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Motivation: Loss of Slater CQ/Facial reduction

@ optimization algorithms rely on the KKT system;
and require that some constraint qualification (CQ) holds
(Slater’s CQ/strict feasibility for convex conic optimization)

@ However, surprisingly many conic opt, SDP relaxations,
instances arising from applications (POP, SNL, Molecular Conformation,
QAP, GP, strengthened MC)
do not satisfy Slater's CQ/are degenerate

@ lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

@ solution:
- theoretical facial reduction (Borwein, W.81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.11)
- take advantage of degeneracy (for SNL and Polyn Eqns)
(Krislock, W.'10; Cheung, Drusvyatskiy, Krislock, W.'14;
Reid, Wang, W. Wu'15))
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Outline: Regularization/Facial Reduction

@ Preprocessing/Regularization

@ Abstract convex program
@ LP case

@ CP case
@ Cone optimization/SDP case

e Appl.:Polyn Opt., QAP, GP, SNL, Molecular conformation
@ SNL; highly (implicit) degenerate/low rank solutions
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Background/Abstract convex program

(ACP) infy f(x) s.t. g(x) =k 0,x € Q

where:
o f:R" — Rconvex; g:R"— R™is K-convex
@ K C R™ closed convex cone; 2 C R" convex set
@ a=kb «<— b-aeK, a<xb < b-acintK

o g(ax +(1—ay)) 2k ag(x) + (1 —a)g(y),
X,y € R" Vo € [0,1]

N

IX € Q g(X) € —intK
@ guarantees strong duality
@ essential for efficiency/stability in p-d i-p methods

@ ((near) loss of strict feasibility, nearness to infeasibility
correlates with number of iterations & loss of accuracy)
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Case of Linear Programming, LP

Amxn/P={1,...,n}

max b'y min c'x

(LP-P) st. Aly<c (LP-D) st. Ax=Dh, x >0.

Slater's CQ for (LP-P) /

Jyst.c—ATy >0, ((c—ATy). >0,Vie P=:P<)
iff

Ad=0,¢"d=0,d>0 = d=0 (%)

implicit equality constraints: | € P~
Finding 0 # d* to (%) with max number of non-zeros determines
(exposes minimal face containing feasible slacks)

d*>0 = (c—ATy)=0,¥y € FY (i € P7) (where FY
is primal feasible set)

5



Preprocessing/Regularization Abstract convex program
Appl.:Polyn Opt., QAP, GP, SNL, Molecular conformation ... Cone optimization/SDP case

Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A"y <; ¢; minimal face f < RY

mn  (c<)Tx< +(c5)

- T
max b'y <
(LPreg-P) st (A9)Ty<c< | (LRegD) st [A<  A7] (Xx:) —
=T = o=
(A7) y=ec x< > 0,x" free

Mangasarian-Fromovitz CQ holds

(after deleting redundant equality constraints!)

iep= iep= o
( W (AS)TY <c< (AT)Ty =c= ) (A7) isonto

MFCQ holds | dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue?
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Facial Reduction/Preprocessing

Linear Programming Example, x ¢ R?

1 L 1 1
<O> feasible; weighted last two rows [_2 5 _2} sum to
zero. P< ={1,2},P= = {3,4}

Facial reduction to 1 dim; substit. for y
Y1 o 1 1 - * 1
B)=() () st -

7
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Facial Reduction on Dual/Preprocessing

Slater's CQ for (LP-P) /

IXst. AX=Db,X >0
iff
z=ATy>0,b'y =0, = z=0 (%)

Linear Programming Example, x ¢ R®

mn (2 6 -1 -2 7)x

1 1 1 10 1
s.t. L 1 -1 0 1}x:<_l>,x20

Sum the two constraints (y" = (1 1)):
2X1+ X4+ X5 =0 = X1 =X4=X%X5=0
yields equivalent simplified problem:

‘ MiN6X, — X3 S.t. Xo + X3 = 1,X5,X3 > 0 ‘

Q
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Case of ordinary convex programming, CP

(CP)  supb'ystg(y)<0,
y

where
@ beR™g(y) = (gi(y)) € R", gi : R™ — R convex, Vi € P
@ Slater's CQ: 3V s.t. gi(y) < 0,Vi (implies MFCQ)
@ Slater's CQ fails implies implicit equality constraints exist,
i.e.
P=={ieP:g(y) <0 = gi(y) =0} #0
Let P= := P\P~ and

9% = (Gi)iep<> 97 = (Gi)icp-




Preprocessing/Regularization Abstract convex program
Appl.:Polyn Opt., QAP, GP, SNL, Molecular conformation ... Cone optimization/SDP case

Rewrite implicit equalities to equalities/ Regularize CP

(CP)is equivalentto g(y) <; 0, f is minimal face

sup bTy
(CPreg) st. g=(y)<O0
yeF= or(g=(y)=0)
where 7~ := {y : g=(y) = 0}. Then
—(y

9=(y
F~={y:9 (y) <0}, soisaconvex set!

Slater's CQ holds for (CPyeg) yeFT:95(y) <0

modelling issue again?
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Faithfully convex case

Faithfully convex function f (Rockafellar'70 )

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

-9~ (y) = 0} is an affine set

Then:
F=={y:Vy =Vy} forsomey and full-row-rank matrix V.
Then MFCQ holds for

sup by

(CPeg) st g=(y) <
Vy =
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Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of convex cone K, denoted F < K, if
‘x,yeKandx+yeF = x,yeF‘

Polar Cone

K*:={¢:(s,k) >0, Vk e K}

Conjugate Face

If F < K, the conjugate face of F is
FC.=FLlnK*<K*
If x € ri(F), then F¢ = {x}+ NK*.

N
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Recall: (ACP) infy f(x) s.l. g(x) =k 0,x € Q

@ polar cone: K* = {¢: (p,y) > 0,Vy € K}.
@ K' = face(F) minimal face containing feasible set F.

Lemma (Facial Reduction)

Suppose X is feasible. Then the LHS system

(Q=%)T N, gX)N #0 | ..
{MK*, <¢,g<2)>:o} implies  K'C ¢ NK.

line 1 of system implies X global min for convex function

(¢,9())) on 2 i.e., 0= (¢,9(X)) < (4,9(x)) <0,Vx € F;
implies —g(F) C ¢ NK. O
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Semidefinite Programming, SDP, S

K =& = K* nonpolyhedral cone!, self-polar

(SDP-P) vp = sup bTy st g(y):= Ay —c=s 0
yEeRm

(SDP-D) vp = inf (c,x) st. AX=Db, X =gn O
XESN g

where:
@ PSD cone S € S" symm. matrices
@ccS",beRM

@ A:S8" — R™is alinear map, with adjoint A*
Ax = (trace Aix) = ((Aj,x)) e R™ A e S"
Aty =30 Ay € ST
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Slater's CQ/Theorem of Alternative

(Assume feasibility: 9y s.t. ¢ — A"y = 0.)
Jy st.s=c—-A"y >0 (Slater)
iff

Ad =0, (c,d)=0,d=0 = d=0 (%)
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Regularization Using Minimal Face

Borwein-W.81 , fp = face 7 3

(SDP-P) is equivalent to the regularized

(SDPreg-P) Vrp :=sup {(b,y) : A%y “fp c}
y

fp is miniminal face of primal feasible slacks
slacks: s =c — A"y €y

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) Vorp :=inf {(c,x) : AX =D, X = 0}

= Vp = VRp

and vpgp is attained.
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SDP Regularization process

Alternative to Slater CQ
Ad =0, (c,d)=0,0+#d =sn O (%)

Determine a proper face f, <f = QSTQT < S

Let d solve (x) with compact spectral decomosition
d=Pd.P",d, - 0,and [P Q] € R"" orthogonal. Then

C—AY=sn 0 = (c—Ay,d")=0
— F3CS"Nn{d*} =QsTQT xS

(implicit rank reduction, n < n)
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Regularizing SDP

@ at most n — 1 iterations to satisfy Slater’'s CQ.
@ to check Theorem of Alternative

Ad =0, (c,d)=0,0#d =g 0,  (¥)

use stable auxiliary problem

: Ad
(AP) r?!jn 0 st ‘ [(c,d>] ) <9,
trace(d) = v/n,
d > 0.

@ Both (AP) and its dual satisfy Slater's CQ.

18
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Auxiliary Problem

)

—

),

trace(d) = v/n,d = 0.

(AP) n(g!jn 0 s.t. '

Both (AP) and its dual satisfy Slater's CQ ... but ...

Cheung-Schurr-W'11, a k = 1 step CQ
Strict complementarity holds for (AP)
iff
k = 1 steps are needed to regularize (SDP-P).

10
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Regularizing SDP

Minimal face containing 75 :={s:s=c— A"y = 0}

fp =QS1 QT
for some n x n orthogonal matrix U = [P Q]

(SPD-P) is equivalent to

sup by st.g%(y) <0, g=(y) =0,
y

where g=(y) = Q' (A’y —c)Q

PT(A*y —c)P }
Ay —¢)Q+ QT (Ay —c)P|"
(gen.) Slater CQ holds for the reduced program:
Jy s.t. g~(y) <0andg=(y) = 0.

a0) = |
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Conclusion Part |

@ Minimal representations of the data regularize (P);
use min. face fp (and/or implicit rank reduction)

@ goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater's CQ

(almost) fails
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Part Il: Applications of SDP where Slater’'s CQ fails

SNL; highly (implicit) degenerate/low rank solutions

Instances of SDP relaxations of NP-hard combinatorial

optimization problems with row and column sum and 0, 1
constraints

@ Quadratic Assignment (Zhao-Karish-RendI-W. 96 )
@ Graph partitioning (W.-Zhao’99 )

-

Low rank problems
@ Systems of polynomial equations (Reid-Wang-W.-Wu’15)
@ Sensor network localization (SNL) problem (Krislock-W.'10,
Krislock-RendI-W.10)

@ Molecular conformation (Burkowski-Cheung-W.11 )

@ general SDP relaxation of low-rank matrix completion
problem

29
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SNL (K-W'10,K-R-W’10)

SNL; highly (implicit) degenerate/low rank solutions

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;

@ r : embedding dimension

® n ad hoc wireless sensors py, ..., pn € R" to locate in R";

o m Pn—m+1,---,Pn (positions
known, using e.g. GPS)

@ pairwise distances Dj = ||p; — pj||%,ij € E, are known
within radio range R > 0
°
Pl =[p1 ... pn]=[XT AT] eR™"

22
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Sensor Localization Problem/Partial EDM

SNL; highly (implicit) degenerate/low rank solutions

Sensors o and Anchors

Initial position of points

AT,
AT
ST \\[K
SN = DS

N7 K]
"@(}
i

sensors
anchors
sens-anch

#sensors n =300, #anchorsm=9, radiorangeR=1.2

A
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Underlying Graph Realization/Partial EDM  NP-Hard

SNL; highly (implicit) degenerate/low rank solutions

@ nodesetV ={1,....n}

@ edge set (i,j) € £; wj = ||pi — p;|*> known approximately
@ The anchors form a clique (complete subgraph)

@ Realization of G in R": a mapping of nodes v; — p; € R’
with squared distances given by w.

Corresponding Partial Euclidean Distance Matrix, EDM

o _fe it(iee
"1 0 otherwise (unknown distance),

dij2 = wjj are known squared Euclidean distances between
Sensors p;, pj; anchors correspond to a clique.

25
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Connections to Semidefinite Programming (SDP)

C(B) €&, B =K (D) € S" NS¢ (centered Be = 0)

pT — [pl Py ... pn] e M™";
B:=PP' €S (Gram matrix of inner products);
rank B =r; let D € £" corresponding EDM ; e = (1 1)T
(toDee”) D = (lpi-pld)is
n
_ T 4 nTn Th.
= (pi Pi +P; Pj —2p; pJ)i,j:l

= |diag(B)e' +edag(B)" — 2B

= K(B) (fromBeS!).

26
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Euclidean Distance Matrices; Semidefinite Matrices

SNL; highly (implicit) degenerate/low rank solutions

Moore-Penrose Generalized Inverse k'

B0 =— D=K(B)=dag(B)e' +edag(B)' —2Bc¢&
Deé = B=K(D)=-3JoffDiag (D)J>~ 0,Be =0

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag (D) = 0,D € Sp)is a
Euclidean distance matrix
if and only if

B =K'(D) = 0.

And
embdim (D) = rank (}CT(D)) , YDegn
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Popular Techniques; SDP Relax.; Highly Degen.

SNL; highly (implicit) degenerate/low rank solutions

Nearest, Weighted, SDP Approx. (relax/discard rank B)

® mingyo [|H o (K (B) —D)|; rank B =r;

typical weights: Hj = 1/,/Dj. if ij € E, Hj = 0 otherwise.
@ with rank constraint: a non-convex, NP-hard program
@ SDP relaxation is convex, BUT: expensive/low

accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique o, |a| = k (corresp. D[o]) with embed. dim. =t <r <k
— rakKT(D[a]) =t <r = rankB[o] < rank K T(D[a]) + 1
— rakB =rank LT(D)<n —|(k -t —1)| =

Slater’s CQ (strict feasibility) fails
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Basic Single Clique/Facial Reduction

SNL; highly (implicit) degenerate/low rank solutions

Matrix with Fixed Principal Submatrix

ForY e S",a C{1,..., n}: Y [a] denotes principal submatrix

formed from rows & cols with indices «.

Define £"(a, D) := {D € £": D[o] = D}. (completions)

Given D; find a corresponding B > 0; find the corresponding
face; find the corresponding subspace.

if « = 1 : k; embedding dim embdim (D) =t <r

20
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BASIC THEOREM for Single Clique/Facial Reduction

SNL; highly (implicit) degenerate/low rank solutions

Let:
@ D :=DJ[1:k] € £,k < n, embdim (D) =t < r be given;
@ B:=K7(D)=UgSUg,Ug e M, UJUg =1, S €S,
be full rank orthogonal decomposition of Gram matrix;

(0. L kx(t+1) (y._ |Us O
o Ug = [UB \/Ee} eM , U= [O In_k],and
[V HB—:EH} e MK+ pe orthogonal.
Then the minimal face:
tlen(1.1 A _ n—Kk+t+1y T
o | facet(€@:k,B)) = (usTHuT)nse

= (UV)ST*tuv)T
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The minimal face

SNL; highly (implicit) degenerate/low rank solutions

face KT (£n(1:k,0)) = (USIHHUT) NS
= (UV)ST Kt uv)T

Note that the minimal face is defined by the subspace

L =TR(UV). We add %e to represent V(K ); then we use V

to eliminate e to recover a centered face.
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Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let vy, ...,y € 1:n pairwise disjoint sets, wlog:
ai = (ki_g +1):ki,ko =0, a := Ule aj = L:fallet
U; € Rleilx(E+1) with full column rank satisfy e € R (U;) and
ki_p t+1 n—k;
Ki_1 [ 0 0
U = |q 0 L_Ji 0 S Rnx(n_luil—“i—‘rl)
n—k; 0 0 I
The minimal face is defined by £ = R (U):
tl_+l o te+l n—|af
| | u, ... 0 0
U.— - P : e RI<(—lal+t+1)
7] 0 R U[ 0
n—|a| 0 R 0 |
wheret =St +/—1. Ande € R (U).

Ky
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Sets for Intersecting Cliques/Faces

SNL; highly (implicit) degenerate/low rank solutions

o = lZ(RlJrRz); 0% = (RlJrl)Z(RlJrRerRg)

aq (6%)

For each clique |o| = k, we get a corresponding face/subspace
(k x r matrix) representation. We now see how to complete the
union of two cliques, a1, as, that intersect.

22
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Two (Intersecting) Cligue Reduction/Subsp. Repres.

Let:
@ 1,00 C1l:n; = |ag U ay|
@ fori=1,2:D;: [a.] e £, embedding dimension t;;
@ B :=KT(D ) SiUT, U e MS*8 070 =1y, S € S

UiS
o U= [U } e MKxt+1): and 0 e M kx(t+1)

satisfies | = @) - = ([%1 ,ED nR (['%1 UOD with GT0 = Iq
3 2

o U — [g 0 } e M M*(n—k+t+1) gng v 7] e M- k+t+1

In—k

be orthogonal.

n A _ n—k+t+
Then N2, face KT (E"(ai,Bp)) = (us_ L lUT> NS
= (U)sTFtuv)T

24
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Expense/Work of (Two) Clique/Facial Reductions

SNL; highly (implicit) degenerate/low rank solutions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

U 0 I O
Up=|U O and U= (0 UJ
0 | 0 U
Then:
u; uj(upyuy
U:= Uy or U:= us
Uy(Ug)iuy U}

(Q1 =: (U)TUY,Q, = (U%)TU] orthogonal/rotation)
(Efficiently) satisfies

R(U) =R (U1) "R (U2)
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Two (Intersecting) Clique Explicit Delayed Completion

Let:
@ Hypotheses of intersecting Theorem (Thm 2) holds
@D = D[ai] € EN fori=1,2,8C a1 Nay,v:=a; Uay
@ D := D[p] with embedding dimension r

@ B:=Kf(D), Usz:=U0(B,:), where U € M *x(t+1)
satisfies intersection equation of Thm 2

@ [v %] e M" be orthogonal.

(*] ‘z = (305V)TB(305V)T) T ‘

THENt =rinThm 2, and Z € S' is the unique solution of the
equation (JUsV)Z(JUgV)T = B, and the exact completion is

Dly] =K (PPT) where |P = uvz: e RhIxr

26



Preprocessing/Regularization
Appl.:Polyn Opt., QAP, GP, SNL, Molecular conformation ...

Completing SNL (Delayed use of Anchor Locations)

SNL; highly (implicit) degenerate/low rank solutions

Rotate to Align the Anchor Positions

@ GivenP = {gl} € R"™" suchthatD = K (PP ")
2

@ Solve the orthogonal Procrustes problem:

min [|A = P,Q]|
st. Q'Q=I

P, A =UXV ' SVD decomposition; set Q = UV ';
(Golub/Van Loan’79, Algorithm 12.4.1)
@ SetX = P,Q

27
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Summary: Facial Reduction for Cliques

SNL; highly (implicit) degenerate/low rank solutions

@ Using the basic theorem: each clique corresponds to a
Gram matrix/corresponding subspace/corresponding face
of SDP cone (implicit rank reduction)

@ In the case where two cliques intersect, the union of the
cligues correspond to the (efficiently computable)
intersection of the corresponding faces/subspaces

@ Finally, the positions are determined using a Procrustes
problem

28
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Results (from 2010) - Random Noisless Problems

SNL; highly (implicit) degenerate/low rank solutions

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimensionr = 2

Square region: [0,1] x [0, 1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption
Error measure: Root Mean Square Deviation

1/2
RMSD = ( ZHpI pie|| >
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Results - Large n (SDP size O(n?))

SNL; highly (implicit) degenerate/low rank solutions

n # of Sensors Located

n # sensors \ R 0.07 0.06 0.05 0.04
2000 2000 2000 1956 1374
6000 6000 6000 6000 6000
10000 10000 | 10000 | 10000 | 10000

CPU Seconds
#sensors\R | 0.07 | 0.06 | 0.05 | 0.04
2000 1 1 1 3
6000 5 5 4 4
10000 10 10 9 8

RMSD (over located sensors)

n # sensors \ R 0.07 0.06 0.05 0.04
2000 4e—16 | 5e—16 | 6e—16 | 3e—16
6000 4e—16 | 4e—16 | 3e—16 | 3e—16
10000 3e-16 | 5e—16 | 4e—16 | 4e—16
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Results - N Huge SDPs Solved

SNL; highly (implicit) degenerate/low rank solutions

Large-Scale Problems

# sensors # anchors radiorange | RMSD Time
20000 9 .025 5e—16 25s
40000 9 .02 8e—16 | 1m 23s
60000 9 .015 5e—16 | 3m 13s
100000 9 .01 6e—16 | 9m 8s

Size of SDPs Solved: (# vrbls)

En(density of G) = mR?; M = &,(|E|) = 7R2N (# constraints)
Size of SDP Problems:

M = [3,078,915 12,315,351 27,709,309 76,969,790
N = 10° [0.2000 0.8000 1.8000 5.0000]

a1
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Noisy SNL Case

SNL; highly (implicit) degenerate/low rank solutions

200 Sensors; [-0.5,0.5] box; noise 0.05; radio range 0.1

e use sum of exposing vectors rather than intersection of faces
obtained from cliques to do facial reduction « use motivation:
roundoff error cancels

show video )

Vil
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Thanks for your attention!

SNL; highly (implicit) degenerate/low rank solutions
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