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Outline

The Barvinok-Pataki bound provides an upper bound on
the rank of extreme points of a spectrahedron
(intersection of SDP cone Sn

+ and a linear manifold)
bound depends solely on algebra of problem: triangular
number of the rank r ,

t(r) ≤ m, the number of affine constraints.
We provide a strengthened upper bound on rank using the
singularity degree of the spectrahedron.
Thus we bring in the geometry and stability of the
spectrahedron, i.e., paradox?:

increased instability, as seen by higher singularity de-
gree, yields a lower, strengthened rank bound.
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Background/Notation

Semidefinite programming, SDP , over symmetric matrices

p∗ = min
X∈Sn

f (X ) (f : Sn → R)

s.t. A(X ) = b (∈ Rm)
X � 0 (X ∈ Sn

+)

(1)

the spectrahedron (feasible set/intersection of an affine set
and the positive semidefinite cone) is:

F = {X � 0 : A(X ) = b}.

onto linear map A : Sn → Rm; A(X ) = (〈Ai ,X 〉)i ∈ Rm;
where Ai ∈ Sn , i ∈ {1, . . . ,m}, 〈Ai ,X 〉 = trace(AiX ).
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Applications

Having an upper bound, rank (X ) ≤ r , ∀X ∈ F}, is useful in
many applications, e.g.,

splitting methods where a projections onto the psd cone Sn
+

is one of the subproblems;
one can cheat on projection onto Sn

+ and apply the
Eckart-Young Theorem and obtain the nearest psd matrix
rank ≤ r .
low rank SDP algorithms, e.g., [3, Burer-Monteiro ’05],
where the variable X with X � 0 is replaced by VV T where
V ∈ Rn×r , thus reducing the number of unknowns
triangular number t(n) = n(n + 1)/2← nr .
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Recall

Definition (F is a face of C, F E C)
A nonempty convex subset F of a convex set C is a face of C, if
x , y ∈ C, λ ∈ (0,1), λx + (1− λ)y ∈ F =⇒ x , y ∈ F .

Properties
an intersection of faces is a face (for minimal face)
a face of a face is a face (for FR algorithm)
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Known Bounds I

Theorem ([4, Pataki, ’98, Theorem 2.1])

Suppose that X ∈ F, where F is a face of the feasible set F .
Let d = dimF, r = rank X. Then

t(r) ≤ m + d . (2)

Application: Extreme points; (Barvinok-Pataki bound)
Given the number of constraints is m, (2), gives an upper bound
on the rank of a solution.
E.g., extreme points X : dim(face({X})) = 0 =⇒

t(rank (X )) ≤ m, for all extreme points X ∈ F . (3)
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Known Bounds II

Theorem ([1, Barvinok, 2001, Theorem 1.1])

Let L ⊂ Sn be an affine manifold such that the intersection
F = Sn

+ ∩ L 6= ∅ and codimL ≤ t(r + 1)− 1 for some
nonnegative integer r . Then there exists X ∈ F such that
rank X ≤ r .

Remark

There exists X ∈ F with rank (X ) ≤ b
√

8m+1−1
2 c. We may obtain

an equivalent bound by defining the smallest r ∈ N satisfying(r+2
2

)
> m. Therefore if we have

(r+2
2

)
− 1 ≥ m, where m is the

number of linearly independent constraints, we obtain the
statement in the theorem.
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Known Bounds III

Theorem ([1, Barvinok, 2001, Theorem 1.2])

Let r > 0,n ≥ r + 2. Let L ⊂ Sn be an affine manifold such that
the intersection F = Sn

+ ∩ L 6= ∅ and bounded, and
codimL = t(r + 1), for some nonnegative integer r . Then there
exists X ∈ F such that rank X ≤ r .

Remark; bounded spectrahedron case

Given triple (r ,m,n), where r is upper bound on target rank;
m =

(r+2
2

)
is the number of linearly independent constraints;

and the embedding space Sn satisfies n ≥ r + 2 ≥ 3.
Then there exists a point X ∈ F such that rank (X ) ≤ r .
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Facial Reduction, FR, [2, Borwein-W 1981]

Minimal Face of C ⊆ Sn
+, face(C)

face(C) is the intersection of all faces containing C.

face F is exposed if it is the intersection of Sn
+ and a

hyperplane: F = Sn
+ ∩ Z⊥, for some Z ∈ Sn

+

vector Z is called an exposing vector of F and it is maximal
if it is of the highest rank over all exposing vectors.
FR is a process of identifying the minimal face of Sn

+

containing the affine set {X : A(X ) = b}. Since Sn
+ is

facially exposed, the process can be characterized as
identifying an exposing vector.
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Theorem of the Alternative

For the feasible constraint system for F , exactly one of the
following statements holds:

1 There exists X � 0 such that A(X ) = b,
2 There exists y ∈ Rm such that

(0 6= Z =) A∗(y) ∈ Sn
+ \ {0}, 〈b, y〉 = 0. (4)

Pseudo Code for Facial Reduction Algorithm

REQUIRE: data (A,b) for affine set {X : A(X ) = b}
WHILE: 6 ∃X � 0 satisfying A(X ) = b

find an exposing vector Z
compute V such that Range(V ) = Null(Z )

A ← AV (·) := A(V (·)V T )

ENDWHILE
OUTPUT: face(F) = VSr

+V T , V a facial vector,
substitute X � 0← VRV T ,R � 0
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Dimension AND Constraint Reduction

The dimension is reduced n← r , face(F) = VSr
+V T .

And constraint reduction:

Lemma

At least one linear constraint of the SDP becomes redundant
after each step of FR.

Proof.
Let Z = A∗(y) be the exposing vector satisfying the system (4).
Let V be a minimal facial vector satisfying
Null(A∗(y)) = Range(V ). Clearly,
V TA∗(y)V =

∑m
i=1 yiV T AiV = 0. After the reduction the

constraints have the form trace(V T AiVX ) = bi , ∀i . Since
y ∈ Rm is a nonzero vector, the matrices in {V T AiV}i=1,...,m are
not linearly independent.
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Hölder Regularity; Singularty Degree, sd (F)

Definition (Hölder regularity (projections))

A,B closed convex sets are γ-Hölder regular, if for any compact
set U, ∃c > 0 such that:
dist(x ,A ∩ B) ≤ c (distγ(x ,A) + distγ(x ,B)) ,∀x ∈ U
(and add displacement vector in)

Definition ( [7, Sturm 2000] [6])
Given a spectrahehedron F , the singularity degree of F ,
denoted by sd (F), is the smallest number of facial reduction,
FR, steps for finding face(F).

Theorem ( [7, Sturm error bound 2000])

F is (1/(2sd(F)))-Hölder regular with displacement.

sd (F) ≤ 1 if F = L ∩ P, P polyhedral cone (e.g. LP)
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Two Lemmas

Lemma (Bound on singularity degree [5,6])

Let F be a nonempty spectrahedron such that F 6= {0}. Then
the singularity degree of F satisfies the following bound:

sd (F) ≤ min{n − 1,m}.

Lemma (rank of feasible points unchanged after FR)

Let V ∈ Rn×r be a minimal facial vector containing the set
F := {X � 0 : A(X ) = b}, i.e., VSr

+V T ⊇ F . Then, for VRV T

feasible, we have rank (VRV T ) = rank (R).
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Main Result

Theorem
(A strengthened Barvinok-Pataki bound) Suppose that the
singularity degree of the nonempty spectrahedron F satisfies
s = sd (F) > 0. Then there exists a point X ∈ F with
r = rank (X ) that satisfies

t(r) ≤ min{t(n − s),m − s}. (5)

Corollary

Let s = sd (F). Then there exists a solution X ∈ F such that

rank (X ) ≤

⌊√
1 + 8min{t(n − s) , m − s}

2
− 1

⌋
.
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Conclusion

given spectrahedron F = {X � 0 : A(X ) = b ∈ Rm}
Barvinok-Pataki bound: exists X ∈ F s.t. rank (X ) = r and
t(r) ≤ m.
our strengthened bound uses singularity degree sd (F)

t(r) ≤ min {t(n − sd (F)), m − sd (F)} ≤ m.

important applications exist for existence of low rank
solutions
many open questions arise on understanding singularity
degree and:
complexity of feasible solutions; projections onto faces of
cones; singularity degree and strength of SDP relaxations;
...
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