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Outline

e Background, Duality

e MS (1983) and GLTR (1999) algorithms within
SDP Framework

e RW (1997) and FW (2002) Algorithm (Revisited)
e Robustness, Exploiting Sparsity

e Numerics

e Emphasis: Hard Case - really hard?



Unconstrained Minimization

(UNC) " = min f(x)

XERM
Quadratic Model at current estimate x.:

min  f(xo) + VI(xo)Td + FdTV2f(x;)d

(Quad) i g <.

The optimal d exists and can be found efficiently.



The Trust Region Subproblem

g = miny q(x):=xTAx —2a’x

(TRS) st ||x]| <s,xeR”

A, n x n symmetric (possibly indefinite) matrix
a, n-vector; s > 0, TR radius
g is (possibly) nonconvex quadratic



Many Applications

e subproblems for constrained optimization
e regularization of ill-posed problems

e theoretical applications

e ctc...

e trust region (TR) methods

Many Advantages for TR, e.g.:
second order optimality conditions
g-quadratic convergence

BUT: popularity? sparsity? hard case?



Special Case: LLS/Regularization

e find approx. solutions for LLS
LLS mXin |Gx —d||?, G singular or ill-cond.

e can be reformulated as a TRS, if an appropriate/correct TR
radius s can be found

e steps of an efficient TRS algorithm try to find an optimal
solution of TRS, x(5), for a corresponding TR radius ||x(5)|| < §



L-Curve

From TRS: Find the point of max curvature/elbow
L(G,d) = {(log(s),log ||Gx(s) — d|)) : s > 0}

residual, |Gx - d]|




Regularization/TRS

(A a,8) ;= min q(x):=xTAx —2a'x

TR
(TRS) s.t. Ix]1? < 82,

where:
A= G’ G, n x nsymmetric (ill-cond.)
a=G'deR" s>0,xcR"
define \* optimal Lagrange multiplier
x(0) = A~'a= G~"d unconstr min
(connection to hard case in TRS)



Optim. Cond.: (Gale-81/Sorensen-82)

x* optimal for TRS

if and only if
(A= X N)x* = a,
A2 T=0LA <0 dual feas.
| x*]|% < 8? primal feas.

(8% — |[x*|’) =0  compl. slack.

(phrased in the modern primal-dual paradigm) Surprising:
characterization of opt.; 2nd order psd



Duality and MS Algorithm

For simplicity, use equality TRS:

g-= min q(x)
(TRS-) st |x|2 = s?,

Let A € R; a lower bound is

min g(x) + A(s* — |[x|[%)



Hidden constraint

best lower bound yields dual (SDP)

g =v* = maxy |mingx"(A— X)x —2a"x + \s?
= maxy h(\) (dual functional)

where:

(convex) Lagrangian is L(x, \) := xT (A — \)x —2a’ x + \s?;
(concave) dual functional is h(\) := miny L(x, \)

h(\) :=\s? —aT(A—X)""a,if A~ X =0



Convexity/SDP Arise Naturally

TRS: simpler (constrained) root finding problem
H(\) =0s.t VAL(x,\)=A— X >0

with x(\) = (A — M)~ 'a (Lagrangian stationarity)

to maximize concave function h solve:
0="H() =8%—x(\)"x()\)

i.e. dual algor: maintain dual feasibility while trying to attain
primal feasibility



The Hard Case; A — X\*/ Singular

1. Easy case 2.(a) Hard case (case 1) 2.(b) Hard case (case 2)
ag R(A— M(AD) a L N(A— A al NA-—\AD
and and
(implies A™ < A{(A)) | A" < Aq(A) A* =X (A)
(i) 1A= 2*NTa| =sorrx* =0
(i) (A= A*NFal < s,2* <0

Table: 3 cases for TRS; 2 subcases (i), (ii) for hard case (case 2).

R(A — M\ (AN = N(A— A\ (A)]) (dimension?)



Handling the Hard Case

LEMMA: spectral decomposition of A:
A=3" NAWv] =PAPT,PTP=1,a=PTa
A=Y ieg MAVivT i =1,...,4,

S
So
S3
S4

i
{i:
{i:

Define projections: P; := ZIGS,- V;V,-T, i=1,...

THEN: (8, = 0 < a’v; = 0)



Shift/deflate 1

Suppose S; # () (easy case), o > 0,and i € S, U S4. Then

(x*,\*) solves TRS
iff

(x*, \*) solves TRS when A < A+ av,v].

e Equivalently, in the easy case with a’v; = 0, one can shift
(increase) the eigenvalue corresponding to v;.



Hard-Case Shift

Let u* = (A — X*/)fawith ||u*|| < s and suppose that
ie SuUSsand o > 0. Then

(x* =u*+2z,\*),ze N(A— X\*I]) solves TRS
iff
(x* = U +2,)*),ze N(A+avv] —\*))
solves TRS when A'is replaced by A + av;v/.

e Equivalently, in the hard case with a’ v; = 0, one can shift
(increase) the eigenvalue corresponding to v;.



All Case Shift

Let A\{(A) < 0; u* = (A— X*/)Ta. Then

there exists z € NV/(A — \*/) such that:
(x*, \*), with x* = u* + z, solves TRS
iff
(u*,\* — X\q(A)) solves TRS when
A+ A—\(A)

e Equivalently, ensure that A = 0 by shifting (increasing) the
smallest eigenvalue.

e Implicitly Convex, The equivalent problem is convex, i.e., this
shows that TRS is an implicit convex problem; strong duality
holds.



Hard Case (case 2); is it ill-posed?

Using shift, wolg assume A = 0, \* = 0.
Then, the difficulty reduces to a regularization question (LLS).

x* = Ala, |x*|| < s implies optimum.
x* = Ala, ||x*|| > s implies not hard case 2.

Conclusion: Applying regularization might be helpful in
determining between the two cases.



Shift with Near-Hard Case

LEMMA: Suppose that x* solves TRS and || x*|| = s. Lete > 0
and v € R" with ||v|| = 1. Let x*(¢) be the optimal value of TRS
when ais perturbed to a + e¢v. Then

—28e < p* — p*(e) < 28e.



The More-Sorensen (dual) Algor., 1983

Outline:
(i) Use safeguarding/updating: reduce interval of uncertainty
[AL, Ay] for \* and improve lower bound A g for A{(A)

(i) Take a Newton step to implicitly solve for A in
I(A=x)~"a| =s

(iii) If possible hard case (case 2) is detected (i.e. ||x(\)|| < s),
then take a primal step/negative curvature to the boundary
while simultaneously reducing the objective function.

20



Solving for \*

Use orthogonal diagonalization of A; the function «(\)

C1

_ _N10Tal — s ~
Xl —s = QA = A" QTal — s~ -

+d,

For some constants ¢y > 0, d.

Highly nonlinear for A near \{(A) (slow cvgnce)

21



secular equation

=0.

T
s [Ix(VI

(Reinsch and Hebden)
rational structure shows function is less nonlinear

~ M(A) -

1
o)~ 5 - T2

for some ¢, > 0.
Also ¢(\) is convex, strictly increasing on (—oo, A{(A)).

29



Compute Newton Direction; Take Newton Step

BEGIN algorithm Assume A\ < 0and A— A,/ = 0 (i.e.
Ak < M (A))

@ Factor A — )/ = RT R (Cholesky factorization).

@ Solve, for x, RTAx = a (x = x(\x)).

© Solve, fory, RTy = x.

Q Let )\ g =N\ — [H;M {(”X”S’S)} (Newton step).
END algorithm

29



Newton Method on o ()

— philambda
phi=0

- -- tangent

« tangentpoint

© newtoniteratesss

x__root

aaaaaaaaaaa

Figure: Newton’s method with the secular function, ¢(\).
24



MS: Handling the Hard Case

LEMMA:[Negative curvature primal step to boundary]
0<o<1given;and A— M =RTR, (A—\)x =a, A\ <O0;
Ix + 2| = 8% ||Rz|[? < o(||Rx||? — As?).
Then

q(x + 2) — q(x*)| < olg(x")|.

where x* is optimal for TRS.
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Aside: GLTR Algorithm, 1999

Generalized Lanczos Trust Region (Gould, Lucidi, Roma, Toint)
FOCUS: exploiting sparsity; Lanczos tridiagonalization of A;
solve a sequence of restricted problems

min  q(x)

(TRSgp) st x| <s
x € S, Krylov subspace

26



Outline

(i) Apply CG to q(-) until boundary (or min) is reached; or until
direction of nonpositive curvature is found to move to boundary.

(ii) (efficiently) Solve TRS subproblem with constraint
x € S = Ky where K := span{a, Aa, A%a, A%a, ... Aka}

(iii) Increase k, size of Krylov subspace using CG.

27



Duality; an SDP Framework for TRS

For simplicity, use equality TRS:

g*= min q(x)
(TRS-) st x| = s?

28



Strong Duality Holds for TRS_

qg-=v* = max mXin L(x,\), strong duality

L(x,)\) := xT(A— M)x —2a’ x + \s?, Lagrangian
h()\) := s> — a’ (A — \l)ta, dual functional
THEOREM: (Wolfe Dual)

(D) g = sup h(})
A-X\I=0

(> in easy case, or after shiftto A > 0)

29



Unconstrained and Linear Duals

Homogenizing TRS=

g = min xTAx —2y,a’x
st |x|? = &?
y5=1

20



After homogenization: g* =

max min xTAx —2ypa’ x + t(y2 — 1)
b |x|2=s?y5=1

max min xTAx —2ypa" x + t(yg — 1)
Elix)2+yg=s2+1

sup min X' Ax —2ypa’ x + A(||x|? — §)
A X yE=1
min sup x' Ax — 2yoaTx + )\(||XH2 - 32)
Xye=1
min xTAx — 2yoaTX
Ix[[2=82,y5=1

q.

21



Duality cont...

All of the above are equal, and

= max min xTAx — 2ypa" x + t(yg — 1)
b x| 4yf=s?+1

—=max min  Z'D(t)z — t = max (8% + 1)A1(D(t)) — t
b z)p=s*+1 t

_( Y ([t -a
wherez_<x>andD(t)_<_a A >

e Rayleigh Quotient Used: For symmetric G € S"” we have

22



Define

k(t) == (s> + 1)\ (D(t)) — t

Unconstrained dual problem for TRS is

max k(t), (concave, coercive)
€

rewrite into a linear semidefinite program:

max (8% + 1)\ —t
D(t)=\/

23



Primal-Dual Pair of SDPs

g-= max (L+1)A—t
s.t. A — tEOO = D(O),

g* = min trace D(0)Y
st traceY =% +1
— Yoo = —1
Y = 0.

(Slater’s CQ - strict complementarity - stable problems!?)

24



RW Algor. 1997, Modified

Rendl-Wolkowicz 1997 (large scale TRS) uses max-min
eigenvalue problem max; k(1) = (8% + 1)\{(D(t)) — t
Define:

(PTa)?
tO = )\1 (A) + Z —j
jetki(PTayeoy A ~Ai(A)

25
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y(t) normalized eigenvector for A\¢(D(t))
Yo(t)
o= )

yOL(t)nx(t)n — sifand only if K'(f) = 0

29



Properties of k(t)

THEOREM: Let: y(t) normalized eigenvector for A{(D(t)); yo(1)
its first component. Then:

@ In the easy case: for t € R, yy(t) # 0;

@ In the hard case:

@ fort < ty: yo(t) #0;

@ for > fy: yo(t) =0;

@ for { = fy: 3 basis eigenvectors for A\{(D(%)), s.t. one, w,
has first component (wg # 0); and other eigenvectors have
zero first component (y,(t) = 0). O]

40
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Yovaluos

walues.
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Kpvalues
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K'(t) in the hard case (case 1)

‘‘‘‘‘‘‘

a4



y(t) in the Easy Case

Y()=Ve2 +1 - -

Yo(t)

Solving
Y(t) = 0; equivalently solving k'(t) =0

o
* (t,0)
— psit
-01 sqrtss1111111
00 %0 B0 70 &

wwwwww
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Y(t) in the Hard Case (case 1)

s
(0

o (t0,phit0)
sit

P
sqrtss1111111
R R

‘‘‘‘‘‘‘
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psivaluss

028 "o " (10,phit0)
i

psi
028 sartss1111111

20 19 8 17 -6 15
al

Ed

alues.
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Newton Method on Moving Target

Newton Method on: k(t) — M; =0
o= - A

(824+1) (teyg (te) —A(D(tc))— M
(82+1)yo(tc)?—1

48



Triangle Interpolation using k(1)

Reduce interval of uncertainty of t; improve upper bounds for g*

‘‘‘‘‘‘‘

49



o
*__newuy
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Inverse interpolation; easy cases

ppppppppp
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Inverse interpolation hard case (case 2)

ot

o interpolationoft*

+  interpolationpoints.
tot*

- - tpsi

,,,,,,,,,,,,,,,,,,,,
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cputime in the hard case (case 2)

54



log of cputime in the hard case (case 2)

————————

55



Conclusion

Advantages:

e Hard Case is changed/equivalent to Linear Least Squares
Problem

e Duality/geometry used for fast convergence/high accuracy
solutions

e Large/Huge sparse problems solved quickly to high accuracy
Difficulties:

e Accurate computation of the smallest eigenvalue and
corresponding eigenvector, e.g. in the case of large scale
problems with multiple eigenvalues.

B5A



