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Motivation/Main Results

Background

Currently: simplex and interior point methods are most
popular algorithms for solving linear programs, LPs.
Unlike general conic programs, (finite) LPs do not require
strict feasibility for strong duality. Hence strict feasibility (no
variable fixed at zero; one type of degeneracy) is often less
emphasized.

History Degeneracy

techniques for resolving degeneracy:
• (symbolic) perturbation Charnes ’52 [10];
• lexicographic Dantzig-Orden-Wolfe ’55 [14];
• modified lexicographic Wolfe ’63 [38] (more efficient
Ryan-Osborne ’88 [32]);
• Bland finite pivoting rule 77 [5] (simple/less efficient)
Megiddo ’86 [26]: “exiting degenerate vertex as hard as
solving general LP”
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Motivation cont...

We show that lack of strict feasibility:
1 causes numerical difficulties in both simplex and interior

point methods.
2 and =⇒ all basic feasible solutions, BFS, are degenerate

We introduce:
1 the notion of implicit singularity when strict feasibility fails;
2 an extension of Phase-I of simplex method for the two part

preprocessing for strict feasibility
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Background and Notation

Feasible LPs; standard form (with FINITE opt. value)

(P) (finite) p∗ = minx cT x
s.t. Ax = b ∈ Rm

x ∈ Rn
+

assume wlog rank (A) = m;

with feasible set: F = {x ∈ Rn : Ax = b, x ≥ 0}

Dual LP

(D) p∗ = d∗ = max bT y
s.t. AT y ≤ c ∈ Rn

y ∈ Rm

(equivalently AT y + s = c, s ≥ 0 slack)
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History: Kantorovich; Dantzig, Karmarkar

Kantorovich ’39, USSR, WWII
• transportation models and optimal solutions (algorithm)
• helped NKVD with transportation problems

Dantzig ’47, USA, SIMPLEX METHOD

• following duality/game-theory by Von Neumann
• Hotelling: “but the world is nonlinear”
• Von Neumann: “if you have a linear model, you can now solve
it”
• SIAM survey 1970’s: 70% of ALL world computer time is
spent on the simplex method

Karmarkar ’84, Interior Point Revolution
• Lustig-Marsten-Shanno OB1 code ’90; large went

from:
(
m = 1e3× n = 1e4

)
to

(
m = 1e5× n = 1e7

)
• to modern day:

(
m = 1e6× n = 1e10

)
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Strict Feasibility, Slater, Mangasarian-Fromovitz CQ

Feasible LPs; standard form (with FINITE opt. value)

(P) (finite) p∗ = min cT x
s.t. Ax = b ∈ Rm

x ∈ Rn
+

there exists x̂ with Ax̂ = b, x̂ > 0 (MFCQ)

Dual LP

(D) p∗ = d∗ = max bT y
s.t. AT y ≤ c ∈ Rn

y ∈ Rm

there exists ŷ with AT ŷ < c (Slater CQ)

Stability: MFCQ/Slater ⇐⇒
stability wrt RHS perturbations
⇐⇒ compact set of dual variables
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Basic (Feasible/Degenerate) Solutions

Definition (basic (feasible) solution)

Given: x ∈ Rn,Ax = b and B ⊂ {1, . . . ,n},
|B| = m; let N = {1 . . . n}\B.
Then x is a basic solution if

A(:,B) is nonsingular and xi = 0, ∀i ∈ N
x is a basic feasible solution, BFS, if in addition x ≥ 0. It is
degenerate, if ∃i ∈ B, xi = 0

Equivalently, if Ax = b, x ≥ 0 (feasible):
x is basic if there exists
N ⊂ {1, . . . ,n}, |N | = n −m, xi = 0, ∀i ∈ N ;
and the corresponding matrix of active constraints[

A
IN

]
is nonsingular.

It is degenerate if there are redundant active constraints.
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Two Kinds of Degeneracy

Definition (Degenerate BFS)

x BFS is
{

nondegenerate, if xi > 0, ∀i ∈ B,
degenerate, otherwise

Definition (variable fixed at 0)

Let i0 ∈ I = {1, . . . ,n}. xi0 is fixed at 0 if xi0 = 0, ∀x ∈ F . Let

I= = {i ∈ I : xi is fixed at 0}, I< = I\I=

x̄ a degenerate BFS with basis B is of type:

1 if: i ∈ B, x̄i = 0 =⇒ i ∈ I<

2 if: there exists i ∈ B ∩ I=

Below we see that:
if I= ̸= ∅, then ALL BFS are of Type 2.
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Facial Reduction, FR, for LPs that fail Strict Feasibility

Two Steps
• obtain an equivalent problem with strict feasibility;
• recover full-row rank for the constraint matrix

(always needed for MFCQ)

Definition (Face of a convex set K )

A convex set F ⊆ K ⊆ Rn is a face of K , denoted F ⊴ K , if
y , z ∈ K , x = 1

2(y + z) ∈ F =⇒ y , z ∈ F .
The minimal face for F , face(F ), is the intersection of all faces of
K containing C.

faces of Rn
+, nonnegative orthant

for fixed indices Î ⊆ {1, . . . ,n}
F = {x ∈ Rn

+ : xi = 0, ∀i ∈ Î}
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Facial Reduction; Basics

Theorem (DW: [15, Theorem 3.1.3] Theorem of the Alternative)
For the feasible system F of the LP, exactly one of the following
statements holds:

1 There exists x ∈ Rn
++ with Ax = b, i.e., strict feasibility

holds;
2 There exists y ∈ Rm such that

(∗) 0 ̸= z := AT y ∈ Rm
+, and ⟨b, y⟩ = 0,

exposing vector z ∈ Rn
+

(*) is equivalent to:
exposing vector 0 ̸= z ≥ 0 exists for the minimal face
containing the feasible set, i.e.,
x ∈ F ⇐⇒ Ax = b, x ≥ 0

=⇒ ⟨z, x⟩ = ⟨AT y , x⟩ = ⟨y ,Ax⟩ = ⟨y ,b⟩ = 0
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Facial Reduction two steps; Outline

suppose strict feasibility fails; i.e., get exposing vector z
1 Thm of Alternative implies: ∃0 ⪇ z = AT y ∈ Rm:

x ∈ F =⇒ 0 ≤ ⟨x , z⟩ = ⟨x ,AT y⟩ = ⟨Ax , y⟩ = ⟨b, y⟩ = 0
=⇒ 0 = x ◦ z
⇐⇒ 0 = xjzj = 0, ∀j

yields complementary unit vectors ek

cardinality of support of z: sz = |{i : z i > 0}|

2 z =
sz∑

j=1
z tj etj , tj nondecreasing order

x =
n−sz∑
j=1

xsj esj , sj nondecreasing order.

V =
[
es1 es2 . . . esn−sz

]
∈ Rn×(n−sz), Vz = 0.

3 F = {x ∈ Rn
+ : Ax = b} = {x = Vv ∈ Rn : AVv = b, v ∈ Rn−sz

+ }
4 Recover full row rank: A← Pm̄AV ,b ← Pm̄b
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Facial Reduction, FR; Two Steps

matrix V ∈ Rn×(n−sz), facial range vector

Every facial reduction step yields at least one redundant
constraint, BW: [8],IW: [21, Lemma 2.7],S: [36, Section 3.5].

Lemma (step 2: redundant constraint)
Consider the facially reduced feasible set

Fr =
{

v : AVv = b, v ∈ Rn−sz
+

}
.

Then at least one linear constraint of the LP is redundant.

Proof.

Let: 0 ̸= z = AT y ≥ 0 exposing vector; V corresponding facial
range vector; Then:

0 = V T z = V T AT y = (AV )T y =
∑m

i=1 yi((AV )T )i
Since 0 ̸= y ∈ Rm, the rows of AV are linearly dependent.

13



Summary FR

Result of full two step FR: strict feas.; full rank

F = {x ∈ Rn
+ : Ax = b}

= {x = Vv ∈ Rn : Āv := (Pm̄AV )v = (Pm̄b) =: b̄,
v ∈ Rn−sz

+ }
after substit: min(V T c)T v s.t. Āv = v̄ , v ∈ Rn−sz

+

∃v̂ > 0, Āv̂ = b̄ (MFCQ)
full rank Ā = Pm̄AV : Pm̄ : Rm → Rm̄, m̄ = rank (AV ) < m.
Pm̄ is projection that chooses the linearly independent
rows of AV .
BOTH # variables, # constraints are strictly reduced.

This emphasizes the ILL-CONDITIONING of problems where
strict feasibility fails, i.e., Implicit singularity is eliminated using
FR.
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Two-Step Facial Reduction; Ax = b, x ≥ 0

Facial Reduction, FR
a journey to reformulate a problem until strict feasibility is met

[STEP 1]
Solve the auxiliary system:

Find y ∈ Rm s.t. AT y ∈Rn
+ \ {0},

⟨b, y⟩ = 0

Set V = I(:, supp(AT y)c)
x ← Vv
F ← {v ≥ 0 : (AV )v = b}

[STEP 2]
Any nontrivial FR

⇓
discovery of redundant equalities

Use Pm̄ to discard
redundancies

F ← {v ≥ 0 : Pm̄AV (v) =
Pm̄b}
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Example

Consider F with the data

A =

[
1 1 3 5 2
0 1 2 −2 2

]
and b =

(
1
1

)
.

Set y =

(
1
−1

)
=⇒ AT y =

(
1 0 1 7 0

)T ≥ 0 and ⟨b, y⟩ = 0.

V =

0 0
1 0
0 0
0 0
0 1

 , x ← Vv =

 0
v1
0
0
v2

 , Ax = b ← AVv = b ≡
[

1 2
1 2

]
v =

(
1
1

)
(*) Side note
There are exactly six feasible bases in F ; (BFS all degenerate).

B ∈ {{1,2}, {2,3}, {2,4}} is x =
(
0 1 0 0 0

)T ;

B ∈ {{1,5}, {3,5}, {4,5}} is x =
(
0 0 0 0 1

2

)T
.
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Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set

Fr =
{

v : AVv = b, v ∈ Rn−sz
+

}
.

Then at least one linear equality of AVv = b is redundant.

(proof) Let z = AT y be the exposing vector, V be a facial range vector induced by z.
Then

0 = V T z = V T AT y = (AV )T y .

Found a nontrival row combination of AV , i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit
redundant equalities of F
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Singularity Degree sd(F), Sturm ’20 [37]

Definition (d = sd(F) = min |FR steps|)

Definition (Hölder regularity)

the pair of closed, convex subsets A,B is γ-Hölder regular if
∀U compact, ∃c > 0 with:
dist(x ,A ∩ B) ≤ c ·

(
distγ(x ,A) + distγ(x ,B)

)
for all x ∈ U.

Sturm [37] error bound Theorem for SDP, F = L ∩ Sn
+

(L, Sn
+) is 1

2d -Hölder regular. (L linear manifold)

• for LPs, FR in one iteration using maximal exposing vector,
i.e., d = sd(F) ≤ 1
• FR for LPs does not alter sparsity pattern of A. (only involves
discarding columns of A; rows of A,b)
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A Theoretical Result on degenerate BFS↔ MFCQ

Theorem
a Suppose that strict feasibility of F fails. Then every basic
feasible solution, BFS, x ∈ F with basis B has B ∩ I= ̸= ∅ and
thus is degenerate.

aContrapositive found in Bertsimas-Tsitsiklis book [4, Exer. 2.19].

Proof.

• F = {x ∈ Rn : AVv = b, v ∈ Rn−sz
+ }, facial range vctr V

• wlog V =

[
Ir
0

]
and r = n − sz ;

• recall by redundant constraint lemma: rank AV < m
• implies rank A(:, {1, . . . , r}) < m
• BFS implies rank A(:,B) = m; implies ∃i ∈ B, i > r
• implies ∃i ∈ B ∩ I=, xi = 0 (degeneracy)
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Corollary, Stability, Converse

Corollary (contrapositive motivates phase I part 2)
If there exists a nondegenerate basic feasible solution, then
there exists a strictly feasible point in F .

Stability from above corollary
Recall: strict feasibility (and full rank, MFCQ) is equivalent to
stability wrt RHS perturbations.

Example (converse fails; all BFS degenerate ≠⇒ MFCQ fails)

A =
[

1 0 2 0 −2
1 −3 2 1 −2

]
;b =

(
1
1

)
, 0 < x = 1

10 (1 1 5.5 3 1)T

4 deg. feas. bases: B = {{1,2}, {1,4} : x = (1,0,0,0,0)T

B = {2,3}, {3,4} : x = (0,0,1/2,0,0)T

(Also, the linear assignment problem is highly degenerate but
has a strictly feasible point (average).)
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Empirics for FR Preprocessing

We want to avoid implicit singularity

• improve conditioning, number of iterations

interior point methods
• Condition number of normal equation system
• stopping criteria

KKT =

(
∥Ax∗ − b∥

1 + ∥b∥
,
∥AT y∗ + s∗ − c∥

1 + ∥c∥
,
⟨x∗, s∗⟩

n

)
.

simplex methods (NETLIB data set)
• percentage of degenerate iterations
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Interior Point Methods

Optimality Conditions at current (x > 0, y , s > 0), µ > 0

X = Diag (x), S = Diag (s).

AT∆y +∆s − c = 0 dual feasibility
A∆x − b = 0 primal feasibility

S∆x + X∆s = µe complementary slackness

After block elimination, solve normal equations for ∆y
Use ∆s in eqn 1 to eliminate ∆s in eqn 3.
Solve for ∆x in eqn 3 and eliminate it in eqn 2.
We get the normal equations

AS−1XAT∆y = RHS.

Backsolve for ∆x ,∆s to get the Newton direction.
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Numerical Experiments with Interior Point Methods

condition numbers of normal matrix; x∗, s∗ near optimal

κ
(

AD∗AT
)
, where D∗ = Diag (x∗)Diag (s∗)−1 (1)

three families of instances
1 (P(A,b,c)) do not have strictly feasible points;
2 (P̄(A,b̄,c)) have strictly feasible points;
3 (P(AFR ,bFR ,cFR)) facially reduced instances of (P(A,b,c)).
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Condition Numbers of Normal Matrix Near Optimum
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Figure: Performance profile on κ
(
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)
with(out) strict feasibility

near optimum; various solvers
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Empirics on Stopping Criteria

test the average performance of 10 instances of
size (n,m, r) = (3000,500,2000)

KKT =
(
∥Ax∗−b∥

1+∥b∥ , ∥AT y∗+s∗−c∥
1+∥c∥ , ⟨x∗,s∗⟩

n

)
Non-Facially Reduced System Facially Reduced System

linprog
KKT (9.58e-16, 1.80e-12, 5.17e-09) (5.78e-16, 1.51e-15, 5.57e-08)
iter 23.30 17.60
time 1.10 0.76

SDPT3
KKT (1.51e-10, 1.49e-12, 4.67e-03) (8.54e-12, 3.75e-16, 4.19e-06)
iter 25.40 19.80
time 0.82 0.53

MOSEK
KKT (8.40e-09, 7.54e-16, -5.16e-06) (5.16e-09, 3.81e-16, -2.03e-08)
iter 35.90 10.10
time 0.58 0.31

Table: Average of KKT conditions, iterations and time of (non)-facially
reduced problems
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Numerical Experiments with (Dual) Simplex Method

Empirics on the Number of Degenerate Iterations

• MOSEK (values in the table) reports percentage of
degenerate iterations i.e„ ‘DEGITER(%)’ is ratio of degenerate
iterations. (smaller value is better).
• r = | supp(s)|; smaller value (r/n)% means entries of s are
identically 0; 100% means strict feasibility holds.
• note significant decrease in ‘DEGITER(%)’.

(r/n)%
60% 70% 80% 90% 100%

(n,m)

(1000, 250) 36.62 10.18 0.01 0.02 0.00
(2000, 500) 39.72 18.28 0.07 0.15 0.01
(3000, 750) 25.99 10.66 0.32 0.75 0.02

(4000, 1000) 29.78 18.25 0.25 0.53 0.02

Table: Average of ratio of degenerate iterations DEGITER(%)
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Phase I(b): Towards Strict Feasibility
x̄ ,B degenerate BFS/basis; Wlog basic variables located
first x̄ as are degenerate variables. Solve (using basis from
phase I simplex method)

p∗
1 = max{x1 : Ax = b, x ≥ 0}.

1 Suppose that p∗
1 > 0. Then, the the variable x1 is not an

identically 0 variable, i.e., 1 /∈ I0.
2 Suppose that p∗

1 = 0. Then, the variable x1 is an identically
0 variable, i.e., 1 ∈ I0. Let B∗ be an optimal basis. Then we
have an exposing vector

y∗ = A(:,B∗)T e1, ⟨b, y∗⟩ = 0 and AT y∗ ≥ e1.

Add up certificates: y◦ =
∑

j y j to get exposing vector

AT y◦ =
∑

j

AT y j ≥ 0,AT y◦ ̸= 0, ⟨b, y◦⟩ =
∑

j

⟨b, y j⟩ = 0.
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Conclusion

loss of strict feasibility has many applications recent survey
Drusvyatskiy-W. [15].
though not needed theoretically in LP, loss of MFCQ
results in stability/numerical issues.
In the paper we introduced new concept: Implicit
Singularity Degree, maximum number of FR steps,
and presented an algorithm, phase I (b), that regularizes
an LP, for strict feasibility holding.
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Monday 11:15AM, April 10, 2023, in M103
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Motivation/Main Results

Main Problem/Best Approximation

Given v ∈ Rn and P ⊂ Rn a polyhedral set,
find the nearest point to v from the set P

Nonsmooth Algorithms

• Application of Moreau Decomposition/elegant equation
• present regularized nonsmooth method; singular Jacobian
• compare computational performance to classical projection
methods (e.g., HLWB projection method)

Applications
solving large scale linear programs; triangles from branch and
bound methods; generalized constrained linear least squares.
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Notation

best approximation problem to polyhedral set P ⊂ Rn

find the nearest point x∗ ∈ P to a given point v ∈ Rn

uniquely attained optimum (projection of v onto P)

optimum: x∗(v) = argminx∈P
1
2
∥x − v∥2

optimal value: p∗(v) = 1
2∥x

∗(v)− v∥2

Nonsmooth Newton Method
We apply a
(regularized/scaled) nonsmooth Newton method to a special
form of the optimality conditions based on a
Moreau decomposition.
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Background

The special Moreau decomposition for the optimality
conditions comes from work in infinite dimensional Hilbert
space e.g., [11,12,27,9], where the projection is actually
differentiable, and typically P is the intersection of a cone
and a linear manifold of finite co-dimension (finite #
constraints).
parametrized quadratic problem to solve finite dimensional
linear programs [35] applied in our work here below. (In
this finite dimensional case differentiability was lost.)
infinite dimensional applications appear in the theory of
partially finite programs in [6,7] Further references
in [34,22,2].
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Semismoothness

differentiability is lost in finite dimensional; this led to
application of semismoothness [28,30,29].
More recently: applications for nearest Euclidean distance
matrices and nearest doubly stochastic in [1,20].
The optimum x∗(v) is often called the projection onto the
polyhedral set and is known to be unique. Differentiability
properties are nontrivial as discussed in e.g., [19]. A
characterization of differentiability in terms of normal cones
is given in [16]. Further results and connections to
semismoothness is in e.g., [19,18]. A survey presentation
is at [33].
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Basic Theory

Projection onto a Polyhedral Set

(P)

x∗(v) := argminx
1
2∥x − v∥2

s.t. Ax = b ∈ Rm

x ∈ Rn
+,

optimal value: p∗(v) = 1
2∥x

∗(v)− v∥2,

Assumptions: A full row rank; feasible set nonempty
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Optimality Conditions

Theorem (F : Rm → Rm; find root y∗; Newton)

The optimum x∗(v) exists and is unique. Let
(∗) F (y) := A(v + AT y)+ − b , f (y) := 1

2∥F (y)∥2

Then F (y) = 0 has a root y∗, F (y∗) = 0 ⇐⇒ y ∈ argmin f (y∗)

x∗(v) = (v + AT y∗)+, for any root F (y∗) = 0.

Moreover, strong duality holds and the dual problem is

p∗(v) = d∗(v)
:= maxz≥0,y ϕ(y , z) (= minx L(x , y , z))
:= −1

2

∥∥z − AT y
∥∥2

+ yT (Av − b)− zT v .

AND
At each iteration, we get a provable/calculable lower bound

max
z≥0,y

ϕ(y, z) = −
1

2

∥∥∥z − AT y
∥∥∥2

+ yT (Av − b)− zT v
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Proof of Optimality Conditions

Proof.

L(x , y , z) = 1
2∥x − v∥2 + yT (b − Ax)− zT x ;

∇xL(x , y , z) = x − v − AT y − z;
stationarity: 0 = ∇xL(x , y , z) =⇒ x = (v + AT y) + z
=⇒ L(x , y , z) = −1

2

∥∥z + AT y
∥∥2

+ yT (b − Av)− zT v .

KKT optimality conditions

∂
∂x L(x , y , z) = x − v − AT y − z = 0 (dual feasibility)
∂
∂y L(x , y , z) = Ax − b = 0 (primal feasibility)
∂
∂z L(x , y , z) ∼= x ∈ (Rn

+ − z)+ (compl. slackness,
zT x = 0 or
z ◦ x = 0)
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Proof continued...

(cont... Solve opt. cond.[
x − v − AT y − z

Ax − b
zT x

]
=

[
0
0
0

]
, x , z ∈ Rn

+, y ∈ Rm.

Moreau Decomposition:
v + AT y = x − z = x + (−z), xT z = 0
x = (v + AT y)+; z = −(v + AT y)−

F : Rm → Rm; F (y) = A(v + AT y)+ − b = 0, y ∈ Rm

Apply Newton at current yc ; Newton direction ∆y

F ′(yc)∆y = −F (yc); yp = yc +∆y
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Compare Interior Point Methods

Block Elimination on Perturbed KKT Conditions[
rd
rp
rc

]
:=

[
x − v − AT y − z

Ax − b
Zx − µe

]
, x , z ∈ Rn

+, y ∈ Rm.

F ′
µ∆s =

[
∆x − AT ∆y − ∆z

A∆x − b
X∆z + Z∆x

] [
∆x
∆y
∆z

]
= −

[
rd
rp
rc

]
, x , z ∈ Rn

+, y ∈ Rm.

Normal Equations Reduction to ∆y
Currently, normal equations are not considered efficient. But
the Newton equation was a percursor and appears to be
efficient?

F : Rm → Rm; F (y) = A(v + AT y)+ − b = 0, y ∈ Rm

F ′(yc)∆y = −F (yc); yp = yc +∆y
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Nonlinear Least Squares, Generalized Jacobians

minimize squared residual f (y) = 1
2∥F (y)∥2

differentiable case {i : (v + AT y)i = 0} = ∅:
∇f (y) = (F ′(y))∗F (y)

Definition ((local) Lipschitz Continuity)

Let Ω ⊆ Rn. A function F : Ω→ Rn is Lipschitz continuous on Ω
if there exists K > 0 such that

|F (y)− F (z)| ≤ K∥y − z∥, ∀y , z ∈ Ω.

F is locally Lipschitz continuous on Ω if for each x ∈ Ω there
exists a neighbourhood U of x such that F is Lipschitz
continuous on U.
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Generalized Jacobian

Rademacher’s Theorem [31,17]
F : Ω→ Rn locally Lipschitz on Ω implies that it is Frechét
differentiable almost everywhere on Ω.

Definition (Clarke [13] Generalized Jacobian)

Suppose that F : Rm → Rm be locally Lipschitz. Let DF be the
set of points such that F is differentiable. Let F ′(y) be the usual
Jacobian matrix at y ∈ DF . The generalized Jacobian of F at y,
∂F (y) is

∂F (y) = conv

 lim
yi→y

yi∈DF

F ′(yi)

 .

In addition, ∂F (y) is nonsingular if every V ∈ ∂F (y) is
nonsingular.
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Case: Differentiable and F ′(y) invertible

Newton Direction; Newton Equation

(F ′(y))∗(F ′(y))∆y = −(F ′(y))∗F (y) ⇐⇒ F ′(y)∆y = −F (y).

∆y = −
(
(F ′(y))∗(F ′(y))

)−1
(F ′(y))∗F (y) = −(F ′(y))†F (y)

directional derivative: ∆yT∇f (y) = . . .

− [(F ′(y))∗F (y)]T ((F ′(y))∗(F ′(y)))−1 [(F ′(y))∗F (y)]
< 0
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Levenberg-Marquardt, LM , Regularization Method
We now see that we maintain a descent direction.

Lemma (for handling singularity in (F ′(y))∗(F ′(y)))

LM direction is always a descent direction.

Proof.
(J ∼= F ′(y))

(J∗J + λI)∆y = −J∗F .

∆y = −
(

JT J + λI
)−1

(JT F ).

Therefore, the directional derivative is

∆yT∇f (y) = −
((

JT J + λI
)−1

(JT F )
)T

(JT F )

= −(JT F )T
((

JT J + λI
)−1

)
(JT F )

< 0.
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Max. Rank Generalized Jacobian

Cols chosen ∼= pos. variables of w

Aw+ = A(PNw) = (APN )w+ =
∑

wi>0 A(:, i)wi

Index Set of Columns

Note: v + AT y ≥ 0 =⇒ F ′(∆y) = AIAT∆y = AAT∆y

U(y) :=

u ∈ Rn | ui ∈


1 if (v + AT y)i > 0

[0,1] if (v + AT y)i = 0
0 if (v + AT y)i < 0


generalized Jacobian at y ; after convex hull

∂F (y) = {A Diag (u)AT |u ∈ U(y)}
(max-rank: choose ui = 1 when possible)
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Semismooth Newton Method solving F (y) = 0

Solve (Vk + λI)dNewton = −F (yk ), with
Vk ∈ ∂F (yk ), λ > 0, c ∈ (0,1)

yk+1 = yk + dNewton;
(
or avging yk+1 = (1− c)yk ++cdNewton

)
Max-rank Jacobian

AMAT := ADiag (u)AT

=
∑

i∈I+ A:iAT
:i +

∑
i∈I0

αiA:iAT
:i , αi ∈ [0,1],∀i ∈ I0

maximum (resp. minimum) rank for AMA:
αi = 1,∀i ∈ I0 (αi = 0, ∀i ∈ I0, resp.)
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Vertices and Polar Cones

Choosing the optima for the tests; (nondegenerate) vertex

In our tests we can decide on the characteristics of the optimal
solution using the properties of (degenerate) vertices.
Recall: x optimal iff x − v ∈ F(x)+

Lemma (vertex and polar cone)

y ∈ Rm, x(y) = (v + AT y)+ ∈ F . Then:
x(y) vertex ⇐⇒ AI+ nonsingular

⇐⇒ corresp. gen. Jac. nonsingular.
x = x(y) ∈ F =⇒
F(x)+ = {w : w = AT u + z,u ∈ Rm, z ∈ Rn

+, xT z = 0}
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Proof of Lemma

Proof.

wlog A = [AI+ AI0 ] implies active set is
[
AI+ AI0

0 I

]
x =

(
b
0

)
;

This has unique solution x(y) iff AI+ is nonsingular.
gradient of objective satisfies

x − v = AT y +
∑
j∈I0

zjej .

Optimality conditions yield polar cone at a vertex.

degeneracy of optimal solutions
Let x ∈ bdryF ;
x is optimal iff x − v ∈ F(x)+, i.e., we can choose v with
v = x − AT u + z, z ≥ 0, zT x = 0.
and
x∗(v) is differentiable at v ⇐⇒ (x∗(v)− v) ∈ ri(F − x∗(v))+
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Best Approx.; Nonsmooth Algor.

Algorithm 1 Best Approx. of v in P; Exact Newton
Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank (A) = m), ε > 0, maxiter
1: Output. Primal-dual opt: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

F0 = Ax0 − b, stopcrit← ∥F0∥/(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: λ = min(1e−3, stopcrit)
5: V̄ = (Vk + λIm)
6: solve pos. def. V̄d = −Fk for Newton direction d
7: updates
8: yk+1 ← yk + d
9: xk+1 ← (v + AT yk+1)+

10: zk+1 ← (xk+1 − (v + AT yk ))+
11: Fk+1 ← Axk+1 − b (residual)
12: stopcrit← ∥Fk+1∥/(1 + ∥b∥)
13: k ← k + 1
14: end while
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Halpern-Lions-Wittmann-Bauschke [3]
Halpern-Lions-Wittmann-Bauschke [3] (HLWB)

Algorithm 2 Extended HLWB algorithm
Require: v ∈ Rn, (A ∈ Rm×n, rank (A) = m), ε > 0, maxiter ∈ N .
1: Output. xk+1

2: Initialization. k ← 0, msweeps ← 0 x0 ← max(v, 0), y0 ← x0, i0 = 1
stopcrit← ∥Ay0 − b∥/(1 + ∥b∥) (= ∥F0∥/(1 + ∥b∥))

3: while ((stopcrit > ε) & (k ≤ maxiter)) do
4: if 1 ≤ i(k) ≤ m then

5: yk = xk +
bik

−⟨aik
,xk ⟩

∥aik
∥2 aik

6: else
7: yk = max(0, xk )

8: end if
9: updates
10: σk = 1

k+1 ( change to σk = 1
msweeps+1 ??)

11: xk+1 ← σk v + (1− σk )y
k

12: stopcrit← ∥Ay0 − b∥/(1 + ∥b∥)
13: k ← k + 1
14: if k mod (m + 1) == 0 then
15: msweeps = msweeps + 1
16: end if
17: ik = k(mod m) + 1
18: end while
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Numerical Tests BAP; varying sizes m,n

Table: n = 3000, % density=.81; varying m = 100, 600, 1100, 1600

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQ QPPAL Exact Inexact HLWB LSQ QPPAL

100 3000 8.1e-01 2.13e-03 1.98e-02 1.89e+01 3.22e+00 8.04e-01 2.55e-16 2.41e-15 2.29e-04 4.12e-17 -8.43e-16
600 3000 8.1e-01 8.35e-02 3.03e-01 1.94e+02 4.28e+00 1.27e+00 5.10e-16 5.10e-18 2.19e-04 5.12e-17 -1.53e-16

1100 3000 8.1e-01 7.02e-01 1.29e+00 4.16e+02 6.18e+00 2.53e+00 5.20e-16 8.71e-16 2.08e-04 3.80e-17 9.05e-17
1600 3000 8.1e-01 1.40e+00 3.59e+00 6.57e+02 7.65e+00 5.13e+00 9.84e-18 1.11e-15 2.27e-04 3.82e-17 -8.61e-17

Table: m = 200, % density=.81, varying n = 3000, 3500, 4000, 4500, 5000

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQ QPPAL Exact Inexact HLWB LSQ QPPAL

200 3000 8.1e-01 3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
200 3500 8.1e-01 3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
200 4000 8.1e-01 3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
200 4500 8.1e-01 3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16
200 5000 8.1e-01 3.93e-03 3.42e-02 7.30e+01 1.45e+01 1.26e+00 4.09e-17 1.80e-15 3.16e-04 5.27e-17 -6.28e-17
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Numerical Tests BAP varying density

Table: m = 300, n = 1000, Varying % density=1, 6, 1.1, 1.6

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQ QPPAL Exact Inexact HLWB LSQ QPPAL

300 1000 1.0e+00 5.65e-03 5.69e-02 1.67e+01 3.02e-01 5.32e-01 7.48e-16 7.27e-16 1.54e-04 3.33e-17 -8.29e-17
300 1000 6.0e+00 4.80e-02 2.52e-01 4.58e+01 3.15e-01 1.22e+00 3.44e-17 1.18e-16 1.51e-04 2.04e-15 -1.43e-17
300 1000 1.1e+01 6.18e-02 2.49e-01 5.41e+01 3.07e-01 2.10e+00 5.65e-17 1.54e-17 1.44e-04 1.09e-16 1.09e-16
300 1000 1.6e+01 7.79e-02 2.60e-01 5.34e+01 3.03e-01 2.11e+01 6.92e-17 7.98e-17 1.61e-04 4.19e-16 -2.88e-16
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Performance Profiles BAP
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Applications: Solving (maximization) Large Scale LP

primal (maximization) LP in standard form

(PLP)
p∗

LP := max cT x
s.t. Ax = b ∈ Rm

x ∈ Rn
+.

dual LP

(DLP)
d∗

LP := min bT y
s.t. AT y − z = c ∈ Rn

z ∈ Rn
+.

(2)

Assumptions: full rank; finite optimal value
A full row rank;
p∗

LP ∈ R (so p∗
LP = d∗

LP ∈ R and both attained)
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Geometric Algorithm

solution can be found from the limit as R ↑ ∞ of the projection
of the vector vR = Rc ∈ Rn onto the feasible set.

Lemma ( [23,24,25,35])
Let the given LP data be A,b, c with finite optimal value p∗

LP .
For each R > 0 define
x(R) := argminx

1
2∥x − Rc∥2

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

Then x∗ is the minimum norm solution of (PLP) if, and only if,
there exists R̄ > 0 such that

R ≥ R̄ =⇒ x∗ ∈ argmin

{
1
2
∥x − Rc∥2 : Ax = b, x ∈ Rn

+

}
.

We use the estimate R = min
{

50,
√

mn∥b∥
1+∥c∥

}
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Avoid numerical/roundoff from large numbers

Corollary (scaling 1
R b)

A,b, c,R, x(R) as in Lemma. Then

1
R x(R) = w(R) := argminw

1
2∥w − c∥2

s.t. Aw = 1
R b ∈ Rm

w ∈ Rn
+.

Proof.
From

∥x − Rc∥2 = R2
∥∥∥∥ 1

R
x − c

∥∥∥∥2

= R2∥w − c∥2, x = Rw ,

we substitute for x and obtain A(Rw) = b ⇐⇒ Aw = 1
R b. The

result follows from the observation that argmin does not change
after discarding the constant R2.
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Warm Start; Stepping Stone External Path Following

consider scaled problem with:

x(R) = Rw(R).

Recall the optimality conditions for w = w(R):w − c − AT y − z
Aw − 1

R b
zT w

 =

0
0
0

 , w , z ∈ Rn
+, y ∈ Rm.

We conclude that

lim
R→∞

PRange(AT )w(R) = 0, lim
R→∞

Rw(R) = x∗, the optimum of the LP.

The optimality conditions are now

w = c+AT y+z, b = ARw = AR(c+AT y)+, wT z = 0, x , z ≥ 0.
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Warm Start from current R: find new Rn, yn

Theorem
Suppose triple (w , y , z) optimal for scaled problem; let
N = N (z) = {i : zi > 0}, B = B(w) = {1 : n}\N ;

bB = AT
B
(
ABAT

B
)† b, bN = AT

N
(
ABAT

B
)† b;

e =

(
(bB − RwB)
−(bN + RzN )

)
, f =

(
RbB
−RbN

)
.

Then max. value R without changing basis is
Rn = min{fi/ei : ei > 0, fi > 0, i = 1, . . . |B|}.
Moreover, Rn =∞ implies optimal solution found.

Rn <∞ =⇒ corresponding changes are:

∆yp =
(
ABAT

B
)† b; ∆y =

(
R−Rn
RRn

)
∆yp.

∆wB = AT
B

(
R−Rn
RRn

)
∆yp

∆zN = −AT
N

(
R−Rn
RRn

)
∆yp
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LP Numerical Tests
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Performance Profile LP
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Conclusion for BAP and LP Algorithm

efficient, robust algorithm for projection of a point onto a
polyhedral set.
One of may applications is to solving large scale LPs; we
get a finite converging stepping stone exterior path
following algorithm (mixture of simplex/interior-point)
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