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Outline/Background/Motivation I

Solving hard combinatorial/discrete optimization problems
requires: efficient upper/lower bounding techniques.

These problems are often modelled using quadratic
objectives and/or quadratic constraints, i.e., QQPs.

Lagrangian relaxations of QQPs lead to Semidefinite
Programming, SDP, and SDP relaxations, e.g., Handbook
on SDP [10].

SDP relaxations are expensive to solve using interior-point
approaches. This becomes doubly expensive when cutting
planes are added, e.g., using Doubly Nonnegative, DNN,
relaxations
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Outline/Background/Motivation II

Strict feasibility fails for many of the SDP relaxations of
these hard combinatorial problems.
(Compare Rademacher Theorem: Loc. Lip. functions are
differentiable a.e.)
Facial reduction, FR , e.g., [2,3,4,5] provides a means of
regularizing the SDP relaxations.

FR appears to provide a natural splitting of variables for the
application of Alternating Direction Method of Multipliers,
ADMM , type methods for large scale problems;
and for exploiting structure.

Classes of Problems:
Min-Cut; Maxcut; and Graph Partitioning;

and QAP,
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Hard Combinatorial Problems and Modelling
with Quadratic Functions; Importance of Duality

Instance /Modelling with Quadratic Functions

min q0(x) (= xT Hx + 2gT x + α)
s.t. Ax = b (linear constraint)

x ∈ K ⊆ RN (K hard constraints)

Hard (Combinatorial) Constraints: e.g.,
both 0,1 and ±1 modelled with quadratic const., resp.,

K := {0,1}N or K := {±1}N
qi(x) := x2

i − xi = 0, ∀i or qi(x) := x2
i − 1 = 0, ∀i

K is partition matrices, x ∈Mm, (GP )
K is permutation matrices, x ∈ Πn, (QAP )
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Can Close the Duality Gap by Changing Model

Example: (Lagrangian) Duality Gap for QP

1 = p∗ = max{−x2
1 + x2

2 : x2 = 1}
< ∞ = d∗

= infλ maxx L(x , λ) = −x2
1 + x2

2 − λ(x2 − 1)

BUT with a Model Change (same problem)

1 = p∗ = max
{
−x2

1 + x2
2 : (x2 − 1)2 = 0

}
= d∗ = infλ maxx{−x2

1 + x2
2 − λ(x2 − 1)2}

since stationarity and the Lagrangian function value satisfy:

0 = 2x2 − 2λ(x2 − 1) =⇒ x2 =
λ

λ− 1
→ 1;

L(x , λ) = x2
2 − λ(x2 − 1)2 =

λ2

(λ− 1)2 − λ
1

(λ− 1)2 =
λ

λ− 1
→ 1
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Further Example: Close Duality Gap

Let A =

[
1 0
0 2

]
, B =

[
3 0
0 4

]
, X ∗ =

[
0 1
1 0

]
10 = p∗ = min trace AXBX T

s.t. XX T = I, X ∈ Rn×n

L(X ,S) = trace AXBX T + trace S(XX T − I),S ∈ Sn

trace AXBX T = xT (B ⊗ A)x , x = vec X

Lagrangian dual: d∗ = max
S∈Sn

min
X

L(X ,S)

10 = p∗ > 9 = d∗ = max − trace S
s.t. B ⊗ A + I ⊗ S � 0, S ∈ Sn

where B ⊗ A =


3 0 0 0
0 6 0 0
0 0 4 0
0 0 0 8

 =⇒ S11 ≥ −3,S22 ≥ −6
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Change Model; Add Redundant Constraint;
Increase Number of Lagrange Dual Multipliers

Duplicate orthogonality constraint

Add: X T X = I closes duality gap by exploiting the new
Lagrange multipliers in T ∈ Sn

10 = p∗ = 10 = d∗ = max trace−S − T
s.t. B ⊗ A + I ⊗ S + T ⊗ I � 0,

Theorem (Anstreicher, W. ’95, [1])
Strong duality holds for

min trace AXBX T

s.t. XX T = I,X T X = I, X ∈ Rn×n
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QP: Obtain Strong Duality in General?
A Modelling Issue

H ∈ Sn , A, m × n,m < n, K compact

Theorem (Poljak, Rendl, W. ’95, [8])

p∗ = maxx {q0(x) := xT Hx + 2gT x + α : Ax = b, x ∈ K}
= maxx {q0(x) : ‖Ax − b‖2 = 0, x ∈ K}
= d∗ = minλ φ(λ)

where the dual functional is:

φ(λ) := max
x∈K

L(x , λ) := q0(x)− λ‖Ax − b‖2

Summary: To strengthen the Lagrangian dual

linear constraints Ax − b = 0 to quadratic ‖Ax − b‖2 = 0
Add redundant constraints
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Model with Quadratics Details;
Homogenize, and Lift to Matrix Space

Homogenize using x0 ∈ R with x2
0 − 1 = 0{

min q0(x , x0) = xT Hx + 2gT xx0 + αx2
0

Ax − b = 0 ∼= ‖Ax − bx0‖22 = 0

Lifting (linearization): RN+1 → SN+1

y =

(
x0
x

)
, Y = yyT ∈ SN+1

+ , symmetric, psd, Y00 = 1

obj. fn. yT
[
α gT

g H

]
y = trace

[
α gT

g H

]
Y , rank (Y ) = 1

Relaxation to Convex Problem:
Discard the (hard) rank one constraint on Y
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Lifting with QQP and FACIAL REDUCTION

Lifting Linear Equality Constraint

0 = ‖Ax − bx0‖22 =

∥∥∥∥[−b A
](x0

x

)∥∥∥∥2

2

=

(
x0
x

)T [−bT

AT

] [
−b A

](x0
x

)
= trace

[
‖b‖2 −bT A
−AT b AT A

]
Y = 0

EXPOSING VECTOR W ∈ SN+1
+ , with: spectr. decomp., FR

W :=

[
‖b‖2 −bT A
−AT b AT A

]
=
[
V U

] [0 0
0 D

] [
V U

]T
, D ∈ SN+1−r

+

Y feasible =⇒ YW = 0 (Strict feasibility (Slater) fails)
=⇒ Y = VRV T , R ∈ Sr

+ (facial reduction)

11



Hard Discrete Constraints

Zero-One; Homogenize with x0, x2
0 − 1 = 0

qi(x , x0) := x2
i − xix0 = 0, ∀i

Lifting (linearization): RN+1 → SN+1

y =

(
x0
x

)
, Y = yyT ∈ SN+1

+ , symmetric, psd, Y00 = 1

constr. for {0,1}: arrow(Y ) = e0 :=

(
1
0

)
∈ Rn+1

(diag (Y ) = Y:,0)

Adjoint: Arrow ∼= arrow∗

〈Arrow(v),S〉 = 〈v , arrow(S)〉, ∀v ∈ RN+1,∀S ∈ SN+1
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Splitting Methods, Facial Reduction, FR

Natural Splitting? Y ∈ P, R ∈ R ⊆ Sr
+ Y = VRV T

Y ∈ P ⊂ SN+1
+ , R ∈ R ⊆ Sr

+, r < N + 1

Facial reduction generally provides a reduction in dimension
and a guarantee that strict feasibility holds.
There is a natural separation of constraints where

Y ∈ P polyhedral R ∈ R convex set

Adding Redundant Constraints Back
FR results in many constraints becoming redundant; and
these are deleted for e.g., interior-point methoods.
However, after the splitting, many of the redundant
constraints can be added back to the separate split
problems to form sets P,R.
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Instance: Minimum Cut, MC, Problem

Given: Undirected Graph G = (V, E)

edge set E and node set |V| = n
m = (m1 m2 . . . mk )T ,

∑k
i=1 mi = n; given partition into k sets

MC Problem:
partition vertex set V into k subsets with given sizes in m
to minimize the cut after removing the k -th set;
X is the unknown 0,1 partition matrix.

Applications
re-orderings for sparsity patterns; microchip design and circuit board,
floor planning and other layout problems.
(k = 3, vertex separator problem)
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Quadratic-Quadratic Model/Homogenized

Include Many Redundant Constraints

cut(m) = min 1
2 trace AXBX T

s.t. X ◦ X = x0X ∈ {0,1}
‖Xe − x0e‖2 = 0 row sums = 1∥∥X T e − x0m

∥∥2
= 0 column sums

X:i ◦ X:j = 0, ∀i 6= j col. elem. orth.
X T X −M = 0 scaled orth.
diag (XX T )− e = 0 unit norm rows
x0eT

n Xek − n = 0 n vertices
x2

0 = 1 homog.

ej is the vector of ones of dimension j ; M = Diag (m).
u ◦ v Hadamard (elementwise) product.
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SDP Constraints, FR and Exposing Vectors

Trace constraints (from linear equality constraints

trace D1Y = 0, D1 :=

[
n −eT

k ⊗ eT
n

−ek ⊗ en (ekeT
k )⊗ In

]
,

trace D2Y = 0, D2 :=

[
mT m −mT ⊗ eT

n
−m ⊗ en Ik ⊗ (eneT

n )

]
,

ej vector of ones of dimension j ; Di � 0, i = 1,2; nullspaces of
these matrices yield the facial reduction Y = VRV T .

Block: trace, diagonal and off-diagonal

Dt (Y ) :=
(

trace Y
(ij)

)
= M ∈ Sk ;

Dd (Y ) :=
∑k

i=1 diag Y
(ii) = en ∈ Rn;

Do(Y ) :=
(∑

s 6=t

(
Y

(ij)

)
st

)
= M̂ ∈ Sk ,

where M̂ := mmT −M.
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SDP Constraints cont. . .

trace Y = n + 1; and Gangster constraints on Y
The Hadamard product and orthogonal type constraints lead to

gangster constraints
i.e., simple constraints that restrict elements to be zero (shoot
holes in the matrix) and/or restrict entire blocks.
gangster and restricted gangster constraint on Y :

GH(Y ) = 0,

for specific index sets H.
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SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

cut(m) ≥ p∗SDP := min 1
2 trace LAY

s.t. arrow(Y ) = e0
trace D1Y = 0, trace D2Y = 0
GJ0(Y ) = 0, Y00 = 1
Dt (Y ) = M, Dd (Y ) = e, Do(Y ) = M̂
Y ∈ Skn+1

+

Equivalent FR greatly simplified SDP; with Y = ṼRṼ T

cut(m) ≥ p∗SDP = min 1
2 trace

(
Ṽ T LAṼ

)
R

s.t. GĴI
(ṼRṼ T ) = GĴI

(e0eT
0 )

R ∈ S(k−1)(n−1)+1
+
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Primal-Dual Strong Duality (Regularity) for FR SDP

Theorem
1 (Generalized) slater point for the primal:

R̃ =

 1 0

0 1
n2(n−1)

(nDiag (m̂k−1)− m̂k−1m̂T
k−1)⊗ (nIn−1 − En−1)

 ∈ S(k−1)(n−1)+1
++ .

Moreover, Robinson regularity holds.
2 The dual problem

max 1
2w00

s.t. Ṽ TG∗
ĴI

(w)Ṽ � Ṽ T LAṼ .

satisfies strict feasibility.
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Motivation

Difficulties for Primal-dual interior-point Methods for SDP

solving large problems
obtaining high accuracy solutions
exploiting sparsity
adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

FR provides a natural (successful) splitting, Y = VRV T ,
(Y polyhedral, R cone/convex)
Flexibility in dealing with additional constraints
separable/split optimization steps are inexpensive
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Strengthen model with redundant constraint

Set Constraints, Low Rank (helps with early stopping)

R := {R ∈ S(k−1)(n−1)+1
+ : trace R = n + 1},

Y := {Y ∈ Snk+1 : 1 ≥ Y (Jc) ≥ 0,
GJ̄(Y ) = GJ̄(e0eT

0 )

Do(Y ) = M̂, eT Y(i0) = mi ,∀i}

Strengthened model

(DNN )
p∗DNN = min 1

2 trace LAY + 1Y(Y ) + 1R(R)

s.t. Y = V̂RV̂ T ,

where 1S(·) is indicator function of set S.
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Splitting Method

Augmented Lagrangian Function, Lβ(R,Y ,Z ) =

= fR(R) + gY(Y ) + 〈Z ,Y − V̂RV̂ T 〉+ β
2

∥∥∥Y − V̂RV̂ T
∥∥∥2

β > 0 penalty parameter for quadratic penalty term,
(Ls diagonally scaled objective Ls := 1

2L + αI � 0)

fR(R) = 1R(R), gY(Y ) = trace LsY + 1Y(Y ).

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of Lβ in the variables Y and R
interlaced by an update of the Z variable.
In particular, we update the dual variable Z both after the
R-update and the Y -update (both of which have unique
solutions).
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FRSMR, FR Splitting Method with Redundancies

Pick any Y 0,Z 0 ∈ Snk+1. Fix β > 0 and γ ∈ (0,1). Set
t = 0.
For each t = 0,1, . . ., update

•Rt+1 = argminR∈R Lβ(R,Y t ,Z t )

= argminR fR(R)− 〈Z t , V̂RV̂ T 〉+ β
2

∥∥∥Y t − V̂RV̂ T
∥∥∥2

•Z t+ 1
2 = Z t + γβ(Y t − V̂Rt+1V̂ T ),

•Y t+1 = argminY∈Y Lβ(Rt+1,Y ,Z t+ 1
2 )

= argminY gY(Y ) + 〈Z t+ 1
2 ,Y 〉+ β

2

∥∥∥Y − V̂Rt+1V̂ T
∥∥∥2
,

•Z t+1 = Z t+ 1
2 + γβ(Y t+1 − V̂Rt+1V̂ T ).
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Global convergence

Theorem

Let {Rt}, {Y t} and {Z t} be the generated sequences from
FRSMR. Then {(Rt ,Y t )} converges to an optimal solution
(R∗,Y ∗) of the DNN relaxation, {Z t} converges to some Z ∗,
and (R∗,Y ∗,Z ∗) satisfies the optimality conditions of the
DNN relaxation

0 ∈ −V̂ T Z ∗V̂ +NR(R∗),
0 ∈ Ls + Z ∗ +NY(Y ∗),

Y ∗ = V̂R∗V̂ T ,

where NS(x) denotes the normal cone of S at x.

24



1. Explicit solution for Rt+1

With the assumption that V̂ T V̂ = I

Rt+1 = argminR∈R−〈Z , V̂RV̂ T 〉+ β
2

∥∥∥Y t − V̂RV̂ T
∥∥∥2

= PR(V̂ T (Y t + 1
βZ t )V̂ ),

where PR denotes the projection (nearest point) onto the
intersection of the SDP cone S(k−1)(n−1)+1

+ and the hyperplane
{R ∈ S(k−1)(n−1)+1 : trace R = n + 1}.

(diagonalize; then project eigenvalues onto simplex)
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2. Explicit solution of Y t+1

The Y -subproblem yields a closed form solution by projection
onto the polyhedral set Y, i.e.,

Y t+1 = argminY∈Y
β
2

∥∥∥∥Y − V̂Rt+1V̂ T − 1
β (Ls + Z t+ 1

2 )

∥∥∥∥2

.

Note that the update (projection of Ỹ ) satisfies e.g.,

(Y t+1)ij =


1 if i = j = 0
0 if ij ∈ J\{00}
0 if ij ∈ Jc , Yij ≤ 0
Ỹij if ij ∈ Jc , 0 < Yij .
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Lower bound from Inaccurate Solutions

Theorem (Fenchel Dual)
Define modified dual functional
g(Z ) := minY∈Ỹ 〈Ls + Z ,Y 〉 − (n + 1)λmax(V̂ T ZV̂ ),
with Ỹ :=

{Y ∈ Snk+1 : GĴ0
(Y ) = GĴ0

(e0eT
0 ), 0 ≤ GĴc

0
(Y ) ≤ 1,

Do(Y ) = M̂, Dt (Y ) = M, eT Y(i0) = mi , i = 1, . . . , k}.

Then
p∗DNN = d∗Z := max

Z
g(Z ),

and the latter (dual) problem is attained, i.e., strong duality
holds.

The Lower Bound

Evaluating g(Z t ) always yields a lower bound for the
DNN relaxation optimal value

p∗DNN ≥ g(Z t )

27



Upper bound from feasible solution

Approx. output Y out

Obtain a vector v = (v0 v̄)T ∈ Rnk+1, v0 6= 0 from Y out

Reshape v̄ ; get n × k matrix Xout

Since X implies trace X T X = n, a constant, we get∥∥∥Xout − X
∥∥∥2

= −2 trace X T Xout + constant.

Solve the linear program (transportation problem)

X̂ ∈ argmax
{
〈Xout,X 〉 : Xe = e,X T e = m,X ≥ 0

}
Upper bound = 1

2 trace AX̂BX̂ T
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Choosing the vector v for X out for upper bound

rank Y = 1 =⇒ column/eigenvector 0 yields opt. X

1 column 0 of Y out;
2 eigenvector corresponding to largest eigenvalue of Y out;
3 random sampling/repeated: sum of random

weighted-eigenvalue eigenvectors of Y out,
v =

∑r
i=1 wiλivi ,

where ordered eigenpairs of Y out and ordered weights; r
here is the numerical rank of Y out.
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Numerical Tests from [7,6]

Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz)
and 8GB RAM running Windows 10.

Three classes of problems:
(a) random structured graphs (compare with previous results

in Pong et al. [9])
(b) partially random graphs with various sizes classified by the

number of 1’s, |I|, in the vector m (similar to QAP)
(c) vertex separator instances
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Facial Reduction, FR

Lifting Linear Equality Constraint

Table: Data terminology
imax maximum size of each set
k number of sets
n number of nodes (sum of sizes of sets)
p density of graph
u0 known lower bound
l = eT mone number of 1’s in m
Iters number of iterations
CPU time in seconds
Bounds best lower and upper bounds and relative gap
Residuals final values of:∥∥∥Y t+1 − V̂Rt+1V̂ T

∥∥∥ (∼= ∆Z );∥∥Y t+1 − Y t
∥∥ (∼= ∆Y )
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Numerical Tests

Comparison small structured graphs with Pong et al
Data Lower bounds Upper bounds Rel-gap Time (cpu)

n k |E | u0 FRSMR Mosek FRSMR Mosek FRSMR Mosek FRSMR Mosek
20 4 136 6 6 6 6 6 0.00 0.00 0.21 3.96
25 4 222 8 8 8 8 8 0.00 0.00 0.20 10.94
25 5 170 14 14 14 14 14 0.00 0.00 0.31 34.19
31 5 265 22 22 22 22 22 0.00 0.00 1.28 149.49
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Numerics cont... Random Graphs

# ones, I = ∅, mean over 3 instances
Specifications Iter cpu Bounds Residuals

imax k n p l low up rel-gap prim. dual
5 6 19.0 0.49 0 333.33 0.89 38.0 38.33 0.01 4.15e-03 6.18e-03
6 7 24.67 0.44 0 500.0 3.03 60.0 61.67 0.02 4.86e-03 8.74e-03
7 8 31.0 0.37 0 966.67 9.53 68.33 71.0 0.04 8.44e-04 3.74e-04
8 9 40.0 0.31 0 833.33 22.75 100.33 110.67 0.09 1.43e-03 6.92e-04
9 10 50.33 0.23 0 1100.0 75.26 119.67 132.33 0.09 1.53e-03 6.81e-04
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Numerics cont... Random Graphs

k /∈ I 6= ∅, mean over 4 instances
Specifications Iters cpu Bounds Residuals

imax k n p l lower upper rel-gap primal dual
5 6 16.25 0.51 1.50 450.00 1.02 22.25 23.00 0.03 2.36e-03 1.64e-03
6 7 17.00 0.43 3.25 325.00 1.18 23.00 23.25 0.00 3.75e-02 5.90e-02
7 8 21.00 0.38 3.50 625.00 4.98 34.50 36.00 0.02 3.66e-03 1.95e-03
8 9 21.75 0.30 5.00 400.00 3.36 20.75 21.25 0.01 8.37e-02 9.51e-02
9 10 38.00 0.23 3.25 775.00 25.84 55.25 63.50 0.11 3.26e-03 1.37e-03
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Numerics Cont... Random Graphs

k ∈ I 6= K, mean 5 instances
Specifications Iters cpu Bounds Residuals

imax k n p l lower upper rel-gap primal dual
5 6 13.60 0.49 2.80 160.00 0.33 22.60 22.60 0.00 2.55e-02 3.02e-02
6 7 18.00 0.42 3.40 460.00 1.99 37.80 39.00 0.02 5.66e-02 7.10e-02
7 8 22.20 0.39 3.80 560.00 3.96 57.80 60.20 0.02 1.04e-02 1.19e-02
8 9 22.60 0.30 5.20 540.00 4.92 37.20 38.00 0.01 3.48e-02 4.29e-02
9 10 31.00 0.23 4.80 700.00 16.78 61.80 68.00 0.06 1.44e-02 1.01e-02

I = K, mean 6 instances
Specifications Iters Time (cpu) Bounds Residuals

k n p l lower upper rel-gap primal dual
6 6.00 0.59 6.00 100.00 0.06 4.67 4.67 0.00 5.12e-03 5.10e-03
7 7.00 0.48 7.00 100.00 0.08 5.67 5.67 0.00 8.66e-02 1.27e-01
8 8.00 0.41 8.00 150.00 0.18 7.17 7.17 0.00 2.64e-01 1.68e-01
9 9.00 0.34 9.00 233.33 0.37 7.83 8.00 0.03 1.88e-01 3.99e-02

10 10.00 0.25 10.00 266.67 0.56 7.50 7.50 0.00 6.28e-02 8.71e-02
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Numerics Cont...

Table: Comparisons on the bounds for MC and bounds for the
cardinality of separators

Name n |E| m1 m2 m3 lower upper lower upper lower upper lower upper
MC by SDP4 MC by DNN-final Separator by SDP4 Separator by DNN-final

Example 1 93 470 42 41 10 0.07 1 0 1 11 11 11 11
bcspwr03 118 179 58 57 3 0.56 1 0 2 4 5 4 5
Smallmesh 136 354 65 66 5 0.13 1 0 1 6 6 6 6
can-144 144 576 70 70 4 0.90 6 0 6 5 6 5 8
can-161 161 608 73 72 16 0.31 2 0 2 17 18 17 18
can-229 229 774 107 107 15 0.40 6 0 6 16 19 16 19
gridt(15) 120 315 56 56 8 0.29 4 0 4 9 11 9 12
gridt(17) 153 408 72 72 9 0.17 4 0 4 10 13 10 13
grid3dt(5) 125 604 54 53 18 0.54 2 0 4 19 19 19 22
grid3dt(6) 216 1115 95 95 26 0.28 4 0 4 27 30 27 31
grid3dt(7) 343 1854 159 158 26 0.60 22 0 27 27 37 27 44
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Conclusion

We discussed strategies for finding new, strengthened
lower and upper bounds, for hard discrete optimization
problems.
In particular, we exploited the fact that strict feasibility fails
for many of these problems and that facial reduction, FR,
leads to a natural splitting approach for ADMM, sPRSM,
type methods.
The FR makes many constraints redundant and simplifies
the problem. We strengthened the subproblems in the
splitting by returning redundant constraints.
A special scaling, and a random sampling provided
strengthened lower and upper bounds from low
approximate solutions from our approach. (Allowing for
early stopping.
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