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@ We developed a theory of semidefinite facial reduction for the
EDM completion problem

@ Using this theory, we can transform the SDP relaxations into much
smaller equivalent problems
@ We developed a highly efficient algorithm for EDM completion:
e SDP solver not required
@ can solve problems with up to 100,000 sensors in a few minutes on
a laptop computer
o obtained very high accuracy for noiseless problems
@ our running times are highly competitive with other SDP-based
codes
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Introduction

Euclidean Distance Matrices
@ An n x nmatrix Dis an EDMif 3pq,...,pp € R"

Dy=lpi—plf,  forallij=1,....n

@ £M:=setof all n x n EDMs

Embedding Dimension of D € £"

embdim(D) := min {r :3p1,...,pn € R s.t. Dj = ||pj — pj||2, for all i,j}
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Introduction

Partial Euclidean Distance Matrices

D is a partial EDM in R" if
@ every entry Dj is either “specified” or “unspecified”, diag(D) = 0
e forall o C {1,...,n}, if the principal submatrix D[a] is fully
specified, then D[a] is an EDM with embdim(D[a]) < r
Problem: determine if there is a completion D € £” with embdim(D) = r

v

Graph of a Partial EDM

G = (N, E,w) weighted graph with
@ nodes N :={1,...,n}
@ edges E := {jj: i # j,and Dj is specified}
@ weights w € RE with wj := /Dy
Problem: determine if there is a realization p: N — R’ of G

v
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Q Euclidean Distance Matrices

@ Euclidean Distance Matrices and Semidefinite Matrices
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EDMs and Semidefinite Matrices

Linear Transformation K

@ Let D € £ be given by the points py,...,pn, € R" (or P € R™")
o LetY:=PPT = (pTp) e S"

Dj = |pi—pl?
= ppi+p/ P —2pp
= Yi+Yj-2Yj

@ Thus D = K(Y), where:

K(Y) := diag(Y)eT + ediag(Y)" —2Y

@ K(S) = & (but not one-to-one)

Nathan Krislock (University of Waterloo) ~ SDP Facial Reduction for EDM Completion WO 2010



EDMs and Semidefinite Matrices

Moore-Penrose Pseudoinverse of

ICT(D):—%J[offDiag(D)]J where J::/—%eeT

Theorem: (Schoenberg, 1935)
A matrix D with diag(D) = 0 is a Euclidean distance matrix if and only if

KT(D) is positive semidefinite.
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EDMs and Semidefinite Matrices

Properties of K and Kf

Se:={YeS8":Ye=0} and S:={De S":diag(D) =0}

K(S2) =8 and K'(Sh)=S2
K(STnSE)=¢&" and KT(E") =87 NSE

embdim(D) = rank (/CT(D)) , forall De&n
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EDMs and Semidefinite Matrices

Vector Formulation
Find p1, ..., pn € R" such that ||p; — pj||2 = Dy, Vij € E

Matrix Formulation using 1
Find P € R™ such that Ho K(Y) = Ho D, Y = PPT

Semidefinite Programming (SDP) Relaxation
Find Y € 87 NS such that Ho C(Y) = Ho D

@ Vector/Matrix Formulation is non-convex and NP-hard

@ SDP Relaxation is tractable, but only problems of limited size can
be directly handled by an SDP solver

@ To solve this SDP, we use facial reduction to obtain a much
smaller equivalent problem

Nathan Krislock (University of Waterloo) SDP Facial Reduction for EDM Completion WO 2010 16/ 41



e Facial Reduction
@ Semidefinite Facial Reduction
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Semidefinite Facial Reduction

An LP Example

minimize 2x; + 6Xxo — X3 — 2X4 + /X5

subjectto x; + X2 + X3 + Xy =
Xq = Xo — X3 + X5 = -
Xq ) Xo ) X3 ) Xq ) X5 > 0

Summing the constraints:

2X1+X4+x=0 = Xxx=x4=x5=0

Restrict LP to the face {x € RS :

minimize 6xs — X3
subjectto x» + xz3 = 1
X , x3 > 0
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Semidefinite Facial Reduction

The Minimal Face

If K C Eis aconvex cone and S C K, then

face(S ﬂ F

SCFIK

Let K C E be a convex cone andlet S C F < K.
If S # () and convex, then:

@ face(S) = F if and only if S Nrelint(F) # 0.

\
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Semidefinite Facial Reduction
Representing Faces of S

If F<1S8" and X € relint(F) with rank(X) = t, then
F=USLU" and relint(F)= USL UT,

where U € R™! has full column rank and range(U) = range(X).

Semidefinite Facial Reduction
If:

face ({X € ST : (A, X) = by, Vi}) = USLUT

Then:
minimize  (C, X) minimize  (C, UZUT)
subjectto (A, X) = b;, Vi = subjectto (A;, UZUT) = b;, Vi

Xes? ZeS!

v
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e Results

@ Facial Reduction Theory for EDM Completion
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Facial Reduction Theory for EDM Completion

Theorem: Clique Facial Reduction

Let:
@ Degk
@ {:= embdim(D)
o F:={YeSk:.K(Y)=D}

Then:
face(F) = USIUT
where
°o U:= [UC e]

@ Ug e R¥*! full column rank and

range(Ug) = range(K1(D))
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Facial Reduction Theory for EDM Completion

Theorem: Extending the Facial Reduction

Let D be a partial EDM, o C {1,...,n}, and:
@ F:={YeSINSL:Hok(Y)=HoD}
® Fo:={YeS8INS2: Hla] o K(Y[a]) = H[a] o D[]}
o Fuim {Ye Sl Ha] o K(Y) = Hlo] oD[a]}

If:
face(F,) < [JSE:r1 u’
Then:
face(F,) < (USJ'Z_MH_H UT) NS
where U = [l(-)j ?] e RMx(n—lal+t+1)
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Facial Reduction Theory for EDM Completion

Theorem: Distance Constraint Reduction

Let D be a partial EDM, o C {1,...,n}, and:
° Fo:={YeS8INS2: Hla] o K(Y[a]) = H[a] o D[]}
o F, = {Y e Sl Hla] o K(Y) = Ha] o D[a]}
o face(F,) < USLUT
If 3Y € F, and 3 C a is a clique with embdim(D[5]) = t, then:
7, = {Y e (Usﬂ“""““ UT) NS (Y]] = D[ﬁ]}

U o
0o I/

where U := [ ] € R (n—lal+t+1)
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Facial Reduction Theory for EDM Completion

Thoorem: Disjint Subproblems ]
Let F be as above. Let {a,-}f:1 be disjoint subsets, a := Ux;j, and :
o Fi:={Y €81 NSL: Hlw] o K(Y[e]) = Hlaj] o Dlev]}
o Fi= {Y e S Hiay] o K(Y) = Hlay] 0 D[a,-]}
If face(F;) < U,-Sfr1 U,-T, then

face(F) < (USJT'(XHIH UT) nSa

U - 0 0
where U:= | "+ I | g Rnx(n-lal+t+)
o Uy
0 0o |/

v
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Facial Reduction Theory for EDM Completion

Facial Reduction Algorithm

@ Foreachnode i=1,...,n,find a clique C; containing /
@ Let C,. 1 be the clique of anchors

o Let F:= (U;Sf'c"‘“’+1 U,.T) N 84 be the corresponding faces

@ Compute U € R™(+1) fyll column rank such that

n+1
range(U) = ﬂ range(U;)
=il

@ Then:

face ({¥ € STNSE: HoK(Y) = Ho D}) 2 (USHUT) nsg

v
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Facial Reduction Theory for EDM Completion

Rigid Intersection
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Facial Reduction Theory for EDM Completion

Lemma: Rigid Face Intersection

Suppose:
U 0 I 0
U1 = U4/ 0 and Ug =10 Ug
0 I 0 U
and U}, Uy € RF<(H1) full column rank with range(Uy') = range(Uy)
Then:
U U
U:= uy or U= Uy
Uy U U
Satisfies:

range(U) = range(U;) N range(Us)
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Facial Reduction Theory for EDM Completion

Clique Union

Node Absorption

Rigid

Non-rigid




Facial Reduction Theory for EDM Completion

Theorem: Euclidean Distance Matrix Completion
Let D be a partial EDM and :

@ F:={YeSINSL:Hok(Y)=HoD}
o face(F) < (uzs;+1 UT) N88 = (UV)St(UV)T
If 3Y € F and [ is a clique with embdim(D[]) = t, then:
Y = (UV)Z(UV)T, where Z is the unique solution of

(JUB, IV)Z(WU[5, V)T = K(D[A]) (1)

0
oD

{y
K(PP

I
IC(PPT) € £ is the unique completion of D, where

P:=UVZ'? e R™!

v

)
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Note: In this case, an SDP solver is not required.
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e Results

@ Numerical Results
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Numerical Results

@ Random noiseless problems
@ Dimensionr =2
@ Square region: [0,1] x [0, 1]
@ m = 4 anchors
@ R = radio range
@ Using only Rigid Clique Union and Rigid Node Absorption
@ Error measure: Root Mean Square Deviation
.
2

— 1 . ptrue(2 2
RMSD := (#positioned > lpi=pi H) '

i positioned

@ Results averaged over 10 instances
@ Used MATLAB on a 2.16 GHz Intel Core 2 Duo with 2 GB of RAM

@ Source code SNLSDPclique available on author’s website,
released under a GNU General Public License
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Numerical Results

Face Representation Approach

# # Sensors CPU
sensors R Positioned Time RMSD
2000 .07 2000.0 1s 2e-13
2000 .06 1999.9 1s 3e-13
2000 .05 1996.7 1s 2e-13
2000 .04 1273.8 3s 4e-12
6000 .07 6000.0 4s 8e-14
6000 .06 6000.0 4s 7e-14
6000 .05 6000.0 3s 1e-13
6000 .04 5999.4 3s 3e-13
10000 .07 10000.0 9s 7e-14
10000 .06 10000.0 8s 1e-13
10000 .05 10000.0 7s 2e-13
10000 .04 10000.0 6s 1e-13
20000 .030 20000.0 17 s 2e-13
60000 .015 60000.0 1m53s | 7e-13
100000 | .011 100000.0 | 5m46s | 9e-11
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Numerical Results

Point Representation Approach

# # Sensors CPU
sensors R Positioned Time RMSD
2000 .07 2000.0 1s 5e-16
2000 .06 1999.9 1s 6e-16
2000 .05 1996.7 1s 7e-16
2000 .04 1274.4 2s 7e-16
6000 .07 6000.0 3s 5e-16
6000 .06 6000.0 3s 5e-16
6000 .05 6000.0 3s 8e-16
6000 .04 5999.4 3s 6e-16
10000 .07 10000.0 7s 9e-16
10000 .06 10000.0 6s 7e-16
10000 .05 10000.0 6s 6e-16
10000 .04 10000.0 5s 1e-15
20000 .030 20000.0 14 s 8e-16
60000 .015 60000.0 1m27s | 9e-16
100000 | .011 100000.0 | 3m55s | 1e-15
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e Results

@ Noisy Problems
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Noisy Problems

Multiplicative Noise Model

dZ = |lpi — pjlIP(1 + oej)?, forallije E

@ ¢; is normally distributed with mean 0 and standard deviation 1
@ o > 0 is the noise factor

v

Least Squares Problem

minimize > v
jicE
subjectto [|p; — pjl|*(1 + vj)? = df, forallijec E
2721 pi= 0
p11"'7pn€Rr
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Noisy Problems

Point Representation Approach

# CPU
o sensors R Time | RMSD
0 2000 .08 1s 5e-16

1e-6 2000 .08 1s 1e-06
1e-4 2000 .08 1s 1e-04
1e-2 2000 .08 1s 7e-02

0 6000 .06 3s 5e-16
1e-6 6000 .06 3s 1e-06
le-4 6000 .06 3s 1e-04
1e-2 6000 .06 3s 2e-01

0 10000 | .04 5s 1e-15
1e-6 | 10000 | .04 5s 1e-06
1e-4 | 10000 | .04 5s 1e-04
1e-2 | 10000 | .04 5s 2e-01

Note: No refinement technique is used in our numerical tests )
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Noisy Problems

1LFB 1LFB
nf = 0.01%, RMSD = 0.002 nf = 0.1%, RMSD = 0.023
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Noisy Problems

1LFB 1LFB
nf = 1%, RMSD = 1.402
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@ We developed a theory of semidefinite facial reduction for the
EDM completion problem

@ Using this theory, we can transform the SDP relaxations into much
smaller equivalent problems
@ We developed a highly efficient algorithm for EDM completion:
e SDP solver not required
@ can solve problems with up to 100,000 sensors in a few minutes on
a laptop computer
o obtained very high accuracy for noiseless problems
@ our running times are highly competitive with other SDP-based
codes
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