Hard Combinatorial Problems, DNN Relaxations, Facial Reduction, and ADMM

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo, Canada

Friday, October 18, 2019, 8:30-9:10 AM at: MOM21: The 21st Midwest Optimization Meeting Northern Illinois University, DeKalb, Illinois

The work on Min-Cut is With:

Xinxin Li (Jilin University) Ting Kei Pong (The Hong Kong Polytechnic University) Hao <u>Sun</u> (University of Waterloo)

Outline/Background/Motivation I

- Solving hard combinatorial/discrete optimization problems requires: efficient upper/lower bounding techniques.
- These problems are often modelled using quadratic objectives and/or quadratic constraints, i.e., QQPs.
- Lagrangian relaxations of QQPs lead to Semidefinite Programming, SDP, and SDP relaxations, e.g., Handbook on SDP [10].
- SDP relaxations are expensive to solve using interior-point approaches. This becomes *doubly* expensive when cutting planes are added, e.g., using Doubly Nonnegative, DNN, relaxations
- Strict feasibility fails for many of the SDP relaxations of these hard combinatorial problems. Facial reduction, FR, e.g., [1, 2, 3, 4] provides a means of regularizing the SDP relaxations.

Outline/Background/Motivation II

- FR appears to provide a natural splitting of variable for the application of Alternating Direction Method of Multipliers, ADMM type methods; and for exploiting structure.
- Classes of Problems: Min-Cut Rendl, Lisser, Piacentini '13 [8]; Pong, Sun, Wang, W. '16 [7]; Rendl, Sotirov '16 [9], Maxcut and GP

and QAP, Oliveira, W., Xu, '18 [5]

• Numerics (Large Scale)

Instance /Modelling with Quadratic Functions

min
$$q_0(x)$$
 $(= x^T H x + 2g^T x + \alpha)$
s.t. $Ax = b$ (linear constraint)
 $x \in K \subseteq \mathbb{R}^N$ (K hard constraints)

Hard Constraints: e.g.,

- *K* is zero-one or ± 1 ; modelled with quadratic constraints, respectively, $\forall i: q_i(x) = x_i^2 - x_i = 0$ or $q_i(x) = x_i^2 - 1 = 0$
- *K* is partition matrices, $x \in M_m$, (GP)
- *K* is permutation matrices, $x \in \Pi_n$, (QAP)

Close Duality Gap

Duality Gap for QP

A Lagrangian duality gap can happen, e.g.,

 $1 = \max\{-x_1^2 + x_2^2 : x_2 = 1\} < \infty = \inf_{\lambda} \max_{x} - x_1^2 + x_2^2 - \lambda(x_2 - 1)$ BUT:

$$1 = \max\{-x_1^2 + x_2^2 : \lfloor (x_2 - 1)^2 = 0 \}$$

= $\inf_{\lambda} \max_{x_1} \{-x_1^2 + x_2^2 - \lambda(x_2 - 1)^2\}$

QP: Close Gap, Strong Duality ($A m \times n, m < n, K$ compact)

Theorem (Poljak, Rendl, W. '95, [6])

$$p^* = \max_{x} \{q_0(x) := x^T H x + 2g^T x + \alpha : Ax = b, x \in K \}$$

=
$$\max_{x} \{q_0(x) : \|Ax - b\|^2 = 0, x \in K \}$$

=
$$\boxed{\min_{\lambda}} \max_{x} \{q_0(x) - \lambda \|Ax - b\|^2, x \in K \}$$

Model with Quadratics, Homogenize, and Lift

Homogenize

$$x_0^2 - 1 = 0: \begin{cases} \min q_0(x, x_0) = x^T H x + 2g^T x x_0 + \alpha x_0^2 \\ A x - b = 0 \cong \|A x - b x_0\|_2^2 = 0 \end{cases}$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}^{N+1}_+, \quad \text{symmetric, psd}, \quad Y_{00} = 1$$

obj. fn. $y^T \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} y = \text{trace} \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} Y, \quad \text{rank} (Y) = 1$

Relaxation

Discard rank one constraint on Y

Facial Reduction, FR

Lifting Linear Equality Constraint

$$0 = ||Ax - bx_0||_2^2 = \left\| \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix} \right\|_2^2$$
$$= \begin{pmatrix} x_0 \\ x \end{pmatrix}^T \begin{bmatrix} -b^T \\ A^T \end{bmatrix} \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}$$
$$= \operatorname{trace} \begin{bmatrix} ||b||^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} Y = 0$$

Exposing Vector, $W \in \mathbb{S}^{N+1}_+$, with spectral decomp., and FR

$$W := \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} = \begin{bmatrix} V & U \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} V & U \end{bmatrix}^T, \ D \in \mathbb{S}^{N+1-r}_+$$

Y feasible \implies YW = 0 (Strict feasibility (Slater) fails)

 \implies $Y = VRV^T, R \in \mathbb{S}_+^r$ (facial reduction)

Hard Discrete Constraints

Zero-One

$$x_0^2 - 1 = 0$$
: { $q_i(x, x_0) = x_i^2 - x_i x_0 = 0, \forall i$

Lifting (linearization):

$\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = egin{pmatrix} x_0 \ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}^{N+1}_+, \quad ext{symmetric, psd}, \quad Y_{00} = 1$$

constr.: $\operatorname{arrow}(Y) = e_0 := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^{n+1}$ $(\operatorname{diag}(Y) = Y_{:,0})$

Adjoint: Arrow \cong arrow^{*}

 $\langle \mathsf{Arrow}(\nu), \mathcal{S}
angle = \langle \nu, \mathsf{arrow}(\mathcal{S})
angle, \quad \forall \nu \in \mathbb{R}^{N+1}, \forall \mathcal{S} \in \mathbb{S}^{N+1}$

Splitting Methods and Facial Reduction, FR

Natural Splitting? $Y \in \mathcal{P}, R \in \mathbb{S}_+^r$

 $Y = VRV^T$

$$Y \in \mathcal{P} \subset \mathbb{S}^{N+1}_+, \qquad R \in \mathbb{S}^r_+, \quad r < N+1$$

Facial reduction generally provides a reduction in dimension and a guarantee that strict feasibility holds. There is a natural separation of constraints where

 $Y \in \mathcal{P}$ polyhedral $R \in \mathbb{S}_+^r$ sdp cone

Given: Undirected Graph $G = (\mathcal{V}, \mathcal{E})$

edge set \mathcal{E} and node set $|\mathcal{V}| = n$ $m = (m_1 \ m_2 \ \dots \ m_k)^T, \sum_{i=1}^k m_i = n$; given partition into *k* sets

MC Problem:

partition vertex set V into k subsets with given sizes in m to *minimize the cut* after removing the k-th set;

Applications

re-orderings for sparsity patterns; microchip design and circuit board, floor planning and other layout problems.

(k = 3, vertex separator problem)

(Graph Partitioning) Model for MC

Notation

A adjacency matrix of graph $G = (\mathcal{V}, \mathcal{E})$ e ones vector, $E = ee^{T}$

$$B = egin{bmatrix} E - I_{k-1} & 0 \ 0 & 0 \end{bmatrix} \in \mathbb{S}^k$$

$$\begin{split} & m = (m_1, \dots, m_k)^T \in \mathbb{Z}_+^k, \, k > 2, \, n = |\mathcal{V}| = m^T e. \\ & S = \{S_1, S_2, \dots, S_k\} \text{ partition of vertex set, } |S_i| = m_i > 0, \forall i \\ & M = \operatorname{Diag}(m) \qquad (m = \operatorname{Diag}^*(M) = \operatorname{diag}(M)) \end{split}$$

Quadratic Program for MC

Notation

- the set of edges between two sets of nodes
 δ(S_i, S_j) := {uv ∈ ε : u ∈ S_i, v ∈ S_j}
- cut of a partition S

$$\delta(\boldsymbol{S}) := \cup \left\{ \delta(\boldsymbol{S}_i, \boldsymbol{S}_j) : 1 \le i < j \le k-1 \right\}$$

• the set of partition matrices (cols of incidence vectors) $\mathcal{M}_m = \left\{ X \in \mathbb{R}^{n \times k} : Xe = e, \ X^T e = m, X_{ij} \in \{0, 1\} \right\}$ $X_{ij} = \begin{cases} 1 & \text{if } i \in S_j \\ 0 & \text{otherwise.} \end{cases}$

objective of MC: minimize cardinality of the cut |δ(S)|:

$$cut(m) = \min \quad \frac{1}{2} \operatorname{trace} AXBX^T$$

s.t. $X \in \mathcal{M}_m$,

Include Many Redundant Constraints

$$\operatorname{cut}(m) = \min_{\substack{1 \\ \text{s.t.}}} \frac{1}{2} \operatorname{trace} AXBX^{T}$$

s.t. $X \circ X = x_{0}X \in \{0, 1\}$
 $\|Xe - x_{0}e\|^{2} = 0$ row sums $= 1$
 $\|X^{T}e - x_{0}m\|^{2} = 0$ column sums
 $X_{:i} \circ X_{:j} = 0, \forall i \neq j$ col. elem. orth.
 $X^{T}X - M = 0$ scaled orth.
diag $(XX^{T}) - e = 0$ unit norm rows
 $x_{0}e_{n}^{T}Xe_{k} - n = 0$ n vertices
 $x_{0}^{2} = 1$ homog.

- e_j is the vector of ones of dimension j; M = Diag(m).
- $u \circ v$ Hadamard (elementwise) product.

Facial Reduction, FR

Lifting/Block Appropriately/
$$x = \operatorname{vec}(X)$$

$$Y = \begin{pmatrix} x_0 \\ x \end{pmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}^T =: \begin{bmatrix} Y_{00} & Y_{0\underline{1}:nk}^T \\ Y_{1:nk\,0} & \overline{Y} \end{bmatrix},$$

$$Y_{1:nk\,0} := \begin{bmatrix} Y_{(10)} \\ Y_{(20)} \\ \vdots \\ Y_{(k0)} \end{bmatrix}, \quad \overline{Y} := \begin{bmatrix} \overline{Y}_{(11)} & \overline{Y}_{(12)} & \cdots & \overline{Y}_{(1k)} \\ \overline{Y}_{(21)} & \overline{Y}_{(22)} & \cdots & \overline{Y}_{(2k)} \\ \vdots & \ddots & \ddots & \vdots \\ \overline{Y}_{(k1)} & \ddots & \ddots & \overline{Y}_{(kk)} \end{bmatrix}$$

110

Objective

$$\frac{1}{2}\operatorname{trace} AXBX^{T} = \frac{1}{2}\operatorname{trace} L_{A}Y, \text{ where } L_{A} := \begin{bmatrix} 0 & 0 \\ 0 & B \otimes A \end{bmatrix}.$$

The arrow constraint

$$\operatorname{arrow}(Y) := \operatorname{diag}(Y) - \begin{bmatrix} 0 \\ Y_{1:nk \, 0} \end{bmatrix} = e_0,$$

 e_0 first (0-th) unit vector (redundant in the final SDP relaxation)

DNN, doubly nonnegative

$$Y \in \text{DNN} \cap \{Y \in \mathbb{S}^{nk+1} : 0 \le Y \le 1\}$$

DNN is doubly nonnegative cone, i.e., intersection of positive semidefinite cone and nonnegative orthant.

SDP Constraints cont...

Trace constraints (from linear equality constraints

$$\begin{array}{ll} \operatorname{trace} D_1 \, Y = 0, \qquad D_1 := \begin{bmatrix} n & -e_k^T \otimes e_n^T \\ -e_k \otimes e_n & (e_k e_k^T) \otimes I_n \end{bmatrix}, \\ \operatorname{trace} D_2 \, Y = 0, \qquad D_2 := \begin{bmatrix} m^T m & -m^T \otimes e_n^T \\ -m \otimes e_n & I_k \otimes (e_n e_n^T) \end{bmatrix}, \end{array}$$

 e_j vector of ones of dimension j; $D_i \succeq 0, i = 1, 2$; nullspaces of these matrices yield the facial reduction $Y = VRV^T$.

Block: trace, diagonal and off-diagonal

$$\begin{array}{lll} \mathcal{D}_{t}(Y) & := & \left(\mathrm{trace} \, \overline{Y}_{(ij)} \right) = M \in \mathbb{S}^{k}; \\ \mathcal{D}_{d}(Y) & := & \sum_{i=1}^{k} \mathrm{diag} \, \overline{Y}_{(ii)} = \boldsymbol{e}_{n} \in \mathbb{R}^{n}; \\ \mathcal{D}_{o}(Y) & := & \left(\sum_{s \neq t} \left(\overline{Y}_{(ij)} \right)_{st} \right) = \hat{M} \in \mathbb{S}^{k} \end{array}$$

where $\hat{M} := mm^T - M$.

trace Y = n + 1; and Gangster constraints on Y

The Hadamard product and orthogonal type constraints lead to gangster constraints

i.e., simple constraints that restrict elements to be zero (shoot holes in the matrix) and/or restrict entire blocks. gangster and restricted gangster constraint on *Y*:

$$\mathcal{G}_{H}(Y) = 0,$$

for specific index sets *H*.

SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

$$cut(m) \ge p_{SDP}^* := \min \quad \frac{1}{2} \operatorname{trace} L_A Y$$

s.t. $\operatorname{arrow}(Y) = e_0$
 $\operatorname{trace} D_1 Y = 0, \operatorname{trace} D_2 Y = 0$
 $\mathcal{G}_{J_0}(Y) = 0, \ Y_{00} = 1$
 $\mathcal{D}_t(Y) = M, \ \mathcal{D}_d(Y) = e, \ \mathcal{D}_o(Y) = \widehat{M}$
 $Y \in \mathbb{S}_+^{kn+1}$

Equivalent FR greatly simplified SDP; with $Y = \widetilde{V}R\widetilde{V}^T$

$$\begin{aligned} \mathsf{cut}(m) \geq p_{\mathrm{SDP}}^* &= \min \quad \frac{1}{2}\operatorname{trace}\left(\widetilde{V}^T L_A \widetilde{V}\right) R\\ \text{s.t.} \quad \mathcal{G}_{\widehat{J}_{\mathcal{I}}}(\widetilde{V}R\widetilde{V}^T) = \mathcal{G}_{\widehat{J}_{\mathcal{I}}}(e_0 e_0^T)\\ R \in \mathbb{S}_+^{(k-1)(n-1)+1}\end{aligned}$$

Theorem

satisfies strict feasibility.

Difficulties for Primal-dual interior-point Methods for SDP

- solving large problems
- obtaining high accuracy solutions
- exploiting sparsity
- adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

- FR provides a natural splitting, $Y = VRV^T$
- Flexibility in dealing with additional constraints
- separable/split optimization steps are inexpensive

Strengthen model with redundant constraint

Set Constraints

$$\begin{aligned} \mathcal{R} &:= \{ R \in \mathbb{S}_{+}^{(k-1)(n-1)+1} : \operatorname{trace} R = n+1 \}, \\ \mathcal{Y} &:= \{ Y \in \mathbb{S}^{nk+1} : 1 \geq Y(J^c) \geq 0, \\ \mathcal{G}_{\overline{J}}(Y) &= \mathcal{G}_{\overline{J}}(e_0 e_0^T) \\ \mathcal{D}_o(Y) &= \widehat{M}, \ e^T Y_{(i0)} = m_i, \forall i \} \end{aligned}$$

Strengthened model

(DNN)
$$p_{DNN}^* = \min_{\substack{1 \\ 2}} \frac{1}{2} \operatorname{trace} L_A Y + \mathbb{1}_{\mathcal{Y}}(Y) + \mathbb{1}_{\mathcal{R}}(R)$$

s.t. $Y = \widehat{V} R \widehat{V}^T$,

where $\mathbb{1}_{\mathcal{S}}(\cdot)$ is indicator function of set \mathcal{S} .

Augmented Lagrangian Function, $\mathcal{L}_{\beta}(R, Y, Z) =$

$$= f_{\mathcal{R}}(R) + g_{\mathcal{Y}}(Y) + \langle Z, Y - \widehat{V}R\widehat{V}^{\mathsf{T}} \rangle + \frac{\beta}{2} \left\| Y - \widehat{V}R\widehat{V}^{\mathsf{T}} \right\|^2$$

• $\beta > 0$ penalty parameter for quadratic penalty term,

• (*L*_s diagonally scaled objective $L_s := \frac{1}{2}L + \alpha I \succ 0$)

$$f_{\mathcal{R}}(R) = \mathbb{1}_{\mathcal{R}}(R), \quad g_{\mathcal{Y}}(Y) = \operatorname{trace} L_{s}Y + \mathbb{1}_{\mathcal{Y}}(Y).$$

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of \mathcal{L}_{β} in the variables *Y* and *R* interlaced by an update of the *Z* variable. In particular, we update the dual variable *Z* both after the *R*-update *and* the *Y*-update (both of which have unique solutions).

FRSMR, FR Splitting Method with Redundancies

- Pick any $Y^0, Z^0 \in \mathbb{S}^{nk+1}$. Fix $\beta > 0$ and $\gamma \in (0, 1)$. Set t = 0.
- For each $t = 0, 1, \ldots$, update

$$\begin{aligned} \bullet R^{t+1} &= \operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{\beta}(R, Y^{t}, Z^{t}) \\ &= \operatorname{argmin}_{R} f_{\mathcal{R}}(R) - \langle Z^{t}, \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \left\| Y^{t} - \widehat{V}R\widehat{V}^{T} \right\|^{2} \\ \bullet Z^{t+\frac{1}{2}} &= Z^{t} + \gamma\beta(Y^{t} - \widehat{V}R^{t+1}\widehat{V}^{T}), \\ \bullet Y^{t+1} &= \operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{\beta}(R^{t+1}, Y, Z^{t+\frac{1}{2}}) \\ &= \operatorname{argmin}_{Y} g_{\mathcal{Y}}(Y) + \langle Z^{t+\frac{1}{2}}, Y \rangle + \frac{\beta}{2} \left\| Y - \widehat{V}R^{t+1}\widehat{V}^{T} \right\|^{2}, \\ \bullet Z^{t+1} &= Z^{t+\frac{1}{2}} + \gamma\beta(Y^{t+1} - \widehat{V}R^{t+1}\widehat{V}^{T}). \end{aligned}$$

Theorem

Let { R^t }, { Y^t } and { Z^t } be the generated sequences from FRSMR. Then { (R^t, Y^t) } converges to an optimal solution (R^*, Y^*) of the DNN relaxation, { Z^t } converges to some Z^* , and (R^*, Y^*, Z^*) satisfies the optimality conditions of the DNN relaxation

$$\begin{array}{rcl} \mathbf{0} & \in & -\widehat{V}^T Z^* \widehat{V} + \mathcal{N}_{\mathcal{R}}(R^*), \\ \mathbf{0} & \in & L_s + Z^* + \mathcal{N}_{\mathcal{Y}}(Y^*), \\ \mathcal{I}^* & = & \widehat{V} R^* \widehat{V}^T, \end{array}$$

where $\mathcal{N}_{S}(x)$ denotes the normal cone of S at x.

1. Explicit solution for R^{t+1}

With the assumption that $\widehat{V}^T \widehat{V} = I$

$$\begin{aligned} R^{t+1} &= \operatorname{argmin}_{R \in \mathcal{R}} - \langle Z, \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} \left\| Y^t - \widehat{V}R\widehat{V}^T \right\|^2 \\ &= \mathcal{P}_{\mathcal{R}}(\widehat{V}^T(Y^t + \frac{1}{\beta}Z^t)\widehat{V}), \end{aligned}$$

where $\mathcal{P}_{\mathcal{R}}$ denotes the projection (nearest point) onto the intersection of the SDP cone $\mathbb{S}^{(k-1)(n-1)+1}_+$ and the hyperplane $\{R \in \mathbb{S}^{(k-1)(n-1)+1} : \text{trace } R = n+1\}.$

(diagonalize; then project eigenvalues onto simplex)

2. Explicit solution of Y^{t+1}

The *Y*-subproblem yields a closed form solution by projection onto the polyhedral set \mathcal{Y} , i.e.,

$$Y^{t+1} = \operatorname{argmin}_{Y \in \mathcal{Y}} \frac{\beta}{2} \left\| Y - \widehat{VR^{t+1}} \widehat{V}^T - \frac{1}{\beta} (L_s + Z^{t+\frac{1}{2}}) \right\|^2.$$

Note that the update (projection of \tilde{Y}) satisfies e.g.,

$$(\mathbf{Y}^{t+1})_{ij} = \begin{cases} 1 & \text{if } i = j = 0\\ 0 & \text{if } ij \in J \setminus \{00\}\\ 0 & \text{if } ij \in J^c, \ Y_{ij} \leq 0\\ \mathbf{\tilde{Y}}_{ij} & \text{if } ij \in J^c, \ 0 < Y_{ij}. \end{cases}$$

Lower bound from Inaccurate Solutions

Theorem (Fenchel Dual)

 $\begin{array}{l} \textit{Define modified dual functional} \\ g(Z) := \min_{Y \in \widetilde{\mathcal{Y}}} \langle L_s + Z, Y \rangle - (n+1) \lambda_{\max}(\widehat{V}^T Z \widehat{V}), \\ \textit{with } \widetilde{\mathcal{Y}} := \\ {}_{\{Y \in \mathbb{S}^{nk+1} : \ \mathcal{G}_{\widehat{J}_0}(Y) = \ \mathcal{G}_{\widehat{J}_0}(e_0 e_0^T), \ 0 \le \mathcal{G}_{\widehat{J}_0}(Y) \le 1, \\ \mathcal{D}_o(Y) = \widehat{M}, \ \mathcal{D}_t(Y) = M, \ e^T Y_{(i0)} = m_i, i = 1, \dots, k \}. \end{array}$ $\begin{array}{l} \textit{Then} \end{array}$

$$p^*_{\mathrm{DNN}} = d^*_Z := \max_Z g(Z),$$

and the latter (dual) problem is attained, i.e., strong duality holds.

The Lower Bound

Evaluating $g(Z^t)$ always yields a lower bound for the DNN relaxation optimal value

$$p^*_{\mathrm{DNN}} \geq g(Z^t)$$

Upper bound from feasible solution

Approx. output Yout

- Obtain a vector $v = (v_0 \ \overline{v})^T \in \mathbb{R}^{nk+1}, v_0 \neq 0$ from Y^{Out}
- Reshape \bar{v} ; get $n \times k$ matrix X^{out}
- Since X implies trace $X^T X = n$, a constant, we get

$$\left\|X^{\mathsf{out}} - X\right\|^2 = -2 \operatorname{trace} X^T X^{\mathsf{out}} + \operatorname{constant}.$$

• Solve the linear program (transportation problem)

$$\hat{\pmb{X}} \in \operatorname{argmax}\left\{ \langle \pmb{X}^{m{\mathsf{OUT}}}, \pmb{X}
angle : \pmb{X} \pmb{e} = \pmb{e}, \pmb{X}^{\mathcal{T}} \pmb{e} = \pmb{m}, \pmb{X} \geq \pmb{\mathsf{0}}
ight\}$$

• Upper bound
$$= \frac{1}{2}$$
 trace $A\hat{X}B\hat{X}^T$

rank $Y = 1 \implies$ column/eigenvector 0 yields opt. X

- column 0 of Y^{out};
- eigenvector corresponding to largest eigenvalue of Y^{out};
- random sampling/repeated: sum of random weighted-eigenvalue eigenvectors of Y^{out},

$$\mathbf{v} = \sum_{i=1}^{r} \mathbf{w}_i \lambda_i \mathbf{v}_i,$$

where ordered eigenpairs of Y^{out} and ordered weights; *r* here is the *numerical rank* of Y^{out} .

Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz) and 8GB RAM running Windows 10.

Three classes of problems:

- (a) random structured graphs (compare with Pong et al.)
- (b) partially random graphs with various sizes classified by the number of 1's, $|\mathcal{I}|$, in the vector *m* (similar to QAP)
- (c) vertex separator instances

Lifting Linear Equality Constraint

	Table: Data terminology
imax	maximum size of each set
k	number of sets
п	number of nodes (sum of sizes of sets)
p	density of graph
$I = e^T m_{one}$	number of 1's in <i>m</i>
Iters	number of iterations
CPU	time in seconds
Bounds	best lower and upper bounds and relative gap
Residuals	final values of:
	$\left\ Y^{t+1} - \widehat{V} R^{t+1} \widehat{V}^T \right\ (\cong \Delta Z);$
	$\ Y^{t+1} - Y^t\ \cong \Delta \overset{\parallel}{Y}$

Comparison small structured graphs with Pong et al

Data			Lower b	ounds	Upper b	ounds	Rel-	gap	Time (cpu)		
n	k	E	<i>u</i> ₀	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek
20	4	136	6	6	6	6	6	0.00	0.00	0.21	3.96
25	4	222	8	8	8	8	8	0.00	0.00	0.20	10.94
25	5	170	14	14	14	14	14	0.00	0.00	0.31	34.19
31	5	265	22	22	22	22	22	0.00	0.00	1.28	149.49

$\mathcal{I} = \emptyset$, Results for random graphs, mean 3 instances

Specifications					ltor	cou		Bounds	Residuals		
imax	k	n	р	1	1101	opu	low	up	rel-gap	prim.	dual
5	6	19.0	0.49	0	333.33	0.89	38.0	38.33	0.01	4.15e-03	6.18e-03
6	7	24.67	0.44	0	500.0	3.03	60.0	61.67	0.02	4.86e-03	8.74e-03
7	8	31.0	0.37	0	966.67	9.53	68.33	71.0	0.04	8.44e-04	3.74e-04
8	9	40.0	0.31	0	833.33	22.75	100.33	110.67	0.09	1.43e-03	6.92e-04
9	10	50.33	0.23	0	1100.0	75.26	119.67	132.33	0.09	1.53e-03	6.81e-04

$k \notin \mathcal{I} \neq \emptyset$, Results for random graphs, mean 4 instances

	5	Specificatio	ons		Itors	cou		Bounds		Residuals		
imax	k	п	р	1	11013	opu	lower	upper	rel-gap	primal	dual	
5	6	16.25	0.51	1.50	450.00	1.02	22.25	23.00	0.03	2.36e-03	1.64e-03	
6	7	17.00	0.43	3.25	325.00	1.18	23.00	23.25	0.00	3.75e-02	5.90e-02	
7	8	21.00	0.38	3.50	625.00	4.98	34.50	36.00	0.02	3.66e-03	1.95e-03	
8	9	21.75	0.30	5.00	400.00	3.36	20.75	21.25	0.01	8.37e-02	9.51e-02	
9	10	38.00	0.23	3.25	775.00	25.84	55.25	63.50	0.11	3.26e-03	1.37e-03	

$k \in \mathcal{I} \neq \mathcal{K}$, Results for random graphs, mean 5 instances

	S	Specificatio	ons		Itore	cou		Bounds		Residuals		
imax	k	п	р	1	liers	- upu	lower	upper	rel-gap	primal	dual	
5	6	13.60	0.49	2.80	160.00	0.33	22.60	22.60	0.00	2.55e-02	3.02e-02	
6	7	18.00	0.42	3.40	460.00	1.99	37.80	39.00	0.02	5.66e-02	7.10e-02	
7	8	22.20	0.39	3.80	560.00	3.96	57.80	60.20	0.02	1.04e-02	1.19e-02	
8	9	22.60	0.30	5.20	540.00	4.92	37.20	38.00	0.01	3.48e-02	4.29e-02	
9	10	31.00	0.23	4.80	700.00	16.78	61.80	68.00	0.06	1.44e-02	1.01e-02	

$\mathcal{I} = \mathcal{K}$, Results for random graphs ,mean 6 instances

Specifications				Itore	Time (cpu)		Bounds		Residuals		
k	n	р	1	liters	Time (cpu)	lower	upper	rel-gap	primal	dual	
6	6.00	0.59	6.00	100.00	0.06	4.67	4.67	0.00	5.12e-03	5.10e-0)3
7	7.00	0.48	7.00	100.00	0.08	5.67	5.67	0.00	8.66e-02	1.27e-0)1
8	8.00	0.41	8.00	150.00	0.18	7.17	7.17	0.00	2.64e-01	1.68e-0	01
9	9.00	0.34	9.00	233.33	0.37	7.83	8.00	0.03	1.88e-01	3.99e-0)2
10	10.00	0.25	10.00	266.67	0.56	7.50	7.50	0.00	6.28e-02	8.71e-0)2
					•						

Table: Comparisons on the bounds for MC and bounds for the cardinality of separators

Name	n	E	m1	m2	m3	lower	upper	lower	upper	lower	upper	lower	upper
						MC by	SDP ₄	MC by	DNN-final	Separato	or by SDP ₄	Separato	r by DNN-final
Example 1	93	470	42	41	10	0.07	1	0	1	11	11	11	11
bcspwr03	118	179	58	57	3	0.56	1	0	2	4	5	4	5
Smallmesh	136	354	65	66	5	0.13	1	0	1	6	6	6	6
can-144	144	576	70	70	4	0.90	6	0	6	5	6	5	8
can-161	161	608	73	72	16	0.31	2	0	2	17	18	17	18
can-229	229	774	107	107	15	0.40	6	0	6	16	19	16	19
gridt(15)	120	315	56	56	8	0.29	4	0	4	9	11	9	12
gridt(17)	153	408	72	72	9	0.17	4	0	4	10	13	10	13
grid3dt(5)	125	604	54	53	18	0.54	2	0	4	19	19	19	22
grid3dt(6)	216	1115	95	95	26	0.28	4	0	4	27	30	27	31
grid3dt(7)	343	1854	159	158	26	0.60	22	0	27	27	37	27	44
	_	_	_	_	_	_	_						

Conclusion

- In this paper, we discussed strategies for finding new, strengthened lower and upper bounds, for hard discrete optimization problems.
- In particular, we exploited the fact that strict feasibility fails for many of these problems and that facial reduction, FR, leads to a natural splitting approach for ADMM, sPRSM, type methods.
- The FR makes many constraints redundant and simplifies the problem. We strengthened the subproblems in the splitting by returning redundant constraints.
- A special scaling, and a random sampling provided strengthened lower and upper bounds from low approximate solutions from our approach.

References I

J.M. Borwein and H. Wolkowicz, Characterization of optimality for the abstract convex program with finite-dimensional range, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4, 390–411. MR 83i:90156

Facial reduction for a cone-convex programming problem, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 3, 369–380. MR 83b:90121

Regularizing the abstract convex program, J. Math. Anal. Appl. 83 (1981), no. 2, 495–530. MR 83d:90236

D. Drusvyatskiy and H. Wolkowicz, *The many faces of degeneracy in conic optimization*, Foundations and Trends[®] in Optimization **3** (2017), no. 2, 77–170.

References II

- D.E. Oliveira, H. Wolkowicz, and Y. Xu, ADMM for the SDP relaxation of the QAP, Math. Program. Comput. 10 (2018), no. 4, 631–658.
- S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for (0, 1)-quadratic programming, J. Global Optim. 7 (1995), no. 1, 51–73. MR 96d:90053
- T.K. Pong, H. Sun, N. Wang, and H. Wolkowicz, *Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem*, Comput. Optim. Appl. 63 (2016), no. 2, 333–364. MR 3457444
- F. Rendl, A. Lisser, and M. Piacentini, Bandwidth, vertex separators and eigenvalue optimization, Discrete Geometry and Optimization, The Fields Institute for Research in Mathematical Sciences, Communications Series, vol. 69, Springer, 2013, pp. 249–263.

- F. Rendl and R. Sotirov, *The min-cut and vertex separator* problem, Comput. Optim. Appl. **69** (2018), no. 1, 159–187.
- H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, International Series in Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000, Theory, algorithms, and applications. MR MR1778223 (2001k:90001)

Thanks for your attention!

Hard Combinatorial Problems, DNN Relaxations, Facial Reduction, and ADMM

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo, Canada

Friday, October 18, 2019, 8:30-9:10 AM at: MOM21: The 21st Midwest Optimization Meeting Northern Illinois University, DeKalb, Illinois

