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Outline

Finding low rank matrix completions is a numerically hard
nonconvex problem.

A popular convex relaxation is the nuclear norm which is
SDP-representable; and, both the SDP and its dual satisfy
strict feasibility (Slater’s constraint qualification).

For inequality constrained optimization problems, perhaps the
most important key is to identify the active constraints.
We aim to do facial reduction for the optimal face of the
SDP, i.e., identify the “‘active” face.

Thus we (try to) avoid a need for a SDP solver.
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Low-Rank Matrix Completion

Example (Partial Matrix with Noise ——- BUT Low Rank)

Problem Statement (non-convex & intractable)

Given a real partial matrix z ∈ RÊ with some level of noise,

(LRMC)
min rank(M)
s.t. ‖PÊ (M)− z‖ ≤ δ, M ∈ Rm×n

• Ê indices for known entries (sampled data) in Z ∈ Rm×n;

with coordinate projection/partial matrix z = PÊ (Z ) ∈ RÊ

• δ > 0 is a tuning parameter
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Applications Include:

data science

model reduction

collaborative filtering (Netflix problem)

sensor network localization

pattern recognition

various machine learning scenarios
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Low-Rank Matrix Completion

Minimizing rank is a hard nonconvex problem

Rank is a lower semi-continuous function.

Nuclear Norm Minimization (convex relaxation)

The problem (LRMC) can be approximated by

(NN-LRMC)
min ‖M‖∗
s.t. ‖PÊ (M)− z‖ ≤ δ

‖M‖∗ =
∑

i σi (M), sum of singular values, nuclear norm
(Schatten 1-norm, Ky-Fan r -norm, trace norm)

‖UXV T‖∗ = ‖X‖∗ unitarily invariant
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Nuclear Norm Minimization, Fazel-’02 thesis

Theorem (Fazel,Hindi,Boyd ’01 )

‖X‖∗ is the convex envelope of rankX on {X ∈ Rm×n : ‖X‖ ≤ 1}.

Properties of nuclear norm:

“best” convex lower approximation of rank function

The nuclear ball is the convex hull of the intersection of
rank-1 matrices with the unit ball:
conv{uvT : u ∈ Rn, v ∈ Rm, ‖u‖ = 1, ‖v‖ = 1}
SDP-representable

Related references by: Candes,Fazel,Parrilo,Recht
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SDP Representable

SDP Embedding Lemma

Let M ∈ Rm×n and t ∈ R. Then:
‖M‖∗ ≤ t
if, and only if,

there exist (symmetric) W1 and W2 such that[
W1 M
MT W2

]
� 0, trace(W1) + trace(W2) ≤ 2t.

compact SVD: M = UΣV T , ‖M‖∗ = trace Σ ≤ t[
UΣ1/2

VΣ1/2

] [
UΣ1/2

VΣ1/2

]T
=

[
UΣUT UΣV T

VΣUT VΣV T

]
� 0

For necessity, set W1 = UΣUT , W2 = VΣV T ; for sufficiency,

exploit rangeM ⊆ rangeW1, rangeMT ⊆ rangeW2
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Nuclear Norm Low Rank Problem, (NN-LRMC)

Semidefinite Embedding: Trace Minimization

Problem (NN-LRMC) can be formulated as:

(SDP-LRMC)
min 1

2 trace(Y )
s.t. ‖PĒ (Y )− z‖ ≤ δ

Y � 0

where Q =

[
0 Z
ZT 0

]
, z = PÊ (Z ) = PĒ (Q);

Ē is set of indices in Q corresponding to known entries of Z.
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First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min (2 5 −1 4 7) x

s.t.
[

1 1 −1 3 1
−1 1 2 2 −1

]
x =

(
1
−1

)
x ≥ 0, x ∈ R5

If we sum the two constraints we get a facial constraint

2x2 + x3 + 5x4 = 0 =⇒ x ∈ F =
{
x ∈ R5

+ : x2 = x3 = x4 = 0
}

strict feasibility fails; problem can be reduced

min (2 7) v

s.t. (1 1) v = 1

v ≥ 0
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First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min (2 5 −1 4 7) x

s.t.
[

1 1 −1 3 1
−1 1 2 2 −1

]
x =

(
1
−1

)
x ≥ 0

Find y with yTb = 0, 0 6= w = AT y ≥ 0 to get:

y = (1 1)T , 0 6= wT = (AT y)T = (0 2 1 5 0) ≥ 0.

Then w is an exposing vector of the feasible set:

wT x = 0,∀ feasible x =⇒ x =


1 0
0 0
0 0
0 0
0 1

[x1
x5

]
; x2 = x3 = x4 = 0;

(simplified) FR problem is
min {(2 7) v : (1 1) v = 1, v ≥ 0}
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Faces of a Closed Convex Cone, ccc

Face of a ccc K, K +K ⊆ K, RK ⊆ K
Let K be a ccc. A cone F ⊆ K is a face of K, F EK, if

x , y ∈ K, x + y ∈ F ⇒ x , y ∈ F ,

If ∅ 6= F ( K, then it is called a proper face.

Characterization of Faces of PSD Cone Sn+
Let X ∈ relint(F ), F E Sn+;

let X =
[
U V

] [D 0
0 0

] [
U V

]
,D ∈ Sk++

be the spectral decomposition.

two views are: F = USk+UT = Sn+ ∩ (VV T )⊥
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Properties of Faces

Some Useful Facts about Faces

a face of a face is a face;

an intersection of two faces is a face

Fi E K ,Fi = K ∩ φ⊥i , i = 1, . . . , k , implies

∩iFi = K ∩ (
∑
i

φi )
⊥

i.e., intersection exposed faces - exposed by sum of exposing
vectors

For PSD cone

Self-replicating: a face of a PSD cone is still a PSD cone;

Facially exposed: every face of PSD cone has exposing vector

Self-dual: K = K∗ = {x : 〈x , y〉 ≥ 0,∀y ∈ K}
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Back to the Low-Rank Matrix Completion Problem

Recall (SDP-LRMC) Problem: Given z ∈ RÊ a partial matrix, find
the matrix Z of minimum rank to complete z ,
i.e., PÊ (Z ) = PĒ (Q) = z ,

Minimize nuclear norm using SDP

(SDP-LRMC)
min ‖Y ‖∗ = 1

2 trace(Y )
s.t. PĒ (Y ) = z

Y � 0,

where Ē is the set of indices in Y that correspond to Ê , the known

entries of the upper right block of

[
0 Z
ZT 0

]
∈ Sm+n

+ .

• Since the diagonal is free, note that the Slater condition (strict

feasibility) does hold for (SDP-LRMC). (And it holds for its dual.)
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Facial Reduction of (SDP-LRMC) for Optimal Face

Bipartite Graph, GZ = (Um,Vn, Ê )

With Z and the sampled elements we get a bipartite graph GZ .

Find Fully Known Submatrix X – a biclique α, X ∼= z [α] ∈ Rp×q

After permutation of rows and columns, WLOG

Z =

[
Z1 Z2

X Z3

]
, z = Z [Ê ], α ⊆ Ê , X ∼= z [α].

Our algorithm is based on finding bicliques in GZ ; we do this by
finding (nontrivial/nondiagonal-block) cliques within symmetric
matrix Y .

Y =

[
W1 Z
ZT W2

]
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Bipartite Graph and Biclique

Partial matrix

z ∼=



−5 NA 10 −20 NA −6
4 0 4 4 6 6
−3 NA NA 32 27 NA
5 NA 0 10 12 NA

NA −30 NA NA 27 NA
3 −5 −2 8 NA 4
5 5 NA 0 3 NA


, Ê = {11, 13, 14, 16, 21, . . . , 74, 75}

biclique indices: Ūm = {6, 1, 2}, V̄n = {1, 4, 3, 6}, α = {61, 64, 63, 66, 11, . . . , 26}

z[α] ≡ X =

 3 8 −2 4
−5 −20 10 −6
4 4 4 6

 .

Y [α] =


FREE

3 8 −2 4
−5 −20 10 −6
4 4 4 6

3 −5 4
8 −20 4
−2 10 4
4 −6 6

FREE
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Our View of Facial Reduction and Exposed Faces

Theorem (Drusvyatskiy,Pataki,W. ’15 )

Linear transformation M : Sn → Rm, adjoint M∗; feasible set
F := {X ∈ Sn+ :M(X ) = b} 6= ∅, b ∈ Rm. Then a vector v
exposes a proper face of M(Sn+) containing b ⇐⇒ v satisfies the
auxiliary system

0 6=M∗v ∈ Sn+ and 〈v , b〉 = 0.
Let N denote smallest face of M(Sn+) containing b. Then:

1 Sn+ ∩M−1N = face(F), the smallest face containing F .

2 For any vector v ∈ Rm the following equivalence holds:

v exposes N ⇐⇒ M∗v exposes face(F)

Noisy sensor network localization: robust facial reduction and the
Pareto frontier

D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. W. ’16
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Facial Reduction for (SDP-LRMC), r is target rank for Z

Biclique α ∼= of GZ , z [α] ≡ X ∈ Rp×q

target rank r ≤ min{p, q} < max{p, q};
WLOG

Z =

[
Z1 Z2

X Z3

]
,

SVD: X =
[
U1 UX

] [Σ ∈ Sr++ 0
0 0

] [
V1 VX

]T
We get full rank factorization

X = P̄Q̄T = U1ΣV T
1 , P̄ = U1Σ1/2, Q̄ = V1Σ1/2.

Since rank is lower semi-continuous: rankX = rankZ generically.
In fact our tests form: Z = PQT

with P,Q random, i.i.d. and full column rank r .
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FR using Optimal Y

Rewrite Optimal Y

Assuming we have obtained the desired target rankY = r

0 � Y =


U
P
Q
V

D


U
P
Q
V


T

=


UDUT UDPT UDQT UDV T

PDUT PDPT PDQT PDV T

QDUT QDPT QDQT QDV T

VDUT VDPT VDQT VDV T


And assume rankX = r

X = PDQT = P̄Q̄T .

implies the ranges satisfy
UT

1 UX = PTUX = 0,V T
1 VX = QTVX = 0

range(X ) = range(P) = range(P̄) = range(U1),
range(XT ) = range(Q) = range(Q̄) = range(V1).
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Constructing Exposing Vectors

Key for facial reduction

We can use an exposing vector formed as UXU
T
X for block PDPT

as well as VXV
T
X for block QDQT and add appropriate blocks of

zeros:

WX =


0 0 0 0

0 UXU
T
X 0 0

0 0 0 0

0 0 0 0

+


0 0 0 0

0 0 0 0
0 0 VXV

T
X 0

0 0 0 0


=


0 0 0 0

0 UXU
T
X 0 0

0 0 VXV
T
X 0

0 0 0 0

 .
All three matrices provide exposing vectors.

Facial reduction from exposing vector

F ∗ E TS((n+m)−(p+q−2r))
+ TT , rangeT = nullWX .
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Measuring Noise of Biclique α ∈ Θ

Biclique: α ⊆ Ê , z [α] ∼= X ∈ Rp×q, target rank r

singular values of X : σ1 ≥ ... ≥ σmin{p,q}

biclique noise: uPX :=

∑min{p,q}
i=r+1 σ2

i

0.5p(p − 1)
uQX :=

∑min{p,q}
i=r+1 σ2

i

0.5q(q − 1)

Assign biclique weight

Total noise of all bicliques: S =
∑

X∈Θ(uPX + uQX )

for each α ∈ Θ : wP
X = 1−

uPX
S
, wQ

X = 1−
uQX
S
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Facial Reduction Process

Find set of bicliques Θ, of appropriate sizes

Find corresponding exposing vectors {Y expo
α }α∈Θ

calculate their weights {ωα}α∈Θ

Calculate the weighted sum of all the exposing vectors

Y expo
Final =

∑
α∈Θ

ωαY
expo
α

Find full column rank V such that rangeV = nullY expo
Final .

Solve equivalent smaller problem based on smaller dimensional
matrix R, where

Y = VRV T

(Follows the framework in
Drusvyatskiy/Krislock/Cheung-Voronin/W. )
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Exploit block structure

Y expo
Final has block structure so V has a block structure too:

Y expo
Final =

[∑
X∈C w

P
XW

P
X 0

0
∑

X∈C w
Q
X WQ

X

]
, V =

[
VP 0
0 VQ

]

allows a computational speed up for eigenvalue subproblems.
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Noiseless Case

FR dramatically reduces dimension of now overdetermined problem:

min trace(R) (= trace(VRV T ))
s.t. PĒ (VPRpqV

T
Q ) = z

R =

[
Rp Rpq

RT
pq Rq

]
� 0.

remove the redundant constraints

Use a compact QR to find well-conditioned full rank matrix
representation. A simple semidefinite constrained least squares
solution may be enough!

min
R∈Srv+

‖PẼ (VPRpqV
T
Q )− z̃)‖.

(Here Ẽ , z̃ denote the corresponding entries after removing
redundant constraints. Often R found explicitly.)
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Noisy Case

Cannot simply remove redundant constraints;
use random sketch matrix A to reduce the number of constraints;
first solve:

δ0 = min
R∈Srv+

∥∥∥A(PÊ (VPRpqV
T
Q )− z

)∥∥∥ .
and hopefully obtain the target rank!

Otherwise, we use a refinement step.
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Refinement Step in the Noisy Case

We would like to reduce the rank after the previous step using a
parametric approach:

min trace(R)
s.t.

∥∥A (PÊ (VPRpqV
T
Q )− b

)∥∥ ≤ δ0

R � 0.

To ensure the rank can be reduce, we flip the problem:

ϕ(τ) := min
∥∥A (PÊ (VPRpqV

T
Q )− b

)∥∥+ γ‖R‖F
s.t. trace(R) ≤ τ

R � 0.

where γ is a regularization parameter, since the least squares
problem can be underdetermined.
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Sample Results (≈ 3x106 variables)

Table: noiseless: r = 8; m × n size; density p; mean 20 instances.

Specifications
rv Rcvrd (%Z) Time (s) Rank Residual (%Z)

m n mean(p)
1000 3000 0.53 16.10 96.39 37.29 8.0 1.1072e-10
1000 3000 0.50 17.65 88.99 36.50 8.0 4.6569e-10
1000 3000 0.48 32.15 71.66 72.14 8.5 2.0413e-07

Table: noisy: r = 2; m × n size; density p; mean 20 instances.

Specifications
Rcvd (%Z)

Time (s) Rank Residual (%Z)
m n % noise p initial refine initial refine initial refine

1100 3000 0.50 0.33 100.00 33.72 48.53 2.00 2.00 8.53e-03 8.53e-03
1100 3000 1.00 0.33 100.00 33.67 49.09 2.00 2.00 2.70e-02 2.70e-02
1100 3000 2.00 0.33 100.00 34.13 48.84 2.00 2.00 9.75e-02 9.75e-02
1100 3000 3.00 0.33 100.00 36.34 92.73 5.00 5.00 5.48e-01 1.40e-01
1100 3000 4.00 0.33 100.00 51.45 186.28 11.00 8.00 1.25e+00 1.28e-01
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Conclusion

Preprocessing

Though strict feasibility holds generically, failure appears in
many applications. Preprocessing based on structure can both
regularize and simplify the problem.
(New Survey FR: Drusvyatskiy and W. ’17 )

Exploit structure at optimum

For low-rank matrix completion the structure at the optimum can
be exploited to apply FR on the optimal face even though strict
feasibility holds. In many cases one gets an optimal solution
without the need of any SDP solver.

To do: reduce density/more refinement; real life applications
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