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Outline

e Finding low rank matrix completions is a numerically hard
nonconvex problem.

@ A popular convex relaxation is the nuclear norm which is
SDP-representable; and, both the SDP and its dual satisfy
strict feasibility (Slater’s constraint qualification).

@ For inequality constrained optimization problems, perhaps the
most important key is to identify the active constraints.

We aim to do facial reduction for the optimal face of the
SDP, i.e., identify the “‘active” face.

@ Thus we (try to) avoid a need for a SDP solver.

N
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Low-Rank Matrix Completion

Example (Partial Matrix with Noise — BUT Low Rank)
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Low-Rank Matrix Completion

Example (Partial Matrix with Noise — BUT Low Rank)

1.01| 2 ? 1 2 3

1 ? 12.99 1 2 3

Problem Statement (non-convex & intractable)

Given a real partial matrix z € RE with some level of noise,

min rank(M)
(LRMC) ot |Pa(M) — 2| <5, M eRm=n

e E indices for known entries (sampled data) in Z € R™*";

with coordinate projection/partial matrix z = Pg(Z) € RE
e 0 > 0 is a tuning parameter
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Applications Include:

data science

model reduction

collaborative filtering (Netflix problem)
sensor network localization

pattern recognition

various machine learning scenarios

34



Low-Rank Matrix Completion

Minimizing rank is a hard nonconvex problem

Rank is a lower semi-continuous function.

Nuclear Norm Minimization (convex relaxation)

The problem (LRMC) can be approximated by

min || M.

(NN-LRMC) e Pe(M) -z <6

o [|M|, =>_,;0i(M), sum of singular values, nuclear norm
(Schatten 1-norm, Ky-Fan r-norm, trace norm)

o |[UXVT|, = |X|« unitarily invariant
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Generalization of Minimizing # Nonzeros (Sparsity)

smallest radius ¢; ball to intersect line (constraint)
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Nuclear Norm Minimization, Fazel-'02 thesis

Theorem (Fazel,Hindi,Boyd '01 )
|| X||« is the convex envelope of rank X on {X € R™*" . || X| < 1}.

Properties of nuclear norm:

@ “best” convex lower approximation of rank function

@ The nuclear ball is the convex hull of the intersection of
rank-1 matrices with the unit ball:
conv{uv’ i u e R, v e R™ |ju| = L,|v|| = 1}

@ SDP-representable

o Related references by: Candes,Fazel,Parrilo,Recht
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SDP Representable

SDP Embedding Lemma

Let M € R™" and t € R. Then:
M|« <t
if, and only if,
there exist (symmetric) Wy and W; such that

W M
[MT Wz} =0, trace(Wr) + trace(Ws) < 2t.
@ compact SVD: M = UL VT, M| = traceX < t

, [uz?] [uxy? T [uzuT uzvT -
vel/2| lvet/2l T lvEuT vIvT| =
@ For necessity, set Wj = UUT, W = VZVT; for sufficiency,
exploit | range M C range Wi, range MT C range W5
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Nuclear Norm Low Rank Problem, (NN-LRMC)

Semidefinite Embedding: Trace Minimization
Problem (NN-LRMC) can be formulated as:

min

trace(Y)
(SDP-LRMC) s.t.

Pe(Y)—z| <9
0

—l—

-<
| Y

OZ]

where Q = [ZT 0 z="Pe(Z) = Pe(Q);

E is set of indices in Q corresponding to known entries of Z.

w1l

W2




First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min 25—147)

SRR

|v|.—
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First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min (2 5 -1 4 7)
C[hYF Ay

If we sum the two constraints we get a facial constraint

|v|.—

2% +x3+5xa=0 — xef:{xeRi:x2ZX3:><4:0}

10/34



First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min (2 5 -1 4 7)
C[hYF Ay

If we sum the two constraints we get a facial constraint

|v|.—

2% +x3+5x4 =0 — XGFz{XGRi:X2:X3ZX4:0}

Thus, the problem can be reduced to (constraint 2 is redundant)
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First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min (2 5 -1 4 T)x

s[4 153 N ()
x>0
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First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min 2 5 -1 4 7)x

Find y with yTh=0,0#w = ATy > 0 to get:
y=11D", 04w =(ATy)T=(0 2 1 5 0)>0.

Then w is an exposing vector of the feasible set:
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First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min 2 5 -1 4 7)x

Find y with yTh=0,0#w = ATy > 0 to get:
y=11D", 04w =(ATy)T=(0 2 1 5 0)>0.

Then w is an exposing vector of the feasible set:

wTx =0,V feasible x = x =

oo oOor
HOOOO

(simplified) FR problem is
min{(2 7)v:(1 1)v=1,v>0}
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Faces of a Closed Convex Cone, ccc

Face of a ccc K, K+KCK RLCK

Let IC be a ccc. A cone F C Kis a face of K, F KK, if
x,yek, x+yeF = x,yeF,

If ) £ F C K, then it is called a proper face.
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Faces of a Closed Convex Cone, ccc

Face of a ccc K, K+KCK RLCCK

Let /IC be a ccc. A cone F C K isafaceof IC, F I, if
x,yeK, x+yeF = x,yeF,

If ) £ F C K, then it is called a proper face.

Faces of PSD Cone S’}

Let X € relint(F), F <S7;

let X = [U V] [D 0} [U V],Desk,

0 O
be the spectral decomposition.

two views are: F=USkUT =s7T n(w')*
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Exposed Vector View

Exposing Vector and Exposed Face

Let K be a ccc, F K. Let K* ={¢: (¢, k) > 0,Vk € K} denote
the dual cone. If

F=KnN¢*, forsome e K*,

then the face F is called an exposed face and ¢ is the
corresponding exposing vector.
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Exposed Vector View

Exposing Vector and Exposed Face

Let K be a ccc, F K. Let K* ={¢: (¢, k) > 0,Vk € K} denote
the dual cone. If

F=KnN¢*, forsome e K*,

then the face F is called an exposed face and ¢ is the
corresponding exposing vector.

Example (Faces of PSD Cone)

In the PSD cone, we saw that a face can be expressed as

X €relint F =S7T n{wWT}+ null(X) = range(V).
w ¢ Sf is the exposing vector.
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Properties of Faces

Some Useful Facts about Faces

@ a face of a face is a face;
@ an intersection of two faces is a face
o FFAK,Fi=KnNgt, i=1,... .k implies

NiFi=KnN (Z gb,')L

i.e., intersection exposed faces - exposed by sum of exposing
vectors
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Properties of Faces

Some Useful Facts about Faces

@ a face of a face is a face;
@ an intersection of two faces is a face
o FFAK,FF=Kn¢t, i=1,...,k, implies

)

N;FF=Kn (Z gb,')L

i.e., intersection exposed faces - exposed by sum of exposing
vectors

For PSD cone

@ Self-replicating: a face of a PSD cone is still a PSD cone;
@ Facially exposed: every face of PSD cone has exposing vector
o Self-dual: £ =K* = {x: (x,y) >0,Vy € K}
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Exposing Vector and Exposed Face

Figure: A lllustration of a Self-Dual Cone
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Back to the Low-Rank Matrix Completion Problem

Recall (SDP-LRMC) Problem: Given z € RE a partial matrix, find
the matrix Z of minimum rank to complete z,

i.e., Pe(Z) = Pe(Q) = z,

Minimize nuclear norm using SDP
min || Y|« = 3 trace(Y)
(SDP-LRMC) st. Pe(Y)=z
Y =0,

where E is the set of indices in Y that correspond to E the known

entries of the upper right block of [ZOT g] SESHA

16
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Back to the Low-Rank Matrix Completion Problem

Recall (SDP-LRMC) Problem: Given z € RE a partial matrix, find
the matrix Z of minimum rank to complete z,

i.e., Pe(Z) = Pe(Q) = z,

Minimize nuclear norm using SDP

min || Y|« = 3 trace(Y)
(SDP-LRMC) st. Pe(Y)=z
Y >0,
where E is the set of indices in Y that correspond to E the known
entries of the upper right block of [ZOT g] SESHA
e Since the diagonal is free, note that the Slater condition (strict

feasibility) | does hold | for (SDP-LRMC). (And it holds for its dual.)
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Facial Reduction of (SDP-LRMC) for Optimal Face

Bipartite Graph, Gz = (Un, V,, E)
With Z and the sampled elements we get a bipartite graph Gz.

Find Fully Known Submatrix X — a biclique o, X = z[a] € RP*9

After permutation of row and columns, WLOG

Z 2 - -
= = C =
V4 [X 23] , z=Z[E], aCE, X=z[a.
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Facial Reduction of (SDP-LRMC) for Optimal Face

Bipartite Graph, Gz = (Un, V,, E)
With Z and the sampled elements we get a bipartite graph Gz.

Find Fully Known Submatrix X — a biclique o, X = z[a] € RP*9

After permutation of row and columns, WLOG

Z 2 - -
= = C =
V4 [X 23] , z=Z[E], aCE, XZ=z[a]

Our algorithm is based on finding bicliques in Gz; we do this by
finding (nontrivial/nondiagonal-block) cliques within symmetric

matrix Y.
wz
Y= [ZT WQ]
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Bipartite Graph and Biclique

Partial matrix

—5 NA 10 —-20 NA —6
4 0 4 4 6 6
-3 NA NA 32 27 NA .
z~ | 5 NA 0 10 12 NA|, E={11,13,14,16,21,...,74,75}
NA  —30 NA NA 27 NA
3 -5 -2 8 NA 4
5 5 NA 0 3 NA
biclique indices:  Un = {6,1,2}, V, ={1,4,3,6}, « = {61,64,63,66,11,...,26}
3 8 -2 4
zZla]=X=|-5 —-20 10 —6] .
4 4 4 6
3 8 -2 4
FREE -5 —20 10 —6
4 4 4 6
Y[a] = 3 -5 4
8 —20 4
5 w4 FREE
4 -6 6
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Our view of facial reduction and exposed faces

Theorem (Drusvyatskiy,Pataki,W. '15 )
Linear transformation M : S" — R™, adjoint M?*; feasible set
F:={X €S} : M(X)=0b}#0, beR™. Then a vector v
exposes a proper face of M(S']) containing b <= v satisfies the
auxiliary system
0#M*veST and (v,b)=0.

Let N denote smallest face of M(S'}) containing b. Then:

Q ST NM™IN = face(F), the smallest face containing F.

@ For any vector v € R the following equivalence holds:

vexposesN <=  M™v exposes face(F)

19/34



Singularity Degree and Adjoint Representation

Adjoint of Py

a]
Recall: N denotes smallest face of P(S']) containing z[a]. If v

exposes NV, then V = P*(v) fills out v with zeros; V exposes
face(F).

Definition

The singularity degree, SD of:  (LMI) M(X)=b, X =0,

is the minimal number of facial reduction steps needed to obtain
strict feasibility.

Theorem

If Slater fails for (LMI), then the SD is one if, and only if, the
minimal face of b in M(S]) is exposed.

20 /34



Facial Reduction for (SDP-LRMC), r is target rank for Z

Biclique o = of Gz, z[a] = X € RP*9

target rank r < min{p, g} < max{p, q¢};

WLOG
|4 D
z-|% 2|

SVD: X = [Ul UX] [Z GOSfH— 8} [Vl Wi

] T
We get full rank factorization

X=PQT =uizV{, P=uUiTY? Q=wx'2

Since rank is lower semi-continuous: rank X = rank Z generically.
In fact our tests form: Z=PQT
with P, Q random, i.i.d. and full column rank r.
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FR using Optimal Y

Rewrite Optimal Y
Assuming we have obtained the desired target rank Y = r

U U1’ UbUT | UDPT UDQT | UDVT
_|P Pl _ | PDUT | PDPT |PDQT || PDVT
0=Y= D =
Q Q QDUT | QDPT  QDQT | QDVT
% %

vobu'T | vDPT vDQT | vDVT

And assume rank X = r
X =PDQ" = PQ’.

implies the ranges satisfy
UfUx =PTUx =0,V Vx =QTVx =0

range(X) range(P) = range(P) = range(Uy),
range(XT) = range(Q) = range(Q) = range(V1).



Constructing Exposing Vectors

Key for facial reduction

We can use an exposing vector formed as Ux U; for block PDP T
as well as Vx VXT for block QDQT and add appropriate blocks of

ZEeros. i
o/ o oo ojlo o |o
| o[oxUr 00 0j0 0 |0
Wx = 10| "o olo|FT|olo ww|o
0 0 00 0/0 0 |0
ol o 0 |o
| oJuxuf )
= o] o VeV |0
0 0 0 |0

All three matrices provide exposing vectors.

Facial reduction from exposing vector

F* < —/_SS£'7+'77)_(')Jrq_zr))TT7 range T = null W.
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Exposing Vectors for (SDP-LRMC)

X € RP*9 known submatrix, X = PQ full rank decomposition

Find A, B:
PPT + AAT =0, QAT +BBT -0, PTA=0, @"B=0.
Then a pair of exposing vectors:

P*(AAT), P*(BBT).
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Measuring Noise of Biclique o € ©

Biclique: a C E, z[a] = X € RPX9, target rank r

singular values of X: g1 > ... > Tmin{p,q}

min{p,q} 2 min{p,q} 2
Zi:rJrl o Q. Zi:rJrl o

o - R
biclique noise: uy := m Ux = 0.5g(qg — 1)

Assign biclique weight

Total noise of all bicliques: S =Yy o(uk + uf)

ul ul
for each v € © : W)I?:l—?x, W)?:].—?X
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Facial Reduction Process

26 /34



Facial Reduction Process

@ Find set of bicliques ©, of appropriate sizes

(Follows the framework in
Drusvyatskiy/Krislock/Cheung-Voronin/W. )
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Facial Reduction Process

@ Find set of bicliques ©, of appropriate sizes

@ Find corresponding exposing vectors { Y5 F°}aco
calculate their weights {wq }aco

(Follows the framework in
Drusvyatskiy/Krislock/Cheung-Voronin/W. )
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Facial Reduction Process

@ Find set of bicliques ©, of appropriate sizes

@ Find corresponding exposing vectors { Y5 F°}aco
calculate their weights {wq }aco

@ Calculate the weighted sum of the exposing vectors

yexpo _ expo
Flnal E : Wa Y
a€®

(Follows the framework in
Drusvyatskiy/Krislock/Cheung-Voronin/W. )

26
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Facial Reduction Process

Find set of bicliques ©, of appropriate sizes

Find corresponding exposing vectors {Ya *°}oco
calculate their weights {wq }aco

@ Calculate the weighted sum of the exposing vectors

yexpo _ expo
Flnal E : Wa Y
a€®

Find full column rank V such that range V = null Y,ff:g,’

Solve equivalent smaller problem based on smaller dimensional
matrix R, where
Y = VRVT

(Follows the framework in
Drusvyatskiy/Krislock/Cheung-Voronin/W. )

26 /34



Exploit block structure

YEP? has block structure so V has a block structure too:
P1/P
yepo _ >oxee Wx Wy 0 0 Q} V= [VP 0 ]
Final 0 ZXGC Wy WX 0 VQ
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Exploit block structure

Y P9 has block structure so V has a block structure too:
Final
P 1P
yepo _ >oxee Wx Wy 0 0 Q} V= [VP 0 ]
Final 0 ZXGC Wy WX 0 VQ

allows a computational speed up for eigenvalue subproblems.
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Noiseless Case

FR dramatically reduces dimension of now overdetermined problem:

min trace(R) (= trace(VRV'T))
st.  Pe(VpRpq VQT) =z

R, R
R = [ 2 ”"} = 0.
qu Rq
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Noiseless Case

FR dramatically reduces dimension of now overdetermined problem:

min trace(R) (= trace(VRV'T))
s.t. PE( VPqu VQT) =z

R, R
R— [ > } - 0.
qu Rq

Use a compact QR to find well-conditioned full rank matrix
representation. A simple semidefinite constrained least squares
solution may be enough!

in |P=(VpRy V) — 2)].
Rnglgrivll £(VPRpg Vg ) — 2)|l

(here E, 2 denote the corresponding entries after removing
redundant constraints.)

28 /34



Noisy Case

Cannot simply remove redundant constraints;
use random sketch matrix A to reduce the number of constraints;
first solve:

dp = min
ReSY

A (Pe(VeReqV3) — 2.

and hopefully obtain the target rank!

29 /34



Noisy Case

Cannot simply remove redundant constraints;
use random sketch matrix A to reduce the number of constraints;
first solve:

dp = min
ReSY

A (Pe(VeReqV3) — 2.

and hopefully obtain the target rank!
Otherwise, we use a refinement step.

29 /34



Refinement Step in the Noisy Case

We would like to reduce the rank after the previous step using a
parametric approach:

min trace(R)
s.t. HA( VPquVQ) b)“
R

Y IA
o
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Refinement Step in the Noisy Case

We would like to reduce the rank after the previous step using a
parametric approach:

min trace(R)
st [JA(Pe(VPRogVE) — b)|| do
R

0.

Y IA

To ensure the rank can be reduce, we flip the problem:

p(r) =min [|A(Pe(VpRoqVg) — b)|| +7IRIIF
s.t. trace(R) <rT
R > 0.

where ~ is a regularization parameter, since the least squares
problem can be underdetermined.
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Sample Results

Table: noiseless: r = 8; m x n size; density p; mean 20 instances.

— Specgf'cat"”:ean(p) r Revrd (%Z) | Time(s) | Rank | Residual (%2)
1000 3000 053 16.10 96.39 37.20 5.0 11072610
1000 3000 0.50 17.65 88.99 36.50 8.0 2.6560e-10
1000 3000 0.48 32.15 71.66 72.14 35 2.0413e.07

Table: noisy: r = 2; m x n size; density p;

mean 20 instances.

Specificaations_ Revd (%2) __Time (s) ___Rank _Residual (%Z)_

m n 0 noise P initial refine initial refine initial refine
1100 3000 0.50 0.33 100.00 33.72 48.53 2.00 2.00 8.53e-03 8.53e-03
1100 3000 1.00 0.33 100.00 33.67 49.09 2.00 2.00 2.70e-02 2.70e-02
1100 3000 2.00 0.33 100.00 34.13 48.84 2.00 2.00 9.75e-02 9.75e-02
1100 3000 3.00 0.33 100.00 36.34 92.73 5.00 5.00 5.48e-01 1.40e-01
1100 3000 4.00 0.33 100.00 51.45 186.28 11.00 8.00 1.25e+4-00 1.28e-01
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Conclusion

Preprocessing

@ Though strict feasibility holds generically, failure appears in
many applications. Loss of strict feasibility is directly related
to ill-posedness and difficulty in numerical methods.

@ Preprocessing based on structure can both regularize and
simplify the problem. In many cases one gets an optimal
solution without the need of any SDP solver.

Exploit structure at optimum

For low-rank matrix completion the structure at the optimum can
be exploited to apply FR even though strict feasibility holds.
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