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Outline: Modeling/Degeneracy in SDP Relaxation

Model the NP-hard side chain positioning problem using a
QQP: quadratic (objective) - quadratic (constraints) program

Find the standard semidefinite (SDP) relaxation for the QQP

show: SDP relaxation is degenerate (not strictly feasible) (causes
problems in theory and numerics)

Preprocess/regularize using **facial reduction**
-two types of facial reduction
-facial reduction improves/strengthens numerics

strengthen solutions using redundant quadratic constraints in model
and using cutting plane techniques

We follow/improve/strengthen SDP relaxation approaches in:
-chazelle, Kingsford, Singh for SCP, 2004
-Qing, Karish, Rendl, W. for QAP, 1998.
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Biological Preamble I

Side chain positioning (SCP)

Given: constituent atoms of a protein;
the side chain positioning (SCP) problem
is one of the multiple subproblems of the hard problem of
predicting a protein’s three dimensional structure.
Our protein macromolecule is a chain of amino acids, also
called reisdues.

Amino acid is characterized by composition of its side chain
amino acid consists of an “alpha” carbon atom (-Cα-), and
three components attached to it:
-(i) amino group ((H2N-);
-(ii) carboxyl group (-COOH);
-(iii) atom group called a side chain
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Biological Preamble II

Backbone of the protein
Atoms in the backbone of the protein form a repetitive
sequence of triplets: · · ·NCαC NCαC NCαC NCαC · · ·
with each CN bonding being the result of a condensation
reaction.
Protein chain is a repetitive sequence of atoms with side
chain groups sprouting from the alpha carbon atoms.
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Famous protein folding problem

Outline:
For tractability, accurate prediction of all atomic positions for
folded minimal energy conformation typically uses:

1 calculate the positions of atoms in the backbone
(e.g., homology modeling; fold recognition techniques)

2 given the positions of backbone atoms, calculate the
conformations of all side chains, SCP.

Rotamericity/discretization of side chain conformations
side chain typically adopts a conformation close to one of
finitely many possible dihedral angles; each of the finite
number of three dimensional conformations is called a
rotamer.
In this work: our more complicated side chains have
rotamer sets with as many as 81 members for the twenty
amino acids that make up proteins.

5



Modelling

G = (V , E ,E) weighted, undirected graph

node set V =
⋃p

i=1 V i , V i subset of rotamers for i-th amino
acid side chain/residue position,
p is the number of residues.
edge set E ; weights (energy between rotamers) Euv for
edge uv ∼= (u, v) ∈ E ; Euu is energy between backbone
and chosen rotamer u. (ref. Kingsford thesis)

Further: SDP notation

S t , t × t real symmetric matrices, trace inner-product
〈S,T 〉 = trace ST ; Löwner partial order S � T , S � T .
for v ∈ Rs, corresp. diagonal matrix is Diag (v) ∈ Ss

adjoint linear transformation is Diag ∗(S) = diag (S) ∈ Rs

the adjoint satisfies 〈diag (S), v〉 = 〈S,Diag (v)〉
ē = ēp ones vector; Ē = Ēk = ēk ēT

k ones matrix
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Model details

global minimum-energy conformation (GMEC)

Choose one rotamer from each set V i ; minimize sum of
weights/energies on edges in E .

m :=
(
m1 . . . mp

)T size of subsets V i .
n0 = |V | (=

∑
k mk )

n := n0 + 1 size of matrices in SDP relaxation.
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Quadratic integer programming (QIP) model

Computing the GMEC

(QIP)

valQIP = min
x

∑
(u,v)∈E

Euv xuxv

s.t.
∑

u∈V k

xu = 1, ∀ k = 1, . . . ,p,

xu ∈ {0,1}, ∀u ∈ V ,

xu =

{
1 if rotamer u is chosen
0 otherwise
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Prepare model for lifting

Change to quadratic; Lift and Relax

Let x := (xu) and y =

(
1
x

)
.

Lift to symmetric matrix space with
Y = yyT , (� 0)

i.e., Yuv represents product xuxv , Y0v represents 1xv

Relax: ignore the (hard) rank one constraint on Y .

Zero-one variables

Change to quadratic x2
u − xu = 0 This translates to the arrow

constraint in the lifting: for Y (row-0 equals diagonal)
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Efficiency versus strength of relaxation

Few constraints or many?
Few constraints means fewer constraints in the SDP relaxation.
But adding more redundant constraints in the model means a
possibly strenghtened SDP relaxation.

SDP is the Dual of Lagrangian relaxation
Minimizing a quadratic subject to quadratic constraints
leads to a Lagrangian dual which is the maxλ minx L(x , λ),
where L is quadratic in x .
(Thus more constraints implies stronger relaxation.)
This leads to the constraint that the Hessian of the
Lagrangian is positive semidefinite, an SDP.
Take dual again; yields SDP relaxation of the original
problem.
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Matrix formulation for QIP

relabel the n0 nodes in V
V 1
∼= {1, . . . ,m1} ,V 2

∼= {m1 + 1, . . . ,m1 + m2} , . . . ,
V p ∼=

{(∑p−1
k=1 mk

)
+ 1, . . . ,n0

}
.

and

complete definition Euv = 0 if (u, v) /∈ E

define assignment type matrix A ∈ {0,1}p×n0

A :=



ēT
m1

0 0 · · · 0

0 ēT
m2

0 · · · 0

0 0 ēT
m3

· · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 · · · ēT

mp


; AT A =



Ēm1 0 0 · · · 0
0 Ēm2 0 · · · 0
0 0 Ēm3 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 · · · Ēmp


,
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QIP in matrix notation

Using A

(QIP)

valQIP = min
x

xT Ex

s.t. Ax − ēp = 0 ∈ Rp

x =
[
vT

1 vT
2 · · · vT

p
]T ∈ {0,1}n0

vk ∈ {0,1}mk , ∀ k = 1, . . . ,p.

QIP as QQP and redundant constraints within {}

(QQP)

valQIP = valQQP = min
x

xT Ex

s.t. ‖ēp − Ax‖2 = 0
x ◦ x − x = 0{ (

AT A− I
)
◦
(
xxT ) = 0

(xxT )ij ≥ 0, ∀ (i , j) ∈ I,

}
where: ◦ is Hadamard/elementwise product (forces zeros in Y )
and I ⊆ {(i , j) : 1 ≤ i < j ≤ n0} are valid inequalities
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Forming the SDP relaxation

Start with QQP model with many constraints; apply recipe

1 form the Lagrangian relaxation;
2 apply homogenization;
3 simplify to obtain the dual and an equivalent SDP;
4 take the dual of dual to obtain the SDP relaxation of the

original QIP
5 if strict feasibility fails, then apply facial reduction;

-find the minimal face; obtain smaller problem with
substitution Y = WȲW T , W ∈ Rn0×t , t < n0.

6 remove any redundant (linearly dependent) constraints.
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Facial reduction as preprocessing

Exploit Ax − ēp = 0 ∈ Rp constraint

Equivalently:
0 = eT

i (Ax − ēp), ∀i = 1, . . . ,p
= xT AT ei − 1, ∀i = 1, . . . ,p

=

(
1
x

)T ( −1
AT ei

)
, ∀i = 1, . . . ,p

Let V =

[(
−1

AT e1

)
. . .

(
−1

AT ep

)]
. Then yT V = 0. Therefore

we can add the equivalent constraint to the SDP relaxation
Y (VV T ) = 0.

If range of W (full column rank) equals null space of V T , then
facial reduction (smaller Ȳ ) is:

Y = WȲW T .
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Form of SDP relaxation? (〈·, ·〉 trace inner prod.)

(DSDP-1)

d∗∗I := min
Y

〈[
0 0
0 E

]
,Y
〉

= 〈E , Ȳ 〉

s.t. Y00 = 1
ebdiag(Y ) = p
arrow(Y ) = 0
dbdiag(Y ) = 0
PI(Y ) ≥ 0

Y =

[
Y00 yT

y Ȳ

]
� 0.

Gangster operator

shoots holes/zeros in the matrix Y ; guarantees that the
diagonal blocks are diagonal matrices.
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Smaller primal-dual pair - satisfying strong p-d duality

d∗∗I = min
X

〈
Ê ,X

〉
s.t. arrow(X ) = 0,

dbdiag(X ) = 0,
X00 = 1,
X � 0, X ∈ Sn−p ,

(WXW T )ij ≥ 0, ∀ (i , j) ∈ I,

and: Ê := W T
[
0 0
0 E

]
W , Bk :=

[
Ik−1
−ēT

k−1

]
∈ Rk×(k−1)

W =



1 m1−1 m2−1 mp−1

1 1 0 0 · · · 0
m1 em1 Bm1 0 · · · 0
m2 em2 0 Bm2 · · · 0

...
...

...
. . .

...
mp emp 0 0 · · · Bmp

,
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Dual SDP

d∗∗I = max
t ,w ,Λ,ξ

t

s.t. 1O(t) + Arrow(w) + dBDiag(Λ)

+
∑

(i,j)∈I ξijW T (eieT
j + ejeT

i )W � Ê
ξ ≥ 0, ξ ∈ R|I|.

We have both primal and dual strong duality, i.e.,we have a
zero duality gap and attainment.
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Implementationn/Heuristics

Cutting planes
start with small initial set I ⊂ I≥0; corresponding to largest
entries in E
add most violated constraints, i.e., Yij = (WXW T )ij is
negative and Eij(WXW T )ij is very negative

Obtaining a good approximation for QIP from SDP
Perron-Frobenius rounding: normalized eigenvector
(largest) of Y ∗: u′ := p

u2+···+un
(u2, . . . ,un) ∈ Rn0 satisfies

Au′ = ēp, and u′ ≥ 0 if Y ∗ ≥ 0. (Empirically true even
without nonnegativity.)

Projection rounding: use diagonal
(

1
u′′

)
of the optimal

solution Y ∗ is used. Again, u′′ satisfies Au′′ = ēp, u′′ ≥ 0.
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Data set/Numerics

Four Methods
1 original SDP relaxation
2 SDP and facial reduction
3 SDP and cutting planes
4 SDP and facial reduction and cutting planes

26 protein data from PDB of various sizes
SCPCP consistently produces

shorter cpu time,
higher accuracy of SDP solution, and
importantly, better integer solutions from rounding
(essentially optimal - close to dual optimal value)

19



Performance Profile

ti,j := run time for QIP final solution, instance i method j
1 ≤ ri,j :=

ti,j
min{ti,j :j=1,2,3,4} perform. ratio method j on instance i

ρ(τ):= number of instances i such that ri,j ≤ τ

Figure: Performance profile comparing the four methods
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Medium sized triose phosphate isomerase, 1TIM

Table: Information on input data for 1TIM
Total number of residues / partitions 249

Total number of rotamers / nodes 819
Number of energy values / edges 66520

maxi,j Ei,j 5.80e+15
mini,j Ei,j -7.7783

Number of valid nonnegativity constraints 329760(
= 1

2

(
n2

0 −
∑p

k=1 m2
k

) )

Table: Information on output for 1TIM
Increments in cuts 100 120 180

Total time elapsed (hr) 2.51 2.16 1.36
Number of iterations 12 11 9

Final number of nonneg. constr. 2306 2247 2217
Percentage of valid nonneg. constr. used 0.70 % 0.68 % 0.67%

dual SDP optval 685.61 685.61 685.61
objval for QIP 685.61 685.61 685.61

relative diff 5.81e-12 8.68e-12 4.62e-13
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Two tables
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Large Scale Case

Burkowski, Cheung, and Wolkowicz: Efficient SDP for selection of rotamers in protein conformations
36 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-01-OA-002

Table 5 Results on large proteins (SCPCP only)

Protein n0 p run time dual SDP Objval rel. diff rel. gap numcut # iter Final
(hr) optval in IQP # cuts

1CEX 435 146 0.08 140.20 140.20 1.26E-11 5.57E-09 40 9 485
1CZ9 615 111 3.96 497.46 497.46 2.98E-13 6.37E-10 60 25 1997
1QJ4 545 221 0.15 -286.83 -286.83 5.31E-12 1.14E-09 60 14 1027
1RCF 581 142 0.85 -191.54 -191.54 3.71E-12 1.15E-08 60 17 1305
2PTH 930 151 29.65 -159.41 -159.41 8.69E-09 7.63E-06 120 34 7247
5P21 464 144 0.31 -135.75 -135.75 1.39E-12 7.33E-10 40 16 822

612

613

614

615
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Figure: Superposition of the reconstruction (light grey) of 1AAC over
the crystallized form described in the PDB (dark grey)
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Summary

We model protein design using using a QIP and transform
to a quadratic-quadratic model
Lagrangian Relaxation leads to an SDP program and the
dual is the SDP relaxation
Adding redundant constraints strengthens the SDP
relaxation
The strict feasibility fails for SDP relaxation; but, it can be
exploited using facial reduction to get a smaller/stable
problem
Cutting planes help yield stronger approximate solutions.
Empirical evidence shows efficiency and robustness of
adding redundant constraints and applying facial reduction.
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