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Abstract

We present a tight semidefinite programming (SDP) relaxation for
the max-cut problem (MC) which improves on several previous SDP
relaxations in the literature. This new SDP relaxation is a tighten-
ing of the SDP relaxation recently introduced by the authors, and it
inherits all the helpful properties of the latter. We show that it is a
strict improvement over the SDP relaxation obtained by adding all the
triangle inequalities to the well-known SDP relaxation.

*Research supported by an FCAR Ph.D. Research Scholarship. E-mail
manjos@math.uwaterloo.ca

TResearch supported by The Natural Sciences and Engineering Research Council of
Canada. E-mail hwolkowi@orion.math.uwaterloo.ca.

°This report is available by anonymous ftp at orion.math.uwaterloo.ca in directory
pub/henry/reports or with URL:
http://orion.math.uwaterloo.ca/ " hwolkowi/henry /reports/ABSTRACTS html



1 Introduction

The max-cut problem (MC) is a combinatorial optimization problem on
undirected graphs with weights on the edges. Given such a graph, the
problem consists in finding a partition of the set of nodes into two parts so
as to maximize the sum of the weights on the edges that have one end in
each part of the partition.

It is well known that MC is an NP-hard problem [14], although some
special cases can be solved efficiently, for example those where the graph is
not contractible to K5, the complete graph on five vertices [3]. In this paper,
we consider the general case where the graph is complete. However, all our
results hold independent of the type of edge weights. So, in particular,
negative or zero edge weights are permitted.

Let the given graph have vertex set {1,...,n}. We can formulate MC
as the optimization of a linear function over the so-called cut polytope C,,,
which is defined as the convex hull of all n X n matrices corresponding to
possible cuts (a formal definition is given in Section 2.2). Since a complete
description of the cut polytope is not available, one approach is to seek good
polyhedral relaxations, that is, to approximate the cut polytope by a larger
polytope containing it and over which we can optimize in polynomial time
using a technique such as linear programming.

One such relaxation of the cut polytope is the metric polytope M,
defined as the set of all matrices satisfying the triangle inequalities. The
triangle inequalities model the fact that for any three mutually connected
vertices in the graph, it is only possible to cut either zero or two of the edges
joining them. In fact, the triangle inequalities are sufficient to describe the
cut polytope for graphs with less than five vertices, i.e. C), = M,, for n < 4;
however, C,, ¢ M, for n > 5, see for example [4].

Alternatively, we may seek to approximate the cut polytope with non-
polyhedral convex sets. Often these sets are defined in terms of symmet-
ric positive semidefinite matrices since we can optimize over the positive
semidefinite matrices in polynomial time using semidefinite programming
(SDP). This idea was first applied to the stable set problem by Grétschel,
Lovész and Schrijver [7]. For MC, the elliptope &,, which is the set of
n X n correlation matrices, has been used to approximate the cut polytope.
Goemans and Williamson [5] use the SDP:

. -
v{ = max traceQX

(SDP1) s.t. Xeg,

(the matrix @ is formed from the edge weights; it is formally defined in



Section 2.1) to obtain a cut which is at most 14% above the value of the
maximum cut, under the assumption that there are no negative edge weights.
The problem SDP1 is also used by Nesterov [18] to provide estimates of the
optimal value of MC with constant relative accuracy and with no assump-
tion on the signs of the edge weights. A tighter SDP relaxation of the cut
polytope, recently introduced in [2], guarantees an improvement on the op-
timal value of SDP1 whenever the latter does not yield an optimal solution
to MC. This guarantee also requires no assumption on the signs of the edge
weights.

A natural idea is to seek to optimize over the set £, N M,,. This was first
proposed in [19]. Adding triangle inequalities to SDP1 is considered in e.g.
[8, 9, 10]. However, it is not the case that adding a certain subset of the
triangle inequalities will improve every instance of max-cut. Furthermore,
Karloff [13] has shown that it is impossible to improve the performance guar-
antee of Goemans and Williamson simply by adding valid linear inequalities
to SDP1.

In this paper we present an SDP relaxation for MC which improves on
the idea of adding triangle inequalities to SDP1. The feasible set of this
tighter SDP relaxation is shown to correspond (under a linear mapping)
to a set F,, that is strictly contained in the set &, N M, for n > 5. This
SDP relaxation is a tightening of the SDP relaxation presented in [2] but
preserves all the helpful properties of the latter.

In the following section we introduce all the notation and definitions we
will use. In Section 3 we present the main results from [2] relevant to the
introduction of the new tighter relaxation in Section 4. A procedure to test
for membership in the set F,, is presented in Section 5. This procedure is
used in Section 6 to prove that the tight relaxation is a strict improvement
over adding all the triangle inequalities to the well-known SDP relaxation.
Finally some numerical results are presented in Section 7.

2 Notation and Preliminaries

Let 8™ denote the space of n X n symmetric matrices with the trace inner
product (A, B) = trace AB. This space has dimension t(n) := @ We
will also work in the space SH™*! and for any matrix Y € S'™+1 the
t(n) vector T = Yj 1,4(n) denotes the first (zero-th) row of Y after the first
element. If Y is a symmetric matrix, Y > 0 denotes that it is also positive
semidefinite.

We let e denote the vector of ones and E = ee” the matrix of ones; their



dimensions will be clear from the context. We also let I, denote the identity
matrix in 8™ and e; denote its ;th column, so ¢; is the it unit vector. We
also define the elementary matrices E;; = %(eie? + ejel’). The Hadamard
(elementwise) product of matrices A and B is denoted Ao B. We shall also
make use of the Frobenius matrix norm:

lAllm = > A%
i

Although it is true that a linear operator on a finite dimensional space
can be expressed as a matrix, we use operator notation and operator adjoints
because this simplifies notation and improves the clarity of our proofs. We
now define the linear operators that we will use.

For S € 8", the vector diag (S) € R" is the diagonal of S, while the
adjoint operator Diag (v) = diag *(v) is the diagonal matrix with diagonal
formed from the vector v € R". We use both Diag (v) and Diagv if the
meaning is clear (similarly for diag and other operators). Also, the sym-
metric vectorizing operator s = svec (S) € R is formed (columnwise)
from S while ignoring the strictly lower triangular part of S. Its inverse is
the symmetrizing matrix operator S = sMat (s). The adjoint of svec
is the operator hMat = svec* which forms a symmetric matrix where the
off-diagonal terms are halved, i.e. this satisfies

svec (S)Tz = trace S hMat (z), VS e 8", zeR,

The adjoint of sMat is the operator dsvec which works like svec except that
the off-diagonal elements are multiplied by 2, i.e. this satisfies

dsvec (S)Tz = trace S sMat (z), VS e s, xeRt,

For notational convenience, we define the symmetrizing diagonal vec-
tor sdiag (z) := diag (sMat (z)) and the vectorizing symmetric vector
vsMat () := vec (sMat (z)), where vec is the n?-dimensional vector formed
from the complete columns of the matrix; the adjoint of vsMat is then given

by

vsMat *(z) = dsvec

1 T

5 (Mat (z) + Mat (z)) |,

where Mat is the inverse of vec, i.e. Mat forms an nXn matrix (columnwise)
from an n’-dimensional vector.



In summary,

diag®™ = Diag
svec* = hMat
svec™! = sMat
dsvec* = sMat
vsMat* = dsvec [1 (Mat(-) + Mat (-)T)]

Mat = vec~!.

2.1 The Max-Cut Problem

Following [17], we can formulate the MC problem as follows. Let the given
graph G have vertex set {1,...,n} and let it be described by its weighted
adjacency matrix A(G). We tacitly assume that the graph in question is
complete (if not, missing edges can be given weight 0 to complete the graph).
Let L denote the Laplacian matriz associated with the graph, hence L :=
Diag (A(G)e) — A(G). Let the vector v € {41, —1}" represent any cut in the
graph via the interpretation that the sets {¢ : v; = +1} and {i : v; = -1}
form a partition of the node set of the graph. Then we can formulate MC
as:
p* = max ivTLv
st. ve{-1,1}"

Using X := voT, vTLv = trace LX and Q = iL, an equivalent formulation

18
*

©* = max trace@QX

s.t. diag(X)=e
rank(X) =1
X = 0.

Note that p* denotes the optimal value of MC. The various SDP relax-
ations will have their optimal values denoted by v* with the appropriate
subscript.

2.2 The Cut Polytope and Relaxations

Our quadratic model for MC with a general homogeneous quadratic objec-
tive function is

©* = max vTQu

(MC)



Note that if the objective function has a linear term, then we can homogenize
using an additional variable similarly constrained. Furthermore, we assume
Q # 0 (wlog) in what follows.

Suppose we consider the lifting X = vv’ and vTQv = traceQX. We
can define the cut polytope as the convex hull of the matrices X for all

ve {£1}™
Cp:=Conv{X : X =wvl ,ve {£1}"} C 8", (2.1)

Furthermore, the matrices X also satisfy the triangle inequalities, which
model the fact that for any three vertices of the graph, either two or none
of the edges between them are cut. These triangle inequalities define the
metric polytope:

M, :={X € 8" : diag (X) = ¢, and
Xij+ Xie + Xjp 2 -1, X5 — Xop — Xjp > —1,
- X+ Xip — Xjp > -1, X5 — Xip + Xjp > —1,
Vi<i<j<k<n}

Finally, they also belong to the elliptope:
En ={X € 8" :diag (X) =€, X > 0}. (2.2)

Hence, C,, C &, N M,, and it is well known that C,, # &, N M,, for n > 5.

Recall that SDP1 denotes the well-known SDP relaxation for MC that
comes from the Lagrangian dual of the Lagrangian dual of MC, see e.g.
[2, 21, 20]:

vi = max traceQX
(SDP1) s.t. diag (X)=e (2.3)
X > 0.

In other words, SDP1 optimizes over &,.

3 First Strengthening of the SDP1 Relaxation

A stronger SDP relaxation, which we shall refer to as SDP2, was introduced
by the authors in [2]. We briefly outline here the derivation of SDP2 and
the theoretical results that are relevant for this paper.

The derivation of SDP2 begins by adding the constraint X2 —nX = 0 to
SDP1. This constraint is motivated by the observation that X? = voTvoT,
and vTv = n for all v € {£1}". We can simultaneously diagonalize X and
X2, therefore the eigenvalues of X must satisfy A2 — nA = 0, which implies

the only eigenvalues of X are 0 and n. This shows that the constraint X > 0



becomes redundant and may be removed. Moreover, since the diagonal
constraint implies that the trace of X is n, we conclude that X is rank-one.
We can also add the redundant constraints X o X = FE to obtain MC2.
Note that this constraint (together with X > 0) also implies rank-one, see
Theorem 3.2 in [2].

We thus have the problem MC2 equivalent to MC:

©* = max trace QX
s.t.  diag(X) =e
XoX=F
X? - nX =0.

(MC2) (3.1)

Taking the dual of MC2 and then the dual of the dual (see [2] for details)
yields the following stronger relaxation, which we call SDP2.

vy = max trace H.Y
s.t. Hi(Y)=n
H5Y)=FE
SDP2 2 3.2
(SDP2) S 3.2
Hi(Y)=1

Y = 0,Y € Stm+1

To define the linear operators H;(Y),i = 1,2, 3,4, let us partition Y as

. YOO .rT
Y_(m Y)’

where Y € 8", Then:

H;(Y) = 2svec (I,) Tz — trace Diag (svec (I,))Y,
H;(Y) = sMat diag (Y),

H5(Y) = nsMat () — (Mat vsMat ) Y (Mat vsMat )*
Hi(Y) =Yoo

The constraints H3(Y) = E and H};(Y) = 1 are equivalent to diag (Y) =
e. Also, H;(Y) is twice the sum of the elements in the first row of Y cor-
responding to the positions of the diagonal of sMat () minus the sum of
the same elements in the diagonal of Y. The constraint H}(Y) = n implies
that Yo,;) = 1, Vi=1,...,n, where t(i) = @, and thus it follows that
diag (sMat (z)) = e.

Furthermore, the constraint #%(Y") = 0 implies that the matrix obtained
by applying sMat to the vector z (defined in the partition of ¥ above) of
any Y feasible for SDP2 is positive semidefinite.



Lemma 3.1 Suppose that' Y = ( N

}7 ) is feasible for SDP2. Then
= 0.

sMat (z)

Proof. SinceY is a principal submatrix of Y, Y > 0 holds. The constraint
H5(Y) = 0 gives us that

1 _
sMat (z) = — (MatvsMat )Y (Mat vsMat )”
n

and thus sMat (z) is a congruence of the positive semidefinite matrix Y.
The result follows. [ |

T
Corollary 3.1 IfY = (Ygo T ) is feasible for SDP2, then sMat (z) is

Y
feasible for SDP1.

This corollary and some important properties of the nonlinear constraint
X? — nX = 0 yield the following strengthening theorem [2]:

Theorem 3.1 The optimal values satisfy
vy <vi and vy =1v] = vy =t (3.3)
|
Our objective in the next section is to further tighten the relaxation

SDP2. For that purpose, we conclude this section by mentioning that SDP2
may be equivalently expressed as follows:

v; = max trace H Y
s.t. diag(}_’):
(SDP2) nYOt()—]_ 1= 1,...,71
Yo 16,5 %ZYTzk Tkg): Vi, ist.1<i<j<n

Y =0,V € St
(3.4)



where ( )
o [t - 44,
T(,j5) = { t(i — 1) + j, otherwise.

(Recall that (i) = ‘1) o T(i, 1) = #(3).)
We point out that SDP2 has 2¢(n) + 1 equality constraints (and the

constraints are full rank). The equivalence of these two expressions for
SDP2 is shown in [2].

4 A Tight Relaxation of the Cut Polytope

To motivate the further tightening of SDP2, let us consider again the rank-
one matrices X = vv’, v € {1}". We know that these matrices X have all
their entries equal to 1. Hence the corresponding matrices Y feasible for
SDP2 have all their entries in the first row and column equal to £1.

From SDP2, consider the constraints

1 — o
Yoris = - ZYT(i,k),T(k,j)7 Vi<i<yj<m,
k=1

1 27
Y

of Y and therefore it is equal to 1 in magnitude. The constraint says that

forY = and z = svec (vv). The entry Yo, 1(i,5) 18 in the first row

it must be equal to the average of n entries in the block Y. But each of
these n entries has magnitude at most 1, because diag (Y') = e. Hence, for
equality to hold, they must all have magnitude equal to 1, and in fact they
must all equal Yy 7 ;-

Let us state this observation in a different way. If Y is rank-one, then
the block Y = zz”, and therefore Y7(i k), T(k,j) = TT(R)ET(k,j) = ViVk * VkVj-
But if Uz =1, then YT(i,k),T(k,j) =wvv; = X;; = YO,T(i,j)-

This discussion leads us to define the relaxation SDP3:

vi; = max trace H.Z
s.t. diag (Z) =€
(SDP3) Zo,t(i) =1:=1,...,n

Zo1(i) = ZT(i k), T(kj)y VEV1I<i<j<n
Z»0,Z € St
(4.1)
Note that SDP3 has (n — 1) - £(n — 1) + 2n + 1 equality constraints.



Define
F,:={X € 8" : X =sMat (Zy,1.4(n)), Z feasible for SDP3}.

Since the feasible set of SDP3 is convex and compact, and since F, is the
image of that feasible set under a linear transformation, it follows that F,
is also convex and compact.

First we prove that SDP3 is indeed a relaxation of MC. This is not
guaranteed a priori since SDP3 is a strengthening of SDP2.

Lemma 4.1 C,, C F,,.

Proof.  Consider an extreme point of C,, X = vv’,v € {£1}". Let
T
z =svec(X) and Z = (i) (i) . We show that Z is feasible for SDP3.
Clearly Z = 0 and Zpo = 1. Since z7(; j) = vivj, for 1 <7 < j < n,
Zr(i),6g) = (016,5)" = vi"v;” = 1.

Therefore diag (Z) = e. Also, Zy iy = Zo1(ii) = TT(,i) = v;*> = 1. Finally,
for 1 <i<j<m,

2T k), T(kg) =  TT(k)TT(k,j)
Vi VR UL Y,

UHOK
(i)
20,1(i,5)"

Hence, each X = wvv’,v € {£1}" has a corresponding Z feasible for
SDP3, and so X € F,,. Since both C), and F,, are convex, the result follows.
|

Clearly, every Z feasible for SDP3 is feasible for SDP2. Therefore, by
Corollary 3.1 above, we have the inclusion:

Corollary 4.1 F,, C &,,.

Using Lemma 4.1, we observe that p* < v3 < v < vy. We now claim
that

10



Theorem 4.1 F, C M,,.

Proof. Suppose X € F,, then X = sMat (Zy 1.(n)) for some Z feasible
for SDP3. Since Zy ;) = 1 Vi, it follows that diag (X) = e holds.

Given 1,7,k such that 1 < ¢ < 7 < k < n, let Z; ; denote the 4 x 4
principal minor of Z corresponding to the indices 0,7'(¢,7),T (%, k), T(j, k).
Let a = X;; = ZO,T(

,J

b= Xik = Zo 1 k) ¢ = Xjk = Zo1(jk)- Then

Zijk =

o o =
S N )
Q= o o
= Q o0

since diag (Z) = e and Zy7(ij) = Z7(i k), T(k,j) 20,TGk) = ZT(i,5),T(k) and
Zo,T(j.k) = ZT(5,i),T(i,k) all hold for Z feasible for SDP3. Now:

1 ¢ b a

Zijk =0 & c 1 a |- 0 (abc)t()
b a 1 c
1—a?> c—ab b—ac

= c—ab 1-0% a-—bc >0

b—ac a—bec 1-—¢2 -
2

l1—a* ¢c—ab b—ac

= el'| c—ab 1-0> a—bec |e>0.
b—ac a—bec 1-—c?
Hence,
Zi,j,kto = 3—(a—|—b—|—c)2—|—2(a—|—b—|—c)20
& 4?2 -2y -3<0,wherey:=a+b+c
& (v=3)(r+1 <0
< —-1<v<3
= a+b+c>-1.

Therefore, X;; + X, + X1 > —1 holds for X.

Because multiplication of row and column 7 of Z; ;5 by —1 will not
affect the positive semidefiniteness of Z; ; 1, if we multiply the two rows and
two columns of Z; ;. with indices T'(7,k) and T'(j,k) and apply the same
argument to the resulting matrix, we obtain the inequality
X,’j - Xk — Xjk > —1. Similarly, the inequalities —X,']‘ + X — Xjk > -1
and —JY,']‘ — X + 2 ik > —1 also hold. [ ]

We have thus proved the following:

11



Corollary 4.2 C,, CF, C¢&, NM,. [ |

In Section 6, we will prove that the inclusions are in fact strict for n > 5.
However, because we do not have an explicit description of F,,, first we need
to address the issue of testing for membership in F,,. This is the focus of
the next section.

5 Testing for Membership in F),

Recall that F, = {X € 8" : X = sMat (Z 1.4(n)), Z feasible for SDP3},
so F, is defined as the image of the feasible set of SDP3 under the linear
mapping sMat applied to the first row of every feasible matrix in SDP3.
Because the feasible set of SDP3 is not polyhedral, it is not clear how to
give an explicit description of F,.

However, given X € 8™, the question of determining whether X € F,,
can be expressed as:

Given X € 8" satisfying diag (X) = e, does there exist a matrix Z
feasible for SDP3 such that sMat (Zg 1.4(n)) = X7

In this question, only a subset of the elements of Z are specified, namely
the elements of Zg 1.4(n) and Zy.4(n),0 plus those fixed by the constraints of
SDP3. The remaining elements are considered “free” and we ask whether
it is possible to complete them in such a way that the resulting matrix Z is
positive semidefinite. This problem is an instance of the positive semidefinite
matrix completion problem, which has been extensively studied (see e.g.
[6, 15, 11]).

We can associate with the partial matrix Z a finite undirected graph
Gz = (Vz,E7) as follows: let the vertex set be V7 := {0,1,...,¢(n)} and
let the edge set E'z contain the edge (7, j) iff the entry Z; ; is fixed. Then
Gz is said to be chordal if every cycle of length > 4 has a chord, i.e. an edge
between two non-consecutive vertices. Grone, Johnson, S& and Wolkowicz
[6] showed that if the diagonal entries of Z are specified and the principal
minors composed of fixed entries are all nonnegative, then, if the graph
Gz is chordal, a positive semidefinite completion necessarily exists. In our
case, however, it is easy to see that the graph Gz is not chordal for n >
4. Tt suffices to consider the cycle of length 4 depicted in Figure 1; since
(T(%,7),T(k,1)) ¢ Ez and (T(3,k),T(j,1)) ¢ Ez, we see that the cycle has

no chords. So we must follow a different approach.

12
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Figure 1: A cycle of length 4 with no chord in the graph Gz of Z.

Johnson, Kroschel and Wolkowicz [12] present an interior-point method
for finding an approximate completion, if a completion exists. We use this
approach to test membership in F,,. Specifically, we proceed as follows:
Given X € 8" with diag (X) = e, let 2 = svec (X) and let A € SW+1! be
some matrix which satisfies sMat (A0,1:t(n)) = X and furthermore satisfies all
the constraints of SDP3, except (possibly) for the positive semidefiniteness
constraint. Define H € SY+! to be the {0, 1}-matrix satisfying H;; = 0 if
A;; is “free”, and H;; = 1 otherwise.

For example, if X = (Xj;) is 3 X 3, one possible choice of A is:

1 1 X12 1 X13 X23 1

1 1 0 0 0 0 0

X12 0 1 0 X23 X13 0

A= 1 0 0 1 0 0 0
)(13 0 )(23 0 1 )(12 0

X23 0 )(13 0 )(12 1 0

1 0 0 0 O 0 1

where the “free” entries are filled with zeros. The corresponding matrix H
is:

1111111
1100000
1010110
H=]1001000
1010110
101 0110
100 0001

To check whether A has a positive semidefinite completion, we consider

13



the problem:

¢ = min |[[Ho(A-P)|%
s.t. P>0 (5-1)
and its dual:
d* = max |[Ho(A- P)||% —traceAP
st. 2HoHo(P—A)=A (5.2)
A > 0.

(See [12] for more details.) Clearly if ¢* = 0, then the corresponding primal
optimal solution P* is an exact positive semidefinite completion of A. On the
other hand, if we find a pair (P, A) such that ||Ho (A4 — P)||% —trace AP > 0,
then because ¢* > d* (by weak duality), it follows that ¢* > 0 and hence A
has no positive semidefinite completion.

Using this approach, we can find examples which prove that the inclu-
sions in Corollary 4.2 are in fact strict for n = 5, and hence for all » > 5.

6 Examples Proving Strict Inclusions
In this section we prove that the inclusions in Corollary 4.2 are strict.

Example 6.1 Consider the matriz

S
Il
|

A [ s s [

|

L Lt Lt L L
|
|

NN P S N N T
NN [N NN T
(RN N NN

It is known that X ¢ C,, [16]. Applying the algorithm described in the
previous section, we obtain a 16 X 16 matriz P* which is feasible for SDP3
and such that sMat (Po*,m(n)) = X. Hence X € F,. The matriz P* is
included in Appendiz A.

Example 6.2 Consider the matriz

1 -0.65 —-0.65 -0.65 0.93

—0.65 1 0.3 0.3 —-0.65

X=1] -0.65 0.3 1 0.3 —-0.65
—0.65 0.3 0.3 1 -0.65

0.93 -0.65 —-0.65 —-0.65 1

14



It is easy to check that X € &, N M,. However, using the method
described in the previous section, we find feasible matrices P and A for
which the dual objective value is equal to 2.81e — 4 > 0. Hence ¢* > 0 holds
and there is no matriz P feasible for SDP8 such that sMat (P 1.4(n)) = X
Hence X ¢ F,,. The matrices P and A are included in Appendiz B.

Hence our final result is:

Corollary 6.1 C,, ¢ F,, ¢ &, N M, for n > 5.

7 Numerical Comparison of the Relaxations

The relaxations SDP1, SDP2 and SDP3 were compared for several interest-
ing problems using the software package SDPPACK (version 0.9 Beta) [1].
The results are summarized in Table 1. The value p equals the value of the
optimal cut divided by the bound, and R.E. denotes the relative error with
respect to the optimal cut.

The test problems in Table 1 are as follows:

e The first line of results corresponds to solving the three SDP relax-
ations for a 5-cycle with unit edge-weights.

e The second line corresponds to the complete graph on 5 vertices with
unit edge-weights on all edges except one, which is given weight zero.

e The third line corresponds to the complete graph on 5 vertices with
unit edge-weights. In this example, none of the four relaxations attains
the MC optimal value, and in fact they are not distinguishable.

e The fourth line corresponds to the graph defined by the weighted ad-
jacency matrix

0 1.52 1.52 1.52 0.16

1.52 0 1.60 1.60 1.52

A(G)=| 1.52 1.60 0 1.60 1.52
1.52 1.60 1.60 0 1.52

0.16 1.52 1.52 1.52 0

This problem is interesting because it shows a significant difference
between SDP3 and all the other relaxations; in this case, SDP3 is the
only relaxation that attains the MC optimal value.

15



n MC SDP1 SDP2 SDP1 plus SDP3 Graph
optimal bound bound all triangle bound
value inequalities
5 4 4.5225 4.2889 4.0000 4.0000 5-cycle
p = 0.8845 p = 0.9326 p = 1.0000 p = 1.0000 with unit
R.E.: 13.06% | R.E.: 7.22% R.E.: 0% R.E.: 0% edge weights
5 6 6.2500 6.1160 6.0000 6.0000 Ks\e
p = 0.9600 p = 0.9810 p = 1.0000 p = 1.0000 with unit
R.E.: 4.17% | R.E.: 1.93% R.E.: 0% R.E.: 0% edge weights
5 6 6.2500 6.2500 6.2500 6.2500 K
p=0.9600 | p=0.9600 | p=0.9600 | p=0.9600 | with unit
R.E.: 4.17% | R.E.: 4.17% | R.E.: 4.17% | R.E.: 4.17% | edge weights
5 9.28 9.6040 9.4056 9.2961 9.2800 Given by
p=09663 | p=0.986 | p=09983 | p=1.0000 A(G)
R.E.: 3.49% | R.E.: 1.35% | R.E.: 0.17% R.E.: 0% below
10 12 12.5 12.3781 12.0000 12.0000 Petersen
p=0.9600 | p=0.9695 | p=1.0000 | p=1.0000 | with unit
R.E.: 417% | R.E.: 3.15% R.E.: 0% R.E.: 0% edge weights
12 88 90.3919 89.5733 88.0029 88.0000 Randomly
p = 0.9735 p = 0.9824 p = 1.0000 p = 1.0000 generated
RE.:272% | R.E.: 1.79% | R.E.: 3.3e—5 | R.E.: 9.9e - 7

Table 1: Numerical results for small test problems

e The last two lines correspond to slightly larger graphs. The graph on

10 vertices is the Petersen graph with unit edge-weights. The graph on
12 vertices is a randomly generated graph (the corresponding matrix

@ is included in Appendix C) that gives slightly different results for
each relaxation.

In Table 1, a relative error equal to zero means that the relative error was
below 107!'!, the value of the smallest default stopping criteria used by
SDPpack. Note that the programs SDP2 and SDP3 do not satisfy the
Slater constraint qualification (strict feasibility). To avoid numerical errors

a projection is done onto the minimal face of the semidefinite cone containing
the feasible set. (See [2] for more details.)

variable matrix Z and because the semidefinite problem has

(n—1)-t(n—1)+2n+1=0(n"
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We conclude by pointing out that because of the large dimension of the




equality constraints, solving the relaxation SDP3 using an interior-point
method becomes very time-consuming and requires large amounts of mem-
ory, even for moderate values of n. It is however important to note that the
constraints are very sparse and have a special structure. Current research is
being done to exploit this structure via the implementation of a specialized
algorithm and thus to make it possible to efficiently solve SDP3 for large
instances of MC.
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A Completed Matrix P* for Example 6.1

The matrix P* that follows is the completed positive semidefinite matrix
found by the completion approach described in Section 5 and satisfying

1 -1 _1 _1 _1
4 4 4 4
_1 7 _1 _1 _1
it 7 1t i
* f— JE—— JE—— JE——— _
sMat (P0,1:t(n)) = 3 3 1 4 4
i1 _1 7 _1
4 4 4 4
1.1 _1 _1 3
4 4 4 4

The matrix P* is formed with the following columns:
Columns 1 through 7

1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
-0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500 -0.2500
1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
-0.2500 -0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 1.0000 -0.2500
1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 0.3750 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500 0.3750 -0.2500 -0.2500
-0.2500 -0.2500 0.3750 -0.2500 -0.2500 -0.2500 -0.2500
1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 0.3750 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500 0.3750 -0.2500 -0.2500
-0.2500 -0.2500 0.3750 -0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 0.3750 -0.2500 0.3750 0.3750 -0.2500
1.0000 1.0000 -0.2500 1.0000 -0.2500 -0.2500 1.0000
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Columns 8 through 14

-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 0.3750 -0.2500 -0.2500 -0.2500 0.3750
-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500
-0.2500 0.3750 -0.2500 -0.2500 -0.2500 0.3750 -0.2500
0.3750 -0.2500 -0.2500 -0.2500 0.3750 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500
1.0000 -0.2500 -0.2500 -0.2500 -0.2500 0.3750 0.3750
-0.2500 1.0000 -0.2500 -0.2500 0.3750 -0.2500 0.3750
-0.2500 -0.2500 1.0000 -0.2500 0.3750 0.3750 -0.2500
-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500
-0.2500 0.3750 0.3750 -0.2500 1.0000 -0.2500 -0.2500
0.3750 -0.2500 0.3750 -0.2500 -0.2500 1.0000 -0.2500
0.3750 0.3750 -0.2500 -0.2500 -0.2500 -0.2500 1.0000
-0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 1.0000 -0.2500 -0.2500 -0.2500

Columns 15 through 16

-0.2500 1.0000
-0.2500 1.0000
0.3750 -0.2500
-0.2500 1.0000
0.3750 -0.2500
0.3750 -0.2500
-0.2500 1.0000
-0.2500 -0.2500
-0.2500 -0.2500
-0.2500 -0.2500
-0.2500 1.0000
-0.2500 -0.2500
-0.2500 -0.2500
-0.2500 -0.2500
1.0000 -0.2500
-0.2500 1.0000

B Matrices P and A for Example 6.2

The matrices P and A that follow satisfy
||H o (A — P)||% — trace AP = 2.81e — 4.

The matrix P is formed with the following columns:
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Columns 1

1.0074
1.0000
-0.6475
1.0000
-0.6475
0.3026
1.0000
-0.6475
0.3026
0.3026
.0000
0.9300
-0.6475
-0.6475
-0.6475
1.0000

[y

Columns 8

-0.6475
-0.6427
0.3013
-0.6427
0.3013
0.0257
-0.6427
1.0020
-0.6487
-0.6487
-0.6427
-0.6500
0.3369
0.3369
0.9307
-0.6427

through 7

1.0000
1.0000
-0.6427
0.9927
-0.6427
0.3004
0.9927
-0.6427
0.3004
0.3004
0.9927
0.9232
-0.6427
-0.6427
-0.6427
0.9927

through

0.3026
0.3004
-0.6487
0.3004
0.0257
0.3001
0.3004
-0.6487
1.0026
0.3001
0.3004
0.3804
-0.6487
0.0257
-0.6487
0.3004

.6475
.6427
.0020
.6427
.3013
.6487
.6427
.3013
.6487
.0257
.6427
.6500
.9307
.3369
.3369
.6427

.3026
.3004
.0257
.3004
.6487
.3001
.3004
.6487
.3001
.0026
.3004
.3804
.0257
.6487
.6487
.3004

.0000

0.9927

. 6427
.0000
. 6427
.3004
.9927
. 6427
.3004
.3004
.9927
.9232
. 6427
. 6427
. 6427
.9927

.0000

0.9927

. 6427
.9927
. 6427
.3004
.9927
. 6427
.3004

0.3004

[y

.0000

0.9232

. 6427
. 6427
. 6427
.9927
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.6475
. 6427
.3013
. 6427
.0020
.6487
. 6427
.3013
.02567
.6487
. 6427
.6500
.3369
.9307
.3369
. 6427

.9300
.9232
.6500
.9232
.6500
.3804
.9232
.6500
.3804
.3804

0.9232

.0000
.6500
.6500
.6500
.9232

.3026
.3004
.6487
.3004
.6487
.0026
.3004
.0257
.3001
.3001
.3004
.3804
.6487
.6487
.0257
.3004

.6475
.6427
.9307
.6427
.3369
.6487
.6427
.3369
.6487
.0257
.6427
.6500
.0020
.3013
.3013
.6427

.0000

0.9927

.6427
.9927
.6427

0.3004

.0000
.6427
.3004
.3004
.9927
.9232
.6427
.6427
.6427
.9927

.6475
.6427
.3369
.6427
.9307
.6487
. 6427
.3369
.0257
.6487
.6427
.6500

0.3013

[y

.0020

0.3013

.6427



Columns 15 through 16

.6475
. 6427
.3369
. 6427
.3369
.0257
.6427
.9307
.6487
.6487
.6427
.6500
.3013

0.3013

.0020
.6427

1.0000
0.9927
-0.6427
0.9927
-0.6427
0.3004
0.9927
-0.6427
0.3004
0.3004
0.9927
0.9232
-0.6427
-0.6427
-0.6427
1.0000

and the matrix A is formed with the following columns:

Columns 1 through 7

.0148
.0000
.0050
.0000
.0050
.0052
.0000
.0050
.0052
.0052
.0000
.0000
.0050
.0050
.0050
.0000

-0.0000
0.0000

O O O O OO OO OO0 OO OO oo

.0050

.0039

.0025
.0027

.0025
.0027

.0000
.0014

-0.0000

0.0000

22

O O OO OO OO OO0 O O

.0050

.0025

.0039
.0027

.0025

.0027

.0000

.0014

.0052

.0027

.0027

.0053

.0001
.0001

.0027
.0027

O O OO O O O O OO



Columns 8 through 14

0.

0050
0

.0025

0

.0025

0
0

.0039
.0027
.0027

.0000

.0014

Columns

0.

o O

O O O O

0050

O O O O O O

.0014
.0027
.0027

.0000
.0025
.0025
.0039

0

0.0052
0
0.0027
0
0
0.0001

0.0027
0.0053
0.0001

0.0027

0.0027

15 through 16

-0.0000

O O O O OO OO OO0 OO OO Oo

0.0000

.0052

.0027
.0001

.0027
.0001
.0053

.0027
.0027

-0.0000

O OO O O O O O O

o
o
(@]
o
o
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O O O O

O O O O

O O O O

O O O O

.0050

.0014
.0027

.0027

.0000
.0025
.0039
.0025



C Matrix () for Test Problem

Columns 1 through 7

0 -0.5000 -0.5000 0 -0.
-0.5000 0 0 -0.5000 -1.
-0.5000 0 0 0 -1.

0 -0.5000 0 0
-0.5000 -1.0000 -1.0000 0
-1.0000 -0.5000 -1.0000 -0.5000 -0.

0 -0.5000 -0.5000 0 -0.
-0.5000 0 -1.0000 0 -0.
-0.5000 -0.5000 -1.0000 -0.5000 -0.
-0.5000 -0.5000 0 -1.0000 -1.

-0.5000 -0.5000 -0.5000 -0.5000 -0.
-0.5000 -0.5000 -0.5000 -0.5000 -1.

Columns 8 through 12

-0.5000 -0.5000 -0.5000 -0.5000 -0.
0 -0.5000 -0.5000 -0.5000 -0.
-1.0000 -1.0000 0 -0.5000 -0.
0 -0.5000 -1.0000 -0.5000 -0.

-0.5000 -0.5000 -1.0000 -0.5000 -1.
0 -0.5000 -0.5000 -0.5000 -0.
0 0 -1.0000 -0.5000 -0.
0 0 -1.0000 -1.0000 -0.
0 0 -0.5000 -0.5000 -0.
-1.0000 -0.5000 0 -1.0000 -0.
-1.0000 -0.5000 -1.0000 0 -1.

-0.5000 -0.5000 -0.5000 -1.0000
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with 12 Vertices

5000
0000
0000

5000
5000
5000
5000
0000
5000
0000

5000
5000
5000
5000
0000
5000
5000
5000
5000
5000
0000

.0000
.5000
.0000
.5000
.5000

.5000

.5000
.5000
.5000
.5000

.5000
.5000

.5000
.5000

.0000
.5000
.5000



