Low-Rank Matrix Completion with Facial Reduction

Shimeng Huang¹ Henry Wolkowicz²

¹Department of Statistics and Actuarial Science University of Waterloo

²Department of Combinatorics and Optimization University of Waterloo

Example (Partial Matrix with Noise ——- BUT Low Rank)

1.01	2	?
1	?	2.99

Example (Partial Matrix with Noise ——- BUT Low Rank)
--

1.01	2	?
1	?	2.99

1	2	3
1	2	3

Example (Partial Matrix with Noise ——- BUT Low Rank)

1.01	2	?
1	?	2.99

1	2	3
1	2	3

Problem Statement (non-convex & intractable)

Given a real partial matrix $z \in \mathbb{R}^{\hat{E}}$ with some level of noise,

- \hat{E} indices for known entries (sampled data) in $Z \in \mathbb{R}^{m \times n}$; with coordinate projection/partial matrix $z = \mathcal{P}_{\hat{E}}(Z) \in \mathbb{R}^{\hat{E}}$
- ullet $\delta > 0$ is a tuning parameter

Applications Include:

- data science
- model reduction
- collaborative filtering (Netflix problem)
- sensor network localization
- pattern recognition
- various machine learning scenarios

Minimizing rank is a hard nonconvex problem

Rank is a lower semi-continuous function.

Nuclear Norm Minimization (convex relaxation)

The problem (LRMC) can be approximated by

$$\begin{array}{ll} \text{(NN-LRMC)} & \min & \|M\|_* \\ s.t. & \|\mathcal{P}_{\hat{E}}(M) - z\| \leq \delta \end{array}$$

- $||M||_* = \sum_i \sigma_i(M)$, sum of singular values, nuclear norm (Schatten 1-norm, Ky-Fan r-norm, trace norm)
- $||UXV^T||_* = ||X||_*$ unitarily invariant

Nuclear Norm Minimization, Fazel-'02 thesis

Theorem (Fazel, Hindi, Boyd '01)

 $||X||_*$ is the convex envelope of rank X on $\{X \in \mathbb{R}^{m \times n} : ||X|| \le 1\}$.

Properties of nuclear norm:

- "best" convex lower approximation of rank function
- The nuclear ball is the convex hull of the intersection of rank-1 matrices with the unit ball: $\operatorname{conv}\{uv^T: u \in \mathbb{R}^n, v \in \mathbb{R}^m, \|u\| = 1, \|v\| = 1\}$
- SDP-representable
- Related references by: Candes, Fazel, Parrilo, Recht

SDP Representable

SDP Embedding Lemma

Let $M \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{R}$. Then:

$$||M||_* \leq t$$

if, and only if,

there exist (symmetric) W_1 and W_2 such that

$$\begin{bmatrix} W_1 & M \\ M^T & W_2 \end{bmatrix} \succeq 0, \quad \mathsf{trace}(W_1) + \mathsf{trace}(W_2) \leq 2t.$$

- compact SVD: $M = U\Sigma V^T$, $||M||_* = \operatorname{trace} \Sigma \le t$
- $\bullet \begin{bmatrix} U\Sigma^{1/2} \\ V\Sigma^{1/2} \end{bmatrix} \begin{bmatrix} U\Sigma^{1/2} \\ V\Sigma^{1/2} \end{bmatrix}^T = \begin{bmatrix} U\Sigma U^T & U\Sigma V^T \\ V\Sigma U^T & V\Sigma V^T \end{bmatrix} \succeq 0$
- For necessity, set $W_1 = U\Sigma U^T$, $W_2 = V\Sigma V^T$; for sufficiency, exploit range $M \subseteq \text{range } W_1$, range $M^T \subseteq \text{range } W_2$

Nuclear Norm Low Rank Problem, (NN-LRMC)

Semidefinite Embedding: Trace Minimization

Problem (NN-LRMC) can be formulated as:

$$(\mathsf{SDP\text{-}LRMC}) \qquad \begin{array}{ll} \min & \frac{1}{2}\operatorname{trace}(Y) \\ s.t. & \|\mathcal{P}_{\bar{E}}(Y) - z\| \leq \delta \\ Y \succeq 0 \end{array}$$

where
$$Q = \begin{bmatrix} 0 & Z \\ Z^T & 0 \end{bmatrix}$$
, $z = \mathcal{P}_{\hat{E}}(Z) = \mathcal{P}_{\bar{E}}(Q)$;

 $ar{\mathcal{E}}$ is set of indices in Q corresponding to known entries of $\mathsf{Z}.$

First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x > 0, x \in \mathbb{R}^5$

First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0, x \in \mathbb{R}^5$

If we sum the two constraints we get a facial constraint

$$2x_2 + x_3 + 5x_4 = 0 \implies x \in \mathcal{F} = \{x \in \mathbb{R}^5_+ : x_2 = x_3 = x_4 = 0\}$$

First, an Example of Facial Reduction, FR

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0, x \in \mathbb{R}^5$

If we sum the two constraints we get a facial constraint

$$2x_2 + x_3 + 5x_4 = 0 \implies x \in \mathcal{F} = \{x \in \mathbb{R}^5_+ : x_2 = x_3 = x_4 = 0\}$$

strict feasibility fails; problem can be reduced

min
$$(2 \ 7) v$$

s.t. $(1 \ 1) v = 1$
 $v > 0$

First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0$

First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0$

Find y with $y^Tb = 0, 0 \neq w = A^Ty \geq 0$ to get:

$$y = (1 \ 1)^T, \ 0 \neq w^T = (A^T y)^T = (0 \ 2 \ 1 \ 5 \ 0) \geq 0.$$

Then w is an exposing vector of the feasible set:

First Example of Facial Reduction, cont...

Example (Facial Reduction in Linear Programming)

min
$$(2 \ 5 \ -1 \ 4 \ 7) x$$

s.t. $\begin{bmatrix} 1 & 1 & -1 & 3 & 1 \\ -1 & 1 & 2 & 2 & -1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0$

Find y with $y^Tb = 0, 0 \neq w = A^Ty \geq 0$ to get:

$$y = (1 \ 1)^T, \ 0 \neq w^T = (A^T y)^T = (0 \ 2 \ 1 \ 5 \ 0) \geq 0.$$

Then w is an exposing vector of the feasible set:

$$w^T x = 0, \forall \text{ feasible } x \implies x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \end{bmatrix}; x_2 = x_3 = x_4 = 0;$$

(simplified) FR problem is

$$\min \{ (2 \quad 7) \ v \ : \ (1 \quad 1) \ v = 1, \ v \ge 0 \}$$

Faces of a Closed Convex Cone, ccc

Face of a ccc \mathcal{K} , $\mathcal{K} + \mathcal{K} \subseteq \mathcal{K}$, $\mathbb{R}\mathcal{K} \subseteq \mathcal{K}$

Let \mathcal{K} be a ccc. A cone $F \subseteq \mathcal{K}$ is a face of \mathcal{K} , $F \unlhd \mathcal{K}$, if

$$x, y \in \mathcal{K}, \quad x + y \in F \quad \Rightarrow \quad x, y \in F,$$

If $\emptyset \neq F \subsetneq \mathcal{K}$, then it is called a proper face.

Faces of a Closed Convex Cone, ccc

Face of a ccc \mathcal{K} , $\mathcal{K} + \mathcal{K} \subseteq \mathcal{K}$, $\mathbb{R}\mathcal{K} \subseteq \mathcal{K}$

Let \mathcal{K} be a ccc. A cone $F \subseteq \mathcal{K}$ is a face of \mathcal{K} , $F \subseteq \mathcal{K}$, if

$$x, y \in \mathcal{K}, \quad x + y \in F \quad \Rightarrow \quad x, y \in F,$$

If $\emptyset \neq F \subsetneq \mathcal{K}$, then it is called a proper face.

Characterization of Faces of PSD Cone \mathbb{S}^n_+

Let $X \in \operatorname{relint}(F)$, $F \subseteq \mathbb{S}_+^n$;

let
$$X = \begin{bmatrix} U & V \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U & V \end{bmatrix}, D \in \mathbb{S}_{++}^k$$

be the spectral decomposition.

two views are:
$$F = U\mathbb{S}_+^k U^T = \mathbb{S}_+^n \cap (VV^T)^{\perp}$$

Properties of Faces

Some Useful Facts about Faces

- a face of a face is a face;
- an intersection of two faces is a face
- $F_i \subseteq K, F_i = K \cap \phi_i^{\perp}, i = 1, \dots, k$, implies

$$\cap_i F_i = K \cap (\sum_i \phi_i)^{\perp}$$

i.e., intersection exposed faces - exposed by sum of exposing vectors

Properties of Faces

Some Useful Facts about Faces

- a face of a face is a face;
- an intersection of two faces is a face
- $F_i \subseteq K, F_i = K \cap \phi_i^{\perp}, i = 1, \dots, k$, implies

$$\cap_i F_i = K \cap (\sum_i \phi_i)^{\perp}$$

i.e., intersection exposed faces - exposed by sum of exposing vectors

For PSD cone

- Self-replicating: a face of a PSD cone is still a PSD cone;
- Facially exposed: every face of PSD cone has exposing vector
- Self-dual: $\mathcal{K} = \mathcal{K}^* = \{x : \langle x, y \rangle \ge 0, \forall y \in \mathcal{K}\}$

Back to the Low-Rank Matrix Completion Problem

Recall (SDP-LRMC) Problem: Given $z \in \mathbb{R}^{\hat{E}}$ a partial matrix, find the matrix Z of minimum rank to complete z, i.e., $\mathcal{P}_{\hat{E}}(Z) = \mathcal{P}_{\bar{E}}(Q) = z$,

Minimize nuclear norm using SDP

$$(\mathsf{SDP\text{-}LRMC}) \qquad \begin{array}{ll} \mathsf{min} & \|Y\|_* = \frac{1}{2} \operatorname{trace}(Y) \\ \mathsf{s.t.} & \mathcal{P}_{\bar{E}}(Y) = z \\ & Y \succeq 0, \end{array}$$

where \bar{E} is the set of indices in Y that correspond to \hat{E} , the known entries of the upper right block of $\begin{bmatrix} 0 & Z \\ Z^T & 0 \end{bmatrix} \in \mathbb{S}_+^{m+n}$.

Back to the Low-Rank Matrix Completion Problem

Recall (SDP-LRMC) Problem: Given $z \in \mathbb{R}^{\hat{E}}$ a partial matrix, find the matrix Z of minimum rank to complete z, i.e., $\mathcal{P}_{\hat{E}}(Z) = \mathcal{P}_{\bar{E}}(Q) = z$,

Minimize nuclear norm using SDP

$$(\mathsf{SDP\text{-}LRMC}) \qquad \begin{array}{ll} \mathsf{min} & \|Y\|_* = \frac{1}{2} \operatorname{trace}(Y) \\ \mathsf{s.t.} & \mathcal{P}_{\bar{E}}(Y) = z \\ & Y \succeq 0, \end{array}$$

where \bar{E} is the set of indices in Y that correspond to \hat{E} , the known entries of the upper right block of $\begin{bmatrix} 0 & Z \\ Z^T & 0 \end{bmatrix} \in \mathbb{S}_+^{m+n}$.

• Since the diagonal is free, note that the Slater condition (strict feasibility) does hold for (SDP-LRMC). (And it holds for its dual.)

Facial Reduction of (SDP-LRMC) for Optimal Face

Bipartite Graph, $G_Z = (U_m, V_n, \hat{E})$

With Z and the sampled elements we get a bipartite graph G_Z .

Find Fully Known Submatrix X – a biclique α , $X \cong z[\alpha] \in \mathbb{R}^{p \times q}$

After permutation of rows and columns, WLOG

$$Z = \begin{bmatrix} Z_1 & Z_2 \\ X & Z_3 \end{bmatrix}, \quad z = Z[\hat{E}], \quad \alpha \subseteq \hat{E}, \quad X \cong z[\alpha].$$

Facial Reduction of (SDP-LRMC) for Optimal Face

Bipartite Graph, $G_Z = (U_m, V_n, \hat{E})$

With Z and the sampled elements we get a bipartite graph G_Z .

Find Fully Known Submatrix X – a biclique α , $X \cong z[\alpha] \in \mathbb{R}^{p \times q}$

After permutation of rows and columns, WLOG

$$Z = \begin{bmatrix} Z_1 & Z_2 \\ X & Z_3 \end{bmatrix}, \quad z = Z[\hat{E}], \quad \alpha \subseteq \hat{E}, \quad X \cong z[\alpha].$$

Our algorithm is based on finding bicliques in G_Z ; we do this by finding (nontrivial/nondiagonal-block) cliques within symmetric matrix Y.

$$Y = \begin{bmatrix} W_1 & Z \\ Z^T & W_2 \end{bmatrix}$$

Bipartite Graph and Biclique

Partial matrix

$$z\cong\begin{bmatrix} -5 & \mathsf{NA} & 10 & -20 & \mathsf{NA} & -6 \\ 4 & 0 & 4 & 4 & 6 & 6 \\ -3 & \mathsf{NA} & \mathsf{NA} & 32 & 27 & \mathsf{NA} \\ 5 & \mathsf{NA} & 0 & 10 & 12 & \mathsf{NA} \\ \mathsf{NA} & -30 & \mathsf{NA} & \mathsf{NA} & 27 & \mathsf{NA} \\ \mathsf{NA} & 3 & -5 & -2 & 8 & \mathsf{NA} & 4 \\ 5 & 5 & \mathsf{NA} & 0 & 3 & \mathsf{NA} \end{bmatrix},\quad \hat{E}=\{11,13,14,16,21,\ldots,74,75\}$$

biclique indices: $\bar{U}_m = \{6, 1, 2\}, \quad \bar{V}_n = \{1, 4, 3, 6\}, \quad \alpha = \{61, 64, 63, 66, 11, \dots, 26\}$

$$z[\alpha] \equiv X = \begin{bmatrix} 3 & 8 & -2 & 4 \\ -5 & -20 & 10 & -6 \\ 4 & 4 & 4 & 6 \end{bmatrix}.$$

Our View of Facial Reduction and Exposed Faces

Theorem (Drusvyatskiy,Pataki,W. '15)

Linear transformation $\mathcal{M} \colon \mathbb{S}^n \to \mathbb{R}^m$, adjoint \mathcal{M}^* ; feasible set $\mathcal{F} := \{X \in \mathbb{S}^n_+ : \mathcal{M}(X) = b\} \neq \emptyset$, $b \in \mathbb{R}^m$. Then a vector v exposes a proper face of $\mathcal{M}(\mathbb{S}^n_+)$ containing $b \iff v$ satisfies the auxiliary system

$$0 \neq \mathcal{M}^* v \in \mathbb{S}^n_+ \quad and \quad \langle v, b \rangle = 0.$$

Let N denote smallest face of $\mathcal{M}(\mathbb{S}^n_+)$ containing b. Then:

- **1** $\mathbb{S}^n_+ \cap \mathcal{M}^{-1} \mathsf{N} = \mathsf{face}(\mathcal{F})$, the smallest face containing \mathcal{F} .
- **2** For any vector $v \in \mathbb{R}^m$ the following equivalence holds:

$$v \ exposes \ N \iff \mathcal{M}^*v \ exposes \ face(\mathcal{F})$$

Noisy sensor network localization: robust facial reduction and the Pareto frontier

D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. W. '16

Facial Reduction for (SDP-LRMC), r is target rank for Z

Biclique $\alpha \cong$ of G_Z , $z[\alpha] \equiv X \in \mathbb{R}^{p \times q}$

target rank $r \le \min\{p, q\} < \max\{p, q\}$; WI OG

$$Z = \begin{bmatrix} Z_1 & Z_2 \\ X & Z_3 \end{bmatrix},$$

SVD:
$$X = \begin{bmatrix} U_1 & U_X \end{bmatrix} \begin{bmatrix} \Sigma \in \mathbb{S}^r_{++} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_X \end{bmatrix}^T$$

We get full rank factorization

$$X = \bar{P}\bar{Q}^T = U_1\Sigma V_1^T, \quad \bar{P} = U_1\Sigma^{1/2}, \; \bar{Q} = V_1\Sigma^{1/2}.$$

Since rank is lower semi-continuous: rank X = rank Z generically. In fact our tests form: $Z = \bar{P} \bar{Q}^T$ with \bar{P}, \bar{Q} random, i.i.d. and full column rank r.

FR using Optimal Y

Rewrite Optimal Y

Assuming we have obtained the desired target rank Y = r

$$0 \leq Y = \begin{bmatrix} U \\ P \\ Q \\ V \end{bmatrix} D \begin{bmatrix} U \\ P \\ Q \\ V \end{bmatrix}^T = \begin{bmatrix} UDU^T & UDP^T & UDQ^T & UDV^T \\ \hline PDU^T & PDP^T & PDQ^T & PDV^T \\ QDU^T & QDP^T & QDQ^T & QDV^T \\ \hline VDU^T & VDP^T & VDQ^T & VDV^T \end{bmatrix}$$

And assume rank X = r

$$X = PDQ^T = \bar{P}\bar{Q}^T.$$

implies the ranges satisfy

$$U_1^{T}U_X = P^TU_X = 0, V_1^TV_X = Q^TV_X = 0$$

$$range(X) = range(P) = range(\bar{P}) = range(U_1),$$

 $range(X^T) = range(Q) = range(\bar{Q}) = range(V_1).$

Constructing Exposing Vectors

Key for facial reduction

We can use an exposing vector formed as $U_X U_X^T$ for block PDP^T as well as $V_X V_X^T$ for block QDQ^T and add appropriate blocks of zeros:

All three matrices provide exposing vectors.

Facial reduction from exposing vector

$$F^* riangleq T\mathbb{S}_+^{((n+m)-(p+q-2r))}T^T$$
, range $T = \text{null } W_X$.

Measuring Noise of Biclique $\alpha \in \Theta$

Biclique:
$$\alpha \subseteq \hat{E}$$
, $z[\alpha] \cong X \in \mathbb{R}^{p \times q}$, target rank r

singular values of X: $\sigma_1 \geq ... \geq \sigma_{\min\{p,q\}}$

biclique noise:
$$u_X^P := \frac{\sum_{i=r+1}^{\min\{p,q\}} \sigma_i^2}{0.5p(p-1)}$$
 $u_X^Q := \frac{\sum_{i=r+1}^{\min\{p,q\}} \sigma_i^2}{0.5q(q-1)}$

Assign biclique weight

Total noise of all bicliques:
$$S = \sum_{X \in \Theta} (u_X^P + u_X^Q)$$

for each
$$\alpha \in \Theta$$
: $w_X^P = 1 - \frac{u_X^P}{S}$, $w_X^Q = 1 - \frac{u_X^Q}{S}$

• Find set of bicliques Θ , of appropriate sizes

- Find set of bicliques Θ , of appropriate sizes
- Find corresponding exposing vectors $\{Y_{\alpha}^{expo}\}_{\alpha\in\Theta}$ calculate their weights $\{\omega_{\alpha}\}_{\alpha\in\Theta}$

- Find set of bicliques Θ , of appropriate sizes
- Find corresponding exposing vectors $\{Y_{\alpha}^{expo}\}_{\alpha\in\Theta}$ calculate their weights $\{\omega_{\alpha}\}_{\alpha\in\Theta}$
- Calculate the weighted sum of <u>all</u> the exposing vectors

$$Y_{\mathit{Final}}^{\mathit{expo}} = \sum_{lpha \in \Theta} \omega_{lpha} Y_{lpha}^{\mathit{expo}}$$

- Find set of bicliques Θ , of appropriate sizes
- Find corresponding exposing vectors $\{Y_{\alpha}^{expo}\}_{\alpha\in\Theta}$ calculate their weights $\{\omega_{\alpha}\}_{\alpha\in\Theta}$
- Calculate the weighted sum of <u>all</u> the exposing vectors

$$Y_{Final}^{expo} = \sum_{lpha \in \Theta} \omega_{lpha} Y_{lpha}^{expo}$$

• Find full column rank V such that range $V = \text{null } Y_{Final}^{expo}$

- Find set of bicliques Θ , of appropriate sizes
- Find corresponding exposing vectors $\{Y_{\alpha}^{expo}\}_{\alpha\in\Theta}$ calculate their weights $\{\omega_{\alpha}\}_{\alpha\in\Theta}$
- Calculate the weighted sum of <u>all</u> the exposing vectors

$$Y_{Final}^{expo} = \sum_{lpha \in \Theta} \omega_{lpha} Y_{lpha}^{expo}$$

- Find full column rank V such that range $V = \text{null } Y_{Final}^{expo}$.
- Solve equivalent smaller problem based on smaller dimensional matrix R, where

$$Y = VRV^T$$

- Find set of bicliques Θ , of appropriate sizes
- Find corresponding exposing vectors $\{Y_{\alpha}^{expo}\}_{\alpha\in\Theta}$ calculate their weights $\{\omega_{\alpha}\}_{\alpha\in\Theta}$
- Calculate the weighted sum of <u>all</u> the exposing vectors

$$Y_{Final}^{expo} = \sum_{lpha \in \Theta} \omega_{lpha} Y_{lpha}^{expo}$$

- Find full column rank V such that range $V = \text{null } Y_{Final}^{expo}$.
- Solve equivalent smaller problem based on smaller dimensional matrix R, where

$$Y = VRV^T$$

 (Follows the framework in Drusvyatskiy/Krislock/Cheung-Voronin/W.)

Exploit block structure

 Y_{Final}^{expo} has block structure so V has a block structure too:

$$Y_{\textit{Final}}^{\textit{expo}} = \begin{bmatrix} \sum_{X \in \mathcal{C}} w_X^P W_X^P & 0 \\ 0 & \sum_{X \in \mathcal{C}} w_X^Q W_X^Q \end{bmatrix}, \quad V = \begin{bmatrix} V_P & 0 \\ 0 & V_Q \end{bmatrix}$$

Exploit block structure

 Y_{Final}^{expo} has block structure so V has a block structure too:

$$Y_{\textit{Final}}^{\textit{expo}} = \begin{bmatrix} \sum_{X \in \mathcal{C}} w_X^P W_X^P & 0 \\ 0 & \sum_{X \in \mathcal{C}} w_X^Q W_X^Q \end{bmatrix}, \quad V = \begin{bmatrix} V_P & 0 \\ 0 & V_Q \end{bmatrix}$$

allows a computational speed up for eigenvalue subproblems.

Noiseless Case

FR dramatically reduces dimension of now overdetermined problem:

$$\begin{aligned} & \text{min} & & \text{trace}(R) & & (= \text{trace}(\textit{VRV}^T)) \\ & \text{s.t.} & & \mathcal{P}_{\bar{E}}(\textit{V}_{P}\textit{R}_{pq}\textit{V}_{Q}^T) = \textit{z} \\ & & & R = \begin{bmatrix} \textit{R}_{p} & \textit{R}_{pq} \\ \textit{R}_{pq}^T & \textit{R}_{q} \end{bmatrix} \succeq \textit{0}. \end{aligned}$$

Noiseless Case

FR dramatically reduces dimension of now overdetermined problem:

min trace(
$$R$$
) (= trace(VRV^T))
s.t. $\mathcal{P}_{\bar{E}}(V_P R_{pq} V_Q^T) = z$
 $R = \begin{bmatrix} R_p & R_{pq} \\ R_{pq}^T & R_q \end{bmatrix} \succeq 0.$

remove the redundant constraints

Use a compact QR to find well-conditioned full rank matrix representation. A simple semidefinite constrained least squares solution may be enough!

$$\min_{R \in \mathbb{S}^{r_{\vee}}} \| \mathcal{P}_{\tilde{E}}(V_{P}R_{pq}V_{Q}^{T}) - \tilde{z}) \|.$$

(Here \tilde{E}, \tilde{z} denote the corresponding entries after removing redundant constraints. Often R found explicitly.)

Noisy Case

Cannot simply remove redundant constraints; use random sketch matrix *A* to reduce the number of constraints; first solve:

$$\delta_0 = \min_{R \in \mathbb{S}_+^{r_V}} \left\| A \left(\mathcal{P}_{\hat{E}}(V_P R_{pq} V_Q^T) - z \right) \right\|.$$

and hopefully obtain the target rank!

Noisy Case

Cannot simply remove redundant constraints; use random sketch matrix *A* to reduce the number of constraints; first solve:

$$\delta_0 = \min_{R \in \mathbb{S}_+^{r_V}} \left\| A \left(\mathcal{P}_{\hat{E}}(V_P R_{pq} V_Q^T) - z \right) \right\|.$$

and hopefully obtain the target rank! Otherwise, we use a refinement step.

Refinement Step in the Noisy Case

We would like to reduce the rank after the previous step using a parametric approach:

$$\begin{array}{ll} \min & \operatorname{trace}(R) \\ \mathrm{s.t.} & \left\| A \left(\mathcal{P}_{\hat{E}}(V_P R_{pq} V_Q^T) - b \right) \right\| & \leq & \delta_0 \\ & R & \succeq & 0. \end{array}$$

Refinement Step in the Noisy Case

We would like to reduce the rank after the previous step using a parametric approach:

min trace(
$$R$$
)
s.t. $\|A\left(\mathcal{P}_{\hat{E}}(V_P R_{pq} V_Q^T) - b\right)\| \leq \delta_0$
 $R \succeq 0$.

To ensure the rank can be reduce, we flip the problem:

$$\varphi(\tau) := \min \quad \left\| A \left(\mathcal{P}_{\hat{E}}(V_P R_{pq} V_Q^T) - b \right) \right\| + \gamma \|R\|_F$$

s.t.
$$\operatorname{trace}(R) \leq \tau$$
$$R \succ 0.$$

where γ is a regularization parameter, since the least squares problem can be underdetermined.

Sample Results

$(\approx 3x10^6 \text{ variables})$

Table: noiseless: r = 8; $m \times n$ size; density p; mean 20 instances.

	Specificat	ions	- r _v	Rcvrd (%Z)	Time (s)	Rank	Residual (%Z)	
m	n	mean(p)] 'v	ricvia (702)	1 11110 (3)	I Kallik		
1000	3000	0.53	16.10	96.39	37.29	8.0	1.1072e-10	
1000	3000	0.50	17.65	88.99	36.50	8.0	4.6569e-10	
1000	3000	0.48	32.15	71.66	72.14	8.5	2.0413e-07	

Table: noisy: r = 2; $m \times n$ size; density p; mean 20 instances.

Specifications				Rcvd (%Z)	Time (s)		Rank		Residual (%Z)	
m	n	% noise	р	itteva (702)	initial	refine	initial	refine	initial	refine
1100	3000	0.50	0.33	100.00	33.72	48.53	2.00	2.00	8.53e-03	8.53e-03
1100	3000	1.00	0.33	100.00	33.67	49.09	2.00	2.00	2.70e-02	2.70e-02
1100	3000	2.00	0.33	100.00	34.13	48.84	2.00	2.00	9.75e-02	9.75e-02
1100	3000	3.00	0.33	100.00	36.34	92.73	5.00	5.00	5.48e-01	1.40e-01
1100	3000	4.00	0.33	100.00	51.45	186.28	11.00	8.00	1.25e+00	1.28e-01

Conclusion

Preprocessing

- Though strict feasibility holds generically, failure appears in many applications. Loss of strict feasibility is directly related to ill-posedness and difficulty in numerical methods.
- Preprocessing based on structure can both regularize and simplify the problem. In many cases one gets an optimal solution without the need of any SDP solver.
 (New Survey FR: Drusvyatskiy and W. '17)

Exploit structure at optimum

For low-rank matrix completion the structure at the optimum can be exploited to apply FR even though strict feasibility holds.

To do: reduce density/more refinement; real life applications

Thanks for your attention! Questions?

Low-Rank Matrix Completion with Facial Reduction

Shimeng Huang¹ Henry Wolkowicz²

¹Department of Statistics and Actuarial Science University of Waterloo

²Department of Combinatorics and Optimization University of Waterloo

References

E.J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math. 9 (2009), no. 6, 717–772. MR 2565240

D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. Wolkowicz, *Noisy sensor network localization:* robust facial reduction and the Pareto frontier, SIAM Journal on Optimization (2017), 1–30, arXiv:1410.6852, 20 pages, to appear.

D. Drusvyatskiy, G. Pataki, and H. Wolkowicz, Coordinate shadows of semidefinite and Euclidean distance matrices, SIAM J. Optim. 25 (2015), no. 2, 1160–1178. MR 3357643

D. Drusvyatskiy, S. Sremac, and H. Wolkowicz, *Three views of facial reduction in cone optimization*, Tech. report, University of Waterloo, Waterloo, Ontario, 2017, survey in progress.

M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Stanford University, Stanford, CA, 2001.

M. Fazel, H. Hindi, and S.P. Boyd, *A rank minimization heuristic with application to minimum order system approximation*, Proceedings American Control Conference, 2001, pp. 4734–4739.

B. Recht, M. Fazel, and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52 (2010), no. 3, 471–501. MR 2680543