A Survey of the Trust Region Subproblem

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Thur. Feb. 9, 10:00-10:20 (EST) 2023

Outline

- Background, Duality
- MS (1983) and GLTR (1999) algorithms within SDP Framework
- RW (1997) and FW (2002) Algorithm (Revisited)
- Robustness, Exploiting Sparsity
- Numerics
- Emphasis: Hard Case really hard?

Unconstrained Minimization

(UNC)
$$\mu^* := \min_{x \in \mathbb{R}^n} f(x)$$

Quadratic Model at current estimate x_c :

(Quad)
$$\min_{s.t.} f(x_c) + \nabla f(x_c)^T d + \frac{1}{2} d^T \nabla^2 f(x_c) d$$

s.t. $||d|| \le s$.

The optimal *d* exists and can be found efficiently.

The Trust Region Subproblem

(TRS)
$$q^* = \min_{x} \quad q(x) := x^T A x - 2a^T x$$
$$\text{s.t.} \quad ||x|| \le s, x \in \mathbb{R}^n$$

A, $n \times n$ symmetric (possibly indefinite) matrix a, n-vector; s > 0, TR radius q is (possibly) nonconvex quadratic

4

Many Applications

- subproblems for constrained optimization
- regularization of ill-posed problems
- theoretical applications
- etc...
- trust region (TR) methods

Many Advantages for TR, e.g.: second order optimality conditions q-quadratic convergence BUT: popularity? sparsity? hard case?

Special Case: LLS/Regularization

• find approx. solutions for LLS

LLS
$$\min_{x} ||Gx - d||^2$$
, G singular or ill-cond.

- can be reformulated as a TRS, if an appropriate/correct TR radius \bar{s} can be found
- steps of an efficient TRS algorithm try to find an optimal solution of TRS, $x(\hat{s})$, for a corresponding TR radius $||x(\hat{s})|| \leq \hat{s}$

L-Curve

From TRS: Find the point of max curvature/elbow

$$\mathcal{L}(G, d) = \{ (\log(s), \log \|Gx(s) - d\|) : s > 0 \}$$

-

Regularization/TRS

(TRS)
$$\mu(A,a,s) := \min_{\substack{s.t. \\ s.t.}} q(x) := x^T A x - 2 a^T x$$
 s.t.
$$\|x\|^2 \le s^2,$$
 where:
$$A = G^T G, \ n \times n \text{ symmetric (ill-cond.)}$$

$$a = G^T d \in \mathbb{R}^n, \ s > 0, \ x \in \mathbb{R}^n$$
 define λ^* optimal Lagrange multiplier

 $x(0) = A^{-1}a = G^{-1}d$ unconstr min

(connection to hard case in TRS)

۶

Optim. Cond.: (Gale-81/Sorensen-82)

x* optimal for TRS

if and only if

$$\left\{ \begin{array}{c} (A-\lambda^*I)x^*=a,\\ \hline (A-\lambda^*I\succeq 0],\lambda^*\leq 0 \end{array} \right\} \quad \text{dual feas.} \\ \|x^*\|^2\leq s^2 \quad \text{primal feas.} \\ \lambda^*(s^2-\|x^*\|^2)=0 \quad \text{compl. slack.} \end{array}$$

(phrased in the modern primal-dual paradigm) **Surprising:** characterization of opt.; 2nd order psd

Duality and MS Algorithm

For simplicity, use equality TRS:

(TRS₌)
$$q^* = \min_{\substack{x \in \mathbb{Z} \\ \text{s.t.}}} q(x)$$

Let $\lambda \in \Re$; a lower bound is

$$\min_{x} q(x) + \lambda(s^2 - ||x||^2)$$

Hidden constraint

best lower bound yields dual (SDP)

$$q^* = \nu^* := \max_{\lambda} \frac{\min_{x} x^T (A - \lambda I) x - 2a^T x + \lambda s^2}{h(\lambda) \text{ (dual functional)}}$$

where:

(convex) Lagrangian is
$$L(x,\lambda) := x^T(A - \lambda I)x - 2a^Tx + \lambda s^2$$
; (concave) dual functional is $h(\lambda) := \min_x L(x,\lambda)$ $h(\lambda) := \lambda s^2 - a^T(A - \lambda I)^{-1}a$, if $A - \lambda I \succ 0$

Convexity/SDP Arise Naturally

TRS: simpler (constrained) root finding problem

$$h'(\lambda) = 0$$
 s.t. $\nabla^2 L(x, \lambda) = A - \lambda I \succ 0$

with $x(\lambda) = (A - \lambda I)^{-1}a$ (Lagrangian stationarity)

to maximize concave function *h* solve:

$$0 = h'(\lambda) = s^2 - x(\lambda)^T x(\lambda)$$

i.e. dual algor: maintain dual feasibility while trying to attain primal feasibility

The Hard Case; $A - \lambda^* I$ Singular

1. Easy case	2.(a) Hard case (case 1)	2.(b) Hard case (case 2)
$a \notin \mathcal{R}(A - \lambda_1(A)I)$	$a \perp \mathcal{N}(A - \lambda_1(A)I)$	$a \perp \mathcal{N}(A - \lambda_1(A)I)$
	and	and
(implies $\lambda^* < \lambda_1(A)$)	$\lambda^* < \lambda_1(A)$	$\lambda^* = \lambda_1(A)$
		(i) $\ (A - \lambda^* I)^{\dagger} a\ = s \text{ or } \lambda^* = 0$
		$(ii) (A - \lambda^*I)^{\dagger}a < s, \lambda^* < 0$

Table: 3 cases for TRS; 2 subcases (i), (ii) for hard case (case 2).

$$\mathcal{R}(A - \lambda_1(A)I)^{\perp} = \mathcal{N}(A - \lambda_1(A)I)$$
 (dimension?)

Handling the Hard Case

LEMMA: spectral decomposition of *A*:

$$A = \sum_{i=1}^{n} \lambda_{i}(A) v_{i} v_{i}^{T} = P \Lambda P^{T}, P^{T} P = I, \bar{a} = P^{T} a.$$

$$A_{i} := \sum_{i \in S_{i}} \lambda_{i}(A) v_{i} v_{i}^{T}, i = 1, \dots, 4,$$

$$S_{1} = \{i : \bar{a}_{i} \neq 0, \lambda_{i}(A) > \lambda_{1}(A)\}$$

$$S_{2} = \{i : \bar{a}_{i} = 0, \lambda_{i}(A) > \lambda_{1}(A)\}$$

$$S_{3} = \{i : \bar{a}_{i} \neq 0, \lambda_{i}(A) = \lambda_{1}(A)\}$$

$$S_{4} = \{i : \bar{a}_{i} = 0, \lambda_{i}(A) = \lambda_{1}(A)\}$$

Define projections:
$$P_i := \sum_{i \in S_i} v_i v_i^T$$
, $i = 1, ..., 4$. THEN: $(\bar{a}_i = 0 \Leftrightarrow a^T v_i = 0)$

Shift/deflate 1

Suppose
$$S_3 \neq \emptyset$$
 (easy case), $\alpha > 0$, and $i \in S_2 \cup S_4$. Then
$$(x^*, \lambda^*) \text{ solves TRS}$$

$$\underline{\underline{\textbf{iff}}}$$
 $(x^*, \lambda^*) \text{ solves TRS when } A \leftarrow A + \alpha v_i v_i^T.$

• Equivalently, in the easy case with $a^T v_i = 0$, one can shift (increase) the eigenvalue corresponding to v_i .

Hard-Case Shift

Let
$$u^* = (A - \lambda^* I)^\dagger a$$
 with $\|u^*\| < s$ and suppose that $i \in S_2 \cup S_4$ and $\alpha > 0$. Then
$$(x^* = u^* + z, \lambda^*), z \in \mathcal{N}(A - \lambda^* I) \text{ solves TRS}$$

$$\underbrace{\text{iff}}_{\text{solves TRS when A is replaced by $A + \alpha v_i v_i^T - \lambda^* I$)}_{\text{solves TRS when A is replaced by $A + \alpha v_i v_i^T$.}$$

• Equivalently, in the hard case with $a^T v_i = 0$, one can shift (increase) the eigenvalue corresponding to v_i .

All Case Shift

Let
$$\lambda_1(A) < 0$$
; $u^* = (A - \lambda^*I)^\dagger a$. Then there exists $z \in \mathcal{N}(A - \lambda^*I)$ such that: (x^*, λ^*) , with $x^* = u^* + z$, solves TRS $\frac{\mathbf{iff}}{(u^*, \lambda^* - \lambda_1(A))}$ solves TRS when $A \leftarrow A - \lambda_1(A)I$

- Equivalently, ensure that $A \succeq 0$ by shifting (increasing) the smallest eigenvalue.
- Implicitly Convex, The equivalent problem is convex, i.e., this shows that TRS is an implicit convex problem; strong duality holds.

Hard Case (case 2); is it ill-posed?

Using shift, wolg assume $A \succeq 0$, $\lambda^* = 0$. Then, the difficulty reduces to a regularization question (LLS).

$$x^* = A^{\dagger}a$$
, $||x^*|| \le s$ implies optimum.
 $x^* = A^{\dagger}a$, $||x^*|| > s$ implies not hard case 2.

Conclusion: Applying regularization might be helpful in determining between the two cases.

Shift with Near-Hard Case

LEMMA: Suppose that x^* solves TRS and $||x^*|| = s$. Let $\epsilon > 0$ and $v \in \mathbb{R}^n$ with ||v|| = 1. Let $\mu^*(\epsilon)$ be the optimal value of TRS when a is perturbed to $a + \epsilon v$. Then

$$-2s\epsilon \leq \mu^* - \mu^*(\epsilon) \leq 2s\epsilon.$$

The More-Sorensen (dual) Algor., 1983

Outline:

- (i) Use safeguarding/updating: reduce interval of uncertainty $[\lambda_L, \lambda_U]$ for λ^* and improve lower bound λ_S for $\lambda_1(A)$
- (ii) Take a Newton step to implicitly solve for λ in $\|(A \lambda I)^{-1}a\| = s$
- (iii) If possible hard case (case 2) is detected (i.e. $||x(\lambda)|| < s$), then take a *primal step/negative curvature* to the boundary while simultaneously reducing the objective function.

Solving for λ^*

Use orthogonal diagonalization of A; the function $\psi(\lambda)$

$$\|x(\lambda)\| - s = \|Q(\Lambda - \lambda I)^{-1}Q^Ta\| - s \approx \frac{c_1}{\lambda_1(A) - \lambda} + d,$$

For some constants $c_1 > 0$, d.

Highly nonlinear for λ near $\lambda_1(A)$ (slow cygnce)

secular equation

$$\phi(\lambda) := \frac{1}{s} - \frac{1}{\|x(\lambda)\|} = 0.$$

(Reinsch and Hebden)
rational structure shows function is less nonlinear

$$\phi(\lambda) \approx \frac{1}{s} - \frac{\lambda_1(A) - \lambda}{c_2},$$

for some $c_2 > 0$.

Also $\phi(\lambda)$ is convex, strictly increasing on $(-\infty, \lambda_1(A))$.

Compute Newton Direction; Take Newton Step

BEGIN algorithm Assume $\lambda_k \leq 0$ and $A - \lambda_k I \succ 0$ (i.e. $\lambda_k < \lambda_1(A)$).

- Factor $A \lambda_k I = R^T R$ (Cholesky factorization).
- 2 Solve, for x, $R^T R x = a$ ($x = x(\lambda_k)$).
- 3 Solve, for y, $R^T y = x$.
- 4 Let $\lambda_{k+1} = \lambda_k \left\lceil \frac{\|x\|}{\|y\|} \right\rceil^2 \left\lceil \frac{(\|x\| s)}{s} \right\rceil$ (Newton step).

END algorithm

Newton Method on $\phi(\lambda)$

Figure: Newton's method with the secular function, $\phi(\lambda)$.

MS: Handling the Hard Case

where x^* is optimal for TRS.

LEMMA:[Negative curvature primal step to boundary] $0 < \sigma < 1$ given; and $A - \lambda I = R^T R$, $(A - \lambda I)x = a$, $\lambda \le 0$; $\|x + z\|^2 = s^2$; $\|Rz\|^2 \le \sigma(\|Rx\|^2 - \lambda s^2)$. Then $|g(x + z) - g(x^*)| < \sigma|g(x^*)|$.

25

Aside: GLTR Algorithm, 1999

Generalized Lanczos Trust Region (Gould, Lucidi, Roma, Toint) FOCUS: exploiting sparsity; Lanczos tridiagonalization of *A*; solve a *sequence* of restricted problems

```
(TRS_{SUD}) \begin{tabular}{ll} min & q(x) \\ s.t. & \|x\| \leq s \\ & x \in \mathcal{S}, \end{tabular} Krylov subspace
```

Outline

- (i) Apply CG to $q(\cdot)$ until boundary (or min) is reached; or until direction of nonpositive curvature is found to move to boundary.
- (ii) (efficiently) Solve TRS subproblem with constraint $x \in S \equiv \mathcal{K}_k$ where $\mathcal{K}_k := \text{span}\{a, Aa, A^2a, A^3a, \dots, A^ka\}$
- (iii) Increase k, size of Krylov subspace using CG.

Duality; an SDP Framework for TRS

For simplicity, use equality TRS:

(TRS₌)
$$q^* = \min_{\substack{x \in \mathbb{Z} \\ s.t.}} q(x)$$

Strong Duality Holds for TRS₌

$$q^* = \nu^* := \max_{\lambda} \min_{x} L(x, \lambda)$$
, strong duality

$$L(x, \lambda) := x^T (A - \lambda I)x - 2a^T x + \lambda s^2$$
, Lagrangian $h(\lambda) := \lambda s^2 - a^T (A - \lambda I)^{\dagger} a$, dual functional **THEOREM:** (Wolfe Dual)

(D)
$$q^* = \sup_{A-\lambda I \succ 0} h(\lambda)$$

$$(\succeq \text{ in easy case, or after shift to } A \succeq 0)$$

Unconstrained and Linear Duals

Homogenizing TRS₌

$$q^* = \min_{\substack{x \in X^2 \\ \text{s.t.}}} x^T A x - 2y_0 a^T x$$

s.t. $||x||^2 = s^2$
 $y_0^2 = 1$

After homogenization: $q^* =$

$$= \max_{t} \min_{\|x\|^2 = s^2, y_0^2 = 1} x^T A x - 2y_0 a^T x + t(y_0^2 - 1)$$

$$\geq \max_{t} \min_{\|x\|^2 + y_0^2 = s^2 + 1} x^T A x - 2y_0 a^T x + t(y_0^2 - 1)$$

$$= \sup_{\lambda} \min_{x, y_0^2 = 1} x^T A x - 2y_0 a^T x + \lambda(\|x\|^2 - s^2)$$

$$= \min_{x, y_0^2 = 1} \sup_{\lambda} x^T A x - 2y_0 a^T x + \lambda(\|x\|^2 - s^2)$$

$$= \min_{\|x\|^2 = s^2, y_0^2 = 1} x^T A x - 2y_0 a^T x$$

$$= q^*.$$

Duality cont...

All of the above are equal, and

$$q^* = \max_t \min_{\|x\|^2 + y_0^2 = s^2 + 1} x^T A x - 2y_0 a^T x + t(y_0^2 - 1)$$

$$= \max_t \min_{\|z\|^2 = s^2 + 1} z^T D(t) z - t = \max_t (s^2 + 1) \lambda_1(D(t)) - t$$
where $z = \begin{pmatrix} y_0 \\ x \end{pmatrix}$ and $D(t) = \begin{pmatrix} t & -a^T \\ -a & A \end{pmatrix}$.

• Rayleigh Quotient Used: For symmetric $G \in S^n$ we have

$$\lambda_{\min}(G) = \min_{x \neq 0} \frac{x^T G x}{x^T x}.$$

Define

$$k(t) := (s^2 + 1)\lambda_1(D(t)) - t$$

Unconstrained dual problem for TRS is

$$\max_{t \in \mathbb{R}} k(t)$$
, (concave, coercive)

rewrite into a linear semidefinite program:

$$\max_{D(t)\succeq \lambda I} (s^2+1)\lambda - t$$

Primal-Dual Pair of SDPs

$$q^* = \max_{\text{s.t.}} (s^2 + 1)\lambda - t$$
s.t. $\lambda I - tE_{00} \leq D(0)$,
 $q^* = \min_{\text{s.t.}} \operatorname{trace} D(0)Y$
s.t. $\operatorname{trace} Y = s^2 + 1$
 $-Y_{00} = -1$
 $Y \succeq 0$.

(Slater's CQ - strict complementarity - stable problems!?)

RW Algor. 1997, Modified

Rendl-Wolkowicz 1997 (large scale TRS) uses max-min eigenvalue problem $\max_t k(t) = (s^2 + 1)\lambda_1(D(t)) - t$ Define:

$$t_0 := \lambda_1(A) + \sum_{j \in \{k \mid (P^T a)_k \neq 0\}} \frac{(P^T a)_j^2}{\lambda_j(A) - \lambda_1(A)}.$$

k(t) in Easy Case

k(t) in Hard Case (Case 1)

k(t) in Hard Case (Case 2)

$$k'(t) = (s^2 + 1)y_0(t)^2 - 1$$

$$y(t)$$
 normalized eigenvector for $\lambda_1(D(t))$
$$y(t) = \begin{pmatrix} y_0(t) \\ x(t) \end{pmatrix}$$

$$\frac{1}{y_0(t)} \|x(t)\| = s \text{ if and only if } k'(t) = 0$$

Properties of k(t)

THEOREM: Let: y(t) normalized eigenvector for $\lambda_1(D(t))$; $y_0(t)$ its first component. Then:

- **1** In the easy case: for $t \in \mathcal{R}$, $y_0(t) \neq 0$;
- 2 In the hard case:
 - for $t < t_0$: $y_0(t) \neq 0$;
 - 2 for $t > t_0$: $y_0(t) = 0$;
 - **§** for $t = t_0$: ∃ basis eigenvectors for $\lambda_1(D(t_0))$, s.t. one, ω , has first component ($\omega_0 \neq 0$); and other eigenvectors have zero first component ($y_0(t) = 0$).

$y_0(t)$ in Easy Case

$y_0(t)$ in the Hard Case

k'(t) in the Easy Case

k'(t) in the hard case (case 1)

$\psi(t)$ in the Easy Case

$$\frac{\psi(t) = \sqrt{s^2 + 1} - \frac{1}{y_0(t)}}{\psi(t) = 0}$$
 Solving $\psi(t) = 0$; equivalently solving $\psi(t) = 0$

0.5 0.4 0.5 0.5 0.1 0.1

$\psi(t)$ in the Hard Case (*case 1*)

$\psi(t)$ in the hard case (case 2)

Newton Method on Moving Target

Newton Method on:
$$k(t) - M_t = 0$$

$$t_+ = t_C - \frac{k(t_c) - M_t}{k'(t_c)}$$

$$= \frac{(s^2 + 1)(t_c y_0^2(t_c) - \lambda(D(t_c)) - M_t}{(s^2 + 1)y_0(t_c)^2 - 1}$$

Triangle Interpolation using k(t)

Reduce interval of uncertainty of t; improve upper bounds for q^*

Vertical Cut

Inverse Interpolation

$$\begin{bmatrix} \psi_1^2 & \psi_1 & 1 \\ \psi_2^2 & \psi_2 & 1 \\ \psi_3^2 & \psi_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ t_{\text{new}} \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}$$

Inverse interpolation; easy cases

Inverse interpolation hard case (case 2)

cputime in the hard case (case 2)

log of cputime in the hard case (case 2)

Conclusion

Advantages:

- Hard Case is changed/equivalent to Linear Least Squares Problem
- Duality/geometry used for fast convergence/high accuracy solutions
- Large/Huge sparse problems solved quickly to high accuracy **Difficulties:**
- Accurate computation of the smallest eigenvalue and corresponding eigenvector, e.g. in the case of large scale problems with multiple eigenvalues.