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Motivation: Loss of Slater CQ/Facial reduction

Slater condition – existence of a strictly feasible solution –
is at the heart of convex optimization.

Without Slater: first-order optimality conditions may fail; dual problem
may yield little information; small perturbations may result in
infeasibility; many software packages can behave poorly.

a pronounced phenomenon: though Slater holds generically,
surprisingly many models arising from hard nonconvex problems show
loss of strict feasibility, e.g., Matrix completions, SNL, EDM, POP,
Molecular Conformation, QAP, GP, strengthened MC

We look at various reasons and how to take advantage using
FACIAL REDUCTION

Refs: Borwein, W. ’81; Cheung, Schurr, W.’11 Krislock, W.’10 , Drusvyatskiy,
Pataki, W.’15 ; Cheung, Drusvyatskiy, Krislock, W.’14
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Facial Reduction on LP: F = {x : Ax = b, x ≥ 0}

Theorem of alternative, (with A full row rank)
Exactly one of the following is consistent:
(I) ∃x̂ s.t. Ax̂ = b, x̂ > 0
(II) 0 6= z = A>y ≥ 0, b>y = 0, (∗∗) (z exposes F )

Linear Programming Example, x ∈ R5

min
(
2 6 −1 −2 7

)
x

s.t.
[
1 1 1 1 0
1 −1 −1 0 1

]
x =

(
1
−1

)
, x ≥ 0

Sum the two constraints (use yT = (1 1) in (**)):
2x1 + x4 + x5 = 0 =⇒ x1 = x4 = x5 = 0
yields equivalent simplified problem:

min 6x2 − x3 s.t. x2 + x3 = 1, x2, x3 ≥ 0
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Facial Reduction on Primal, AT y ≤ c

Linear Programming Example, y ∈ R2

max
(
2 6

)
y

s.t.


−1 −1
1 1
1 −1
−2 2

 y ≤


1
2
1
−2

 ,

active set {2,3,4}(
3/2
1/2

)
is optimal,p∗ = 6

weighted last two rows
[

1 −1 1
−2 2 −2

]
sum to zero:

set of implicit equalities: Pe := {3,4}

Facial reduction to 1 dim. after substit. for y(
y1
y2

)
=

(
1
0

)
+ t
(

1
1

)
, max

{
2 + 8t : −1 ≤ t ≤ 1

2

}
, t∗ = 1

2 .
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General Case?

preprocessing is important in LP.
Can we do facial reduction in general?
Is it efficient/worthwhile?
applications?
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Background/Abstract convex program

(ACP) infx f (x) s.t. g(x) �K 0, x ∈ Ω

where:
f : Rn → R convex; g : Rn → Rm is K -convex

K ⊂ Rm closed convex cone; Ω ⊆ Rn convex set
a �K b ⇐⇒ b − a ∈ K , a ≺K b ⇐⇒ b − a ∈ int K
g(αx + (1− αy)) �K αg(x) + (1− α)g(y),

∀x , y ∈ Rn,∀α ∈ [0,1]

Slater’s CQ: ∃ x̂ ∈ Ω s.t. g(x̂) ∈ − int K (g(x) ≺K 0)

guarantees strong duality
(near) loss of strict feasibility, nearness to infeasibility,
correlates with number of iterations & loss of accuracy
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Faces of Cones - Useful for Charact. of Opt.

Face
A convex cone F is a face of convex cone K , denoted F E K , if

x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F

Polar (Dual) Cone

K ∗ := {φ : 〈φ, k〉 ≥ 0, ∀k ∈ K}

Conjugate Face

If F E K , the conjugate face of F is

F c := F⊥ ∩ K ∗ E K ∗

If x ∈ ri(F ), then F c = {x}⊥ ∩ K ∗.
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Recall: (ACP) infx f (x) s.t. g(x) �K 0, x ∈ Ω

polar cone: K ∗ = {φ : 〈φ, y〉 ≥ 0,∀y ∈ K}.
K f := face(F ) minimal face containing feasible set F .

Lemma (Facial Reduction; find EXPOSING vector φ)
Suppose x̄ is feasible. Then the LHS system{

(Ω− x̄)+ ∩ ∂〈φ,g(x̄)〉 6= ∅
φ ∈ K +, 〈φ,g(x̄)〉 = 0

}
implies K f ⊆ φ⊥ ∩ K .

Proof
line 1 of system implies x̄ global min for convex function
〈φ,g(·)〉 on Ω; i.e., 0 = 〈φ,g(x̄)〉 ≤ 〈φ,g(x)〉 ≤ 0,∀x ∈ F ;
implies −g(F ) ⊆ φ⊥ ∩ K .
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Semidefinite Programming, SDP, Sn
+

K = Sn
+ = K ∗: nonpolyhedral, self-polar, facially exposed

(SDP-P) vP = sup
y∈Rm

b>y s.t. g(y) := A∗y − c �Sn
+

0

(SDP-D) vD = inf
x∈Sn

〈c, x〉 s.t. Ax = b, x �Sn
+

0

where:
PSD cone Sn

+ ⊂ Sn symm. matrices
c ∈ Sn , b ∈ Rm

A : Sn → Rm is an onto linear map, with adjoint A∗

Ax = (trace Aix) = (〈Ai , x〉) ∈ Rm, Ai ∈ Sn

A∗y =
∑m

i=1 Aiyi ∈ Sn
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Slater’s CQ/Theorem of Alternative

(Assume feasibility: ∃ ỹ s.t. c −A ∗ỹ � 0.)
Exactly one of the following alternatives holds:

(I) ∃ ŷ s.t. s = c −A∗ŷ � 0 (Slater)

or

(II) Ad = 0, 〈c,d〉 = 0, 0 6= d � 0 (∗)

(d exposes a proper face containing all the feasible slacks
z = c −A ∗y � 0.)
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Regularization Using Minimal Face

Borwein-W.’81 , fP = faceF s
P ; min. face of feasible slacks

(SDP-P) is equivalent to the regularized
(SDPreg-P) vRP := sup

y
{〈b, y〉 : A ∗y �fP c}

fp is miniminal face of primal feasible slacks
{s � 0 : s = c −A ∗y} ⊆ fp E Sn

+

Lagrangian dual of regularized problem satisfies strong duality:

(SDPreg-D) vDRP := inf
x
{〈c, x〉 : A x = b, x �f∗P

0}
vP = vRP = vDRP and vDRP is attained.

regularized primal-dual pair

If we take the dual of (SDPreg-D) we recover the primal
regularized problem (SDPreg-P).
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SDP Regularization process

Alternative to Slater CQ

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0 (∗)

Determine a proper face fp E f = QSn̄
+QT C Sn

+

Let d solve (∗) with compact spectral decomosition
d = Pd+P>, d+ � 0, and [P Q] ∈ Rn×n orthogonal.
Then d is an exposing vector/matrix

c −A∗y �Sn
+

0 =⇒ 〈c −A∗y ,d∗〉 = 0

=⇒ F s
P ⊆ S

n
+ ∩ {d∗}

⊥ = QS n̄
+ Q> C Sn

+

(implicit rank reduction, n̄ < n)
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Regularizing SDP

at most n − 1 iterations to satisfy Slater’s CQ.
to check Theorem of Alternative

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0, (∗)

use stable auxiliary problem

(AP) min
δ,d

δ s.t.
∥∥∥∥[ Ad
〈c,d〉

]∥∥∥∥
2
≤ δ,

trace(d) =
√

n,
d � 0.

Both (AP) and its dual satisfy Slater’s CQ.
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Auxiliary Problem

(AP) min
δ,d

δ s.t.
∥∥∥∥[ Ad
〈c,d〉

]∥∥∥∥
2
≤ δ,

trace(d) =
√

n,d � 0.

Both (AP) and its dual satisfy Slater’s CQ ... but ...

Cheung-Schurr-W’11, a k = 1 step CQ

Strict complementarity holds for (AP)
iff

k = 1 steps are needed to regularize (SDP-P).

k = 1 always holds in LP case.
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Singularity Degree - Minimal Number of FR Steps

Sturm’s error bounds Theorem for SDP, 2000

Given an affine subspace V of Sn , the pair (V,Sn
+ ) is 1

2d -Holder
regular, γ = 1

2d , with displacement, where d is the singularity
degree of (V,Sn

+ ) with displacement.
( e.g., for intersecting sets, for all compact sets U there exists a
constant c > 0 such that
dist(x ,V ∩ Sn

+ ) ≤ c
(
distγ(x ,V ) + distγ(x ,Sn

+ )
)
, ∀x ∈ U)

Cgnce rate alternating directions for SDP

Theorem (Drusvyatskiy, Li, W. 2015) If the sequence Xk ,Yk

converges, d > 0, then the rate is O
(

k−
1

2d+1−2

)
(If Slater holds then cgnce is R-linear.)
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View of FR and Singularity Degree

Thm D.P.W. ’15: M : E→ Y, K proper convex cone

∅ 6= F = {X ∈ K :M (X ) = b}. Then a vector v exposes a
proper face ofM (K ) containing b if, and only if, v satisfies the
auxiliary system

0 6=M ∗v ∈ K∗, 〈v ,b〉 = 0.
Let N = face(b,M (K )) (smallest face containing b). Then:

K ∩M−1(N) = face(F ,K )

v exposes N IFFM ∗(v) exposes face(F ,K ).

Corollary
If Slater’s condition fails, then d = 1 IFF the minimal
face(b,M (K )) is exposed.
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Applications of SDP where Slater’s CQ fails

Instances SDP relaxations of NP-hard comb. opt.
Quadratic Assignment (Zhao-Karish-Rendl-W.’96 )
Graph partitioning (W.-Zhao’99 )
Strengthened Max-Cut (Anjos-W’02 )

Low rank problems
Systems of polynomial equations (Reid-Wang-W.-Wu’15)
Sensor network localization (SNL) problem (Krislock-W.’10
(Drusvyatskiy, Krislock, Veronin, W.’15)
Molecular conformation (Burkowski-Cheung-W.’11 )
general SDP relaxation of low-rank matrix completion
problems
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Recent Application to QAP within ADMM Framework,
D. Oliveira, Y. Xu, W’15

Quadratic Assignment Problem; “hardest” of NP-hard problems

minX∈Π trace AXBX T + CX T ; Π set of permutation matrices

SDP relaxation greatly simplifies after FR, facial reduction

FR: Y = VRV T , Y ∈ Sn2+1
+ , R ∈ S(n−1)2+1

+

minR 〈LQ, V̂RV̂>〉
s.t. GJ(V̂RV̂>) = E00

R � 0,

where LQ linearizes the objective function; GJ is the gangster
operator; E00 is the first unit matrix.
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Implement ADMM (perfectly suited for FR)

minR,Y 〈LQ,Y 〉, s.t. G J(Y ) = E00, Y = V̂RV̂>, R � 0.

augmented Lagrangian is

LA := 〈LQ,Y 〉+ 〈Z ,Y − V̂RV̂>〉+
β

2
‖Y − V̂RV̂>‖2F .

alternating direction method of multipliers, ADMM

perform/repeat updates for (R+,Y+,Z+)
(’cheat’ ... Eckert-Young for low rank psd)

R+ =argmin R�0, low rankLA(R,Y ,Z ), (1a)

Y+ =argmin Y∈PLA(R+,Y ,Z ), (1b)

Z+ = Z + γ · β(Y+ − V̂R+V̂>), (1c)

where P is the polyhedral constraints consisting of the gangster
constraints and 0 ≤ Y ≤ 1.
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Sample Numerics: ADMM for SDP Relaxation of QAP
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