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Outline/Background/Motivation |

@ Solving hard combinatorial/discrete optimization problems
requires: efficient upper/lower bounding techniques.

@ These problems are often modelled using quadratic
objectives and/or quadratic constraints, i.e., QQPs.

@ Lagrangian relaxations of QQPs lead to Semidefinite
Programming, SDP, and SDP relaxations, e.g., Handbook
on SDP [7].

@ SDPrelaxations are expensive to solve using interior-point
approaches. This becomes doubly expensive when cutting
planes are added, e.g., using Doubly Nonnegative, DNN,
relaxations



Outline/Background/Motivation |l

@ Strict feasibility fails for many of the SDP relaxations of
these hard combinatorial problems.
(Compare Rademacher Theorem: Loc. Lip. functions are
differentiable a.e.)
Facial reduction, FR, e.g., [2, 3, 4, 5] provides a means of
regularizing the SDP relaxations.

@ FR appears to provide a natural splitting of variables for the
application of Alternating Direction Method of Multipliers,
ADMM , type methods for large scale problems;
and for exploiting structure.

@ Classes of Problems:
Min-Cut; Maxcut; and Graph Partitioning;

and QAP,
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Hard Combinatorial Problems and Modelling
Model with Quadratic Functions; Importance of Duality

Instance /Modelling with Quadratic Functions

min  go(x) (=x"THx +297x + a)
st. Ax=0»b (linear constraint)
x € KCRN (K hard constraints)

Hard (Combinatorial) Constraints: e.g.,
@ both 0,1 and +1 modelled with quadratic const., resp.,

K :={0,1}N or K= {1}V
qi(x) ==x2—x;=0,Vi or qi(x):=x>-1=0,Vi

@ K is partition matrices, x € Mp,, (GP)

@ K is permutation matrices, x € ,, (QAP)




Can Close the Duality Gap by Changing Model

Example: (Lagrangian) Duality Gap for QP

1=p* = max{-X2+x3:x=1}
< oco=d*
= infymaxy L(X,\) = —x2 + x5 — A(x2 — 1)
BUT with a Model Change ( )
1=p" = max{—X12—|—X§: (xo—1)2=0

a* = infy maxy{—Xx2 + x5 — \(x2 — 1)}
since stationarity and the Lagrangian function value satisfy:

0=2x—2\(xo — 1) = XZZ%—)'I;
pe ) 1 A
(A—1)2 A—1)2  X-1

L(x,\) = x5 — \(xz — 1)? = — 1

v
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Further Example: Close Duality Gap

0 2 0 4 10

10 = p* = min trace AXBXT
st. XXT =1 X eRM™"n

wrgog Y ]

@ L(X,S) =trace AXBXT +trace S(XXT —1),S € 8"
trace AXBXT = xT(B® A)x, x = vec X

L i I: * = inL(X,S

agrangian dua d sné?g)ﬁ min (X,S)

10=p*>9=d"= max —traceS
st. BRA+I®S>=0, Se&”

0

where B A = = Sy1>-3,S» > -6

OO oW
O oo o
o

0 O O O
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Change Model; Add Redundant Constraint;
Increase Number of Lagrange Dual Multipliers

Duplicate orthogonality constraint

Add: X7 X = I closes duality gap by exploiting the new
Lagrange multipliers in T € S"

10=p*=10=d*= max trace—-S—-T
st. BeA+I®S+T®I>0,

Theorem (Anstreicher, W. 95, [1])
Strong duality holds for

min trace AXBXT
st XXT = I,XTX: I, X € R™"




QP: Obtain Strong Duality in General?
A Modelling Issue

HeS", A, mxn,m< n, Kcompact

Theorem (Poljak, Rendl, W. '95, [6])

p* maxy {Qo(X) :=x"Hx +29"x+a:Ax=b,x € K}
— maxx {Go(x): |Ax — b2 =0,x € K}

~ @ ~[mimby

where the dual functional is:

H(A) = max L(x,\) := qo(x) — \||Ax — b]|?

xeK

Ol

Summary: To strengthen the Lagrangian dual

@ linear constraints Ax — b = 0 to quadratic ||Ax — b||> =0
@ Add redundant constraints
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Model with Quadratics Details;
Homogenize, and Lift to Matrix Space

Homogenize using X € R with x5 —1 =10

min go(x, Xo) = X" Hx + 297 xxo + ax3
Ax—b=0 = |[Ax—bx|5=0

Lifting (linearization): RN+T _, SN+

y = <)>(?> Y =yyT eslt! symmetric, psd, Yoo =1

T T
obj. fn. yT {a 9 ] =t [a 9
] y g y = trace g

H H} Y, rank (Y) =1

Relaxation to Convex Problem:
Discard the (hard) rank one constraint on Y
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Lifting

Lifting Linear Equality Constraint

0 = ||Axbxoy|§:H[—b Al <X°>

- () [l alz)
”AHTb _AbTAA] y=0

2

= trace |:

Exposing Vector, W € SQ’“, with spectral decomp., and FR

b2 —bTA 0 0 r .
W= DAHTb ATA] = U {o D} [V U, Desi

Y feasible — YW =0 (Strictfeasibility (Slater) fails)
= Y=VRVT Res (facial reduction)

v
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Hard Discrete Constraints

Zero-One; Homogenize with Xp, x2 — 1 =0

qi(X, Xo) := X2 — Xixo = 0, Vi

Lifting (linearization): RN+T _, SN+

y = <)>(?> Y =yy" eslt!, symmetric, psd, Yoo =1

constr. for {0,1}: arrow(Y) = gy := G)) € RM1

(diag (Y) = Y.0)

Adjoint: Arrow = arrow*
(Arrow(v), S) = (v,arrow(S)), Vv € RMN1 vS e s+
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Splitting Methods and Facial Reduction, FR

Natural Splitting? Y e P, Re S/
Y = VRVT

YepcsVt',  ReS,, r<N+1

Facial reduction generally provides a reduction in dimension
and a guarantee that strict feasibility holds.
There is a natural separation of constraints where

Y € P polyhedral R € S, sdp cone




Instance: Minimum Cut, MC, Problem

Given: Undirected Graph G = (V,€)

edge set £ and node set |V| =n
m=(mymy ... m)T, S-K. m; = n; given partition into k sets

| A

MC Problem:
partition vertex set V into k subsets with given sizes in m
to minimize the cut after removing the k-th set;

Applications

re-orderings for sparsity patterns; microchip design and circuit board,
floor planning and other layout problems.

(k = 3, vertex separator problem)

| \
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(Graph Partitioning) Model for Min. Cut, MC

Notation
A adjacency matrix of graph G = (V, €)
e ones vector, E = ee”

5 [E—lk_1 o} C sk

0 0

m=(my,...,mg)" € ZK k > 2, set sizes
n=|V|=m'e.
S={S5y,S,,...,S} partition of vertex set, |S;| = m; > 0,Vi

M = Diag (m), (m = Diag *(M) = diag (M))




Construct a Quadratic Program/Model for MC

@ the set of edges between two sets of nodes
8(5,S5) ={uvef:ue S, ve S}
@ cut of a partition S
§(8) =u{d(S;,S) : 1<i<j<k—-1}
@ the set of partition matrices (cols of incidence vectors)
Mm={XeR™k: Xe=e, XTe=m, X; € {0,1}}

Xij:{1 ifi e S;

0 otherwise.
@ objective of MC: minimize cardinality of the cut |6(S)|:

cut(m) = min Jtrace AXBXT
s.t. X € Mpm,




Quadratic-Quadratic Model/Homogenized

Include Many Redundant Constraints

cut(m) = min J}trace AXBXT

st XoX=xX e {0,1}
|1 Xe — xpe||> =0 row sums = 1
| XTe— xomH2 =0 column sums
XjoX;=0,Vi#j col elem. orth.
XTX-M=0 scaled orth.
diag (XXT) — e =0 unit norm rows
Xoef Xex —n=0  nvertices
X8 =1 homog.

@ ¢ is the vector of ones of dimension j; M = Diag (m).
@ uo v Hadamard (elementwise) product.



Facial Reduction, FR

Lifting/Block Appropriately/ x = vec (X)

- () -

Yoo Yolnk
Yi.nko Y

(11) (12)
(21) (22) (2K)

Y(10)
Y(20)

<| <|
<| <]

Yi.nko i= Y =

I

Yo > . -
(0 MR

4

Objective

0 0
0 BA |

%trace AXBXT = %trace LY, where Ly := [

v
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SDP Constraints (lifting/linearization)

The arrow constraint

arrow(Y) := diag(Y) — [Y 0 } = €,
1:nk 0

g first (0-th) unit vector
(redundant in the final SDP relaxation)

DNN, doubly nonnegative

YEDNN N{Yes* ! .0<Y <1}

DNN is doubly nonnegative cone, i.e., intersection of positive
semidefinite cone and nonnegative orthant.




SDP Constraints and FR cont. ..

Trace constraints (from linear equality constraints

— ol & al
trace D1Y =0, Dy = [ n ekT® €n ] 7
—ex®en (exer)®In

T —mT T
trace D, Y = 0, D5 ::[ m-m m ®e”]

-mee, ko (enel)’
e; vector of ones of dimension j; D; = 0,/ = 1,2; nullspaces of
these matrices yield the facial reduction Y = VRV

Block: trace, diagonal and off-diagonal
DY) = (trace Y(,.j)) = M ¢ sk;
Dy(Y) = Y diag¥; =encR"
DoY) 1= (Zeut (Yip),,) = M "

where M := mm” — M.




SDP Constraints cont. ..

trace Y = n+ 1; and Gangster constraints on Y

The Hadamard product and orthogonal type constraints lead to
gangster constraints

i.e., simple constraints that restrict elements to be zero (shoot
holes in the matrix) and/or restrict entire blocks.
gangster and restricted gangster constraint on Y:

gH(Y) = 07

for specific index sets H.
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SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

cut(m) > pipp :=min  JtraceLY
s.t. arrow(Y) =g
traceD;Y =0, traceD,Y =0
Gp(Y)=0, Yoo =1 R
Di(Y) = M, Dy(Y) = &, Do(Y) = M
Y S{(&-HJH

Equivalent FR SDP; with Y = VRVT

cut(m) > p§pp = min %trace (VTLAV) R
S.t. ng(VRVT) = g/jz(eoeg)
R e s+
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Primal-Dual Strong Duality (Regularity) for FR SDP

@ (Generalized) slater point for the primal:
1 0

B (k=1)(n—=1)+1_

SN

0 ‘ m("Diag(mk—” — Pk 1Mf_ 1) ® (nlp_1 — Eq_y)

Moreover, Robinson regularity holds.
© The dual problem

1
max §W00

st VTG (w)V < VTLaV.
T

satisfies strict feasibility.
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Motivation

Difficulties for Primal-dual interior-point Methods for SDP

@ solving large problems

@ obtaining high accuracy solutions

@ exploiting sparsity

@ adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

@ FR provides a natural splitting, Y = VRVT
@ Flexibility in dealing with additional constraints
@ separable/split optimization steps are inexpensive

24



Strengthen model with redundant constraint

Set Constraints

R ={Re ng(_”(n_”“ straceR=n—+1},
Yi={Yes™:1> v >0,
G3(Y) = F3(e0eg)
Do(Y) = M, €7 Y0y = m;, Vi}

Strengthened model

Piwy = min StraceLaY + 1y(Y) + 1x(R)

(DNN) st. Y =VRVT,

where 15(-) is indicator function of set S.
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Splitting Method

Augmented Lagrangian Function, L3(R,Y,Z) =

= 1o(R) + gp(Y) +(2.Y ~ VRVT) + 4|l - VRVTH2

@ [ > 0 penalty parameter for quadratic penalty term,
@ (Ls diagonally scaled objective Ls := 3L + al = 0)

fR(FI’) = ILR(FI,), gy(Y) =tracelsY + ﬂy(Y).

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of Lz in the variables Y and R
interlaced by an update of the Z variable.

In particular, we update the dual variable Z both after the
R-update and the Y-update (both of which have unique
solutions).

26



FRSMR, FR Splitting Method with Redundancies

@ Pick any Y0, 20 ¢ s"™+1 Fix 8 > 0and v € (0,1). Set
t=0.

@ Foreacht=0,1,..., update

.Ri+1

argminger L5(R, Y, ZY)

= argming f(R) — (2, VAVT) + 5| v - VRVTHZ
oZit2 = ZUyyB(Y!— VRV,
oY = argminycy L5(R™, Y, ZH%)

= argminy gy(Y) + (ZHz,Y) + g” Y — VR VTHZ,
o1 — Ztt} +AB(YHT — VR VT).
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Global convergence

Theorem

Let {R'}, {Y'} and {Z'} be the generated sequences from
FRSMR. Then {(R!, Y!)} converges to an optimal solution
(R*, Y*) of the DNN relaxation, {Z'} converges to some Z*,
and (R*, Y*, Z*) satisfies the optimality conditions of the
DNN relaxation

0 € —VTZ*V+Nx(RY),
0 € Ls+2Z*+Ny(Y*),
Y* = VRV,

where Ns(x) denotes the normal cone of S at x. O
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1. Explicit solution for R

With the assumption that V7V = |/

- o~ 12
R = argminper —(Z, VRVT) + gH yt— VF?VTH
=Pr(VT(Yt+124V),
where P denotes the projection (nearest point) onto the

intersection of the SDP cone ng"”(”’”“ and the hyperplane
{R e Sk=1(=1+1 - trace R=n+1}.

(diagonalize; then project eigenvalues onto simplex)
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2. Explicit solution of Y'*!

The Y-subproblem yields a closed form solution by projection
onto the polyhedral set ), i.e.,

Y —|VRHIVT — 1(Lg 4 Z3)

YT = argminycy, 2

Note that the update (projection of ¥) satisfies e.g.,

1 ifi=j=0
0 ifjj € J\{00}

0 ifjjeds, ¥;<0
Y, ifijeJc, 0<Yj.
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Lower bound from Inaccurate Solutions

Theorem (Fenchel Dual)

Define modified dual functional

9(2) == miny 5 (Ls+ Z,Y) = (n+ DAmax( VT ZV),
with ) =

(v e skt 95, (") = ggo(eerT), 0< gjg(v) <1,

Do(Y) = M, Dy(Y) = M, T Vo) = mj,i =1,..., K}.

Then
Ponn = dz = mZaxg(Z),

and the latter (dual) problem is attained, i.e., strong duality
holds. O]

The Lower Bound

Evaluating g(Z!) always yields a lower bound for the
DNN relaxation optimal value

Py = 9(ZY)
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Upper bound from feasible solution

Approx. output YOUt

@ Obtain a vector v = (vo )T € R™+1, vy £ 0 from YOU

@ Reshape ¥; get n x k matrix XOUt

@ Since X implies trace XTX = n, a constant, we get
2
HXOUt - XH — _2trace XTXOUt | constant.
@ Solve the linear program (transportation problem)

X € argmax {(XOUt,X> Xe=e,XTe=mX> o}

@ Upper bound = } trace AXBXT
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Choosing the vector v for X°! for upper bound

rank Y =1 = column/eigenvector 0 yields opt. X

@ column 0 of Yout:
@ ceigenvector corresponding to largest eigenvalue of Y°Uut;
© random sampling/repeated: sum of random
weighted-eigenvalue eigenvectors of YU,
v=>"_ Wi\,
where ordered eigenpairs of Y°U and ordered weights; r
here is the numerical rank of Y°Ut. |
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Numerical Tests

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz)
and 8GB RAM running Windows 10.

Three classes of problems:

(a) random structured graphs (compare with Pong et al.)

(b) partially random graphs with various sizes classified by the
number of 1’s, |Z|, in the vector m (similar to QAP)

(c) vertex separator instances
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Facial Reduction, FR

Lifting Linear Equality Constraint

Table: Data terminology

imax maximum size of each set
k number of sets
n number of nodes (sum of sizes of sets)
p density of graph
| = e"mgne | NnUMber of 1°s in m
Iters number of iterations
CPU time in seconds
Bounds best lower and upper bounds and relative gap
Residuals | final values of:
Yyt _ VRHIVT|| (=2 AZ);
yt+1 _ yt” (g AY)
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Numerical Tests

Comparison small structured graphs with Pong et al

Data Lower bounds Upper bounds Rel-gap Time (cpu)
n| k| |E|| u || FRSMR | Mosek | FRSMR | Mosek | FRSMR | Mosek | FRSMR | Mosek
20| 4136 | 6 6 6 6 6 0.00 0.00 0.21 3.96
25|14 1222 | 8 8 8 8 8 0.00 0.00 0.20 | 10.94
25|5|170 | 14 14 14 14 14 0.00 0.00 0.31 | 34.19
31| 5| 265 |22 22 22 22 22 0.00 0.00 1.28 | 149.49
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Numerics cont...

7 = (), Results for random graphs, mean 3 instances

Specifications ter cpu Bounds Residuals
imax k n I T Tow up rel-gap prim. duarl
5 6 19.0 0.49 0 333.33 0.89 38.0 38.33 0.01 4.15e-03  6.18e-03
6 7 24.67 044 0 500.0 3.03 60.0 61.67 0.02 4.86e-03  8.74e-03
7 8 31.0 037 0 966.67 9.53 68.33 71.0 0.04 8.44e-04  3.74e-04
8 9 40.0 0.31 0 833.33 22.75 100.33 110.67 0.09 1.43e-03  6.92e-04
9 10 50.33 0.23 0 1100.0 75.26 119.67 132.33 0.09 1.53e-03  6.81e-04

v

k ¢ T +# (), Results for random graphs, mean 4 instances

Specifications Bounds Residuals
imax k - n P 1 i cpu Tower upper rel-gap primal ual
5 6 16.25 0.51 1.50 450.00 1.02 22.25 23.00 0.03 2.36e-03 1.64e-03
6 7 17.00 0.43 3.25 325.00 1.18 23.00 23.25 0.00 3.75e-02 5.90e-02
7 8 21.00 0.38 350 | 625.00 4.98 3450  36.00 0.02 3.66e-03 1.95e-03
8 9 2175 030 5.00 | 400.00 3.36 20.75  21.25 0.01 8.37e-02  9.51e-02
9 10 38.00 0.23 3.25 775.00 25.84 55.25 63.50 0.11 3.26e-03 1.37e-03

y

7




Numerics Cont...

k € T # K, Results for random graphs,mean 5 instances

Specifications . cpu Bounds Residuals
imax k n I T Tower upper rel-gap primal ual
5] 6 13.60 0.49 2.80 160.00 0.33 22.60 22.60 0.00 2.55e-02 3.02e-02
6 7 18.00 042  3.40 | 460.00 1.99 37.80  39.00 0.02 5.66e-02  7.10e-02
7 8 22.20 0.39 3.80 560.00 3.96 57.80 60.20 0.02 1.04e-02 1.19e-02
8 ¢ 22.60 0.30 5.20 540.00 4.92 37.20 38.00 0.01 3.48e-02 4.29e-02
9 10  31.00 023 4.80 | 700.00 16.78 | 61.80  68.00 0.06 1.44e-02 1.01e-02
i
7 = K, Results for random graphs ,mean 6 instances
. Specifications e Time (cpu) Bounds Residuals
n P I Tower upper rel-gap primal dual
6 6.00 0.59 6.00 100.00 0.06 4.67 4.67 0.00 5.12e-03  5.10e-03
7 7.00 0.48 7.00 100.00 0.08 5.67 5.67 0.00 8.66e-02 1.27e-01
8 8.00 0.41 8.00 150.00 0.18 717 717 0.00 2.64e-01 1.68e-01
9 9.00 0.34 9.00 233.33 0.37 7.83 8.00 0.03 1.88e-01 3.99e-02
10 10.00 0.25 10.00 | 266.67 0.56 7.50 7.50 0.00 6.28e-02  8.71e-02

y
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Numerics Cont...

Table: Comparisons on the bounds for MC and bounds for the
cardinality of separators

Name n 1E] my my mg lower upper lower upper lower upper lower upper

MCby SDP, MCby final eparator by SDP eparator by final
Example 1 93 470 42 41 10 0.07 1 0 1 i 11 11 1
bcspwr03 118 179 58 57 3 0.56 1 0 2 4 5 4 5
Smallmesh 136 354 65 66 5 0.13 1 0 1 6 6 6 6
can-144 144 576 70 70 4 0.90 6 0 6 5 6 5 8
can-161 161 608 73 72 16 0.31 2 0 2 17 18 17 18
can-229 229 774 107 107 15 0.40 6 0 6 16 19 16 19
gridt(15) 120 315 56 56 8 0.29 4 0 4 9 1 9 12
gridt(17) 153 408 72 72 9 017 4 0 4 10 13 10 13
grid3dt(5) 125 604 54 53 18 0.54 2 0 4 19 19 19 22
grid3dt(6) 216 1115 95 95 26 0.28 4 0 4 27 30 27 31
grid3dt(7) 343 1854 159 158 26 0.60 22 0 27 27 37 27 44
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Conclusion

@ We discussed strategies for finding new, strengthened
lower and upper bounds, for hard discrete optimization
problems.

@ In particular, we exploited the fact that strict feasibility fails
for many of these problems and that facial reduction, FR,
leads to a natural splitting approach for ADMM, sPRSM,
type methods.

@ The FR makes many constraints redundant and simplifies
the problem. We strengthened the subproblems in the
splitting by returning redundant constraints.

@ A special scaling, and a random sampling provided
strengthened lower and upper bounds from low
approximate solutions from our approach.
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