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** Motivation: Loss of Slater CQ/Facial reduction

Slater condition – existence of a strictly feasible solution –
is at the heart of convex optimization.

Without Slater: first-order optimality conditions may fail; dual problem
may yield little information; small perturbations may result in
infeasibility; many software packages can behave poorly.

a pronounced phenomenon: though Slater holds generically,
surprisingly many models arising from relaxations of hard nonconvex
problems show loss of strict feasibility, e.g., Matrix
completions/compressive sensing, sensor network localization, SNL,
EDM, POP, Molecular Conformation, QAP, GP, strengthened Max-Cut

We concentrate on appl. of Semidef. Progr., SDP.
We look at various reasons and how to take advantage using

two views of FACIAL REDUCTION, FR

Main Ref: (in progress)
“The many faces of degeneracy in conic optimization”,
Drusvyatskiy, Wolkowicz ’16 ;
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** Facial Reduction/Preprocessing for LP

Primal-Dual Pair: A onto, m × n, P = {1, . . . ,n}

(LP-P)
max b>y
s.t. A>y ≤ c

(LP-D)
min c>x
s.t. Ax = b,

x ≥ 0.

Slater’s CQ for (LP-D) / Theorem of alternative
Exactly One is True:
(I) ∃x̂ s.t. Ax̂ = b, x̂ > 0 (x̂ ∈ ri F , feas. set)

Slater point

(II) 0 6= z = A>y ≥ 0, b>y = 0 (〈z,F 〉 = 0)
exposing vector
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Linear Programming Example, x ∈ R5

min
(
2 6 −1 −2 7

)
x

s.t.
[
1 1 1 1 0
1 −1 −1 0 1

]
x =

(
1
−1

)
x ≥ 0

Sum the two constraints (multiply by: yT = (1 1)):
get: 2x1 + x4 + x5 = 0 =⇒ x1 = x4 = x5 = 0
i.e., equiv. simplified problem/smaller face/ fewer constr.

min 6x2 − x3 s.t. x2 + x3 = 1, x2, x3 ≥ 0,
(x1 = x4 = x5 = 0)
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Linear Programming, LP, AT y ≤ c

Slater’s CQ for (LP-P) / Theorem of alternative

∃ŷ s.t. c − A>ŷ > 0,
((

c − A>ŷ
)

i > 0, ∀i ∈ P =: P l)
iff

Ad = 0, c>d = 0, d ≥ 0 =⇒ d = 0 (∗)

implicit equality constraints: i ∈ Pe

Find 0 6= d∗ to (∗) with max number of non-zeros
(exposes minimal face containing feasible slacks)

d∗i > 0 =⇒ (c − A>y)i = 0,∀y ∈ F y i ∈ Pe)

(where F y is primal feasible set)

k = 1!; we only need one step of FR for LP
d∗ here exposes the minimal face (of slacks)
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Make implicit-equalities explicit/ Regularizes LP

Facial Reduction: A>y ≤f c; minimal face f E Rn
+

proper primal-dual pair; dual of dual is primal

(LPreg -P)
max b>y
s.t. (Al )>y ≤ cl

(Ae)>y = ce
(LPreg -D)

min (cl )>x l + (ce)>xe

s.t.
[
Al Ae

] (x l

xe

)
= b

x l ≥ 0, xe free

Generalized Slater CQ holds - And!
after deleting redundant equality constraints!
Mangasarian-Fromovitz CQ (MFCQ) holds(

∃ŷ : (Al)>ŷ < c l , (Ae)>ŷ = ce
)

(Ae)> is onto

MFCQ holds iff dual optimal set is compact
Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue!
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** Convex Programming

Ordinary convex programming, (OCP)

(OCP) sup
y

b>y subject to g(y) ≤ 0

b ∈ Rm; g(y) =
(
gi(y)

)
∈ Rn, gi : Rm → R convex, ∀i ∈ P

Slater’s CQ; strict feasibility

∃ ŷ s.t. gi(ŷ) < 0, ∀i (implies MFCQ)

Slater’s CQ fails ⇐⇒ implicit equality constraints exist

Pe := {i ∈ P : g(y) ≤ 0 =⇒ gi(y) = 0} 6= ∅

Let P l := P\Pe and

g l := (gi)i∈P l , ge := (gi)i∈Pe
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implicit equalities to equalities/ Regularize OCP

Minimal face f
f = {z ∈ Rm

+ : zi = 0, ∀i ∈ Pe}E Rm
+

(OCP) is equivalent to g(y) ≤f 0

(OCPreg)
sup b>y
s.t. g l(y) ≤ 0

y ∈ F e

where Fe := {y : ge(y) = 0}.

Then F e = {y : ge(y) ≤ 0}, so is a convex set!!

Slater’s CQ holds for (OCPreg) ∃ŷ ∈ F e : g l(ŷ) < 0

(Ben-Israel, Ben-Tal, Zlobec: BBZ Conditions ’76-80)
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* (FR full generality) Abstract convex program

(ACP) infx f (x) s.t. g(x) �K 0, x ∈ Ω

where:
f : Rn → R convex; g : Rn → Rm is K -convex

K ⊂ Rm closed convex cone; Ω ⊆ Rn convex set
a �K b ⇐⇒ b − a ∈ K , a ≺K b ⇐⇒ b − a ∈ int K
g(αx + (1− αy)) �K αg(x) + (1− α)g(y),

∀x , y ∈ Rn,∀α ∈ [0,1]

Slater’s CQ: ∃ x̂ ∈ Ω s.t. g(x̂) ∈ − int K (g(x) ≺K 0)

guarantees strong duality
(zero duality gap AND dual attainmment)
(near) loss of strict feasibility, nearness to infeasibility,
correlates with number of iterations & loss of accuracy
Recall that Slater (M-F) is equivalent to a nonempty
bounded dual optimal set.
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Faces of Convex Sets - Useful for Charact. of Opt.

Face of C, F E C

F ⊆ C is a face of C if F contains any line segment in C
whose relative interior intersects F .
A convex cone F ⊆ K is a face of a convex cone K , F E K ,
if (simplified)

x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F

Polar (Dual) Cone/Conjugate Face

polar cone K ∗ := {φ : 〈φ, k〉 ≥ 0, ∀k ∈ K}
If F E K , the conjugate face of F is

F c := F⊥ ∩ K ∗ E K ∗
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Properties of Faces

General case
A face of a face is a face
intersection of a face with a face is a face.
Let C ⊆ K , then face(C) denotes the minimal face

(intersection of faces) containing C.

F E K is an exposed face if there exists φ ∈ K ∗ with

F = K ∩ φ⊥

F c is always exposed by x ∈ ri F .

The SDP cone is facially exposed, all its faces are exposed.
(In fact like Rn

+: Sn
+ is a proper closed convex cone, self-dual

and facially exposed.)
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Regularize abstract convex program (full generality)

in memorium: Jonathan Borwein 20 May 1951 - 2 Aug 2016,

jonborwein.org

(ACP) infx f (x) s.t. g(x) �K 0, x ∈ Ω

(Borwein-W.’78-79 )

(ACPR) infx f (x) s.t. g(x) �K f 0, x ∈ Ω

where: K f is the minimal face

Like LP, it is simple if we use the minimal face K f .
We get a proper primal-dual pair!!
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General Theorem of Alternative

Lemma (Facial Reduction (FR); find EXPOSING vector φ)
Suppose x̄ is feasible. Then the LHS system{

(Ω− x̄)∗ ∩ ∂〈φ,g(x̄)〉 6= ∅
φ ∈ K ∗, 〈φ,g(x̄)〉 = 0

}
implies K f ⊆ φ⊥ ∩ K ,

where: ∂ is subgradient; 〈·〉 is inner-product.

Generally more than one step is needed to find K f

Restrict to smaller face φ⊥ ∩ K ;
repeat till Slater is obtained
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* SDP Case/Replicating Cone/Faces

SDP case/Replicating cone

Let X ∈ Sn
+ with spectral decomposition,

X = [P Q]

[
D+ 0
0 0

]
[P Q]T , D+ ∈ Sr

++ (rank X = r)

Then
Range(X ) = Range(P), Null(X ) = Range(Q)

face(X ) = PSr
+PT = (QQT )⊥ ∩ Sn

+ .
(Z = QQT exposing vector/matrix for face.)

face(X )c = QSn−r
+ QT

Range/Nullspace representations

face(X ) =
{

Y ∈ Sn
+ : Range(Y ) ⊆ Range(X )

}
face(X ) =

{
Y ∈ Sn

+ : Null(Y ) ⊇ Null(X )
}

ri face(X ) =
{

Y ∈ Sn
+ : Range(Y ) = Range(X )

}
14



Semidefinite Programming, SDP, Sn
+

K = Sn
+ = K ∗: nonpolyhedral, self-polar, facially exposed

(SDP-P) vP = sup
y∈Rm

b>y s.t. g(y) := A∗y − c �Sn
+

0

(SDP-D) vD = inf
x∈Sn

〈c, x〉 s.t. Ax = b, x �Sn
+

0

where:
PSD cone Sn

+ ⊂ Sn symm. matrices
c ∈ Sn , b ∈ Rm

A : Sn → Rm is an onto linear map, with adjoint A∗

Ax = (trace Aix) = (〈Ai , x〉) ∈ Rm, Ai ∈ Sn

A∗y =
∑m

i=1 Aiyi ∈ Sn
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Regularization Using Minimal Face

Borwein-W.’78-79 , fP = faceF s
P ; min. face of feasible slacks

(SDP-P) is equivalent to the regularized
(SDPreg-P) vRP := sup

y
{〈b, y〉 : A ∗y �fP c}

fp is minimal face of primal feasible slacks
{s � 0 : s = c −A ∗y} ⊆ fp E Sn

+

Lagrangian dual of regularized problem satisfies strong duality:

(SDPreg-D) vDRP := inf
x
{〈c, x〉 : A x = b, x �f∗P

0}
vP = vRP = vDRP and vDRP is attained.

regularized PROPER primal-dual pair dual of dual is primal

If we take the dual of (SDPreg-D) we recover the primal
regularized problem (SDPreg-P).
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Slater’s CQ/Theorem of Alternative for Dual

Assume feasibility: ∃ x̃ s.t. A x̃ = b, x̃ � 0.
Exactly one of the following alternatives holds/is consistent:

(I) ∃ x̂ s.t. A x̂ = b, x̂ � 0 (Slater)

or

(II) 0 6= z = A ∗y � 0, 〈b, y〉 = 0, (∗∗)

(II) finds exposing vector: 0 6= z � 0

z exposes a proper face containing all the dual feasible points

A x = b, x � 0 =⇒ zx = 0. (equiv. trace zx = 0)
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Regularization of Dual Using Minimal Face

Borwein-W.’78-79 , fD = faceF x
D; min. face of dual feasible set

(SDP-D) is equivalent to the regularized
(SDPreg-D) vRD := inf

x
{〈c, x〉 : A x = b, x �fD 0}

fD is miniminal face of dual feasible set
{x � 0 : A x = b, x � 0} ⊆ fD E Sn

+

Lagrang. dual of regulariz. dual problem satisfies strong duality:

(SDPreg-DD) vDRD := sup
y
{〈b, y〉 : A ∗y �f∗D

c}

vD = vRD = vDRD and vDRD is attained.

regularized primal-dual pair

If we take the dual of (SDPreg-DD) we recover the dual
regularized problem (SDPreg-P).
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View One for FR in SDP

(SDPD) min{trace CX s.t. AX = b,X ∈ Sn
+ }

Step 1: Let 0 6= Z � 0 be an exposing vector.
add constraint trace ZX = 0. (Equivalently ZX = 0)
from spectral decomposition of Z , with Range P = Null Z :

substitute: X = PSt1
+PT , t1 = nullity(Z )

We get the equivalent smaller problem

(SDPD1)

min trace(PT CP)R
s.t. trace(PT AiP)R = bi , i = 1, . . . ,m

R ∈ St1
+

Remove/delete redundant linear constraints; repeat Step 1.
minimum number of steps is called the singularity degree

(ref. Sturm below)

19



View Two for FR in SDP

Lemma: Using exposing vectors
Let

Zi � 0,Fi = Sn
+ ∩ Z⊥i , i = 1, . . . ,m.

Then

∩m
i=1Fi = Sn

+ ∩

(
m∑

i=1

Zi

)⊥
intersection of faces is exposed by sum of exposing vectors
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Singularity Degree d - Minimal Number of FR Steps

Sturm’s error bounds Theorem for SDP, 2000

Given an affine subspace V of Sn , the pair (V,Sn
+ ) is 1

2d -Holder
regular, γ = 1

2d , with displacement, where d is the singularity
degree of (V,Sn

+ ) with displacement.
( e.g., for intersecting sets, for all compact sets U there exists a
constant c > 0 such that
dist(x ,V ∩ Sn

+ ) ≤ c
(
distγ(x ,V ) + distγ(x ,Sn

+ )
)
, ∀x ∈ U)

Cgnce rate alternating directions (MAP) for SDP

Theorem (Drusvyatskiy, Li, W. 2015) If the sequence Xk ,Yk

converges, d > 0, then the rate is O
(

k−
1

2d+1−2

)
(If Slater holds then cgnce is R-linear.)

(Paper includes Empirical Confirmation)
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Applications?

preprocessing is essential in commercial LP software.
Can we do facial reduction in general?
Is it efficient/worthwhile?
important applications?

relation to feasibility questions, e.g., for matrix completion
iterative methods? convergence rates? (DR, MAP)
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** FR - Motivation/Application; EDM, SNL

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- take advantage of degeneracy; fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;
easy to describe - dates back to Grasssmann 1886

r : embedding dimension
n ad hoc wireless sensors p1, . . . ,pn ∈ Rr to locate in Rr ;
m of the sensors pn−m+1, . . . ,pn are anchors (positions
known, using e.g. GPS)
pairwise distances Dij = ‖pi − pj‖2, ij ∈ E , are known
within radio range R > 0

P> =
[
p1 . . . pn

]
=
[
X> A>

]
∈ Rr×n

23



Sensor Localization Problem/Partial EDM

Sensors ◦ and Anchors

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Initial position of points

 # sensors n = 300,     # anchors m = 9,     radio range R = 1.2

 

 
sensors
anchors
sens−anch
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Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

minB�0 ‖H ◦ (K (B)− D)‖

rank B = r ; Hij =

{
1/
√

Dij if ij ∈ E ,
Hij = 0 otherwise

with rank constraint: a non-convex, NP-hard program
SDP relaxation is convex
BUT: expensive/low accuracy/implicitly highly degenerate

cliques restrict ranks of feasible B
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Random Noisless Problems, Krislock W. ’2010

2.16 GHz Intel Core 2 Duo, 2 GB of RAM
Dimension r = 2
Square region: [0,1]× [0,1]

m = 9 anchors
Using only Rigid Clique Union and Rigid Node Absorption
Error measure: Root Mean Square Deviation

RMSD =

(
1
n

n∑
i=1

‖pi − ptrue
i ‖

2

)1/2
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Results - Large n (SDP size O(n2))

n # of Sensors Located
n # sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 1374
6000 6000 6000 6000 6000
10000 10000 10000 10000 10000

CPU Seconds
# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 3
6000 5 5 4 4
10000 10 10 9 8

RMSD (over located sensors)
n # sensors \ R 0.07 0.06 0.05 0.04

2000 4e−16 5e−16 6e−16 3e−16
6000 4e−16 4e−16 3e−16 3e−16

10000 3e−16 5e−16 4e−16 4e−16
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Results - N Huge SDPs Solved

Large-Scale Problems (results from 2010)

# sensors # anchors radio range RMSD Time
20000 9 .025 5e−16 25s
40000 9 .02 8e−16 1m 23s
60000 9 .015 5e−16 3m 13s

100000 9 .01 6e−16 9m 8s

Size of SDPs Solved: N =

(
n
2

)
(# vrbls)

En(density of G ) = πR2; M = En(|E |) = πR2N (# constraints)
Size of SDP Problems:
M =

[
3,078,915 12,315,351 27,709,309 76,969,790

]
N = 109 [0.2000 0.8000 1.8000 5.0000

]
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View 2: Details with Exposing Vector/Numerics

Thm D.P.W. ’15: M : E→ Y, K proper convex cone

∅ 6= F = {X ∈ K :M (X ) = b}. Then a vector v exposes a
proper face ofM (K ) containing b if, and only if, v satisfies the
auxiliary system

0 6=M ∗v ∈ K∗, 〈v ,b〉 = 0.
Let N = face(b,M (K )) (smallest face containing b). Then:

K ∩M−1(N) = face(F ,K )

v exposes N IFFM ∗(v) exposes face(F ,K ).

Corollary
If Slater’s condition fails, then d = 1 IFF the minimal
face(b,M (K )) is exposed.
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Noisy Case

Using exposing vectors

Successful numerics recently Drusvyatskiy/Krislock/Vronin/W.
2015.
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* FR for Low-Rank Matrix Completion, LRMC,
(Huang-W.’16)

Intractable (nonconvex) minimum rank completion

Given partial m × n real matrix Z ∈ Rm×n.

(LRMC)
min rank (M)
s.t. ‖MÊ − ZÊ‖ ≤ δ,

Ê sampled indices; ZÊ ∈ RÊ ; δ > 0 tuning parameter

convex nuclear norm relaxation

min ‖M‖∗
s.t. ‖MÊ − ZÊ‖ ≤ δ,

where ‖M‖∗ =
∑

i σi(M).
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SDP Equivalent to Nuclear Norm Minimization

Trace minimization

min ‖Y‖∗ = trace(Y )
s.t. ‖YĒ −QĒ‖ ≤ δ

Y ∈ Sm+n
+ ,

Q =

[
0 Z

Z T 0

]
∈ Sm+n

+ and Ē indices in Y corresponding to Ê

Noiseless case: strict feasibility trivially holds

YĒ = QĒ
choose diagonal of Y sufficiently large, positive.
(strict feas. holds for dual as well)

Why consider this here?
It has been shown recently by Huang-W. that one can exploit
the structure at the optimum and efficiently apply FR.
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Associated Undirected Weighted Graph G = (V ,E ,W )

node set V = {1, . . . ,m,m + 1, . . . ,m + n} Let:
E1,m := {ij ∈ V × V : i < j ≤ m}

Em+1,m+n := {ij ∈ V × V : m + 1 ≤ i < j ≤ m + n}
edge set

E := Ē ∪ E1,m ∪ Em+1,m+n.

weights for all ij ∈ E

wij :=

{
Zi(j−m), ∀ij ∈ Ē
0, otherwise.

Corresponding adjacency matrix A; cliques C

nontrivial cliques of interest (after row/col perms) corresp. to full
(specified) submatrix X in Z ; C = {i1, . . . , ik} with cardinalities

|C ∩ {1, . . . ,m}| = p 6= 0, |C ∩ {m + 1, . . . ,m + n}| = q 6= 0.
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Exposing Vector for Low-Rank Completions

Clique - X ; generically rank r by lsc of rank

X ≡ {Zi(j−m) : ij ∈ C}, specified p × q submatrix.

let rank X = rX . Wlog

Z =

[
Z1 Z2
X Z3

]
,

full rank factorization X = P̄Q̄T using SVD

X = P̄Q̄T = UX ΣX V T
X , ΣX ∈ SrX

++, P̄ = UX Σ
1/2
X , Q̄ = VX Σ

1/2
X .
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CX = {i , . . . ,m,m + 1, . . . ,m + k}, r < max{p,q},

target rank r .
(From HW ) rewrite optimality conditions SDP as

0 � Y =


U
P
Q
V

D


U
P
Q
V


T

=


UDUT UDPT UDQT UDV T

PDUT PDPT PDQT PDV T

QDUT QDPT QDQT QDV T

VDUT VDPT VDQT VDV T

 .
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Using exposing vectors

Lemma ( Basic FR)

Let r < min{p,q} and X = PDQT = P̄Q̄T as above. We find a
pair of exposing vectors using

FR(P̄, Q̄) : P̄P̄T + ŪŪT � 0, P̄T Ū = 0,

Q̄Q̄T + V̄ V̄ T � 0, Q̄T V̄ = 0.
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Numerics LRMC/average over 5 instances

Table: noiseless: r = 2; m × n size ↑.
Specifications Time (s) Rank Residual (%Z )m n mean(p)

700 2000 0.30 9.00 2.0 4.4605e-14
1000 5000 0.30 28.76 2.0 3.0297e-13
1400 9000 0.30 77.59 2.0 7.8674e-14
1900 14000 0.30 192.14 2.0 6.7292e-14
2500 20000 0.30 727.99 2.0 4.2753e-10

Table: noiseless: r = 4; m × n size ↑.
Specifications Time (s) Rank Residual (%Z )m n mean(p)

700 2000 0.36 12.80 4.0 1.5217e-12
1000 5000 0.36 49.66 4.0 1.0910e-12
1400 9000 0.36 131.53 4.0 6.0304e-13
1900 14000 0.36 291.22 4.0 3.4847e-11
2500 20000 0.36 798.70 4.0 7.2256e-08
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Numerics LRMC/average over 5 instances

Table: noiseless: r = 3; m × n size ↑; noise ↑; density ↓.
Specifications Time (s) Rank Residual (%Z )

m n % noise p initial total initial refine initial refine
700 1000 0.00 0.40 2.22 1.82 2.40 2.40 3.961e-14 3.961e-14
700 1000 0.01 0.40 4.16 8.79 3.20 3.20 9.242e-01 9.360e-01
700 1000 0.15 0.40 3.64 6.32 2.40 2.40 9.416e-01 9.517e-01
700 1000 0.30 0.40 3.46 7.09 8.40 8.40 9.862e-01 9.862e-01
700 1000 0.45 0.40 3.45 4.26 3.80 3.80 9.539e-01 9.539e-01

1500 2000 10.00 0.40 14.07 19.13 2.40 2.40 9.281e-01 9.360e-01
1600 2100 10.00 0.35 13.85 18.03 2.40 2.40 9.535e-01 9.535e-01
1700 2200 10.00 0.30 10.48 30.81 11.00 11.00 8.000e-01 8.000e-01
1800 2300 10.00 0.25 4.22 15.22 4.60 4.60 4.000e-01 4.000e-01

1900 2500 10.00 0.40 21.39 29.03 2.20 2.20 9.506e-01 9.546e-01
2000 2600 10.00 0.35 18.58 50.70 10.20 10.20 9.894e-01 9.894e-01
2100 2700 10.00 0.30 22.75 40.97 6.40 6.40 9.759e-01 9.759e-01
2200 2800 10.00 0.25 6.61 26.14 5.20 5.20 4.000e-01 4.000e-01
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** Conclusion

Preprocessing

Though strict feasibility holds generically, failure appears in
many applications. Loss of strict feasibility is directly
related to ill-posedness and difficulty in numerical methods.
Preprocessing based on structure can both regularize and
simplify the problem. In many cases one gets an optimal
solution without the need of any SDP solver.

Exploit structure at optimum
For low-rank matrix completion the structure at the optimum
can be exploited to apply FR even though strict feasibility holds.
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