The many faces of degeneracy in conic optimization

Henry Wolkowicz Dept. Combinatorics and Optimization University of Waterloo

Friday Mar. 18, 2016

at: Optimization and Learning: New Problems, New Challenges; INFORMS Optimization Society 2016

(with: Dmitriy Drusvyatskiy, Univ. of Washington)

Motivation: Loss of Slater CQ/Facial reduction

- Slater condition existence of a strictly feasible solution is at the heart of convex optimization.
- Without Slater: first-order optimality conditions may fail; dual problem may yield little information; small perturbations may result in infeasibility; many software packages can behave poorly.
- a pronounced phenomenon: though Slater holds generically, surprisingly many models arising from hard nonconvex problems show loss of strict feasibility, e.g., Matrix completions, SNL, EDM, POP, Molecular Conformation, QAP, GP, strengthened MC

We look at various reasons and how to take advantage using FACIAL REDUCTION

Refs: Borwein, W. '81; Cheung, Schurr, W.'11 Krislock, W.'10, Drusvyatskiy, Pataki, W.'15; Cheung, Drusvyatskiy, Krislock, W.'14

Facial Reduction on LP:
$$F = \{x : Ax = b, x \ge 0\}$$

Theorem of alternative, (with A full row rank)

Exactly one of the following is consistent: (1) $\exists \hat{x} \text{ s t } A\hat{x} - b \hat{x} > 0$

$$(II) 0 \neq z = A^{\top} y \ge 0, \ b^{\top} y = 0, \qquad (**) \quad (z \text{ exposes } F)$$

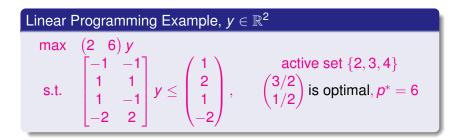
Linear Programming Example, $x \in \mathbb{R}^5$

min
$$\begin{pmatrix} 2 & 6 & -1 & -2 & 7 \end{pmatrix} x$$

s.t. $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 & 1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, x \ge 0$

Sum the two constraints (use $y^T = (1 \ 1)$ in (**)): $2x_1 + x_4 + x_5 = 0 \implies x_1 = x_4 = x_5 = 0$ yields equivalent simplified problem: $\boxed{\text{min } 6x_2 - x_3 \quad \underline{s.t.} \quad x_2 + x_3 = 1, x_2, x_3 \ge 0}$

Facial Reduction on Primal, $A^T y \leq c$



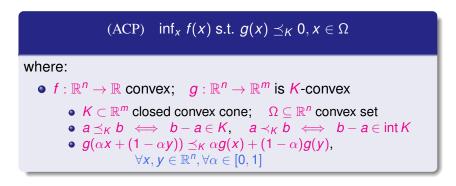
weighted last two rows
$$\begin{bmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \end{bmatrix}$$
 sum to zero:
set of implicit equalities: $\mathcal{P}^e := \{3, 4\}$

Facial reduction to 1 dim. after substit. for y

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \max \{2 + 8t : -1 \le t \le \frac{1}{2}\}, \quad t^* = \frac{1}{2}.$$

- preprocessing is important in LP.
- Can we do facial reduction in general?
- Is it efficient/worthwhile?
- applications?

Background/Abstract convex program



Slater's CQ: $\exists \hat{x} \in \Omega \text{ s.t. } g(\hat{x}) \in -\operatorname{int} K$ $(g(x) \prec_{\mathcal{K}} 0)$

- guarantees strong duality
- (near) loss of strict feasibility, nearness to infeasibility, correlates with number of iterations & loss of accuracy

Faces of Cones - Useful for Charact. of Opt.

Face A convex cone *F* is a face of convex cone *K*, denoted $F \leq K$, if $x, y \in K$ and $x + y \in F \implies x, y \in F$

Polar (Dual) Cone

$$\mathbf{K}^* := \{ \phi : \langle \phi, \mathbf{k} \rangle \ge \mathbf{0}, \ \forall \mathbf{k} \in \mathbf{K} \}$$

Conjugate Face

If $F \leq K$, the conjugate face of F is

$$F^c := F^\perp \cap K^* \trianglelefteq K^*$$

If $x \in \operatorname{ri}(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Recall: (ACP) $\inf_x f(x)$ s.t. $g(x) \preceq_{\kappa} 0, x \in \Omega$

- polar cone: $K^* = \{\phi : \langle \phi, y \rangle \ge 0, \forall y \in K\}.$
- $K^f := face(F)$ minimal face containing feasible set F.

Lemma (Facial Reduction; find **EXPOSING** vector ϕ)

Suppose \bar{x} is feasible. Then the LHS system

$$\left\{\begin{array}{ll} (\Omega-\bar{x})^+\cap\partial\langle\phi,g(\bar{x})\rangle\neq\emptyset\\ \phi\in K^+, & \langle\phi,g(\bar{x})\rangle=0\end{array}\right\} \quad \textit{implies} \quad K^f\subseteq\phi^\perp\cap K.$$

Proof

line 1 of system implies \bar{x} global min for convex function $\langle \phi, g(\cdot) \rangle$ on Ω ; i.e., $0 = \langle \phi, g(\bar{x}) \rangle \leq \langle \phi, g(x) \rangle \leq 0, \forall x \in F$; implies $-g(F) \subseteq \phi^{\perp} \cap K$.

Semidefinite Programming, SDP, S_{+}^{n}

(SDP-P)
$$v_P = \sup_{y \in \mathbb{R}^m} b^\top y \text{ s.t. } g(y) := \mathcal{A}^* y - c \preceq_{\mathcal{S}^n_+} 0$$

(SDP-D)
$$v_D = \inf_{x \in S^n} \langle c, x \rangle$$
 s.t. $Ax = b, x \succeq_{S^n_+} 0$

where:

- PSD cone $S^n_+ \subset S^n$ symm. matrices
- $\boldsymbol{c} \in \mathcal{S}^n$, $\boldsymbol{b} \in \mathbb{R}^m$
- $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is an onto linear map, with adjoint \mathcal{A}^*

 $\begin{array}{l} \mathcal{A}x = (\text{trace } A_i x) = (\langle A_i, x \rangle) \in \mathbb{R}^m, \quad A_i \in \mathcal{S}^n \\ \mathcal{A}^* y = \sum_{i=1}^m A_i y_i \in \mathcal{S}^n \end{array}$

Slater's CQ/Theorem of Alternative

(Assume feasibility: $\exists \tilde{y} \text{ s.t. } c - \mathcal{A}^* \tilde{y} \succeq 0.$) Exactly one of the following alternatives holds: (1) $\exists \hat{y} \text{ s.t. } s = c - \mathcal{A}^* \hat{y} \succ 0$ (Slater) $\underbrace{\text{or}}$ (1) $\mathcal{A}d = 0, \langle c, d \rangle = 0, 0 \neq d \succeq 0$ (*)

(*d* exposes a proper face containing all the feasible slacks $z = c - A^* y \succeq 0.$)

Regularization Using Minimal Face

Borwein-W.'81 , $f_P = \text{face } \mathcal{F}_P^s$; min. face of feasible slacks

 $\begin{array}{ll} (\text{SDP-P}) \text{ is equivalent to the regularized} \\ (\text{SDP}_{reg}\text{-P}) & v_{RP} := \sup_{y} \left\{ \langle b, y \rangle \ : \ \mathcal{A}^* y \preceq_{f_P} c \right\} \\ f_p \text{ is miniminal face of primal feasible slacks} \\ \{s \succeq 0 : s = c - \mathcal{A}^* y\} \subseteq f_p \trianglelefteq \mathcal{S}^n_+ \end{array}$

Lagrangian dual of regularized problem satisfies strong duality:

$$(\text{SDP}_{reg}\text{-}\text{D}) \quad \bigvee_{\text{DRP}} \quad := \inf_{x} \{ \langle c, x \rangle \ : \ \mathcal{A} \, x = b, \ x \succeq_{f_{P}^{*}} 0 \}$$

 $v_P = v_{RP} = v_{DRP}$ and v_{DRP} is <u>attained</u>.

regularized primal-dual pair

If we take the dual of (SDP_{reg}-D) we recover the primal regularized problem (SDP_{reg}-P).

Alternative to Slater CQ

$$\mathcal{A}d = 0, \ \langle \boldsymbol{c}, \boldsymbol{d}
angle = 0, \ 0 \neq \boldsymbol{d} \succeq_{\mathcal{S}^n_+} 0$$
 (*)

Determine a proper face $f_{\rho} \leq f = QS^{\overline{n}}_{+}Q^{T} \triangleleft S^{n}_{+}$

- Let *d* solve (*) with compact spectral decomosition
 d = *Pd*₊*P*[⊤], *d*₊ ≻ 0, and [*P Q*] ∈ ℝ^{n×n} orthogonal.
- Then d is an exposing vector/matrix

$$\begin{array}{rcl} \boldsymbol{c} - \mathcal{A}^* \boldsymbol{y} \succeq_{\mathcal{S}^n_+} \boldsymbol{0} & \Longrightarrow & \langle \boldsymbol{c} - \mathcal{A}^* \boldsymbol{y}, \boldsymbol{d}^* \rangle = \boldsymbol{0} \\ & \Longrightarrow & \mathcal{F}_P^s \subseteq \mathcal{S}^n_+ \cap \{ \boldsymbol{d}^* \}^\perp = Q \mathcal{S}^{\bar{n}}_+ Q^\top \lhd \mathcal{S}^n_+ \end{array}$$

• (implicit rank reduction, $\bar{n} < n$)

Regularizing SDP

- at most *n* − 1 iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$\mathcal{A}d=0,\;\langle m{c},m{d}
angle=0,\;0
eq m{d}\succeq_{\mathcal{S}^n_+}0,$$
 (*)

use stable auxiliary problem

$$(AP) \qquad \min_{\delta,d} \ \delta \ \text{ s.t. } \left\| \begin{bmatrix} \mathcal{A}d \\ \langle c, d \rangle \end{bmatrix} \right\|_2 \le \delta,$$
$$\operatorname{trace}(d) = \sqrt{n},$$
$$d \succeq 0.$$

• Both (AP) and its dual satisfy Slater's CQ.

Auxiliary Problem

(AP)
$$\min_{\delta,d} \delta \text{ s.t. } \left\| \begin{bmatrix} \mathcal{A}d \\ \langle c, d \rangle \end{bmatrix} \right\|_{2} \leq \delta,$$
$$\operatorname{trace}(d) = \sqrt{n}, d \succeq 0.$$

Both (AP) and its dual satisfy Slater's CQ ... but ...

Cheung-Schurr-W'11, a k = 1 step CQ

Strict complementarity holds for (AP)

k = 1 steps are needed to regularize (SDP-P).

k = 1 always holds in LP case.

Sturm's error bounds Theorem for SDP, 2000

Given an affine subspace \mathcal{V} of \mathcal{S}^n , the pair $(\mathcal{V}, \mathcal{S}^n_+)$ is $\frac{1}{2^d}$ -Holder regular, $\gamma = \frac{1}{2^d}$, with displacement, where *d* is the singularity degree of $(\mathcal{V}, \mathcal{S}^n_+)$ with displacement. (e.g., for intersecting sets, for all compact sets *U* there exists a constant c > 0 such that $\operatorname{dist}(x, \mathcal{V} \cap \mathcal{S}^n_+) \leq c (\operatorname{dist}^{\gamma}(x, \mathcal{V}) + \operatorname{dist}^{\gamma}(x, \mathcal{S}^n_+))$, $\forall x \in U$)

Cgnce rate alternating directions for SDP

Theorem (Drusvyatskiy, Li, W. 2015) If the sequence X_k , Y_k

```
converges, d > 0, then the rate is O\left(k^{-\frac{1}{2^{d+1}-2}}\right)
```

(If Slater holds then cgnce is R-linear.)

Thm D.P.W. '15: $\mathcal{M} : \mathbb{E} \to \mathbb{Y}$, *K* proper convex cone

 $\emptyset \neq F = \{X \in K : \mathcal{M}(X) = b\}$. Then a vector *v* exposes a proper face of $\mathcal{M}(K)$ containing *b* if, and only if, *v* satisfies the auxiliary system

 $\mathbf{0}
eq \mathcal{M}^* \mathbf{v} \in \mathcal{K}^*, \quad \langle \mathbf{v}, \mathbf{b}
angle = \mathbf{0}.$

Let $N = face(b, \mathcal{M}(K))$ (smallest face containing b). Then:

- $K \cap \mathcal{M}^{-1}(N) = \operatorname{face}(F, K)$
- v exposes N <u>IFF</u> $\mathcal{M}^*(v)$ exposes face(F, K).

Corollary

If Slater's condition fails, then d = 1 <u>IFF</u> the minimal face(b, $\mathcal{M}(K)$) is exposed.

Applications of SDP where Slater's CQ fails

Instances SDP relaxations of NP-hard comb. opt.

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96)
- Graph partitioning (W.-Zhao'99)
- Strengthened Max-Cut (Anjos-W'02)

Low rank problems

- Systems of polynomial equations (Reid-Wang-W.-Wu'15)
- Sensor network localization (SNL) problem (Krislock-W.'10 (Drusvyatskiy, Krislock, Veronin, W.'15)
- Molecular conformation (Burkowski-Cheung-W.'11)
- general SDP relaxation of low-rank matrix completion problems

Recent Application to QAP within ADMM Framework, D. Oliveira, Y. Xu, W'15

Quadratic Assignment Problem; "hardest" of NP-hard problems

 $\min_{X \in \Pi} \operatorname{trace} AXBX^T + CX^T$; Π set of permutation matrices

SDP relaxation greatly simplifies after FR, facial reduction

FR:
$$Y = VRV^T$$
, $Y \in S_+^{n^2+1}$, $R \in S_+^{(n-1)^2+1}$

$$egin{array}{lll} \min_{R} & \langle L_Q, \hat{V}R\hat{V}^{ op}
angle \ {\tt s.t.} & \mathcal{G}_J(\hat{V}R\hat{V}^{ op}) = E_{00} \ R\succeq 0, \end{array}$$

where L_Q linearizes the objective function; G_J is the gangster operator; E_{00} is the first unit matrix.

Implement ADMM (perfectly suited for FR)

$$\min_{R,Y} \langle L_Q, Y \rangle$$
, s.t. $\mathcal{G}_J(Y) = E_{00}, Y = \hat{V}R\hat{V}^{\top}, R \succeq 0$.

augmented Lagrangian is

$$L_{\mathcal{A}} := \langle L_{\mathcal{Q}}, Y \rangle + \langle Z, Y - \hat{V} R \hat{V}^{\top} \rangle + \frac{\beta}{2} \| Y - \hat{V} R \hat{V}^{\top} \|_{F}^{2}.$$

alternating direction method of multipliers, ADMM

perform/repeat updates for (R_+, Y_+, Z_+) ('cheat' ... Eckert-Young for low rank psd)

 $R_{+} = \operatorname{argmin}_{R \succeq 0, \text{ low rank}} L_{A}(R, Y, Z),$ (1a)

$$Y_{+} = \operatorname{argmin}_{Y \in P} L_{A}(R_{+}, Y, Z), \tag{1b}$$

$$Z_{+} = Z + \gamma \cdot \beta (Y_{+} - \hat{V}R_{+}\hat{V}^{\top}), \qquad (1c)$$

where *P* is the polyhedral constraints consisting of the gangster constraints and $0 \le Y \le 1$.

Sample Numerics: ADMM for SDP Relaxation of QAP

	1.	2.	3.	4.	5.	6.	7. ADMM	8 Tol5	9 Tol5	10 Tol12/5	11 HKM
	opt	Bundle [?]	HKM-FR	ADMM	feas	ADMM	vs Bundle	cpusec	cpusec	cpuratio	cpuratio
	value	LowBnd	LowBnd	LowBnd	UpBnd	%gap	%Impr LowBnd	HighRk	LowRk	HighRk	Tol 9
Esc16a	68	59	50	64	72	11.76	7.35	2.30e+01	4.02	4.14	9.37
Esc16b	292	288	276	290	300	3.42	0.68	3.87e + 00	4.55	2.15	8.08
Esc16c	160	142	132	154	188	21.25	7.50	1.09e+01	8.09	4.53	4.88
Esc16d	16	8	-12	13	18	31.25	31.25	2.14e + 01	3.69	4.87	10.22
Esc16e	28	23	13	27	32	17.86	14.29	3.02e+01	4.29	4.80	8.79
Esc16g	26	20	11	25	28	11.54	19.23	4.24e + 01	4.27	2.72	8.63
Esc16h	996	970	909	977	996	1.91	0.70	4.91e + 00	3.53	2.33	10.60
Esc16i	14	9	-21	12	14	14.29	21.43	1.37e + 02	4.30	2.39	8.76
Esc16j	8	7	-4	8	14	75.00	12.50	8.95e + 01	4.80	3.83	7.93
Had12	1652	1643	1641	1652	1652	0.00	0.54	1.02e+01	1.08	1.06	5.91
Had14	2724	2715	2709	2724	2724	0.00	0.33	3.23e + 01	1.69	1.19	10.46
Had16	3720	3699	3678	3720	3720	0.00	0.56	1.75e + 02	3.15	1.04	12.51
Had18	5358	5317	5287	5358	5358	0.00	0.77	4.49e + 02	6.00	2.22	13.28
Had20	6922	6885	6848	6922	6930	0.12	0.53	3.85e + 02	12.15	4.20	14.53
Kra30a	149936	136059	-1111	143576	169708	17.43	5.01	5.88e + 03	149.32	2.22	1111.11
Kra30b	91420	81156	-1111	87858	105740	19.56	7.33	4.36e + 03	170.57	3.01	1111.11
Kra32	88700	79659	-1111	85775	103790	20.31	6.90	3.57e + 03	200.26	4.28	1111.11
Nug12	578	557	530	568	632	11.07	1.90	2.60e+01	1.04	6.61	5.93
Nug14	1014	992	960	1011	1022	1.08	1.87	7.15e+01	1.87	5.06	8.43
Nug15	1150	1122	1071	1141	1306	14.35	1.65	9.10e + 01	3.31	5.90	7.79
Nug16a	1610	1570	1528	1600	1610	0.62	1.86	1.81e + 02	3.06	3.28	12.24
Nug16b	1240	1188	1139	1219	1356	11.05	2.50	9.35e+01	3.19	6.23	11.83
Nug17	1732	1669	1622	1708	1756	2.77	2.25	2.31e+02	4.34	3.63	13.13
Nug18	1930	1852	1802	1894	2160	13.78	2.18	4.16e + 02	5.47	2.43	15.23
Nug20	2570	2451	2386	2507	2784	10.78	2.18	4.76e + 02	11.56	3.75	14.35
Nug21	2438	2323	2386	2382	2706	13.29	2.42	1.41e + 03	15.32	1.68	14.95
Nug22	3596	3440	3396	3529	3940	11.43	2.47	2.07e + 03	21.82	1.39	13.90
Nug24	3488	3310	-1111	3402	3794	11.24	2.64	1.20e + 03	29.64	3.29	1111.11
Nug25	3744	3535	-1111	3626	4060	11.59	2.43	3.12e + 03	39.23	1.65	1111.11
Nug27	5234	4965	-1111	5130	5822	13.22	3.15	5.11e + 03	78.18	1.58	1111.11
Nug28	5166	4901	-1111	5026	5730	13.63	2.42	4.11e + 03	83.38	2.17	1111.11
Nug30	6124	5803	-1111	5950	6676	11.85	2.40	7.36e + 03	133.38	1.76	1111.11
Rou12	235528	223680	221161	235528	235528	0.00	5.03	2.76e + 01	0.93	0.98	6.90
Rou15	354210	333287	323235	350217	367782	4.96	4.78	3.12e + 01	2.70	8.68	9.46
Rou20	725522	663833	642856	695181	765390	9.68	4.32	1.67e + 02	10.31	10.90	16.08
Scr12	31410	29321	23973	31410	38806	23.55	6.65	4.40e + 00	1.17	2.40	5.79
Scr15	51140	48836	42204	51140	58304	14.01	4.51	1.38e + 01	2.41	1.84	10.75
Scr20	110030	94998	83302	106803	138474	28.78	10.73	1.53e+03	9.61	1.15	17.96
Tai12a	224416	222784	215637	224416	224416	0.00	0.73	1.79e + 00	0.90	1.04	6.70
Tai15a	388214	364761	349586	377101	412760	9.19	3.18	2.74e + 01	2.35	14.69	10.34
Tai17a	491812	451317	441294	476525	546366	14.20	5.13	6.50e + 01	4.52	7.31	12.04
Tai20a	703482	637300	619092	671675	750450	11.20	4.89	1.28e + 02	10.10	14.32	15.85
Tai25a	1167256	1041337	1096657	1096657	1271696	15.00	4.74	3.09e + 02	38.48	5.58	1111.11
Tai30a	1818146	1652186	-1111	1706871	1942086	12.94	3.01	1.25e + 0.3	142.55	10.51	1111.11
Tho30	88900	77647	-1111	86838	102760	17.91	10.34	2.83e + 03	164.86	4.74	1111.11

Thanks for your attention!

The many faces of degeneracy in conic optimization

Henry Wolkowicz Dept. Combinatorics and Optimization University of Waterloo

Friday Mar. 18, 2016

at: Optimization and Learning: New Problems, New Challenges; INFORMS Optimization Society 2016

(with: Dmitriy Drusvyatskiy, Univ. of Washington)