 572
205 5874.7 17 1207.7 1.0142e-16 -3.5923e-17 602

Table A.1: Random problems; Requested Accuracy in relative duality gap: 1.0e-14; Density

is %; crossover tolerance 1.0e-01; optimal values of order 1000; SUN computer.

Dim @) | cpu sec | cpu sec cpu sec major | rel. opt. | rel. norm(ZX) rel. viol. nnz
n to 1 dec | to 7 dec | to 14 dec iter. at end at end eig. pos. Z, X | in Q)
100 39.66 127.23 192.36 13 226.16 2.5926e-17 -5.0771e-17 638
124 70.93 351.73 502.57 14 141.99 3.3609e-17 -2.8961e-16 410
124 71.15 241.03 342.4 14 269.88 4.4706e-17 -1.0508e-16 760
124 56.32 392.78 547.51 14 467.75 2.3752e-17 -3.3513e-17 1364
124 82.79 370.25 577.79 14 864.41 1.6515e-16 -8.7386e-16 2666
250 648.9 2339.9 3087.2 15 317.26 2.1095e-16 -4.7591e-15 892
250 537.79 2384 2805.6 14 531.93 2.8552e-16 -5.5422e-16 1472
250 620.82 | 3844.2 5620 13 981.17 2.7276e-17 -2.6909e-16 2816
250 947.5 7834.3 10893 15 1682 6.5743e-16 -2.2708e-15 5092
500 6729.4 32472 42094 20 598.15 2.9931e-17 -1.5378e-16 1701
500 5422.5 38232 59391 18 1070.1 7.2114e-16 -9.7197e-15 2939
500 7282.3 42758 58360 16 1848 1.2577e-15 -2.0375e-14 5210
500 11548 80822 | 1.3137e+05 17 3566.7 6.1352e-15 -5.7 509e-14 | 10740

Table A.2: Requested Accuracy in relative duality gap: 1.0e-14; SDPLIB test problems;

crossover tolerance 1.0e-01; SUN computer.
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Dim @ | cpu sec | major | rel. opt. | rel. norm(ZX) rel. viol. nnz
n iter. at end at end eig. pos. Z, X | in Q
100 96.34 12 226.16 1.2399e-13 -1.2062e-12 638
124 252.57 13 141.99 1.2238e-14 -2.3655e-13 410
124 171.99 13 269.88 2.0918e-11 -1.1324e-11 760
124 292.48 13 467.75 7.0013e-13 -5.9152e-13 1364
124 289.21 13 864.41 5.7229%-11 -1.03be-11 2666
250 1134.9 14 317.26 2.9025e-11 -5.5891e-11 892
250 1058.3 14 531.93 2.8552e-16 -5.5638e-16 1472
250 1633.6 12 981.17 8.9829e-12 -5.8956e-12 2816
250 3036 14 1682 3.481e-11 -2.1537e-11 5092
500 14669 19 598.15 4.12e-13 -2.9424e-12 1701
500 21489 17 1070.1 1.0229¢-11 -2.7013e-11 2939
500 20691 15 1848 3.6924e-11 -1.364e-11 5210
500 46752 16 3566.7 3.3634e-11 -1.5e-11 10740

Table A.3: Requested Accuracy in relative duality gap: 1.0e-10; SDPLIB test problems;
crossover tolerance 1.0e-01; SGI (Irix6.5_64-Mips) computer.
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