Hard Combinatorial Problems, DNN Relaxations, Facial Reduction, and ADMM

Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Monday, August 3, 2020, 9:00-11:00 PM, EST at: SUFE: Shanghai University of Finance and Economics

4

Collaborators

Xinxin Li (Jilin University)
Ting Kei Pong (The Hong Kong Polytechnic University)
Naomi Graham, Hao Hu, Haesol Im, Hao Sun (University of Waterloo)

Outline/Background/Motivation I

- Solving hard combinatorial/discrete optimization problems requires: efficient upper/lower bounding techniques.
- These problems are often modelled using quadratic objectives and/or quadratic constraints, i.e., QQPs.
- Lagrangian relaxations of QQPs lead to Semidefinite Programming, SDP, and SDP relaxations, e.g., Handbook on SDP [7].
- SDP relaxations are expensive to solve using interior-point approaches. This becomes doubly expensive when cutting planes are added, e.g., using Doubly Nonnegative, DNN, relaxations

Outline/Background/Motivation II

- Strict feasibility fails for many of the SDP relaxations of these hard combinatorial problems.
 (Compare Rademacher Theorem: Loc. Lip. functions are differentiable a.e.)
 Facial reduction, FR, e.g., [2, 3, 4, 5] provides a means of regularizing the SDP relaxations.
- FR appears to provide a <u>natural splitting of variables</u> for the application of Alternating Direction Method of Multipliers, <u>ADMM</u>, type methods for large scale problems; and for exploiting structure.
- Classes of Problems:
 Min-Cut; Maxcut; and Graph Partitioning;
 and QAP,

Hard Combinatorial Problems and Modelling Model with Quadratic Functions; Importance of Duality

Instance / Modelling with Quadratic Functions

min
$$q_0(x)$$
 $(= x^T H x + 2g^T x + \alpha)$
s.t. $Ax = b$ (linear constraint)
 $x \in K \subseteq \mathbb{R}^N$ (K hard constraints)

Hard (Combinatorial) Constraints: e.g.,

• both 0, 1 and ± 1 modelled with quadratic const., resp.,

$$K := \{0,1\}^N$$
 or $K := \{\pm 1\}^N$ $q_i(x) := x_i^2 - x_i = 0, \forall i$ or $q_i(x) := x_i^2 - 1 = 0, \forall i$

- K is partition matrices, $x \in \mathcal{M}_m$, (GP)
- *K* is permutation matrices, $x \in \Pi_n$, (QAP)

Can Close the Duality Gap by Changing Model

Example: (Lagrangian) Duality Gap for QP

$$1 = p^* = \max\{-x_1^2 + x_2^2 : x_2 = 1\}$$

$$< \infty = d^*$$

$$= \inf_{\lambda} \max_{x} L(x, \lambda) = -x_1^2 + x_2^2 - \lambda(x_2 - 1)$$

BUT with a Model Change (same problem)

$$1 = p^* = \max \left\{ -x_1^2 + x_2^2 : \frac{(x_2 - 1)^2 = 0}{(x_2 - 1)^2} \right\}$$

= $d^* = \inf_{\lambda} \max_{x} \left\{ -x_1^2 + x_2^2 - \lambda(x_2 - 1)^2 \right\}$

since stationarity and the Lagrangian function value satisfy:

$$0 = 2x_2 - 2\lambda(x_2 - 1) \implies x_2 = \frac{\lambda}{\lambda - 1} \to 1;$$

$$L(x, \lambda) = x_2^2 - \lambda(x_2 - 1)^2 = \frac{\lambda^2}{(\lambda - 1)^2} - \lambda \frac{1}{(\lambda - 1)^2} = \frac{\lambda}{\lambda - 1} \to 1$$

Further Example: Close Duality Gap

• Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$, $X^* = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$10 = p^* = \min_{\text{s.t.}} \text{ trace } AXBX^T$$
s.t. $XX^T = I, X \in \mathbb{R}^{n \times n}$

• $L(X, S) = \operatorname{trace} AXBX^T + \operatorname{trace} S(XX^T - I), S \in S^n$ $\operatorname{trace} AXBX^T = x^T(B \otimes A)x, x = \operatorname{vec} X$

Lagrangian dual:
$$d^* = \max_{S \in S^n} \min_X L(X, S)$$

$$10 = p^* > 9 = d^* = \max_{S.t.} - \operatorname{trace} S$$
s.t. $B \otimes A + I \otimes S \succeq 0$, $S \in S^n$

where
$$B \otimes A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} \implies S_{11} \ge -3, S_{22} \ge -6$$

Change Model; Add Redundant Constraint; Increase Number of Lagrange Dual Multipliers

Duplicate orthogonality constraint

Add: $X^TX = I$ closes duality gap by exploiting the new Lagrange multipliers in $T \in S^n$

$$10 = p^* = 10 = d^* = \max \text{ trace } -S - T$$

s.t. $B \otimes A + I \otimes S + T \otimes I \succeq 0$,

Theorem (Anstreicher, W. '95, [1])

Strong duality holds for

min trace
$$AXBX^T$$

s.t. $XX^T = I, X^TX = I, X \in \mathbb{R}^{n \times n}$

۶

QP: Obtain Strong Duality in General? A Modelling Issue

$$H \in \mathcal{S}^n$$
, A , $m \times n$, $m < n$, K compact

Theorem (Poljak, Rendl, W. '95, [6])

$$p^* = \max_{x} \{q_0(x) := x^T H x + 2g^T x + \alpha : Ax = b, x \in K\}$$

$$= \max_{x} \{q_0(x) : ||Ax - b||^2 = 0, x \in K\}$$

$$= d^* = \min_{\lambda} \phi(\lambda)$$

where the dual functional is:

$$\phi(\lambda) := \max_{x \in K} L(x, \lambda) := q_0(x) - \lambda ||Ax - b||^2$$

Summary: To strengthen the Lagrangian dual

- linear constraints Ax b = 0 to quadratic $||Ax b||^2 = 0$
- Add redundant constraints

Model with Quadratics Details; Homogenize, and Lift to Matrix Space

Homogenize using $x_0 \in \mathbb{R}$ with $x_0^2 - 1 = 0$

$$\begin{cases} \min q_0(x, x_0) = x^T H x + 2g^T x x_0 + \alpha x_0^2 \\ Ax - b = 0 & \cong \|Ax - b x_0\|_2^2 = 0 \end{cases}$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, Y = yy^T \in \mathbb{S}_+^{N+1}, \text{ symmetric, psd, } Y_{00} = 1$$

obj. fn.
$$y^T \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} y = \operatorname{trace} \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} Y$$
, rank $(Y) = 1$

Relaxation to Convex Problem:

Discard the (hard) rank one constraint on Y

Lifting

Lifting Linear Equality Constraint

$$0 = \|Ax - bx_0\|_2^2 = \left\| \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix} \right\|_2^2$$
$$= \begin{pmatrix} x_0 \\ x \end{pmatrix}^T \begin{bmatrix} -b^T \\ A^T \end{bmatrix} \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}$$
$$= \operatorname{trace} \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} Y = 0$$

Exposing Vector, $W \in \mathbb{S}^{N+1}_+$, with spectral decomp., and FR

$$\boldsymbol{W} := \begin{bmatrix} \|\boldsymbol{b}\|^2 & -\boldsymbol{b}^T\boldsymbol{A} \\ -\boldsymbol{A}^T\boldsymbol{b} & \boldsymbol{A}^T\boldsymbol{A} \end{bmatrix} = \begin{bmatrix} \boldsymbol{V} & \boldsymbol{U} \end{bmatrix} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{V} & \boldsymbol{U} \end{bmatrix}^T, \ \boldsymbol{D} \in \mathbb{S}_+^{N+1-r}$$

Y feasible
$$\implies$$
 YW = 0 (Strict feasibility (Slater) fails)
 \implies Y = VRV^T, R \in S^r _{\perp} (facial reduction)

. .

Hard Discrete Constraints

Zero-One; Homogenize with x_0 , $x_0^2 - 1 = 0$

$$q_i(x, x_0) := x_i^2 - x_i x_0 = 0, \forall i$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}_+^{N+1}, \quad \text{symmetric, psd,} \quad Y_{00} = 1$$

constr. for
$$\{0,1\}$$
: $\operatorname{\mathsf{arrow}}(Y) = e_0 := \binom{1}{0} \in \mathbb{R}^{n+1}$ $(\operatorname{\mathsf{diag}}(Y) = Y_{:,0})$

Adjoint: Arrow \cong arrow*

$$\langle \mathsf{Arrow}(v), S \rangle = \langle v, \mathsf{arrow}(S) \rangle, \quad \forall v \in \mathbb{R}^{N+1}, \forall S \in \mathbb{S}^{N+1}$$

Splitting Methods and Facial Reduction, FR

Natural Splitting? $Y \in \mathcal{P}, R \in \mathbb{S}_+^r$

 $Y = VRV^T$

$$Y \in \mathcal{P} \subset \mathbb{S}^{N+1}_+, \qquad R \in \mathbb{S}^r_+, \quad r < N+1$$

Facial reduction generally provides a reduction in dimension and a guarantee that strict feasibility holds.

There is a natural separation of constraints where

$$Y \in \mathcal{P}$$
 polyhedral $R \in \mathbb{S}^r_+$ sdp cone

Instance: Minimum Cut, MC, Problem

Given: Undirected Graph $G = (\mathcal{V}, \mathcal{E})$

edge set \mathcal{E} and node set $|\mathcal{V}| = n$ $m = (m_1 \ m_2 \ \dots \ m_k)^T, \ \sum_{i=1}^k m_i = n;$ given partition into k sets

MC Problem:

partition vertex set V into k subsets with given sizes in m to *minimize the cut* after removing the k-th set;

Applications

re-orderings for sparsity patterns; microchip design and circuit board, floor planning and other layout problems.

(k = 3, vertex separator problem)

(Graph Partitioning) Model for Min. Cut, MC

Notation

A adjacency matrix of graph $G = (V, \mathcal{E})$ e ones vector, $E = ee^T$

$$B = \begin{bmatrix} E - I_{k-1} & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{S}^k$$

$$m = (m_1, \ldots, m_k)^T \in \mathbb{Z}_+^k, k > 2$$
, set sizes

$$n = |\mathcal{V}| = m^T e$$
.

$$S = \{S_1, S_2, \dots, S_k\}$$
 partition of vertex set, $|S_i| = m_i > 0, \forall i$

$$M = \operatorname{Diag}(m), \qquad (m = \operatorname{Diag}^*(M) = \operatorname{diag}(M))$$

Construct a Quadratic Program/Model for MC

Notation

the set of edges between two sets of nodes

$$\delta(S_i, S_j) := \{uv \in \mathcal{E} : u \in S_i, v \in S_j\}$$

cut of a partition S

$$\delta(S) := \bigcup \left\{ \delta(S_i, S_j) : 1 \le i < j \le k - 1 \right\}$$

• the set of partition matrices (cols of incidence vectors)

$$\mathcal{M}_m = \left\{ X \in \mathbb{R}^{n \times k} : Xe = e, X^T e = m, X_{ij} \in \{0, 1\} \right\}$$
 $X_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i \in S_j \\ 0 & ext{otherwise.} \end{array} \right.$

• objective of MC: minimize cardinality of the cut $|\delta(S)|$:

$$cut(m) = \min_{\substack{1 \\ s.t.}} \frac{1}{2} \operatorname{trace} AXBX^{T}$$

Quadratic-Quadratic Model/Homogenized

Include Many Redundant Constraints

$$\operatorname{cut}(m) = \min_{\substack{\frac{1}{2} \text{ trace } AXBX^T \\ \text{ s.t. }}} X \circ X = x_0 X \qquad \in \{0,1\} \\ \|Xe - x_0 e\|^2 = 0 \qquad \text{row sums} = 1 \\ \|X^T e - x_0 m\|^2 = 0 \qquad \text{column sums} \\ X_{:i} \circ X_{:j} = 0, \ \forall i \neq j \qquad \text{col. elem. orth.} \\ X^T X - M = 0 \qquad \text{scaled orth.} \\ \operatorname{diag}(XX^T) - e = 0 \qquad \operatorname{unit norm rows} \\ x_0 e_n^T X e_k - n = 0 \qquad n \text{ vertices} \\ x_0^2 = 1 \qquad \qquad \operatorname{homog.}$$

- e_i is the vector of ones of dimension j; M = Diag(m).
- $u \circ v$ Hadamard (elementwise) product.

Facial Reduction, FR

Lifting/Block Appropriately/ x = vec(X)

$$Y = \begin{pmatrix} x_0 \\ x \end{pmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}^T =: \begin{bmatrix} Y_{00} & Y_{0\underline{1}:nk}^T \\ Y_{1:nk\,0} & Y \end{bmatrix},$$

$$Y_{1:nk0} := \begin{bmatrix} Y_{(10)} \\ Y_{(20)} \\ \vdots \\ Y_{(k0)} \end{bmatrix}, \quad \overline{Y} := \begin{bmatrix} \overline{Y}_{(11)} & \overline{Y}_{(12)} & \cdots & \overline{Y}_{(1k)} \\ \overline{Y}_{(21)} & \overline{Y}_{(22)} & \cdots & \overline{Y}_{(2k)} \\ \vdots & \ddots & \ddots & \vdots \\ \overline{Y}_{(k1)} & \ddots & \ddots & \overline{Y}_{(kk)} \end{bmatrix}$$

Objective

$$\frac{1}{2}\operatorname{trace} AXBX^T = \frac{1}{2}\operatorname{trace} L_AY, \text{ where } L_A := \left[\begin{array}{cc} 0 & 0 \\ 0 & B \otimes A \end{array} \right].$$

SDP Constraints (lifting/linearization)

The arrow constraint

$$\operatorname{arrow}(Y) := \operatorname{diag}(Y) - \begin{bmatrix} 0 \\ Y_{1:nk0} \end{bmatrix} = e_0,$$

e₀ first (0-th) unit vector(redundant in the final SDP relaxation)

DNN, doubly nonnegative

$$Y \in \text{DNN} \cap \{Y \in \mathbb{S}^{nk+1} : 0 \le Y \le 1\}$$

DNN is doubly nonnegative cone, i.e., intersection of positive semidefinite cone and nonnegative orthant.

SDP Constraints and FR cont...

Trace constraints (from linear equality constraints

$$\begin{aligned} &\text{trace}\, D_1\,Y = 0, \qquad D_1 := \begin{bmatrix} n & -e_k^T \otimes e_n^T \\ -e_k \otimes e_n & (e_k e_k^T) \otimes I_n \end{bmatrix}, \\ &\text{trace}\, D_2\,Y = 0, \qquad D_2 := \begin{bmatrix} m^T m & -m^T \otimes e_n^T \\ -m \otimes e_n & I_k \otimes (e_n e_n^T) \end{bmatrix}, \end{aligned}$$

 e_j vector of ones of dimension j; $D_i \succeq 0, i = 1, 2$; nullspaces of these matrices yield the facial reduction $Y = VRV^T$.

Block: trace, diagonal and off-diagonal

$$\begin{array}{lll} \mathcal{D}_t(Y) & := & \left(\operatorname{trace} \overline{Y}_{(ij)} \right) = M \in \mathbb{S}^k; \\ \mathcal{D}_d(Y) & := & \sum_{i=1}^k \operatorname{diag} \overline{Y}_{(ii)} = e_n \in \mathbb{R}^n; \\ \mathcal{D}_o(Y) & := & \left(\sum_{s \neq t} \left(\overline{Y}_{(ij)} \right)_{st} \right) = \hat{M} \in \mathbb{S}^k, \end{array}$$

where $\hat{M} := mm^T - M$.

SDP Constraints cont...

trace Y = n + 1; and Gangster constraints on Y

The Hadamard product and orthogonal type constraints lead to gangster constraints

i.e., simple constraints that restrict elements to be zero (shoot holes in the matrix) and/or restrict entire blocks.

gangster and restricted gangster constraint on Y:

$$\mathcal{G}_H(Y)=0,$$

for specific index sets *H*.

SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

$$\begin{aligned} \operatorname{cut}(m) &\geq p_{\operatorname{SDP}}^* := \min & \quad \frac{1}{2}\operatorname{trace} L_A Y \\ \text{s.t.} & \quad \operatorname{arrow}(Y) = e_0 \\ & \quad \operatorname{trace} D_1 Y = 0, \, \operatorname{trace} D_2 Y = 0 \\ & \quad \mathcal{G}_{J_0}(Y) = 0, \, Y_{00} = 1 \\ & \quad \mathcal{D}_t(Y) = M, \, \mathcal{D}_d(Y) = e, \, \mathcal{D}_o(Y) = \widehat{M} \\ & \quad Y \in \mathbb{S}_+^{kn+1} \end{aligned}$$

Equivalent FR greatly simplified SDP; with $Y = \widetilde{V}R\widetilde{V}^T$

$$\begin{array}{lll} \operatorname{cut}(\textit{m}) \geq \textit{p}_{\operatorname{SDP}}^* & = & \min & \frac{1}{2}\operatorname{trace}\left(\widetilde{\textit{V}}^T\textit{L}_{\textit{A}}\widetilde{\textit{V}}\right)\textit{R} \\ & \text{s.t.} & \mathcal{G}_{\widehat{\textit{J}}_{\mathcal{I}}}(\widetilde{\textit{V}}\textit{R}\widetilde{\textit{V}}^T) = \mathcal{G}_{\widehat{\textit{J}}_{\mathcal{I}}}(\textit{e}_0\textit{e}_0^T) \\ & \textit{R} \in \mathbb{S}_+^{(\textit{k}-1)(\textit{n}-1)+1} \end{array}$$

Primal-Dual Strong Duality (Regularity) for FR SDP

Theorem

(Generalized) slater point for the primal:

$$\widetilde{R} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & \frac{1}{n^2(n-1)}(n \operatorname{Diag}(\widehat{m}_{k-1}) - \widehat{m}_{k-1}\widehat{m}_{k-1}^T) \otimes (n l_{n-1} - E_{n-1}) \end{bmatrix} \in \mathbb{S}_{++}^{(k-1)(n-1)+1}.$$

$$Moreover. \ Robinson \ regularity \ holds.$$

The dual problem

$$\max \quad \frac{1}{2} w_{00}$$
s.t. $\widetilde{V}^T \mathcal{G}_{\widehat{J}_{\mathcal{I}}}^*(w) \widetilde{V} \preceq \widetilde{V}^T L_A \widetilde{V}$.

satisfies strict feasibility.

Motivation

Difficulties for Primal-dual interior-point Methods for SDP

- solving large problems
- obtaining high accuracy solutions
- exploiting sparsity
- adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

- FR provides a natural splitting, $Y = VRV^T$
- Flexibility in dealing with additional constraints
- separable/split optimization steps are inexpensive

Strengthen model with redundant constraint

Set Constraints

$$\mathcal{R} := \{ R \in \mathbb{S}_{+}^{(k-1)(n-1)+1} : \text{trace } R = n+1 \}, \\ \mathcal{Y} := \{ Y \in \mathbb{S}^{nk+1} : 1 \ge Y(J^c) \ge 0, \\ \mathcal{G}_{\bar{J}}(Y) = \mathcal{G}_{\bar{J}}(e_0 e_0^T) \\ \mathcal{D}_o(Y) = \widehat{M}, \ e^T Y_{(i0)} = m_i, \forall i \}$$

Strengthened model

(DNN)
$$p_{DNN}^* = \min_{\substack{1 \ \text{s.t.}}} \frac{1}{2} \operatorname{trace} L_A Y + \mathbb{1}_{\mathcal{Y}}(Y) + \mathbb{1}_{\mathcal{R}}(R)$$

where $\mathbb{1}_{\mathcal{S}}(\cdot)$ is indicator function of set \mathcal{S} .

Splitting Method

Augmented Lagrangian Function, $\mathcal{L}_{\beta}(R, Y, Z) =$

$$f_{\mathcal{R}}(R) + g_{\mathcal{Y}}(Y) + \langle Z, Y - \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} ||Y - \widehat{V}R\widehat{V}^T||^2$$

- $\beta > 0$ penalty parameter for quadratic penalty term,
- (L_s diagonally scaled objective $L_s := \frac{1}{2}L + \alpha I > 0$)

$$f_{\mathcal{R}}(R) = \mathbb{1}_{\mathcal{R}}(R), \quad g_{\mathcal{Y}}(Y) = \operatorname{trace} L_{\mathcal{S}}Y + \mathbb{1}_{\mathcal{Y}}(Y).$$

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of \mathcal{L}_{β} in the variables Y and R interlaced by an update of the Z variable.

In particular, we update the dual variable Z both after the R-update and the Y-update (both of which have unique solutions).

FRSMR, FR Splitting Method with Redundancies

- Pick any $Y^0, Z^0 \in \mathbb{S}^{nk+1}$. Fix $\beta > 0$ and $\gamma \in (0, 1)$. Set t = 0.
- For each $t = 0, 1, \ldots$, update

$$\bullet R^{t+1} = \operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{\beta}(R, Y^{t}, Z^{t})
= \operatorname{argmin}_{R} f_{\mathcal{R}}(R) - \langle Z^{t}, \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \|Y^{t} - \widehat{V}R\widehat{V}^{T}\|^{2}$$

- $\bullet Z^{t+\frac{1}{2}} = Z^t + \gamma \beta (Y^t \widehat{V}R^{t+1}\widehat{V}^T),$
- $\begin{array}{lll} \bullet Y^{t+1} & = & \operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{\beta}(R^{t+1}, Y, Z^{t+\frac{1}{2}}) \\ & = & \operatorname{argmin}_{Y} g_{\mathcal{Y}}(Y) + \langle Z^{t+\frac{1}{2}}, Y \rangle + \frac{\beta}{2} \left\| Y \widehat{V} R^{t+1} \widehat{V}^{T} \right\|^{2}, \end{array}$
- • $Z^{t+1} = Z^{t+\frac{1}{2}} + \gamma \beta (Y^{t+1} \widehat{V}R^{t+1}\widehat{V}^T).$

Global convergence

Theorem

Let $\{R^t\}$, $\{Y^t\}$ and $\{Z^t\}$ be the generated sequences from FRSMR. Then $\{(R^t, Y^t)\}$ converges to an optimal solution (R^*, Y^*) of the DNN relaxation, $\{Z^t\}$ converges to some Z^* , and (R^*, Y^*, Z^*) satisfies the optimality conditions of the DNN relaxation

$$\begin{array}{rcl} \mathbf{0} & \in & -\widehat{V}^T Z^* \widehat{V} + \mathcal{N}_{\mathcal{R}}(R^*), \\ \mathbf{0} & \in & L_s + Z^* + \mathcal{N}_{\mathcal{Y}}(Y^*), \\ Y^* & = & \widehat{V} R^* \widehat{V}^T, \end{array}$$

where $\mathcal{N}_{S}(x)$ denotes the normal cone of S at x.

1. Explicit solution for R^{t+1}

With the assumption that $\hat{V}^T\hat{V} = I$

$$R^{t+1} = \operatorname{argmin}_{R \in \mathcal{R}} - \langle Z, \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} \left\| Y^t - \widehat{V}R\widehat{V}^T \right\|^2$$
$$= \mathcal{P}_{\mathcal{R}}(\widehat{V}^T(Y^t + \frac{1}{\beta}Z^t)\widehat{V}),$$

where $\mathcal{P}_{\mathcal{R}}$ denotes the projection (nearest point) onto the intersection of the SDP cone $\mathbb{S}^{(k-1)(n-1)+1}_+$ and the hyperplane $\{R \in \mathbb{S}^{(k-1)(n-1)+1} : \operatorname{trace} R = n+1\}.$

(diagonalize; then project eigenvalues onto simplex)

2. Explicit solution of Y^{t+1}

The *Y*-subproblem yields a closed form solution by projection onto the polyhedral set \mathcal{Y} , i.e.,

$$Y^{t+1} = \operatorname{argmin}_{Y \in \mathcal{Y}} \frac{\beta}{2} \left\| Y - \widehat{V} R^{t+1} \widehat{V}^T - \frac{1}{\beta} (L_s + Z^{t+\frac{1}{2}}) \right\|^2.$$

Note that the update (projection of \tilde{Y}) satisfies e.g.,

$$(Y^{t+1})_{ij} = \begin{cases} 1 & \text{if } i = j = 0 \\ 0 & \text{if } ij \in J \setminus \{00\} \\ 0 & \text{if } ij \in J^c, \ Y_{ij} \le 0 \\ \tilde{Y}_{ij} & \text{if } ij \in J^c, \ 0 < Y_{ij}. \end{cases}$$

Lower bound from **Inaccurate** Solutions

Theorem (Fenchel Dual)

Define modified dual functional

$$g(Z) := \min_{Y \in \widetilde{\mathcal{Y}}} \langle L_s + Z, Y \rangle - (n+1) \lambda_{\max}(\widehat{V}^T Z \widehat{V}),$$

with
$$\widetilde{\mathcal{Y}} := \{ Y \in \mathbb{S}^{nk+1} : \mathcal{G}_{\widehat{J}_0}(Y) = \mathcal{G}_{\widehat{J}_0}(e_0e_0^T), \ 0 \leq \mathcal{G}_{\widehat{J}_0^C}(Y) \leq 1,$$

$$\mathcal{D}_o(Y) = \widehat{M}, \ \mathcal{D}_t(Y) = M, \ e^T Y_{(i0)} = m_i, i = 1, \dots, k \}.$$

Then

$$p_{\mathrm{DNN}}^* = d_Z^* := \max_Z g(Z),$$

and the latter (dual) problem is attained, i.e., strong duality holds.

The Lower Bound

Evaluating $g(Z^t)$ always yields a lower bound for the DNN relaxation optimal value

$$p_{\text{DNN}}^* \geq g(Z^t)$$

Upper bound from feasible solution

Approx. output Yout

- Obtain a vector $v = (v_0 \ \bar{v})^T \in \mathbb{R}^{nk+1}, v_0 \neq 0$ from Y^{Out}
- Reshape \bar{v} ; get $n \times k$ matrix X^{Out}
- Since X implies trace $X^TX = n$, a constant, we get

$$||X^{\text{out}} - X||^2 = -2 \operatorname{trace} X^T X^{\text{out}} + \operatorname{constant}.$$

Solve the linear program (transportation problem)

$$\hat{\textit{X}} \in \operatorname{argmax} \left\{ \langle \textit{X}^{\mbox{out}}, \textit{X} \rangle : \textit{Xe} = \textit{e}, \textit{X}^{\mbox{\it{T}}} \textit{e} = \textit{m}, \textit{X} \geq 0 \right\}$$

• Upper bound = $\frac{1}{2}$ trace $A\hat{X}B\hat{X}^T$

Choosing the vector *v* for *X*^{out} for upper bound

rank $Y = 1 \implies$ column/eigenvector 0 yields opt. X

- o column 0 of Yout;
- eigenvector corresponding to largest eigenvalue of Yout;
- random sampling/repeated: sum of random weighted-eigenvalue eigenvectors of Yout,

$$v = \sum_{i=1}^{r} w_i \lambda_i v_i$$

where ordered eigenpairs of Y^{out} and ordered weights; r here is the *numerical rank* of Y^{out} .

Numerical Tests

Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz) and 8GB RAM running Windows 10.

Three classes of problems:

- (a) random structured graphs (compare with Pong et al.)
- (b) partially random graphs with various sizes classified by the number of 1's, $|\mathcal{I}|$, in the vector m (similar to QAP)
- (c) vertex separator instances

Facial Reduction, FR

Lifting Linear Equality Constraint

imax	maximum size of each set									
k	number of sets									
n	number of nodes (sum of sizes of sets)									
p	density of graph									
$I = e^T m_{\text{one}}$	number of 1's in <i>m</i>									
Iters	number of iterations									
CPU	time in seconds									
Bounds	best lower and upper bounds and relative gap									
Residuals	final values of:									
	$ \left\ \begin{array}{c} Y^{t+1} - \widehat{V}R^{t+1}\widehat{V}^T \right\ (\cong \Delta Z); \\ Y^{t+1} - Y^t \ (\cong \Delta Y) \end{array} \right. $									
	$ Y^{t+1}-Y^t \ (\cong \Delta \overset{"}{Y})$									

Numerical Tests

Comparison small structured graphs with Pong et al

	Data Lo			Lower b	ounds	Upper b	ounds	Rel-	gap	Time	(cpu)
n	k	<i>E</i>	<i>u</i> ₀	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek
20	4	136	6	6	6	6	6	0.00	0.00	0.21	3.96
25	4	222	8	8	8	8	8	0.00	0.00	0.20	10.94
25	5	170	14	14	14	14	14	0.00	0.00	0.31	34.19
31	5	265	22	22	22	22	22	0.00	0.00	1.28	149.49

Numerics cont...

$\mathcal{I} = \emptyset$, Results for random graphs, mean 3 instances

	Sp	ecification	s		Iter	cpu	Bounds				duals
imax	k	n	р	- /	itei	Сри	low	up	rel-gap	prim.	dual
5	6	19.0	0.49	0	333.33	0.89	38.0	38.33	0.01	4.15e-03	6.18e-03
6	7	24.67	0.44	0	500.0	3.03	60.0	61.67	0.02	4.86e-03	8.74e-03
7	8	31.0	0.37	0	966.67	9.53	68.33	71.0	0.04	8.44e-04	3.74e-04
8	9	40.0	0.31	0	833.33	22.75	100.33	110.67	0.09	1.43e-03	6.92e-04
9	10	50.33	0.23	0	1100.0	75.26	119.67	132.33	0.09	1.53e-03	6.81e-04

$k \notin \mathcal{I} \neq \emptyset$, Results for random graphs, mean 4 instances

	S	Specification	ns		Iters	cpu		Bounds	Residuals		
imax	k	n	р	1	11013	Cpu	lower	upper	rel-gap	primal	dual
5	6	16.25	0.51	1.50	450.00	1.02	22.25	23.00	0.03	2.36e-03	1.64e-03
6	7	17.00	0.43	3.25	325.00	1.18	23.00	23.25	0.00	3.75e-02	5.90e-02
7	8	21.00	0.38	3.50	625.00	4.98	34.50	36.00	0.02	3.66e-03	1.95e-03
8	9	21.75	0.30	5.00	400.00	3.36	20.75	21.25	0.01	8.37e-02	9.51e-02
9	10	38.00	0.23	3.25	775.00	25.84	55.25	63.50	0.11	3.26e-03	1.37e-03

Numerics Cont...

$k \in \mathcal{I} \neq \mathcal{K}$, Results for random graphs, mean 5 instances

	S	Specification	ns		Iters	cpu		Bounds		Resid	duals
imax	k	n	р	ı	11013	Cpu	lower	upper	rel-gap	primal	dual
5	6	13.60	0.49	2.80	160.00	0.33	22.60	22.60	0.00	2.55e-02	3.02e-02
6	7	18.00	0.42	3.40	460.00	1.99	37.80	39.00	0.02	5.66e-02	7.10e-02
7	8	22.20	0.39	3.80	560.00	3.96	57.80	60.20	0.02	1.04e-02	1.19e-02
8	9	22.60	0.30	5.20	540.00	4.92	37.20	38.00	0.01	3.48e-02	4.29e-02
9	10	31.00	0.23	4.80	700.00	16.78	61.80	68.00	0.06	1.44e-02	1.01e-02

$\mathcal{I} = \mathcal{K}$, Results for random graphs ,mean 6 instances

	Speci	fications		Iters	Time (cpu)		Bounds	Residuals		
k	n	р	- 1	11615	Time (cpu)	lower	upper	rel-gap	primal	dual
6	6.00	0.59	6.00	100.00	0.06	4.67	4.67	0.00	5.12e-03	5.10e-03
7	7.00	0.48	7.00	100.00	0.08	5.67	5.67	0.00	8.66e-02	1.27e-01
8	8.00	0.41	8.00	150.00	0.18	7.17	7.17	0.00	2.64e-01	1.68e-01
9	9.00	0.34	9.00	233.33	0.37	7.83	8.00	0.03	1.88e-01	3.99e-02
10	10.00	0.25	10.00	266.67	0.56	7.50	7.50	0.00	6.28e-02	8.71e-02

Numerics Cont...

Table: Comparisons on the bounds for MC and bounds for the cardinality of separators

Name	n	E	m ₁	m ₂	m ₃	lower	upper	lower	upper	lower	upper	lower	upper
						MC by :	SDP ₄	MCby	ONN-final	Separato	or by SDP ₄	Separator	by DNN-final
Example 1	93	470	42	41	10	0.07	1	0	1	11	11	11	11
bcspwr03	118	179	58	57	3	0.56	1	0	2	4	5	4	5
Smallmesh	136	354	65	66	5	0.13	1	0	1	6	6	6	6
can-144	144	576	70	70	4	0.90	6	0	6	5	6	5	8
can-161	161	608	73	72	16	0.31	2	0	2	17	18	17	18
can-229	229	774	107	107	15	0.40	6	0	6	16	19	16	19
gridt(15)	120	315	56	56	8	0.29	4	0	4	9	11	9	12
gridt(17)	153	408	72	72	9	0.17	4	0	4	10	13	10	13
grid3dt(5)	125	604	54	53	18	0.54	2	0	4	19	19	19	22
grid3dt(6)	216	1115	95	95	26	0.28	4	0	4	27	30	27	31
grid3dt(7)	343	1854	159	158	26	0.60	22	0	27	27	37	27	44

Conclusion

- We discussed strategies for finding new, strengthened lower and upper bounds, for hard discrete optimization problems.
- In particular, we exploited the fact that strict feasibility fails for many of these problems and that facial reduction, FR, leads to a natural splitting approach for ADMM, sPRSM, type methods.
- The FR makes many constraints redundant and simplifies the problem. We strengthened the subproblems in the splitting by returning redundant constraints.
- A special scaling, and a random sampling provided strengthened lower and upper bounds from low approximate solutions from our approach.

References I

- K.M. Anstreicher and H. Wolkowicz, *On Lagrangian relaxation of quadratic matrix constraints*, SIAM J. Matrix Anal. Appl. **22** (2000), no. 1, 41–55.
- J.M. Borwein and H. Wolkowicz, *Characterization of optimality for the abstract convex program with finite-dimensional range*, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 4, 390–411. MR 83i:90156
- problem, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 3, 369–380. MR 83b:90121
- Regularizing the abstract convex program, J. Math. Anal. Appl. 83 (1981), no. 2, 495–530. MR 83d:90236

References II

- D. Drusvyatskiy and H. Wolkowicz, *The many faces of degeneracy in conic optimization*, Foundations and Trends[®] in Optimization **3** (2017), no. 2, 77–170.
- S. Poljak, F. Rendl, and H. Wolkowicz, *A recipe for semidefinite relaxation for* (0,1)-quadratic programming, J. Global Optim. **7** (1995), no. 1, 51–73. MR 96d:90053
- H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, International Series in Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000, Theory, algorithms, and applications. MR MR1778223 (2001k:90001)

Thanks for your attention!

Hard Combinatorial Problems, DNN Relaxations, Facial Reduction, and ADMM

Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Monday, August 3, 2020, 9:00-11:00 PM, EST at: SUFE: Shanghai University of Finance and Economics