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Motivation/Main Results

Background

@ Currently: simplex and interior point methods are most
popular algorithms for solving linear programs, LPs.

@ Unlike general conic programs, (finite) LPs do not require
strict feasibility for strong duality. Hence strict feasibility (no
variable fixed at zero; one type of degeneracy) is often less
emphasized.

v

History Degeneracy

@ techniques for resolving degeneracy:
e (symbolic) perturbation Charnes '52 [10];
e lexicographic Dantzig-Orden-Wolfe '55 [14];
e modified lexicographic Wolfe '63 [38] (more efficient
Ryan-Osborne ’88 [32]);
e Bland finite pivoting rule 77 [5] (simple/less efficient)

@ Megiddo 86 [26]: “exiting degenerate vertex as hard as
solving general LP”

il



Motivation cont...

We show that lack of strict feasibility:

@ causes numerical difficulties in both simplex and interior
point methods.

@ and — all basic feasible solutions, BFS, are degenerate )

@ the notion of implicit singularity when strict feasibility fails;

@ an extension of Phase-I| of simplex method for the two part
preprocessing for strict feasibility

\




Background and Notation

Feasible LPs; standard form (with FINITE opt. value)

(P) (finite) p* = miny c'x
st. Ax=beR"™
x R}

assume wlog rank (A) = m;

with feasible set: F={xeR": Ax=>b, x >0}

v

(D) p*=d"= max b'y
st. Aly<ceR”
y €eR”

(equivalently ATy + s = ¢, s > 0 slack)

A




History: Kantorovich; Dantzig, Karmarkar

Kantorovich ’39, USSR, WWII

e transportation models and optimal solutions (algorithm)
¢ helped NKVD with transportation problems

Dantzig 47, USA, SIMPLEX METHOD

o following duality/game-theory by Von Neumann

e Hotelling: “but the world is nonlinear”

¢ Von Neumann: “if you have a linear model, you can now solve
it”

e SIAM survey 1970’s: 70% of ALL world computer time is
spent on the simplex method

Karmarkar ’84, Interior Point Revolution

e Lustig-Marsten-Shanno OB1 code '90; large went
from: (m=1e3 x n=1e4)to (m=1e5x n=1€7)
e to modern day: (m=1e6 x n=1e10)

[



Strict Feasibility, Slater, Mangasarian-Fromovitz CQ

Feasible LPs; standard form (with FINITE opt. value)

(P) (finite) p* = min cTx
st. Ax=beR"
x e R}

there exists X with Ax = b, % >0 (MFCQ)

.

(D) p*=d" = max b'y
st. Aly<ceR”
y eR”

there exists y with ATy < ¢ (Slater CQ)

€

Stability: MFCQ/Slater

stability wrt RHS perturbations
< compact set of dual variables

€
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Basic (Feasible/Degenerate) Solutions

Definition (basic (feasible) solution)
@ Given: x e R", Ax=band BC {1,...,n},
|B| = m;let N = {1...n}\B.
Then x is a basic solution if
‘A(:, B) is nonsingular and x; = 0, Vi € N‘
@ x is a basic feasible solution, BFS, if in addition x > 0. ltis
degenerate, if 3i € B,x; =0

Equivalently, if Ax = b, x > 0 (feasible):

x is basic if there exists
Nc{l,...,n},IN|=n—m,x; =0,Vi e N;
and the corresponding matrix of active constraints

A is nonsingular
Iz 9 '

It is degenerate if there are redundant active constraints.

]




Two Kinds of Degeneracy

Definition (Degenerate BFS)

nondegenerate, if x; >0, Vi € B,

RS E { degenerate, otherwise

€

Definition (variable fixed at 0)
Letip € Z={1,...,n}. x; isfixed at 0 if x;, = 0,Vx € F. Let

I-={ieZ:xisfixedat0}, I~ =7\Z~

X a degenerate BFS with basis B is of type:
Q@if:ieBxi=0— icI<
Q if: there exists i e BNZ~

| .

Below we see that:
if Z= # 0, then ALL BFS are of Type 2.

[}
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Facial Reduction, FR, for LPs that fail Strict Feasibility

e obtain an equivalent problem with strict feasibility;
e recover full-row rank for the constraint matrix
(always needed for MFCQ)

Definition (Face of a convex set K)
A convex set F C K C R" is a face of K, denoted F < K, if
v, ZzeK,x=%(y+2)eF = y,zeF.
The minimal face for F, face(F), is the intersection of all faces of
K containing C.

faces of R’ , nonnegative orthant

for fixed indices Z C {1, ..., n}
F={xeRl:x,=0,Viel}




Facial Reduction; Basics

Theorem (DW: [15, Theorem 3.1.3] Theorem of the Alternative)

For the feasible system F of the LP, exactly one of the following
Statements holds:

@ There exists x € R, with Ax = b, i.e., strict feasibility
holds;

© There exists y € R™ such that

(x) 0£z:=ATyeR™ and (b,y)=0,

H n
exposing vector ~ € R

(*) is equivalent to:
exposing vector 0 # z > 0 exists for the minimal face
containing the feasible set, i.e.,
xXeF <— Ax=bx>0
= (z,x) = (ATy,x)

(y,Ax) = (y,b) =0

11



Facial Reduction two steps; Outline

suppose strict feasibility fails; i.e., get
@ Thm of Alternative implies: 30 < z = ATy ¢ R™:

XeF = 0<(x,2)=(x,ATy)=(Ax,y) = (b,y) =
— 0O0=xo0z
<~ 0=xz =0,V
yields complementary unit vectors ey

cardinality of support of z: s, = |{i : z; > O}

Sz
Q z= ,; Zy ey, ti nondecreasing order
n—s; .
xX= > Xs;€s;, Sj nondecreasing order.
j=1
V = [631 632 .o esnisz] € Rnx(nisz), VZ = 0
Q r={xeRl:Ax=bl={x=WEeR": AW =0b,veR] >}
© Recover full row rank: A < P;AV,b < Pmb
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Facial Reduction, FR; Two Steps

matrix V e R7<(n—sz),

Every facial reduction step yields at least one redundant
constraint, BW: [8],IW: [21, Lemma 2.7],S: [36, Section 3.5].

Lemma (step 2: redundant constraint)

Consider the facially reduced feasible set
Fr={v:AW=b,v e R *}.

Then at least one linear constraint of the LP is redundant.

Proof.

Let: 0 # z = ATy > 0 exposing vector; V corresponding facial
range vector; Then:

0=VTz=VTATy = (AV)Ty = S, yi((AV)T);
Since 0 £ y € R™, the rows of AV are linearly dependent. O

v
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Summary FR

Result of full two step FR: strict feas.; full rank

F = {xeR}:Ax=b} B
= {x=WeR": Av := (PzAV)v = (Pmb) =: b,
v e R}

e after substit: min(VTc)"vst Av="v, veR["*

@ 3V >0,Al=b (MFCQ)

o fullrank A = P5AV: Pg : R™ — R™, M = rank (AV) < m.
P is projection that chooses the linearly independent
rows of AV.

@ BOTH # variables, # constraints are strictly reduced.

This emphasizes the ILL-CONDITIONING of problems where
strict feasibility fails, i.e., Implicit singularity is eliminated using
FR.




Two-Step Facial Reduction; Ax = b, x >0

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met




Two-Step Facial Reduction; Ax = b, x >0

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

Solve the auxiliary system:
Find y e R"st. ATy eR7 \ {0},
<b7 y> =0
Set V = I(:, supp(AT y)°)

X +— W
F <+ {v>0:(AV)v =b}



Two-Step Facial Reduction; Ax = b, x >0

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 2]
[STEP 1] . Any nontrivial FR
Solve the auxiliary system: il
Find y ¢ R™s.t. ATy €R7 \ {0}, discovery of redundant equalities
(b,y)=0 Use P to discard
Set V = I(:, supp(AT y)°) redundancies
X< W
F—{v>0:(AV)v = b} F+—{v>0:PrAV(v) =

Pmb}



Two-Step Facial Reduction; Ax = b, x >0

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 2]
[STEP1] Any nontrivial FR
Solve the auxiliary system: il
Find y ¢ R™s.t. ATy €R7 \ {0}, discovery of redundant equalities
(b,y)=0 Use P to discard
Set V = I(:, supp(AT y)°) redundancies
X< W
F—{v>0:(AV)v = b} F+—{v>0:PrAV(v) =
Pmb}
T v v

A facji)l AV illlplicL)Hoss of P, AV

reduction surjectivity mg‘?;%c;ncy




Consider F with the data
11 3 5 2 1
A:[o 12 -2 2} a”db:<1>'

Set}’:(1) — ATy=(1 0 1 7 0)">0and (by)=0.

0 0 0

1@ A _ [t 2], _ [
V:[g g], x<—Vv_(g>, Ax_b<—AVv_b_[1 2]v_(1

0 1




Consider F with the data
113 5 2 1
A:[o 12 -2 2} a”db:<1>'

Set}’:(1) — ATy=(1 0 1 7 0)">0and (by)=0.

0 0 0
_re N _ Ch_[t 2, _ [
V_[g g], x<—Vv_<g>, Ax_b<—AVv_b:[1 2]v_(1)

0 1

(*) Side note
There are exactly six feasible bases in F; (BFS all degenerate).

® Be{{1,2},{2,3},{2,4}}isx=(0 1 0 0 0)';

® Be{{1,5},{3,5},{4,5}}isx=(0 0 0 0 1)".



Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set
Fr={v:AW=>b,veR|"%}.

Then at least one linear equality of AVv = b is redundant.




Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set
Fr={v:AW=>b,veR|"%}.

Then at least one linear equality of AVv = b is redundant.

(proof) Let z = ATy be the exposing vector, V be a facial range vector induced by z.
Then
0=VTz=VTATy = (AV)7y.

Found a nontrival row combination of AV, i.e., detected redundancy




Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set
Fr={v:AW=>b,veR|"%}.

Then at least one linear equality of AVv = b is redundant.

(proof) Let z = ATy be the exposing vector, V be a facial range vector induced by z.

Then
0=VTz=VTATy = (AV)7y.

Found a nontrival row combination of AV, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit
redundant equalities of F




Singularity Degree sd(F), Sturm ’20 [37]

Definition (- = sd(F) = min |FR steps|)

Definition (Hélder regularity)

the pair of closed, convex subsets A, B is v-Hdlder regular if
YU compact, 9¢ > 0 with:

dist(x, ANB) < ¢ - (disﬂ(x, A) + dist”(x, B)) forall x € U.

V.

Sturm [37] error bound Theorem for SDP, F = LN S

(£,S7)is 21—(,—H6Ider regular. (£ linear manifold)

.

e for LPs, FRin one iteration using maximal exposing vector,
ie., d=sd(F) <1

¢ FR for LPs does not alter sparsity pattern of A. (only involves
discarding columns of A; rows of A, b)

\
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A Theoretical Result on degenerate BFS < MFCQ

4 Suppose that strict feasibility of F fails. Then every basic
feasible solution, BFS, x € F with basis B has BNZ~ # () and
thus is degenerate.

@Contrapositive found in Bertsimas-Tsitsiklis book [4, Exer. 2.19].

e F={xeR" : AW = b, v € R~*}, facial range vctr V

e wlog V = [g] andr=n-—s;;
e recall by redundant constraint lemma: rank AV < m
e implies rank A(:, {1,...,r}) <m

e BFS implies rank A(:, B) = m; implies 3i € B,i > r
e implies 3i € BNZ=, x; = 0 (degeneracy) O




Corollary, Stability, Converse

Corollary (contrapositive motivates phase | part 2)

If there exists a nondegenerate basic feasible solution, then
there exists a strictly feasible point in F.

.

Stability from above corollary

Recall: strict feasibility (and full rank, MFCQ) is equivalent to
stability wrt RHS perturbations.

.

Example (converse fails; all BFS degenerate =~ MFCAQ fails)

A=[ % 29 :b=(), 0<x=4@1 155 3 1)

4 deg. feas. bases: B= {{1,2},{1,4} : x=(1,0,0,0,0)"
B={2,3},{3,4} : x=(0,0,1/2,0,0)7

(Also, the linear assignment problem is highly degenerate but

has a strictly feasible point (average).)

.
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Empirics for FR Preprocessing

e improve conditioning, number of iterations

interior point methods

e Condition number of normal equation system
e stopping criteria

KKT = (HAX*_bH “ATy*—{—S*—C“ <X*7S*>> )

14 lbl T+lel 7~ n

simplex methods (NETLIB data set)
e percentage of degenerate iterations

21



Interior Point Methods

Optimality Conditions at current (x > 0,y,s>0),u >0

X = Diag (x), S = Diag(s).

ATAy + As—c = 0 dual feasibility
AAx —b = 0 primal feasibility
SAx + XAs = pe complementary slackness

After block elimination, solve normal equations for Ay
@ Use Asinegn 1 to eliminate Asin egn 3.
@ Solve for Ax in egn 3 and eliminate it in egn 2.
@ We get the normal equations

AS~'XATAy = RHS.

@ Backsolve for Ax, As to get the Newton direction.

29



Numerical Experiments with Interior Point Methods

condition numbers of normal matrix; x*, s* near optimal

K (AD*AT) , where D* = Diag (x*)Diag (s*)~" (1)

three families of instances

@ (Panp,c)) do not have strictly feasible points;
(2 (75( AB,c)) have strictly feasible points;
O (P(Aps,brr.cer)) facially reduced instances of (P4 p,c))-

29



Condition Numbers of Normal Matrix Near Optimum

Performance profile on (AD*AT);

(m,n) = (500,1500), dim(relint(F)) € [300,1350]
1 T = T— — s

T ) —linprog (P(a,0))
08l //f'/,/” ///7 ——SDPT3 (P(A,b,c))
— MOSEK (P(4),,))
ol Ay linprog (P4 )
1;: ;‘/,//"// SDPT3 (’PLA,E,C))
0.4 /‘,'/ MOSEK (,P(Aﬁ,c))
¥ . .
0o L/,/‘ 77777 hnpl“Og (’P(AFR,I)FR«,CFR))
s ) A B i SDPT3 (’P(AFR,bFR,CFR))
. . TR B MOSEK (P(AFvaFRyCFRt
10° 10 10 10° 10° 10"

Figure: Performance profile on x (ADAT) with(out) strict feasibility
near optimum; various solvers
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Empirics on Stopping Criteria

test the average performance of 10 instances of
size (n, m, r) = (3000, 500, 2000)

KKT = (1Ax=bl ATy +s"—c]
1+(lb]| 1+|lell
Non-Facially Reduced System Facially Reduced System
KKT (9.58e-16, 1.80e-12, 5.17e-09) (5.78e-16, 1.51e-15, 5.57€-08)
linprog iter 23.30 17.60
time 1.90 0.76
KKT (1.57e-10, 1.49e-12, 4.67e-03) (8.54e-12, 3.75e-16, 4.19¢-06)
SDPT3 iter 25.40 19.80
time 0.82 0.53
KKT (8.40e-09, 7.54e-16, -5.16e-06) (5.16e-09, 3.81e-16, -2.03e-08)
MOSEK iter 10.70
time 0.58 0.31

Table: Average of KKT conditions, iterations and time of (non)-facially
reduced problems

25



Numerical Experiments with (Dual) Simplex Method

Empirics on the Number of Degenerate lterations

e MOSEK (values in the table) reports percentage of
degenerate iterations i.e, ‘DEGITER(%)’ is ratio of degenerate
iterations. (smaller value is better).

o r = |supp(s)|; smaller value (r/n)% means entries of s are
identically 0; 100% means strict feasibility holds.

e note significant decrease in ‘DEGITER(%)’.

(r/n%
60% 70% 80% 90% 100%
(1000, 250) | 36.62 10.18 0.01 0.02 0.00
(2000, 500) | 39.72 18.28 0.07 0.15 0.01
(3000, 750) | 25.99 10.66 0.32 0.75 0.02
(4000, 1000) | 29.78 18.25 0.25 0.53 0.02

(n, m)

Table: Average of ratio of degenerate iterations DEGITER(%)

26



Phase I(b): Towards Strict Feasibility

@ X, B degenerate BFS/basis; Wlog basic variables located
first X as are degenerate variables. Solve (using basis from
phase | simplex method)

py = max{xy : Ax =b, x > 0}.

@ Suppose that p; > 0. Then, the the variable x; is not an
identically O variable, i.e., 1 ¢ Z,.

© Suppose that p; = 0. Then, the variable x; is an identically
0 variable, i.e., 1 € Zy. Let B* be an optimal basis. Then we
have an exposing vector

y =A:B) e, (by*) =0 and ATy* > ey.
@ Add up certificates: y° = E/ ¥l to get exposing vector

ATy = ST ATy > 0,ATy° £0,(b,y%) = S (b, yl) = 0.
j )

27



Conclusion

@ loss of strict feasibility has many applications recent survey
Drusvyatskiy-W. [15].

@ though not needed theoretically in LP, loss of MFCQ
results in stability/numerical issues.

@ In the paper we introduced new concept: Implicit
Singularity Degree, maximum number of FR steps,
and presented an algorithm, phase | (b), that regularizes
an LP, for strict feasibility holding.

28
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Motivation/Main Results

Main Problem/Best Approximation

Given v € R" and P C R" a polyhedral set,
find the nearest point to v from the set P

Nonsmooth Algorithms

e Application of Moreau Decomposition/elegant equation

e present regularized nonsmooth method; singular Jacobian
e compare computational performance to classical projection
methods (e.g., HLWB projection method)

.

Applications

solving large scale linear programs; triangles from branch and
bound methods; generalized constrained linear least squares.




Notation

best approximation problem to polyhedral set P c R”
find the nearest point x* € P to a given point v € R"

uniquely attained optimum (projection of v onto P)
1
optimum: x*(v) = argminyep 5 |X - v|?

optimal value: p*(v) = 1[|x*(v) — v||?

A

Nonsmooth Newton Method

We apply a

(regularized/scaled) nonsmooth Newton method to a special
form of the optimality conditions based on a

Moreau decomposition.

.




Background

@ The special Moreau decomposition for the optimality

conditions comes from work in infinite dimensional Hilbert
space e.g., [11,12,27,9], where the projection is actually
differentiable, and typically P is the intersection of a cone
and a linear manifold of finite co-dimension (finite #
constraints).

parametrized quadratic problem to solve finite dimensional
linear programs [35] applied in our work here below. (In
this finite dimensional case differentiability was lost.)
infinite dimensional applications appear in the theory of

partially finite programs in [6, 7] Further references
in [34,22,2].

22



Semismoothness

differentiability is lost in finite dimensional; this led to
application of semismoothness [28, 30, 29].

More recently: applications for nearest Euclidean distance
matrices and nearest doubly stochastic in [1,20].

The optimum x*(v) is often called the projection onto the
polyhedral set and is known to be unique. Differentiability
properties are nontrivial as discussed in e.g., [19]. A
characterization of differentiability in terms of normal cones
is given in [16]. Further results and connections to
semismoothness is in e.g., [19, 18]. A survey presentation
is at [33].

21



Basic Theory

Projection onto a Polyhedral Set

x*(v) ;= argmin, %HX — v
s.t. Ax =beR™
(P) x € R,
optimal value: p*(v) = 1[Ix*(v) —v|?,

Assumptions: A full row rank; feasible set nonempty

24



Optimality Conditions

Theorem (F : R™ — R™; find root ~ ; Newton)

The optimum x*(v) exists and is unique. Let

(x) [F(y)=A(v+ATy),—b| f(y):=3IF¥)I?

Then F(y) =0 hasarooty*, F(y*) =0 < y € argminf(y*)

x*(v) = (v+ ATy*),, for any root F(y*) = 0.
Moreover, strong duality holds and the dual problem is

pv) = ()
= maxz>oy A(Y,2) (= minx L(X,y,Z))
= —3llz—ATy| +yT(Av—b) - 2Tv.

At each iteration, we get a provable/calculable lower bound

i, 0.2 = g e = A T o) T

.

25
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Proof of Optimality Conditions

L(x,y,2) = 3lIx = vIIP + yT(b— Ax) — 2Tx;
xL(x,y,2)=x—v—-Aly — z

stationarity: 0 VXL(X v,2) = x=(V+ATy)+z

— L(x,y,2) = Hz—l—ATyH +yT(b—Av)—z'v.

KKT optimality conditions

91(x,y,z) = x—v—ATy—z = 0 (dualfeasibility)

oy (x,y,z) = Ax—b = 0 (primal feasibility)
sL(x,y,z) = xe(R]-2)*" (compl. slackness,
zTx=0or
Zox =0)




Proof continued...

(cont... Solve opt. cond.

ZTX

|:X_VA;fby_Z:| — [(8)] , X,Z€R? y cR™
Moreau Decomposition:
v+ ATy =x—2z =x+(-2),x"z=0
X=V+ATy) z=—(v+ATy)

F:R™ -R™ |F(y)=A(v+ATy), —b=0, ycR"

Apply Newton at current y.; Newton direction Ay

F'(ye)Ay = —F(yc); Yo =Yc+ Ay

7



Compare Interior Point Methods

Block Elimination on Perturbed KKT Conditions

ZX — pe

_v— ATy —
[?,‘;’} = [X i Z], x,z€R7,y e R™.

Ax—ATAy — A AX r
F,’LAs: [X anx - b z} [Ay} =— m, x,zeRi,yeR’".

XAz + ZAx Az

Normal Equations Reduction to Ay

Currently, normal equations are not considered efficient. But
the Newton equation was a percursor and appears to be
efficient?

F:R™ - R™ |F(y)=A(v+ATy), —b=0, ycR"

F'(ye)Ay = —F(yc); Yp=Yc+ Ay

28



Nonlinear Least Squares, Generalized Jacobians

minimize squared residual f(y) = }||F(y)]?

differentiable case {i : (v + ATy); = 0} = 0:
Vi(y) = (F'(y)) F(y)

\

Definition ((local) Lipschitz Continuity)

Let Q C R". A function F : Q — R is Lipschitz continuous on Q
if there exists K > 0 such that

IF(y) - F(2) <Klly - 2|, vy,ze Q.

F is locally Lipschitz continuous on < if for each x € Q there
exists a neighbourhood U of x such that F is Lipschitz
continuous on U.




Generalized Jacobian

Rademacher’s Theorem [31,17]

F : Q — R" locally Lipschitz on Q implies that it is Frechét
differentiable almost everywhere on Q.

Definition (Clarke [13] Generalized Jacobian)

Suppose that F : R™ — R™ be locally Lipschitz. Let Dr be the
set of points such that F is differentiable. Let F’'(y) be the usual
Jacobian matrix at y € Dg. The generalized Jacobian of F at y,
OF(y)is

OF(y) = conv { lim F’(y,-)} )
Yi—=y
Yi€DF

In addition, 9F (y) is nonsingular if every V € 9F(y) is
nonsingular.




Case: Differentiable and F’(y) invertible

Newton Direction; Newton Equation

(F'N(Fn)Ay = —(F () Fly) <= F'(y)Ay = —F(y).

Ay =~ (FO)'(F ) (FW)'Fly) = —(F W) F(y)

directional derivative: Ay’ Vf(y) = ...

—[(FO)FONT [ ((F W) (F W) |IF W) Fy)]

<0

a1



Levenberg-Marquardt, LM, Regularization Method

We now see that we maintain a descent direction.

Lemma (for handling singularity in (F'(y))*(F'(y)))

LM direction is always a descent direction.

(= F(y)

(J*J+ M)Ay = —J*F.
—1
Ay = — (JTJ + )\/) (JTF).
Therefore, the directional derivative is
T T 1.7\ (T
ayTVily) = —((JTI+A)T(WTF)) (JTF)

- —(JTA)T ((JTJ + A/)*‘) (JTF)
< 0.

492



Max. Rank Generalized Jacobian

Cols chosen = pos. variables of w

Awy = A(Pyw) = (APN )WL = 30 AG, W

Index Set of Columns
Note: v+ ATy >0 — F/(Ay) = AIATAy = AATAy

1 if(v+ATy); >0
Uly) = ueR"uye < [0,1] if(v+ATy); =0
0 if(v+ATy) <0

generalized Jacobian at y; after convex hull

OF (y) = {ADiag (u) AT |u € U(y)}
(max-rank: choose u; = 1 when possible)
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Semismooth Newton Method solving F(y) =0

Vi € 9F(y*¥),\ > 0,c € (0,1)

Y = y* + dewton; (or avging y* = (1 — c)y* + +CdNewton))

Max-rank Jacobian

AMAT = ADiag (u)AT
= ZIGL_ A;,'Ajl-— = ZIGIO Oé,'A;,'A?I-, aj € [0, 1],Vi €1y

maximum (resp. minimum) rank for AMA:
a;j =1,Vi € Iy (aj = 0,Vi € Ty, resp.)
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Vertices and Polar Cones

Choosing the optima for the tests; (nondegenerate) vertex

In our tests we can decide on the characteristics of the optimal
solution using the properties of (degenerate) vertices.
Recall: x optimal iff x — v € F(x)*

Lemma (vertex and polar cone)

y €R™ x(y) = (v+ATy), € F. Then:
x(y) vertex <= Az, nonsingular

<= corresp. gen. Jac. nonsingular.
x=x(y)e F =
FX)t={w:w=ATu+z,ueR™ zecR? x"z=0}
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Proof of Lemma

wlog A = [Az, Az implies active set is [Ag+ AIIO} X = (g)

This has unique solution x(y) iff Az, is nonsingular.
gradient of objective satisfies

x-v=ATy+> ze

JETy

Optimality conditions yield polar cone at a vertex. Ol

\,

degeneracy of optimal solutions

Let x € bdry F;

x is optimal iff x — v € F(x)*, i.e., we can choose v with
v=x—-Alu+z,2z>0,z"x=0.

and

x*(v) is differentiable at v <= (x*(v) — v) € ri(F — x*(v))"
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Best Approx.; Nonsmooth Algor.

Algorithm 1 Best Approx. of v in P; Exact Newton

Require: v e R" yp € R™, (A € R™" rank (A) = m), ¢ > 0, maxiter
1: OUtpUt. Primal-dual opt: Xk+1, (yk+1 s Zk+1)
2: Initialization. k <+ 0, xo < (V+AT¥0)+, 20 < (xo — (V+ATy0)) 4,
Fo = Axo — b, stopcrit < || Fo||/(1 + ||b]])
while ((stopcrit > ¢) & (k < maxiter)) do
: A =min(1e3, stopcrit)

3:
4:
5: V= (Vk + M)
6:
7
8

solve pos. def. Vd = —Fj for Newton direction d
updates
D Ykt < Y+ d

9 Xkp1 — (V+ ATyk+1 )+

10: Zk 1 (Xk+1 — (V + ATyk))Jr

11: Fk+1 — AXk+1 -b (residual)

12: stoperit < ||Fr4]|/(1 4 [[b]])

13: K<+ k+1

14: end while
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Halpern-Lions-Wittmann-Bauschke [3]

Halpern-Lions-Wittmann-Bauschke [3] (HLWB)

Algorithm 2 Extended HLWB algorithm

Require: v € R”, (A € R™*" rank (A) = m), ¢ > 0, maxiter € \.
1: Output. X, 4

2: Initialization. k « 0, msweeps < 0 xg <— max(v,0), yg < X, ip = 1
stoperit < [|Ayp — bIl/(1 + [l6]]) (= [IFoll /(1 + [161I)
3: while ((stoperit > €) & (k < maxiter)) do

4:  if1 < i(k) < mthen
b, —(aj, ,xK)

5: =X+ Kk g

Ve =2t gz
6: else
7: Yk = max(0, xx)
8. endif
9: updates
10: o4 = 7 (change to o = Wepsﬂ??)
11: X v+ (1 = o )yk

12:  stoperit < ||Ayg — bll /(1 + |1b]])
18: ke k+1

14: itk mod (m+ 1) == Othen
15: msweeps = msweeps + 1
16:  endif

17: iy = k(mod m) + 1

18: end while
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Numerical Tests BAP; varying sizes m, n

Table: n = 3000, % density=.81; varying m = 100, 600, 1100, 1600

Time (s) Rel. Resids.

Exact Inexact HLWB LsQ QPPAL Exact Inexact HLWB LsQ QPPAL
2.13e-03 1.98e-02 1.89e+01 3.22e+00 8.04e-01 2.55e-16 2.41e-15 2.29e-04 4.12e-17 -8.43e-16
8.35e-02 3.03e-01 1.94e+02 4.28e+00 1.27e+00 5.10e-16 5.10e-18 2.19e-04 5.12e-17 -1.53e-16
7.02e-01 1.29e+00 4.16e+02 6.18e+00 2.53e+00 5.20e-16 8.71e-16 2.08e-04 3.80e-17 9.05e-17
1.40e+00 3.59e+00 6.57e+02 7.65e+00 5.13e+00 9.84e-18 1.11e-15 2.27e-04 3.82e-17 -8.61e-17

Table: m = 200, % density=.81, varying n = 3000, 3500, 4000, 4500, 5000
Time (s) Rel. Resids.

Exact Inexact HLWB LSQ QPPAL Exact Inexact HLWB LSQ QPPAL
3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16
3.93e-03 3.42e-02 7.30e+01 1.45e+01 1.26e+00 4.09e-17 1.80e-15 3.16e-04 5.27e-17 -6.28e-17
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Numerical Tests BAP varying density

Table: m = 300, n = 1000, Varying % density=1, 6, 1.1, 1.6

Time (s) Rel. Resids.

Exact Inexact HLWB LSQ QPPAL Exact Inexact HLWB LSQ QPPAL
5.65e-03 5.69e-02 1.67e+01 3.02e-01 5.32e-01 7.48e-16 7.27e-16 1.54e-04 3.33e-17 -8.29e-17
4.80e-02 2.52e-01 4.58e+01 3.15e-01 1.22e+00 3.44e-17 1.18e-16 1.51e-04 2.04e-15 -1.43e-17
6.18e-02 2.49e-01 5.41e+01 3.07e-01 2.10e+00 5.65e-17 1.54e-17 1.44e-04 1.09e-16 1.09e-16
7.79e-02 2.60e-01 5.34e+01 3.03e-01 2.11e+01 6.92e-17 7.98e-17 1.61e-04 4.19e-16 -2.88e-16
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Performance Profiles BAP

Performance Profile, tol = 1e-14 Performance Profile, tol = 1e-14
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Figure 5.1: Performance profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions
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Applications: Solving (maximization) Large Scale LP

primal (maximization) LP in standard form

pP[p = max clx
(PLP) st. Ax=beR"
x eR].

o . H

Assumptions: full rank; finite optimal value

A full row rank;
pip € R (so pfp = dp € R and both attained)
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Geometric Algorithm

solution can be found from the limit as R 1 oo of the projection
of the vector vg = Rc € R" onto the feasible set.

Lemma ( [23, 24, 25, 35])

Let the given LP data be A, b, ¢ with finite optimal value pj p.
For each R > 0 define

x(R) = argmin, J||x — Rcl?
S.L Ax =b e RM™
x eR].

Then x* is the minimum norm solution of (PLP) if, and only if,
there exists R > 0 such that

= 1
R>R = x* eargmin{ZHX—I?cH2 . Ax = b, xeRi}.

Ol

y

We use the estimate R = min {50, vmn|b| }
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Avoid numerical/roundoff from large numbers

Corollary (scaling 4b)

A, b,c, R,x(R) as in Lemma. Then

Lx(R) = w(R) := argmin,, 1llw—c|?
st Aw=LbeRm
we R,
From
1 2
|x — Re||? = R? FX—¢| = R?||lw — c||?, x = Rw,

we substitute for x and obtain A(Rw) = b <= Aw = Lb. The
result follows from the observation that argmin does not change
after discarding the constant R?. Ol
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Warm Start; Stepping Stone External Path Following

consider scaled problem with:
x(R) = Rw(R).
Recall the optimality conditions for w = w(R):
w—c—Aly -z 0
Aw — Lb =(0], w,zeRl,yeR™
zTw 0

We conclude that

lim Prange(anyW(R) =0, lim Rw(R) = x*, the optimum of the LP.
R—o0 R—o0
The optimality conditions are now

w=c+A"y+z, b=ARw = AR(c+ATy)., w'z=0,x,z>0.
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Warm Start from current R: find new R, y,

Suppose triple (w, y, z) optimal for scaled problem; let
N=N(z)={i:z >0}, B=B(w)={1:n})\N;
bs = AL (AsAR) b, by = AT (AsAL) b
:<(bB—F‘I’WB)> f:<RbB>

—(by + Rzy) )’ —Rby ) -
Then max. value R without changing basis is

Ry, =min{fi/ej: € >0,f;>0,i=1,...|B|}.
Moreover, R, = oo implies optimal solution found.

R, < oo = corresponding changes are:
Ay, = (AsAR) b; Ay = (R R") Ayp.
Awg _AT(R Rn> Ayp

Azy = —Al; <H R") Ayp




LP Numerical Tests
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‘Specifications Time () Rel. Resids,

m n_ Y density || RNNM _ Linprog DS Linprog IPM MOSEK IPM_ SNIPAL | RNNM  Linprog DS Linprog IPM_ MOSEK DS MOSEK IPM__ SNIPAL
For03 Tor03 0001 || 793002 309002 7402 0501 447001 | 38017 357 dme0) _ 13lels T5e16__ 3.0500:
20403 Te+04 1.0e-01 9.84e-02 4.98¢-02 7.64e-02 1.93e-01 5.86e-01 [ 2.82e-17 2e-17 1.60e-04 1.31e-16 2.89e-16 3.30e-03
20403 1e405 1.0e-01 L.69e-01 4.00e-01 7.56e-01 6.450e-01 2.51e400 | 1.48e-17 1.72e-05 8.84e-17 3.68¢-16 1.54e-03
5e+03  Tet04 1.0e-01 9.72e+01 2.09¢-01 LATe401 2.67e+00 5.75e+00 [ 5.55¢-17 7 1.67e-11 3.20e-16 3.91e-03
5e+03  1e+05 1.0e-01 T.T6e+01 T.34e-01 1.43e+02 7.95e+00 1.36e+01 [ 2.36e-17 5 3.13e-16 3.91e-15 1 3

03 Bet05 Z310+02_ T0der00 6500402 F01e01 2 5 30ei6 350016 L3
2c+04  1e+05 6.16e-01 9.550-01 5.73e+00 1.500+00 1.36e-17 7 1.99¢-06 1.280-16 3.58¢-03
2¢+01 5e+05 6.68e-01 1.50e+00° 3.77e+401 1.69e-+01 8.48¢-18 8.83e-07 1.36e-06 1.15e-15 1.17e-03
20401 1e4+06 1.52e+00 9.37e+00 6.52e4+01 2.99e4+01 [ 7. 7.08e-18 1.76e-06 1.20e-16 1.20e-03
Te+05  1e+07 1.0e-03 5.76e+00 1.14e+01 6.24e-+00 2.33e4+02 | 1.3%-18 1.3%-18 1.76e-17 1.76e-17 1.04e-03

Table 5.4: LP application results averaged on 5 randomly generated problems per row
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Figure 5.2: Performance Profiles for LP application wrt all problems
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Conclusion for BAP and LP Algorithm

o efficient, robust algorithm for projection of a point onto a
polyhedral set.

@ One of may applications is to solving large scale LPs; we
get a finite converging stepping stone exterior path
following algorithm (mixture of simplex/interior-point)
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