Facial Reduction for Cone Optimization

Henry Wolkowicz Dept. Combinatorics and Optimization University of Waterloo

Tuesday Apr. 21, 2015

(with: Drusvyatskiy, Krislock, (Cheung) Voronin)

.

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms key is KKT system;
 (Slater's CQ/strict feasibility for convex conic optimization)
- Slater CQ holds generically
 Surprisingly, for many conic opt, SDP relaxations, arising from applications Slater's fails,
 e.g., SNL, POP, Molecular Conformation, QAP, GP, strengthened MC
- Slater fails => : -unbounded dual solutions;
 -theoretical and numerical difficulties
 (in particular for primal-dual interior-point methods).
- solutions?
 - theoretical facial reduction (Borwein, W. '81)
 - preprocess for regularized smaller problem (Cheung, Schurr, W.'11)
 - take advantage of degeneracy (e.g. recent: Krislock, W.'10; Cheung, Drusvyatskiy, Krislock, W.'14; Reid, Wang, W. Wu'15)

Outline: Regularization/Facial Reduction

- Preliminary LP Examples
- Preprocessing/Regularization
 - Abstract convex program
 - LP case
 - CP case
 - Cone optimization/SDP case
- 3 Applications: SNL, Polyn Opt., QAP, GP, Molec. conformation ...
 - SNL; highly (implicit) degenerate/low rank solutions

Facial Reduction on (dual) LP, $Ax = b, x \ge 0$

Theorem of alternative, A full row rank

$$\exists \hat{x} \text{ s.t. } A\hat{x} = b, \hat{x} > 0$$
iff
 $A^{\top}y \ge 0, \ b^{\top}y = 0, \implies y = 0$ (**)

Linear Programming Example, $x \in \mathbb{R}^5$

min
$$\begin{pmatrix} 2 & 6 & -1 & -2 & 7 \end{pmatrix} x$$

s.t. $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 & 1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, x \ge 0$

Sum the two constraints (use $y^T = (1 \ 1)$ in (**)): $2x_1 + x_4 + x_5 = 0 \implies x_1 = x_4 = x_5 = 0$

yields equivalent simplified problem:

min $6x_2 - x_3$ <u>s.t.</u> $x_2 + x_3 = 1, x_2, x_3 \ge 0$

_

Facial Reduction on Primal, $A^T y < c$

Linear Programming Example, $y \in \mathbb{R}^2$

max
$$(2 \ 6) \ y$$

s.t. $\begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 1 & -1 \\ -2 & 2 \end{bmatrix} y \le \begin{pmatrix} 1 \\ 2 \\ 1 \\ -2 \end{pmatrix}$, active set $\{2, 3, 4\}$
 $\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$ is optimal, $p^* = 6$

weighted last two rows $\begin{vmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \end{vmatrix}$ sum to zero: set of implicit equalities: $\mathcal{P}^e := \{3,4\}$

Facial reduction to 1 dim. after substit. for v

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \max \{2 + 8t : -1 \le t \le \frac{1}{2}\}, \quad t^* = \frac{1}{2}.$$

General Case?

- Can we do facial reduction in general?
- Is it efficient/worthwhile?
- applications?

Background/Abstract convex program

(ACP)
$$\inf_{x} f(x)$$
 s.t. $g(x) \leq_{\kappa} 0, x \in \Omega$

where:

- $f: \mathbb{R}^n \to \mathbb{R}$ convex; $g: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex
 - $K \subset \mathbb{R}^m$ closed convex cone; $\Omega \subseteq \mathbb{R}^n$ convex set
 - $a \leq_K b \iff b a \in K$, $a \prec_K b \iff b a \in \text{int } K$
 - $g(\alpha x + (1 \alpha y)) \leq_{\kappa} \alpha g(x) + (1 \alpha)g(y)$, $\forall x, y \in \mathbb{R}^n, \forall \alpha \in [0, 1]$

Slater's CQ: $\exists \hat{x} \in \Omega$ s.t. $g(\hat{x}) \in -\inf K$ $(g(x) \prec_K 0)$

- guarantees strong duality
- (near) loss of strict feasibility, nearness to infeasibility, correlates with number of iterations & loss of accuracy

Back to: Case of Linear Programming, LP

Primal-Dual Pair: A onto, $m \times n$, $\mathcal{P} = \{1, \dots, n\}$

(LP-P)
$$\max_{\mathbf{s.t.}} \mathbf{b}^{\top} \mathbf{y}$$
 s.t. $\mathbf{A}^{\top} \mathbf{y} \leq \mathbf{c}$ (LP-D) $\min_{\mathbf{s.t.}} \mathbf{c}^{\top} \mathbf{x}$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}$.

Slater's CQ for (LP-P) / Theorem of alternative

$$\exists \hat{y} \text{ s.t. } c - A^{\top} \hat{y} > 0, \qquad ((c - A^{\top} \hat{y})_i > 0, \forall i \in \mathcal{P} =: \mathcal{P}^{lt})$$
iff
$$Ad = 0, \ c^{\top} d = 0, \ d \geq 0 \implies d = 0 \qquad (*)$$

implicit equality constraints: $i \in \mathcal{P}^e$

Find $0 \neq d^*$ to (*) with max number of non-zeros (exposes minimal face containing feasible slacks) $d_i^* > 0 \implies (c - A^\top y)_i = 0, \forall y \in \mathcal{F}^y \quad (i \in \mathcal{P}^e)$ (where \mathcal{F}^y is primal feasible set)

Make implicit-equalities explicit/ Regularizes LP

Facial Reduction: $A^{\top}y \leq_f c$; minimal face $f \leq \mathbb{R}^n_+$

$$(\text{LP}_{\textit{reg}}\text{-P}) \qquad \begin{array}{c} \max & b^\top y \\ \text{s.t.} & (A^{lt})^\top y \leq c^{lt} \\ & (A^e)^\top y = c^e \end{array} \qquad \begin{array}{c} \min & (c^{lt})^\top x^{lt} + (c^e)^\top x^e \\ \text{s.t.} & \left[A^{lt} \quad A^e\right] \begin{pmatrix} x^{lt} \\ x^e \end{pmatrix} = b \\ & x^{lt} \geq 0, x^e \text{ free} \\ \end{array}$$

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)

$$\left(\begin{array}{cc} \frac{\underline{i} \in \mathcal{P}^{lt}}{\exists \hat{\gamma} : \quad (A^{lt})^{\top} \hat{\gamma} < c^{lt}} & \frac{\underline{i} \in \mathcal{P}^{e}}{(A^{e})^{\top} \hat{\gamma} = c^{e}} \end{array} \right) \qquad (A^{e})^{\top} \text{ is onto}$$

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue?

Case of ordinary convex programming, CP

(CP)
$$\sup_{y} b^{\top} y \text{ s.t. } g(y) \leq 0,$$

where

- $b \in \mathbb{R}^m$; $g(y) = (g_i(y)) \in \mathbb{R}^n$, $g_i : \mathbb{R}^m \to \mathbb{R}$ convex, $\forall i \in \mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_i(\hat{y}) < 0, \forall i$ (implies MFCQ)

Slater's CQ fails implies implicit equality constraints exist

$$\mathcal{P}^e := \{i \in \mathcal{P} : g(y) \leq 0 \implies g_i(y) = 0\} \neq \emptyset$$

Let
$$\mathcal{P}^{lt} := \mathcal{P} \backslash \mathcal{P}^e$$
 and

$$g^{lt}:=(g_i)_{i\in\mathcal{P}^{lt}}\,,\qquad g^e:=(g_i)_{i\in\mathcal{P}^e}$$

Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to $g(y) \leq_f 0$, f is minimal face

$$\begin{array}{ccc} & \sup & b^\top y \\ \text{(CP}_{\text{reg}}) & \text{s.t.} & g^{lt}(y) \leq 0 \\ & y \in \mathcal{F}^e & \text{or } (g^e(y) = 0) \end{array}$$

where $\mathcal{F}^e := \{ y : g^e(y) = 0 \}.$

Then $\mathcal{F}^e = \{y : g^e(y) \le 0\}$, so is a convex set!

Slater's CQ holds for (CP_{reg})

$$\exists \hat{y} \in \mathcal{F}^{e} : g^{lt}(\hat{y}) < 0$$

modelling issue again?

Faithfully convex case

Faithfully convex function *f* (Rockafellar'70)

f affine on a line segment only if affine on complete line containing the segment

(e.g. analytic convex functions)

$$\mathcal{F}^e = \{y : g^e(y) = 0\}$$
 is an affine set

Then:

$$\mathcal{F}^e = \{ y : Vy = V\hat{y} \}$$
 for some \hat{y} and full-row-rank matrix V .

Then MFCQ holds for regularized

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of convex cone K, denoted $F \subseteq K$, if $x, y \in K$ and $x + y \in F \implies x, y \in F$

Polar (Dual) Cone

$$K^* := \{ \phi : \langle \phi, k \rangle \ge 0, \ \forall k \in K \}$$

Conjugate Face

If $F \subseteq K$, the conjugate face of F is

$$F^c := F^{\perp} \cap K^* \unlhd K^*$$

If $x \in ri(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Recall: (ACP) $\inf_{x} f(x)$ s.t. $g(x) \leq_{\kappa} 0, x \in \Omega$

- polar cone: $K^* = \{\phi : \langle \phi, y \rangle \ge 0, \forall y \in K\}.$
- K^f := face(F) minimal face containing feasible set F.

Lemma (Facial Reduction; find exposing vector ϕ)

Suppose \bar{x} is feasible. Then the LHS system

$$\left\{ \begin{array}{l} (\Omega - \bar{x})^+ \cap \partial \langle \phi, g(\bar{x}) \rangle \neq \emptyset \\ \phi \in \mathcal{K}^+, \quad \langle \phi, g(\bar{x}) \rangle = 0 \end{array} \right\} \quad \textit{implies} \quad \mathcal{K}^f \subseteq \phi^\perp \cap \mathcal{K}.$$

Proof

line 1 of system implies \bar{x} global min for convex function $\langle \phi, g(\cdot) \rangle$ on Ω ; i.e., $0 = \langle \phi, g(\bar{x}) \rangle \leq \langle \phi, g(x) \rangle \leq 0, \forall x \in F$; implies $-g(F) \subset \phi^{\perp} \cap K$.

Semidefinite Programming, SDP, S_{+}^{n}

$K = S_+^n = K^*$: nonpolyhedral, self-polar, facially exposed

(SDP-P)
$$v_P = \sup_{y \in \mathbb{R}^m} b^\top y \text{ s.t. } g(y) := A^* y - c \preceq_{\mathcal{S}^n_+} 0$$

(SDP-D)
$$v_D = \inf_{x \in \mathcal{S}^n} \langle c, x \rangle$$
 s.t. $Ax = b, x \succeq_{\mathcal{S}^n_+} 0$

where:

- PSD cone $S_+^n \subset S^n$ symm. matrices
- $c \in S^n$, $b \in \mathbb{R}^m$
- $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is an onto linear map, with adjoint \mathcal{A}^*

$$\mathcal{A}x = (\operatorname{trace} A_i x) = (\langle A_i, x \rangle) \in \mathbb{R}^m, \quad A_i \in \mathcal{S}^n$$

 $\mathcal{A}^* y = \sum_{i=1}^m A_i y_i \in \mathcal{S}^n$

Slater's CQ/Theorem of Alternative

(Assume feasibility:
$$\exists \, \tilde{y} \text{ s.t. } c - \mathcal{A}^* \tilde{y} \succeq 0.$$
)
$$\exists \, \hat{y} \text{ s.t. } s = c - \mathcal{A}^* \hat{y} \succ 0 \qquad (\textit{Slater})$$

$$\underline{\text{iff}}$$

$$\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ d \succeq 0 \implies d = 0 \qquad (*)$$

Regularization Using Minimal Face

Borwein-W.'81, $f_P = \text{face } \mathcal{F}_P^s$; min. face of feasible slacks

(SDP-P) is equivalent to the regularized

(SDP_{reg}-P)
$$V_{RP} := \sup_{y} \{\langle b, y \rangle : \mathcal{A}^* y \leq_{f_P} c\}$$

f_p is miniminal face of primal feasible slacks

$$\{s \succeq 0 : s = c - \mathcal{A}^*y\} \subseteq f_p \unlhd \mathcal{S}^n_+$$

Lagrangian Dual DRP Satisfies Strong Duality:

(SDP_{reg}-D)
$$V_{DRP} := \inf_{X} \{ \langle c, x \rangle : A | x = b, x \succeq_{f_{P}^{*}} 0 \}$$

= $V_{P} = V_{RP}$

and v_{DRP} is attained.

SDP Regularization process

Alternative to Slater CQ

$$\mathcal{A}d = 0, \ \langle \boldsymbol{c}, \boldsymbol{d} \rangle = 0, \ 0 \neq \boldsymbol{d} \succeq_{\mathcal{S}^n_{\perp}} 0$$
 (*)

Determine a proper face $f_p \leq f = QS_+^{\bar{n}}Q^T \triangleleft S_+^n$

- Let d solve (*) with compact spectral decomosition
 d = Pd₊P^T, d₊ > 0, and [P Q] ∈ ℝ^{n×n} orthogonal.
- Then

$$\begin{split} c - \mathcal{A}^* y \succeq_{\mathcal{S}^n_+} \mathbf{0} &\implies \langle c - \mathcal{A}^* y, d^* \rangle = \mathbf{0} \\ &\implies \mathcal{F}^s_P \subseteq \mathcal{S}^n_+ \cap \{ d^* \}^\perp = Q \mathcal{S}^{\bar{n}}_+ Q^\top \lhd \mathcal{S}^n_+ \end{split}$$

• (implicit rank reduction, $\bar{n} < n$)

Regularizing SDP

- at most n − 1 iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ 0 \neq d \succeq_{\mathcal{S}^n_{\perp}} 0,$$
 (*)

use stable auxiliary problem

(AP)
$$\min_{\delta,d} \delta$$
 s.t. $\left\| \begin{bmatrix} Ad \\ \langle c,d \rangle \end{bmatrix} \right\|_2 \le \delta$, $\operatorname{trace}(d) = \sqrt{n}$, $d \succeq 0$.

Both (AP) and its dual satisfy Slater's CQ.

Auxiliary Problem

(AP)
$$\min_{\delta,d} \delta \text{ s.t. } \left\| \begin{bmatrix} \mathcal{A}d \\ \langle c,d \rangle \end{bmatrix} \right\|_2 \leq \delta,$$
 $\operatorname{trace}(d) = \sqrt{n}, d \geq 0.$

Both (AP) and its dual satisfy Slater's CQ ... but ...

Cheung-Schurr-W'11, a k = 1 step CQ

Strict complementarity holds for (AP)

iff

k = 1 steps are needed to regularize (SDP-P).

k = 1 always holds in LP case.

Conclusion Part I

- Minimal representations of the data regularize (P);
 use min. face f_P (and/or implicit rank reduction)
- ideal goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails

Puzzle?

- Minimal representations are needed for stability in cone optimization.
- But adding redundant constraints to quadratic models before lifting often strengthens SDP relaxation.

Part II: Applications of SDP where Slater's CQ fails

Instances SDP relaxations of NP-hard comb. opt.

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96)
- Graph partitioning (W.-Zhao'99)
- Strengthened Max-Cut (Anjos-W'02)

Low rank problems

- Systems of polynomial equations (Reid-Wang-W.-Wu'15)
- Sensor network localization (SNL) problem (Krislock-W.'10, Krislock-Rendl-W.'10)
- Molecular conformation (Burkowski-Cheung-W.'11)
- general SDP relaxation of low-rank matrix completion problem

SNL (K-W'10, D-K-V-W'14)

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- take advantage of degeneracy; fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry; easy to describe - dates back to Grasssmann 1886

• r: embedding dimension

0

- n ad hoc wireless sensors $p_1, \ldots, p_n \in \mathbb{R}^r$ to locate in \mathbb{R}^r ;
- m of the sensors p_{n-m+1}, \ldots, p_n are anchors (positions known, using e.g. GPS)
- pairwise distances $D_{ij} = ||p_i p_j||^2$, $ij \in E$, are known within radio range R > 0

$$P^{\top} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} = \begin{bmatrix} X^{\top} & A^{\top} \end{bmatrix} \in \mathbb{R}^{r \times n}$$

Sensor Localization Problem/Partial EDM

Sensors o and Anchors

Underlying Graph Realization/Partial EDM NP-Hard

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V} = \{1, \dots, n\}$
- edge set $(i,j) \in \mathcal{E}$; $\omega_{ij} = \|\mathbf{p}_i \mathbf{p}_j\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \mathbb{R}^r : a mapping of nodes $v_i \mapsto p_i \in \mathbb{R}^r$ with squared distances given by ω .

Corresponding Partial Euclidean Distance Matrix, EDM

$$D_{ij} = \left\{ egin{array}{ll} d_{ij}^2 & ext{if } (i,j) \in \mathcal{E} \ 0 & ext{otherwise} \ ext{(unknown distance)}, \end{array}
ight.$$

 $d_{ij}^2 = \omega_{ij}$ are known squared Euclidean distances between sensors p_i , p_i ; anchors correspond to a clique.

Connections to Semidefinite Programming (SDP)

```
D = \mathcal{K}(B) \in \mathcal{E}^n, B = \mathcal{K}^{\dagger}(D) \in \mathcal{S}^n \cap \mathcal{S}_C (centered Be = 0)
P^{\top} = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \in \mathcal{M}^{r \times n};
B := PP^{\top} \in \mathcal{S}_{+}^{n} (Gram matrix of inner products);
rank B = r; let D \in \mathcal{E}^n corresponding EDM; e = (1 \dots 1)^{\top}
         (to D \in \mathcal{E}^n) D = (\|p_i - p_j\|_2^2)_{i,i=1}^n
                                          = \left(p_i^T p_i + p_j^T p_j - 2p_i^T p_j\right)_{i,j=1}^{n}
                                           = \operatorname{diag}(B) e^{\top} + e \operatorname{diag}(B)^{\top} - 2B
                                          =: \mathcal{K}(B) \quad (\text{from } B \in \mathcal{S}^n_{\perp}).
```

Euclidean Distance Matrices; Semidefinite Matrices

Moore-Penrose Generalized Inverse K[†]

$$B \succeq 0 \implies D = \mathcal{K}(B) = \operatorname{diag}(B) e^{\top} + e \operatorname{diag}(B)^{\top} - 2B \in \mathcal{E}$$

 $D \in \mathcal{E} \implies B = \mathcal{K}^{\dagger}(D) = -\frac{1}{2} J \text{offDiag}(D) J \succeq 0, Be = 0$

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag $(D) = 0, D \in S_H$) is a Euclidean distance matrix

if and only if

$$B = \mathcal{K}^{\dagger}(D) \succ 0.$$

And !!!!

embdim
$$(D) = \operatorname{rank} \left(\mathcal{K}^{\dagger}(D) \right), \quad \forall D \in \mathcal{E}^n$$
 (1)

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min_{B\succeq 0} \|H\circ (\mathcal{K}(B)-D)\|$; rank B=r; typical weights: $H_{ij}=1/\sqrt{D_{ii}}$, if $ij\in E$, $H_{ij}=0$ otherwise.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, <u>BUT</u>: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique
$$\alpha$$
, $|\alpha| = k$ (corresp. $D[\alpha]$) with embed. dim. $= t \le r < k$ $\implies \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha]) = t \le r \implies \operatorname{rank} B[\alpha] \le \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha]) + 1$ $\implies \operatorname{rank} B = \operatorname{rank} \mathcal{K}^{\dagger}(D) \le n - (k - t - 1) \implies$ Slater's CQ (strict feasibility) fails

Basic Single Clique/Facial Reduction

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

$$\bar{D} \in \mathcal{E}^k$$
, $\alpha \subseteq 1: n$, $|\alpha| = k$

Define
$$\mathcal{E}^n(\alpha, \bar{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \bar{D} \}.$$
 (completions)

Given \overline{D} ; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.

if $\alpha = 1 : k$; embedding dim embdim $(\bar{D}) = t \le r$

$$D = \begin{bmatrix} \bar{D} & \cdot \\ \cdot & \cdot \end{bmatrix}.$$

BASIC THEOREM for Single Clique/Facial Reduction

Let:

- $\bar{D} := D[1:k] \in \mathcal{E}^k$, k < n, embdim $(\bar{D}) = t \le r$ be given;
- $B := \mathcal{K}^{\dagger}(\bar{D}) = \bar{U}_B S \bar{U}_B^{\top}, \ \bar{U}_B \in \mathcal{M}^{k \times t}, \ \bar{U}_B^{\top} \bar{U}_B = I_t, \ S \in \mathcal{S}_{++}^t$ be full rank orthogonal decomposition of Gram matrix;

•
$$U_B := \begin{bmatrix} \bar{U}_B & \frac{1}{\sqrt{k}}e \end{bmatrix} \in \mathcal{M}^{k \times (t+1)}, \ U := \begin{bmatrix} U_B & 0 \\ 0 & I_{n-k} \end{bmatrix}$$
, and $\begin{bmatrix} V & \frac{U^\top e}{\|U^\top e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal.

Then the minimal face:

face
$$\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1:k,\bar{D})\right) = \left(U\mathcal{S}_{+}^{n-k+t+1}U^{\top}\right) \cap \mathcal{S}_{C}$$

= $(UV)\mathcal{S}_{+}^{n-k+t}(UV)^{\top}$

The minimal face

face
$$\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1:k,\bar{D})\right) = \left(U\mathcal{S}_{+}^{n-k+t+1}U^{\top}\right) \cap \mathcal{S}_{C}$$

= $(UV)\mathcal{S}_{+}^{n-k+t}(UV)^{\top}$

Note that the minimal face is defined by the subspace $\mathcal{L} = \mathcal{R}(UV)$. We add $\frac{1}{\sqrt{K}}e$ to represent $\mathcal{N}(K)$; then we use V to eliminate e to recover a centered face.

Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let $\alpha_1, \ldots, \alpha_\ell \subseteq 1:n$ pairwise disjoint sets, wlog:

$$\alpha_i = (k_{i-1} + 1): k_i, k_0 = 0, \ \alpha := \bigcup_{i=1}^{\ell} \alpha_i = 1: |\alpha| \text{ let}$$

 $ar{U}_i \in \mathbb{R}^{|lpha_i| imes (t_i + 1)}$ with full column rank satisfy $m{e} \in \mathcal{R}\left(ar{U}_i
ight)$ and

$$U_i := \begin{bmatrix} k_{i-1} & l_i+1 & n-k_i \\ I & 0 & 0 \\ 0 & \bar{U}_i & 0 \\ n-k_i & 0 & 0 & I \end{bmatrix} \in \mathbb{R}^{n \times (n-|\alpha_i|+t_i+1)}$$

The minimal face is defined by $\mathcal{L} = \mathcal{R}(U)$:

where $t := \sum_{i=1}^{\ell} t_i + \ell - 1$. And $\boldsymbol{e} \in \mathcal{R}(\boldsymbol{U})$.

Sets for Intersecting Cliques/Faces

$$\alpha_1 := 1 : (\bar{k}_1 + \bar{k}_2); \quad \alpha_2 := (\bar{k}_1 + 1) : (\bar{k}_1 + \bar{k}_2 + \bar{k}_3)$$

Two (Intersecting) Clique Reduction/Subsp. Repres.

Let:

- $\alpha_1, \alpha_2 \subseteq 1: n$; $k := |\alpha_1 \cup \alpha_2|$
- for i = 1, 2: $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, embedding dimension t_i ;
- $\bullet \; \; \mathcal{B}_i := \mathcal{K}^{\dagger}(\bar{D}_i) = \bar{U}_i \mathcal{S}_i \bar{U}_i^{\top}, \; \bar{U}_i \in \mathcal{M}^{\; k_i \times t_i}, \; \bar{U}_i^{\top} \bar{U}_i = \mathit{I}_{t_i}, \; \mathcal{S}_i \in \mathcal{S}_{++}^{t_i};$
- $\begin{array}{l} \bullet \quad U_i := \begin{bmatrix} \bar{U}_i & \frac{1}{\sqrt{k_i}}e \end{bmatrix} \in \mathcal{M}^{k_i \times (t_i+1)}; \text{ and } \bar{U} \in \mathcal{M}^{k \times (t+1)} \\ \text{satisfies} & \mathbb{R}_{(\bar{U}) = \mathcal{R}} \left(\begin{bmatrix} U_1 & 0 \\ 0 & l_{\bar{k}_3} \end{bmatrix} \right) \cap \mathbb{R}_{\left(\begin{bmatrix} l_{\bar{k}_1} & 0 \\ 0 & U_2 \end{bmatrix} \right)}, \text{ with } \bar{U}^\top \bar{U} = l_{t+1} \\ \end{array}$
- $U := \begin{bmatrix} \bar{l} & 0 \\ 0 & I_{n-k} \end{bmatrix} \in \mathcal{M}^{n \times (n-k+t+1)}$ and $\begin{bmatrix} v & \frac{U^{\top}e}{\|U^{\top}e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal.

$$\begin{array}{ccccc} \text{Then} & \frac{\bigcap_{j=1}^2 \operatorname{face} \mathcal{K}^{\dagger} \left(\mathcal{E}^n(\alpha_i, \bar{D}_i)\right)}{(\mathcal{U}\mathcal{S}_+^{n-k+t} + \mathcal{U}^\top)} &= & \left(\mathcal{U}\mathcal{S}_+^{n-k+t+1} \mathcal{U}^\top\right) \cap \mathcal{S}_{\mathcal{C}} \\ &= & \left(\mathcal{U}\mathcal{V}\right) \mathcal{S}_+^{n-k+t} (\mathcal{U}\mathcal{V})^\top \end{array}$$

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$$

Then:

$$U := \begin{bmatrix} U_1' \\ U_1'' \\ U_2'(U_2'')^{\dagger} U_1'' \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U_1'(U_1'')^{\dagger} U_2'' \\ U_2'' \\ U_2' \end{bmatrix}$$

 $(Q_1 =: (U_1'')^{\dagger}U_2'', Q_2 = (U_2'')^{\dagger}U_1''$ orthogonal/rotation) (Efficiently) satisfies

$$\mathcal{R}\left(U\right) = \mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(U_{2}\right)$$

Two (Intersecting) Clique Explicit Delayed Completion

Let:

- Hypotheses of intersecting Theorem (Thm 2) holds
- $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, for $i = 1, 2, \beta \subseteq \alpha_1 \cap \alpha_2, \gamma := \alpha_1 \cup \alpha_2$
- $\overline{D} := D[\beta]$ with embedding dimension r
- $B := \mathcal{K}^{\dagger}(\bar{D}), \quad \bar{U}_{\beta} := \bar{U}(\beta,:), \text{ where } \bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies intersection equation of Thm 2
- $\left[\bar{v} \quad \frac{\bar{v}^{\top} e}{\|\bar{v}^{\top} e\|}\right] \in \mathcal{M}^{t+1}$ be orthogonal.

<u>THEN</u> t = r in Thm 2, and $Z \in \mathcal{S}_+^r$ is the unique solution of the equation $(J\bar{U}_{\beta}\bar{V})Z(J\bar{U}_{\beta}\bar{V})^{\top} = B$, and the exact completion is

$$D[\gamma] = \mathcal{K} \; ig(PP^{ op} ig)$$
 where $P := UVZ^{rac{1}{2}} \in \mathbb{R}^{|\gamma| imes r}$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in \mathbb{R}^{n \times r}$ such that $D = \mathcal{K}(PP^T)$
- Solve the orthogonal Procrustes problem:

min
$$||A - P_2Q||$$

s.t. $Q^TQ = I$

- $P_2^{\top} A = U \Sigma V^{\top}$ SVD decomposition; set $Q = U V^{\top}$; (Golub/Van Loan'79, Algorithm 12.4.1)
- Set $X := P_1 Q$

Summary: Facial Reduction for Cliques

- Using the basic theorem: each clique corresponds to a Gram matrix/corresponding subspace/corresponding face of SDP cone (implicit rank reduction)
- In the case where two cliques intersect, the union of the cliques correspond to the (efficiently computable) intersection of the corresponding faces/subspaces
- Finally, the positions are determined using a Procrustes problem

Results (from 2010) - Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension r=2
- Square region: $[0,1] \times [0,1]$
- m = 9 anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$\mathsf{RMSD} = \left(\frac{1}{n} \sum_{i=1}^{n} \|p_i - p_i^{\mathsf{true}}\|^2\right)^{1/2}$$

Results - Large *n*

(SDP size $O(n^2)$)

n # of Sensors Located

n # sensors \ R	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1374
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	5	5	4	4
10000	10	10	9	8

RMSD (over located sensors)

n # sensors \ R	0.07	0.06	0.05	0.04
2000	4 <i>e</i> -16	5 <i>e</i> -16	6 <i>e</i> -16	3 <i>e</i> -16
6000	4 <i>e</i> -16	4 <i>e</i> -16	3 <i>e</i> -16	3 <i>e</i> -16
10000	3 <i>e</i> -16	5 <i>e</i> -16	4 <i>e</i> -16	4 <i>e</i> -16

Results - N Huge SDPs Solved

Large-Scale Problems

# sensors	# anchors	radio range	RMSD	Time
20000	9	.025	5 <i>e</i> -16	25s
40000	9	.02	8 <i>e</i> –16	1m 23s
60000	9	.015	5 <i>e</i> –16	3m 13s
100000	9	.01	6 <i>e</i> –16	9m 8s

Size of SDPs Solved: $N = \binom{n}{2}$ (# vrbls)

 $\mathcal{E}_n(\text{density of }\mathcal{G}) = \pi R^2$; $M = \mathcal{E}_n(|E|) = \pi R^2 N$ (# constraints) Size of SDP Problems:

 $M = \begin{bmatrix} 3,078,915 & 12,315,351 & 27,709,309 & 76,969,790 \end{bmatrix}$

 $N = 10^9 [0.2000 \ 0.8000 \ 1.8000 \ 5.0000]$

Noisy SNL Case

200 Sensors; [-0.5,0.5] box; noise 0.05; radio range 0.1

- use sum of exposing vectors rather than intersection of faces obtained from cliques to do facial reduction
- use motivation: roundoff error cancels

show video

Thanks for your attention!

Facial Reduction for Cone Optimization

Henry Wolkowicz

Dept. Combinatorics and Optimization
University of Waterloo

Tuesday Apr. 21, 2015

(with: Drusvyatskiy, Krislock, (Cheung) Voronin)