
REGULARIZATION
Using a Parameterized Trust Region Subproblem

Oleg Grodzevich and Henry Wolkowicz

RESULTS
5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 0

0.5

1

1.5

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
0

0.5

1

1.5

2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Subsequent solutions as the algorithm navigates along the L-curve, i.e. corresponding to different (increasing) values of
the regularization parameter. One may see how noise evolves as picture becomes sharper.
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Original picture: true solution

Observed picture: blurred and
distorted with Gaussian-type noise

The RPTRS algorithm visits 6 points on the L-curve detecting the
change in curvature and backtracks to the point of the maximum
(negative) curvature. The solution is indeed very close to the best
possible obtainable solution in a sense of Tikhonov regularization.
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An example of regularization algorithm (RPTRS)
applied to the deblurring an image problem.
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RPTRS solution 

CGLS solution,
relative accuracy = 52%

In comparison to the CGLS method the RPTRS produces comparably equivalent results in the case
when CGLS is provided with the "true" norm of the error. However, the RPTRS approach does not
require an apriori value of the norm of the noise. This is an advantage in a sense that CGLS might
perform very poorly if supplied with incorrect (slightly smaller or larger) value of the error norm.
On the other hand the CGLS is much faster comparing to the RPTRS.
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Deblurring an image:
Noise from the experimental obervations.

Solving integral equation:
Numerical noise due to finite-precision.

METHOD

THHEORY PROBLEM

Key ideas behind the RPTRS algorithm:

• navigating along the L-curve in a consistent manner (by increasing
  the regularization parameter)

• exploiting optimality conditions of the TRS to parameterize the L-curve

• stopping criteria based on the L-curve maximum curvature

• estimating the curvature of the L-curve via Gauss Quadratures

• exploiting operator matrix sparsity by using Lanczos-based methods
  for eigenvalue computations
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The L-curve is an essential tool for estimating the regularization parameter.
The (nearly) vertical part corresponds to the oversmoothed solutions, while
the horizontal part features solutions that are dominated by the perturbation
errors to a greater extent. The transition, called the elbow, is given by a point
of the maximum curvature and usually corresponds to a desireable value of
the regularization parameter.

At every iteration the algorithm finds an optimal solution of TRS, x(ε), for a corresponding
TR radius ε. It uses the derivative information to efficiently change the TR radius and
move along points of the L-curve. Step length computation involves switching between
the parameters ε, t and α, which enables the step length to be self-regulated.
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curvature of the L-curve,
expensive to compute directly

Both TRS and Tikhonov approaches are
shown to be equivalent. The Trust Region
radius ε can be viewed as the regularization
parameter.

Problem can be parameterized by four 
parameters:
• t, control parameter in k(t) and D(t)
• ε, trust region radius, norm of the solution
• α, Tikhonov regularization parameter
• λ, optimal Lagrange multiplier for TRS

One-to-one correspondence between any
two of controlling parameters is established.
This equivalence is exploited by the method
to compute the step length.

The algorithm starts to the left of the elbow and increases the value of t at each iteration.
The uncertainty interval for the elbow is shrinked at every step and is usually reduced to
a small enough interval in just a few iterations. A good approximation for the elbow is
then located by a simple search (e.g. bisection).

Step length computation is derived via
a triangle interpolation technique

Open questions and future development:
• generalization and extension to the Lanczos-based methods, e.g. CGLS, and other types of the regularization
• accelerating eigenvalue computations by exploiting the special structure of the matrix D(t)
• analysis of the cases when the maximum curvature point does not correspond to the best regularized solution

Important applications:
• medical imaging – CAT, PET (computer assisted tomography)
• image restoration – space telescopes, satellite pictures
• financial computations – risk assessment, market analysis
• numerical differentiation and integration
• interior-point algorithms
• and many, many, many more...

Observed image:
a real telescope photo

Regularized image:
reconstruction of the true picture

?
→

Various methods of regularization are often used to obtain
meaningful solutions to the mathematical models that are
ill-posed. The aim is to find algorithms for constructing
generalized solutions that are stable under small changes
in the data d. Regularized solutions are parameterized by
one or more regularization parameters, which usually
control the amount of smoothness. Solving for the best
regularized solution is often associated with finding an
optimal value of the regularization parameter.

TRS Approach:
min ‖Gx− d‖2

2

subject to ‖x‖2
2 ≤ ε2

Tikhonov Regularization: (GT G + α2I)xα = GT d

TRS reformulated

µε := µ(A, a, ε) := min q(x) := xT Ax− 2aT x

subject to ‖x‖2
2 ≤ ε2,

where:

A = GT G is n× n symmetric (nonsingular, ill-cond.)
a = GT d ∈ Rn

ε > 0
x ∈ Rn

define λ∗ optimal Lagrange multiplier
x(0) = A−1a = G−1d is unconstrained optimum

Gx = Gxtrue + η = d = dtrue + η
G, n× n is singular and ill-conditioned
d is usually contaminated by noise

Comes from discretizations of
linear equations Tx = d,
where T is a compact linear operator
with an unbounded inverse,
x is not continuous function of d.

L(G, d) = {(log(ε), log ‖Gx(ε)− d‖2) : ε > 0, x(ε) optimal for TRS}

D(t) =

(
t −aT

−a A

)
k(t) = (ε2 + 1)λmin(D(t))− t

µε = maxt k(t)

κε = ε2µε

(
2ε2λ∗2 − 2µελ

∗ − εµε

(
∂λ∗

∂ε

))(
ε4λ∗2 + µ2

ε

)−3/2

Relationships (isotonic):

• −∞ < λ = λ1(D(t)) = −α2 ≤ 0

• 0 < t = λ + dT G(GT G− λI)−1GT d ≤ ‖d‖2

• 0 < ε = ‖(GT G− λI)−1GT d‖ ≤ ‖G−1d‖2

Upper bound corresponds to the LLSS.

tnext = tcurrent − (ε2 + 1)λmin(D(tcurrent))


