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Abstra
tTrust region subproblems arise within a 
lass of un
onstrained methods 
alled trustregion methods. The subproblems 
onsist of minimizing a quadrati
 fun
tion subje
tto a norm 
onstraint. This thesis is a survey of di�erent methods developed to �nd anapproximate solution to the subproblem. We study the well-known method of Mor�e andSorensen [18℄ and two re
ent methods for large sparse subproblems: the so-
alled Lan
zosmethod of Gould et al. [7℄ and the Rendl and Wolkowi
z algorithm [31℄. The 
ommonground to explore these methods will be semide�nite programming. This approa
h hasbeen used by Rendl and Wolkowi
z [31℄ to explain their method and the Mor�e andSorensen algorithm; we extend this work to the Lan
zos method. The last 
hapter of thisthesis is dedi
ated to some improvements done to the Rendl and Wolkowi
z algorithm andto 
omparisons between the Lan
zos method and the Rendl and Wolkowi
z algorithm.In parti
ular, we show some weakness of the Lan
zos method and show that the Rendland Wolkowi
z algorithm is more robust.
i
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e lointain Ontario.Of 
ourse, I want to thank my supervisor Henry Wolkowi
z, for his availability, his support and his devotionto help me in my resear
h e�orts. He has su

eeded in making 
ome true everything I hoped to a
hieve when
oming to the University of Waterloo.Thank you also to Philippe Toint and Ni
k Gould for answering my questions on the Lan
zos method.I will never forget all the friends I met here during these two years and who made my time here enjoyable.First of all, my two German roomates, Oliver and Jan Peter; it is very rare in ones life to �nd two great friends allat on
e. Aussi je remer
ie ma � grande� amie Mimi pour toute son attention et pour m'avoir fait 
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Introdu
tionIn un
onstrained optimization, we deal with the standard problem of �nding the minimumof a fun
tion f : Rn! R. If we assume the fun
tion is twi
e 
ontinuously di�erentiable,many methods 
an be applied to �nd the minimum. Steepest des
ent and Newton'smethod are probably among the best known. Newton's method relies on a se
ond orderapproximation of the fun
tion f at ea
h iteration. Although it has proven to be veryeÆ
ient, one of its disadvantages is that it does not possess global 
onvergen
e and theperforman
e of the method is very dependent on the initial estimate. In parti
ular, one
an 
onverge to a saddle point, a lo
al maximum, or a lo
al minimum.One way to get around these diÆ
ulties is to minimize at ea
h iteration the samequadrati
 model as in Newton's method, but instead of 
onsidering the whole spa
e forthe minimization, we restri
t ourselves to a ball whi
h is referred to as the trust region.This is the idea behind trust region methods. The major diÆ
ulty is to eÆ
iently solveat ea
h iteration the trust region subproblem (TRS)(TRS) min q(x) := xTAx � 2aTxs:t: kxk2 � s2:Here, A is an n � n symmetri
 matrix, a is an n � 1 ve
tor, s is a positive s
alar and xis the n � 1 ve
tor of unknowns. All matrix and ve
tor entries are real. It is this last1



2problem that is the main subje
t of this thesis.Depending on the values of A, a and s, di�erent ways of solving the trust regionsubproblem need to be 
onsidered. Two di�erent 
ases may o

ur and are referred to inthe literature as the easy 
ase and the hard 
ase. The hard 
ase or near hard 
ase is what
auses numeri
al diÆ
ulties in solving the problem.A major re
ent 
on
ern of TRS is exploiting the sparsity of the matrix A for largeproblems. This is of 
ourse linked with the in
reasing speed of 
omputers and any moderntrust region algorithm has to take this fa
tor into a

ount. Also, sin
e the trust regionsubproblem needs to be approximately solved many times, fast 
onvergen
e in very fewiterations is needed, rather than just quadrati
 
onvergen
e for example. Indeed, althoughquadrati
 
onvergen
e is fast when one gets 
lose to the solution, it does not guaranteethat the overall number of iterations needed to obtain an approximation to the solutionwill be small.In this thesis, we study three di�erent methods that 
onsider all of the above diÆ-
ulties for TRS. The �rst one we study is the standard Mor�e and Sorensen algorithm[18℄ that was published in 1983 and is the �rst algorithm able to handle the hard 
aseeÆ
iently. The two other ones are more re
ent and were designed to solve large problems.We will look at the primal-dual algorithm of Rendl and Wolkowi
z [31℄ and the so-
alledLan
zos method of Gould, Lu
idi, Roma and Toint [7℄. The �rst authors have shown thatsemide�nite programming 
ould be use to des
ribe the steps of the Mor�e and Sorensenalgorithm and also to derive new algorithms like theirs. We use the same framework toshow that the same 
an be done with the Lan
zos method. Semide�nite programming willtherefore be the link between all the above methods. Other re
ent algorithms for largeand sparse trust region subproblems are the ones of Sorensen [27℄, Santos and Sorensen[25℄ and Hager [8℄; though they will not be 
onsidered here.This thesis has the following stru
ture: in Chapter 1, we look at the evolution of



3the ideas and methods behind the trust region subproblem. In Chapter 2, we study themotivation for solving this problem, i.e. trust region methods. We give an algorithm fortrust region methods and outline their attra
tive properties. In Chapter 3, we present thegeneral theory needed to approa
h the trust region subproblem. Ne
essary and suÆ
ient
onditions are derived and what di�erentiates the easy and the hard 
ase is explained.In Chapter 4, we 
onsider the Mor�e and Sorensen algorithm and the Lan
zos method. InChapter 5, we present the duality results asso
iated with TRS. This se
tion is the keyto derive our semide�nite framework and explain the Rendl and Wolkowi
z algorithmwhi
h is des
ribed in Chapter 6. In Chapter 7, we give numeri
al results. First, westudy the performan
e of a new step to the boundary used in the Rendl and Wolkowi
zalgorithm. Se
ond, we 
ompare the performan
e of the Lan
zos method and the Rendland Wolkowi
z algorithm when, respe
tively, used to solve the trust region subproblemswithin a trust region method.The new 
ontributions of this thesis are found in Chapters 5, 6 and 7. In Se
tion 5.1,we polished the work of Rendl and Wolkowi
z [31℄ 
on
erning the di�erent dual problemsrelated to the trust region subproblem. Se
tion 5.3 sets the Lan
zos method within asemide�nite framework is entirely new. In Chapter 6, a new primal step to the boundaryfor the Rendl and Wolkowi
z algorithm is suggested in Se
tion 6.3.2. Finally, the resultsand 
on
lusion of the numeri
al experiments of Chapter 7 are also new 
ontributions tothe �eld.



Chapter 1Histori
al Ba
kgroundAmong the papers related to trust region methods and to the trust region subproblem,many of them 
ite the work by Levenberg [12℄ in 1944 who introdu
ed the basi
 ideabehind trust region methods. Levenberg was interested by the least squares problemmin nX1=1 fi(x)2 (1.1)en
ountered parti
ularly in 
urve �tting, where the fi's are nonlinear fun
tions. The usualapproa
h for this problem was to approximate fi with a �rst order Taylor's approximationFi about xk and to set the derivative of the fun
tion Pni=1 Fi(x)2 to 0 to get xk+1. Of
ourse, this method is fa
ed with the problem that xk+1 
an be too far away from xkand a de
rease in the initial program (1.1) might not o

ur be
ause the linear model doesnot hold so far away. Levenberg thought of a way to restri
t the distan
e where the nextiterate 
an be found, therefore setting the basi
 idea of trust region methods. His ideathough was di�erent to what is now used in trust region methods. A
tually, he used a4



CHAPTER 1. HISTORICAL BACKGROUND 5quadrati
 penalty method and solvedmin ! nX1=1 fi(x)2 + kxk2;where ! was a well 
hosen s
alar. He proved that with this method he 
ould get de
reaseat ea
h iterate for problem (1.1).A more dire
t link to trust region methods is the work of Marquardt [14℄ in 1963.He solved the same problem as Levenberg, i.e. he was minimizing Pni=1 Fi(x)2, but atea
h iteration he would really �nd the solution to a trust region subproblem. Due tothe stru
ture of the problem, he would only fa
e trust region subproblems for whi
h thequadrati
 obje
tive was a 
onvex fun
tion. He would not dire
tly �nd the minimum ofa 
onvex quadrati
 inside a given sphere, but rather within an unknown sphere (i.e. theradius of the sphere was not known a priori, but was instead impli
itly determined insolving his subproblem). Similarly to what is done in trust region methods, he also hada s
heme to adjust the radius of his trust region at ea
h iteration. It is the work ofMarquardt and Levenberg that would eventually inspire Powell, in 1970, to derive the�rst trust region algorithm for solving un
onstrained minimization problems (see [20℄ and[21℄).In 1966, Goldfeld, Quandt and Trotter [5℄ wrote a paper 
alled Maximization byquadrati
 hill-
limbing whi
h is the origin of trust region methods and they solved trustregion subproblems for non-
onvex quadrati
 obje
tives. Although their paper did notgo through all the subtleties of the trust region subproblem, as for example the dis-tin
tion between the easy 
ase and the hard 
ase, they gave the ne
essary and suÆ
ientoptimality 
onditions. Their trust region method 
ould solve un
onstrained minimizationproblems, but, with Marquardt, their trust region subroutine would not dire
tly minimizea quadrati
 inside a �xed sphere.



CHAPTER 1. HISTORICAL BACKGROUND 6The disadvantage of the methods of Marquardt and Goldfeld, Quandt and Trotterwas that the trust region subproblems they 
ould solve had a small neighborhood when aspe
ial 
ase o

urred whi
h is now referred to as the hard 
ase in the literature. Moreover,being able to handle this so-
alled hard 
ase is essential when the minimum of a quadrati
over a �xed sphere is sought. In 1981, Gay [4℄ showed how to re
ognize the hard 
asenumeri
ally and stated a theorem that 
ould be used to solve the problem when this 
aseo

urred. His theorem, as mentioned two years later in a paper by Mor�e and Sorensen[18℄, had some numeri
al disadvantages, sin
e many iterations were needed to be able tore
ognize the hard 
ase when it o

urred.As the theory of the trust region subproblem evolved, so too did the theory surround-ing its reason for existen
e: trust regions methods. One example would be the paper bySorensen [26℄ in 1982 where he derived strong 
onvergen
e results for his algorithm, whi
his similar to the one found in re
ent nonlinear optimization books (see for example [1℄ and[3℄). In his paper, Sorensen proved, under some mild assumptions, global 
onvergen
eand quadrati
 
onvergen
e for his method.In 1983, Mor�e and Sorensen [18℄ wrote Computing a trust region step, whi
h nowremains a 
lassi
 for the trust region subproblem. They developed a way to solve eÆ
ientlythe problem in the easy 
ase using Newton's method on a nearly linear fun
tion and onlybasi
 linear algebra te
hniques needed to be applied. In the hard 
ase, they stated a lemmathat was not as restrive as what Gay [4℄ initially proposed. In fa
t, their algorithm isvery e�e
tive in this 
ase.Sin
e the Mor�e and Sorensen algorithm uses Cholesky's fa
torization, it is not designedto take advantage of the sparsity for large sparse problems. Sin
e the publi
ation of theirpaper, many authors 
onsidered atta
king the problem in a di�erent way that would not
ompromise sparsity (see for example [7℄,[25℄,[27℄ and [31℄). This is where the resear
h isnow, as in
reasingly fast 
omputers enable us to solve problems with a large number of



CHAPTER 1. HISTORICAL BACKGROUND 7variables and handling sparsity is a key fa
tor now in any algorithm.



Chapter 2The Trust Region MethodIn this 
hapter, we study how the trust region method (TRM) is a natural way to im-plement Newton's method in un
onstrained optimization. The 
onvergen
e properties ofTRM are very appealing as we 
an expe
t to satisfy �rst and se
ond order optimality
onditions. Furthermore, under some assumptions we will spe
ify, TRM a
hieves global
onvergen
e. This is a noti
eable improvement to Newton's method.Newton's method 
an be applied to the problem of �nding the un
onstrained minimumof a 
ontinuous fun
tion, say f(�), i.e. solvingmin f(x)s.t. x 2 Rn:Given xk , the next iterate xk+1 is 
omputed by �nding a minimum of the quadrati
 modelof f(�) about xk, i.e.xk+1 2 argmin ~q(x) := f(xk) +rf(xk)T (x� xk) + 12(x� xk)Tr2f(xk)(x� xk)s.t. x 2 Rn: 8



CHAPTER 2. THE TRUST REGION METHOD 9Assuming positive de�niteness for r2f(xk) yieldsxk+1 = xk � (r2f(xk))�1rf(xk):Usually, the restri
ted step Newton's method is written asxk+1 = xk � �k(r2f(xk))�1rf(xk); �k 2 (0; 1℄; (2.1)where �k is a 
arefully 
hosen step length. Two problems arise with this method. First,be
ause we need to solve a linear system, if it is ill-
onditioned we will have diÆ
ultiesin 
omputing xk+1. Se
ond, if r2f(xk) is not positive de�nite, xk+1 might not yield ade
rease for the obje
tive fun
tion f(�) as (r2f(xk))�1rf(xk) might not be a des
entdire
tion and the step �k(r2f(xk))�1rf(xk) might in
rease f(�) for any positive �k.The idea behind TRM is to 
orre
t these diÆ
ulties by restri
ting the iterate xk+1 tobelong to a 
losed neighborhood of xk and to set xk+1 to be the minimum of the quadrati
model about xk within this neighborhood. More pre
isely, for sk 2 R+ a positive s
alar,xk+1 is set to be xk+1 2 argmin ~q(x)s.t. kx� xkk2 � s2k :Be
ause the feasible set is 
ompa
t, xk+1 is now well de�ned independently of r2f(xk).Furthermore, for suÆ
iently small sk , f(xk+1) < f(xk) unless both rf(xk) = 0 andr2f(xk) � 0, i.e. unless �rst and se
ond order ne
essary optimality 
onditions hold atxk. The above problem 
an be solved if, given A, an n�n real symmetri
 matrix, a 2 Rn,and s 2 R+ the following problem, whi
h we refer to as the trust region subproblem (TRS),



CHAPTER 2. THE TRUST REGION METHOD 10
an be solved: (TRS) min q(x) := xTAx � 2aTxs.t. kxk2 � s2: (2.2)The next step now is to 
onstru
t an eÆ
ient algorithm. The idea is to modify thesize of the neighborhood at ea
h iteration depending on how well the quadrati
 modelapproximates the fun
tion f . If the model is valid in a large neighborhood, then wewish to take a neighborhood as large as possible. On the other hand, if the model is apoor approximation of f , we may need to redu
e the size of our neighborhood to ensurea de
rease in the obje
tive fun
tion. Let xk be our 
urrent iterate and xk + Æk be thesolution to the minimization of our quadrati
 model about xk over the ball of radius sk
entered at xk . Then f(xk)� f(xk + Æk)will be the a
tual redu
tion of our obje
tive fun
tion and~q(xk)� ~q(xk + Æk)will be the predi
ted redu
tion of our obje
tive fun
tion made by our quadrati
 model. Tomeasure how good our quadrati
 model is, we 
ompute the ratio of the a
tual redu
tionto the predi
ted redu
tion, i.e. rk := f(xk)� f(xk + Æk)~q(xk)� ~q(xk + Æk) :If the ratio is 
lose to 1 or greater than 1, we might want to enlarge the neighborhoodwhere we trust our model to allow a larger step. On the other hand, if the ratio is small,



CHAPTER 2. THE TRUST REGION METHOD 11or even negative, then we will redu
e our neighborhood.We 
an now outline the trust region method. Many variants exist. Our algorithm istaken from Flet
her [3℄.Algorithm 2.1. (Trust Region Method)1. Given xk and sk, 
al
ulate rf(xk) and r2f(xk).2. Solve for Æk Æk 2 argmin rf(xk)T Æk + 12ÆTk r2f(xk)Æks.t. kÆkk2 � s2k:3. Evaluate rk.4. (a) If rk < 0:25 set sk+1 = kÆkk=4.(b) If rk > 0:75 and kÆkk = sk set sk+1 = 2sk.(
) Otherwise set sk+1 = sk.5. If rk � 0 set xk+1 = xk else xk+1 = xk + Æk.We end this se
tion with two theorems about �rst and se
ond order optimality 
ondi-tions when minimizing fun
tion f(�). Proofs of these theorems 
an be found in Flet
her[3℄.Theorem 2.1 (Global 
onvergen
e). For Algorithm 2.1, if xk 2 B � Rn 8k, whereB is bounded, and if f 2 C 2 on B, then there exists an a

umulation point x1 whi
hsatis�es �rst and se
ond order ne
essary 
onditions.Theorem 2.2 (Quadrati
 Convergen
e). If the a

umulation point x1 of Theorem2.1 also satis�es the se
ond order suÆ
ient 
onditions, then for the main sequen
e rk ! 1,



CHAPTER 2. THE TRUST REGION METHOD 12xk ! x1, inf sk > 0 and the bound kÆk2 � s2k is ina
tive for suÆ
iently large k. Also the
onvergen
e is quadrati
.The �rst theorem tells us, if the sequen
e of iterates is bounded, that we 
an expe
tto have an a

umulation point satisfying the �rst and se
ond order optimality 
onditions.The se
ond theorem tells us that eventually the method redu
es to Newton's method ifwe 
onverge to a lo
al minimum where the se
ond order suÆ
ient optimality 
onditionholds, hen
e quadrati
 
onvergen
e o

urs.An interesting fa
t to be aware of for a trust region algorithm like Algorithm 2.1is that a

umulation points for whi
h stationarity does not hold may exist. This hasre
ently been shown by Yuan [34℄. He 
onstru
ted an example where one stationarya

umulation point exists (as expe
ted a

ording to Theorem 2.1), but where two non-stationary a

umulation points also exist. Yuan [34℄ shows that trust region methods thatfeature a step similar to step 5 of Algorithm 2.1 may have non-stationary a

umulationpoints, i.e. we may have lim supk!1 krf(xk)k > 0:On the other hand, trust region algorithms that set xk+1 = xk if rk � �0, where �0 is apositive number greater than 0, all have stationary a

umulation points, i.e.limk!1 krf(xk)k = 0:In the numeri
al tests of Chapter 7, we use a trust region method (Algorithm 7.1)that has this feature.This 
hapter gave the motivation for studying TRS. The next 
hapter deals with howone might 
ompute the desired minimum. Fortunately, the problem has a fair amount of



CHAPTER 2. THE TRUST REGION METHOD 13stru
ture.



Chapter 3The Stru
ture of the Trust RegionSubproblemIn this 
hapter, we present the theory needed to understand TRS. We will from nowon refer to TRS as it was stated in (2.2). Of 
ourse the �rst step is to derive theKarush-Kuhn-Tu
ker optimality 
onditions. It is shown that the se
ond order optimality
ondition has a strengthened form for TRS. We also demonstrate that unless a spe
ialsituation o

urs, the optimal solution will always lie on the boundary. The two theoremsneeded to show this and their proofs are taken from Sorensen [26℄ (see also Gay [4℄). Of
ourse, knowing these optimality 
onditions is essential as any algorithm for TRS willaim at satisfying them.We end this 
hapter with two di�erent 
ases we need to be aware of to solve TRSeÆ
iently. Most of the diÆ
ulties 
ome from the 
ase referred to as the hard 
ase and weshow by example why being able to solve this 
ase is essential.14



CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 153.1 Optimality ConditionsWe �rst derive the Karush-Kuhn-Tu
ker ne
essary optimality 
onditions and establishthat the se
ond order ne
essary 
onditions 
an be stated in a strengthened form to makethem also suÆ
ient. In parti
ular, we show that the 
onvexity of the Lagrangian fun
tionand the 
omplementary sla
kness equation implies that the 
onditions are suÆ
ient. Welet in the following theorem and for the rest of this thesis the symbol � be the L�ownerpartial order on positive semide�nite matri
es, i.e. A � B if A�B is positive semide�nite.Similarly, A � B if A �B is positive de�nite.Theorem 3.1 (Ne
essary and SuÆ
ient Conditions). x� is a solution to (2.2) ifand only if kx�k2 � s2 and x� is a solution to an equation of the form(A� ��I)x� = awith A � ��I � 0, �� � 0, and ��(s2 � kx�k) = 0. Furthermore, if A � ��I � 0, x� isunique.Proof:First suppose that x� is a solution to TRS. Sin
e s > 0; without loss of generality, we
an assume that the trivial 
ase x� = 0 does not hold. Note that x� is a regular point,sin
e the only 
onstraint has non zero gradient and therefore is linearly independent.Therefore, there exists a unique Lagrange multiplier ��. De�ne the Lagrangian fun
tionL(x; �) := xTAx� 2aTx � �(kxk2� s2):
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ker 
onditions for (2.2) yieldkx�k2 � s2 (Feasibility);rxL(x�; ��) = (A� ��I)x� � a = 0 (Stationarity);��(kx�k � s2) = 0 (Complementary Sla
kness);�� � 0;and if kx�k2 = s2; yT (A� ��I)y � 0 for all y 3 yTx� = 0 (2nd order ne
. 
ond.):We now prove that the se
ond order ne
essary 
ondition 
an in fa
t be strengthened toA � ��I � 0. Sin
e x� solves TRS, q(x) � q(x�) for all x satisfying kxk2 = kx�k2. Thiswith (A� ��I)x� = a yieldsxTAx� 2x�T (A� ��I)x � x�TAx� � 2x�T (A� ��I)x�:Using kxk2 = kx�k2, we 
an write the previous equation in the following way:xT (A� ��I)x� 2x�T (A� ��I)x � �x�T (A� ��I)x�, xT (A� ��I)x� 2x�T (A� ��I)x+ x�T (A� ��I)x� � 0, (x� � x)T (A� ��I)(x� � x) � 0:This yields yT (A� ��I)y � 0 for all y 3 yTx� 6= 0;



CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 17sin
e for y 3 yTx� 6= 0, y = �(x� � x) for a well 
hosen � 6= 0 and x (
hoose � = kyk22yTx�and x = x�� 1�y). This last inequality in addition to the se
ond order ne
essary 
onditionyields A� ��I � 0:To prove the 
onverse, let x� and �� � 0 be a solution tokx�k2 � s2;(A� ��I)x� = a;��(kx�k2 � s2) = 0;A� ��I � 0:Then for any x 2 Rn (x� � x)T (A� ��I)(x�� x) � 0 (3.1), xT (A� ��I)x� 2x�T (A� ��I)x � x�T (A� ��I)x� � 2x�T (A� ��I)x�, xT (A� ��I)x� 2aTx � x�T (A� ��I)x� � 2aTx�, q(x) � q(x�)� ��(kx�k2 � kxk2):Now sin
e ��(kx�k2 � s2) = 0, either �� = 0 or kx�k2 = s2. If �� = 0, the last inequal-ity establishes that x� solves TRS and that it is an un
onstrained minimizer for q(x),



CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 18i.e a minimizer over Rn. Alternatively, if kx�k2 = s2, then ���(kx�k2 � kxk2) � 0 forall x su
h that kxk2 � s2 and again the last inequality establishes that x� solves TRS.Note also that if kx�k2 = s2 then the last inequality implies that x� is a solution tominfq(x) : kxk2 = s2g independent of the sign of ��. Finally, uniqueness follows be
ause(3.1) holds stri
tly for x 6= x� if A� ��I � 0. �We now show that if an un
onstrained minimum exists for q(�), unless it is uniqueand lies in the interior of the trust region fx : kxk2 � s2g, there will exist a solution onthe boundary, that is kx�k2 = s2 for some optimal x�.Theorem 3.2. The problem (2.2) has no solution on the boundary if and only if A ispositive de�nite and kA�1ak2 < s2.Proof:If A is positive de�nite and kA�1ak2 < s2, then it follows that the minimizer of q(x) isunique and be
ause it lies within the trust region, there is no solution on the boundary.If no solution lies on the boundary, then the optimal solution x� satis�es kx�k2 < s2and by 
omplementary sla
kness we must have �� = 0. Sin
e A � ��I � 0 by Theorem3.1, then A � 0. If A was singular, then 
hoosing z 3 Az = 0 for some z su
h thatkx� + zk2 = s2 would imply, by Theorem 3.1, that x� + z is an optimal solution to TRS,
ontradi
ting the fa
t that no solution lies on the boundary. Therefore, A must be posi-tive de�nite. By stationarity, s2 > kx�k2 = kA�1ak2. �
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k at the optimality 
onditions, if we assume a solution to TRS o

urs on theboundary, it would seem natural to attempt solving the equationk(A� �I)�1ak2 = s2: (3.2)This leads us to wonder when is A � ��I singular. The 
onditions for this to o

ur arewell know in the literature. Singularity of the matrix A � ��I is referred to as 
ase 2 ofthe hard 
ase. Non-singularity 
an result in either the so-
alled easy 
ase and also 
ase 1of the hard 
ase. Some authors refer both to the easy 
ase and 
ase 1 of the hard 
ase asthe easy 
ase.If a is not perpendi
ular to the null spa
efz : (A� �1(A)I)z = 0g;where �1(A) is the smallest eigenvalue of A, then we have the easy 
ase and A���I � 0.In parti
ular A� ��I is invertible. We 
an therefore solve (3.2). To see this, note thata ?6 N (A� �1(A)I)) a 62 R(A� �1(A)I)) �x 3 (A� �1(A)I)x = a;where the �rst impli
ation follows from N (A� �1(A)I) ? R(A� �1(A)I) (N stands forthe null spa
e and R for the range spa
e). The last result implies that for � = �1(A)stationarity is not satis�ed, hen
e �� 6= �1(A). Sin
e A � ��I � 0 ) �� � �1(A) andA� ��I � 0, �� < �1(A), then A� ��I � 0.In a 
omplementary manner, the hard 
ase o

urs when a is perpendi
ular to theeigenspa
e of the smallest eigenvalue of A. Two possibilities may o

ur: �� < �1(A) and



CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 20this is referred to as the hard 
ase (
ase 1), or �� = �1(A) and we 
all this the hard 
ase(
ase 2). We resume the three di�erent 
ases in the following table:Easy 
ase Hard 
ase (
ase 1) Hard 
ase (
ase 2)1) a ?6 N (A� �1(A)I) 1) a ? N (A� �1(A)I) 1) a ? N (A� �1(A)I)2) �� < �1(A) 2) �� < �1(A) 2) �� = �1(A)Note that 1) implies 2)Table 3.1: The three di�erent 
ases for the trust region subproblem.In the hard 
ase (
ase 1) no diÆ
ulty o

urs and we 
an still solve (3.2). On the otherhand, in the hard 
ase (
ase 2), it is possible that k(A � �I)�1ak2 is 
onsiderably lessthan s2 for all the � that make A� �I positive de�nite. We show this with the followingexample taken from [18℄.Example 3.1. Let A = 264 �1 00 1 375 and a = 264 01 375Here �1(A) = �1 and 
learly this is the hard 
ase. For a given �, let x(�) bex(�) := (A� �I)�1a:A short 
omputation gives kx(�)k2 = 1(1� �)2 :For A��I � 0, � < �1, and the right hand term takes values between (0; 1=4). Therefore,



CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 21for s < 1=2, kx(�)k2 = s2 has a solution � < �1 and we �nd ourselves in the hard 
ase(
ase 1). If s � 1=2, then �� has to be �1 and lettingx� = 264 ps2 � 1=41=2 375shows, after a qui
k 
he
k, that �� and x� satisfy the optimality 
onditions. This is thenthe hard 
ase (
ase 2).This example shows that if the hard 
ase o

urs, solutions x(�) for di�erent values of� < �1(A) might have a norm mu
h smaller than the radius of the trust region. Beingable to handle su
h problems is important sin
e in the trust region method we want totake steps as large as possible between ea
h iterate. Restri
ting ourselves to the easy 
aseimplies that a large step might be impossible if we �nd ourselves in the hard 
ase. Thiswas a 
aw in the algorithms of Marquardt [14℄ and Goldfeld and al. [5℄.Numeri
ally, when a has small 
omponents in the null spa
e of A� �1(A)I , we haveto 
onsider the hard 
ase. Not being able to handle the hard 
ase leads to numeri
aldiÆ
ulties due to the ill-
onditioning of the matrix A � �I for � 
lose to �1(A). Fortu-nately, the handling of the hard 
ase has been solved by Gay [4℄ and perfe
ted by Mor�eand Sorensen [18℄. We study the Mor�e and Sorensen algorithm in the next 
hapter.



Chapter 4Two Di�erent Methods to SolveTRSIn this 
hapter, we explore two di�erent methods that solve TRS. The �rst method is theone developed by Mor�e and Sorensen [18℄ in a paper they published in 1983. The paperis 
ommonly 
ited in the �eld, sin
e it is the �rst algorithm to have an eÆ
ient numeri
almethod for handling the hard 
ase and, as we mentioned previously, this seems like animportant feature for a trust region algorithm.The se
ond method is due to Gould, Lu
idi, Roma and Toint [7℄. This method is quitenew, as it was published in 1999, and presents a way to exploit sparsity of the matrix A.The motivation 
omes from the in
reasing speed of 
omputers and the desire to handlelarger problems. Sin
e A is the Hessian of f(�), for a problem with a large number ofvariables, the Hessian is likely to have many zero entries.A third method will be presented in this thesis, but in Chapter 6, sin
e we �rst needto present the duality theory for TRS in Chapter 5. The duality theory will also be usedto explain the �rst two methods in a di�erent way than what will be done in this 
hapter.22



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 234.1 The Mor�e and Sorensen AlgorithmThis algorithm features eÆ
ient handling of the easy and the hard 
ase, but it does notexploit sparsity. In the easy 
ase and the hard 
ase (
ase 1), Newton's method is usedimpli
itly to solve (for �) the equation k(A � �I)�1ak2 = s2, although this is not theequation Newton's method is applied to. The hard 
ase (
ase 2) is handled by movingfrom a feasible solution to the boundary. The te
hnique is meant to handle the hard 
ase(
ase 2), but also proves to be of use in the other 
ases. It is exe
uted every time a solutionin the interior of the feasible set is en
ountered, and therefore few iterations are neededwhen the hard 
ase (
ase 2) o

urs. Also, if a unique un
onstrained minimizer exists andis in the trust region, then in at most two iterations the algorithm will terminate and �ndthis optimal solution.4.1.1 Handling the Easy Case and the Hard Case (Case 1)Assuming the solution of TRS lies on the boundary, the easy 
ase is handled by �ndinga � whi
h satis�es the equationk(A� �I)�1ak2 = s2; A� �I � 0:This is possible in the easy 
ase sin
e we know that A � ��I is invertible. First, letx(�) := (A � �I)�1a, and let Q�QT = A, where Q is an orthonormal matrix havingeigenve
tors of A as its 
olumns and � is a diagonal matrix having the eigenvalues of Aon its diagonal in nonde
reasing order, that is �11 = �1(A) � : : : � �nn = �n(A). This
an be done sin
e A is a symmetri
 matrix. Then we havekx(�)k2 = k(A� �I)�1ak2 = kQ(�� �I)�1QTak2 = k(�� �I)�1QTak2



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 24) kx(�)k2 = nXj=1 
2j(�j(A)� �)2 ; (4.1)where 
j is the jth 
omponent of QTa. This expression will help in the analysis thatfollows.Instead of applying Newton's method on the fun
tion kx(�)k2 � s2 to �nd its zero,Mor�e and Sorensen 
onsider the fun
tion�(�) := 1s � 1kx(�)k;whi
h shares the same zero (see Reins
h [22℄,[23℄ and Hebden [24℄). It 
an be shown,using the rational stru
ture of kx(�)k2, that this fun
tion is less nonlinear. In fa
t, if Ais a multiple of the identity, then it is purely linear. Therefore, Newton's method appliedto this fun
tion will be mu
h more eÆ
ient. Now, by de�nition of Newton's method, andgiven �k, then �k+1 is obtained in the following way:�k+1 = �k � �(�k)�0(�k) :In pra
ti
e, the Mor�e and Sorensen algorithm uses the algorithm below to 
ompute �k+1.In this algorithm �k is assumed to be nonpositive, not to be equal to �1(A) and tostri
tly satisfy the strengthened se
ond order optimality 
onditions (so that the Choleskyfa
torization 
an be used).Algorithm 4.1. Assume �k � 0 and A� �kI � 0 (i.e. �k < �1(A)).1. Fa
tor A� �kI = RTR (Cholesky fa
torization).2. Solve, for x, RTRx = a (x is then x(�k)).3. Solve, for y, RT y = x.



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 254. Let �k+1 = �k � hkxkkyki2 h (kxk�s)s i.We now show that these linear algebra 
omputations are indeed exe
uting Newton'smethod. First note thatQ(�� �kI)QT = RTR) (RT )�1Q = RQ(�� �kI)�1 (4.2)and also QTRTRQ = �� �kI ) (RQ(�� �kI)�1=2)T (RQ(�� �kI)�1=2) = I) RQ(�� �kI)�1=2 is an orthonormal matrix. (4.3)We havey = (RT )�1x = (RT )�1(RTR)�1a = (RT )�1(A� �kI)�1a = (RT )�1Q(�� �kI)�1QTa= (RT )�1Q(�� �kI)�1
 = RQ(�� �kI)�2
;where the last equality follows from (4.2). This giveskyk2 = kRQ(�� �kI)�1=2(�� �kI)�3=2
k2 = k(�� �kI)�3=2
k2 = nXj=1 
2j(�j(A)� �k)3 ;where we have used (4.3) in the se
ond equality. Now we havedd�kx(�)k2 �=�k = 2 nXj=1 
2j(�j(A)� �k)3 = 2kyk2:



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 26This givesdd�kx(�)k �=�k = dd�(kx(�)k2)1=2 �=�k = dd�kx(�)k2 �=�k2kx(�k)k = kyk2kx(�k)k = kyk2kxk :Therefore�0(�k) = dd��(�) �=�k = dd� �1s � 1kx(�)k� �=�k = dd�kx(�)k �=�kkx(�k)k2 = kyk2kxk3and �k+1 
an then be expressed as�k � �(�k)�0(�k) = �k ��1s � 1kxk� kxk3kyk2 = �k � �kxk � ss � kxk2kyk2 ;as given in the algorithm.If one 
an �nd a �0 su
h that �0 < �1(A) and �(�0) > 0, then Algorithm 4.1 
onvergesquadrati
ally, sin
e �(�) is a 
onvex fun
tion stri
tly in
reasing on (�1; �1(A)). Hen
e ithas a unique zero of multipli
ity one and Newton's method ensures quadrati
 
onvergen
ewhen initiated from a �, inside the interval where the fun
tion is in
reasing and 
onvex,that satis�es �(�) > 0. In pra
ti
e, it is always possible to �nd su
h a �, be
ause wealways �nd ourselves in the easy 
ase (equation (4.1) shows that in the easy 
ase kx(�)kis a fun
tion that takes all values from 0 to 1 when � varies from �1 to �1(A). Hen
e,for � < �1(A) and 
lose to �1(A), �(�) is positive.), sin
e, generi
ally, a is not exa
tlyperpendi
ular to the null spa
e of S1. Yet, we have to be 
areful when a is almostperpendi
ular to the null spa
e of S1. This is 
alled the almost hard 
ase. In the almosthard 
ase, �(�) has a sharp simple 
usp at �1(A) and this is due to the fa
t that in theorykx(�)k is bounded when � < �1(A). In the almost hard 
ase, problems o

ur if �� is
lose to �1(A), sin
e the � for whi
h � < �1(A) and �(�) > 0 are 
ontained in a very



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 27small interval. Furthermore, Algorithm 4.1 may have 
omputational diÆ
ulties, sin
eeventually the matri
es A� �kI will be ill-
onditioned. Figure (A.3) illustrates this 
asewhi
h is referred to as the almost hard 
ase (
ase 2). On the other hand, in the easy
ase, or even in the almost hard 
ase (
ase 1), the fun
tion is smooth near �� and also,be
ause �� is not 
lose to �1(A), there is no ill-
onditioning of the matri
es A� �kI andno diÆ
ulties are en
ountered when Algorithm 4.1 is applied. Figures (A.1) and (A.2)illustrate these two 
ases.The Mor�e and Sorensen algorithm applies Algorithm 4.1 and uses a ba
ktra
kings
heme, on the iterate �k that was obtained, to guarantee �k � 0 and �k < �1(A).Quadrati
 
onvergen
e o

urs on
e a � that satis�es � < �1(A) and �(�) > 0 is found.The diÆ
ulty of �nding su
h � in the almost hard 
ase (
ase 2) and the ill-
onditioningproblems would slow down the algorithm. Fortunately, the Mor�e and Sorensen algorithmhas a very eÆ
ient way to handle this 
ase. This is what we explain in the next se
tion.4.1.2 Handling the Hard Case (Case 2)In the almost hard 
ase (
ase 1), i.e. when �� is far enough from �1(A), then the abovealgorithm still gives good results and numeri
al diÆ
ulties don't o

ur. On the otherhand, the almost hard 
ase (
ase 2) requires more 
are, sin
e �� is 
lose to �1(A). Intheory, in the hard 
ase (
ase 2), a solution to TRS 
an be obtained by �nding a solutionx(�1(A)) to the system (A� �1(A)I)x = a



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 28with a norm less than or equal to s and an eigenve
tor z 2 S1. Then, for some � 2 R,su
h that kx(�1(A)) + �zk = s, x� = x(�1(A)) + �zsatis�es the optimality 
onditions of Theorem 3.1. The following lemma is the key toimplement this idea numeri
ally and it elaborates on Lemma 3.4 in Mor�e and Sorensen[18℄.Lemma 4.1 (Primal step to the boundary). Let 0 < � < 1 be given and supposethat A� �I = RTR; (A� �I)x = a; � � 0:Let z 2 Rn satisfy kx+ zk2 = s2; kRzk2 � �(kRxk2 � �s2):Then �q(x+ z) � (1� �)(kRxk2� �s2) � �(1� �)q(x�); (4.4)where x� is optimal for TRS. Thereforejq(x+ z)� q(x�)j � �jq(x�)j: (4.5)



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 29Proof:For any z 2 Rn we haveq(x+ z) = (x+ z)T (A� �I)(x+ z)� 2aT (x+ z) + �kx+ zk2= (x+ z)TRTR(x+ z)� 2xTRTR(x+ z) + �kx+ zk2= xTRTRx+ 2xTRTRz + zTRTRz � 2xTRTRx� 2xTRTRz + �kx+ zk2= �(kRxk2 � �kx+ zk2) + kRzk2: (4.6)If kx+ zk2 = s2 and kRzk2 � �(kRxk2 � �s2), then�q(x+ z) � (1� �)(kRxk2� �s2): (4.7)If x + z� = x�, where x� is optimal for TRS, thenq(x+ z�) � �(kRxk2 � �s2) + kRzk2 � �(kRxk2 � �s2)and �q(x+ z�) � kRxk2 � �s2: (4.8)Inequalities (4.7) and (4.8) yield (4.4), whi
h implies� q(x+ z) � (1� �)(�q(x+ z�))) q(x+ z)� q(x+ z�) � ��q(x+ z�) (4.9)) j q(x+ z)� q(x+ z�) j� � j q(x+ z�) j :



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 30The last inequality is (4.5) and follows sin
e q(x+ z)� q(x+ z�) � 0. Therefore the lefthand side of (4.9) is positive and �q(x+ z�) = jq(x+ z�)j. �A 
onsequen
e of this lemma is that if we 
an 
hoose a small � for whi
h there existsa z that satis�es kRzk2 � �(kRxk2 � �s2) , x + z is nearly optimal, i.e., a

ording to(4.5), the relative distan
e between q(x+ z) and q(x�) is less than �. In the almost hard
ase (
ase 2), when � is 
lose to �1(A), we 
an expe
t this to happen as R will be nearlysingular. Moreover, given a feasible solution inside the trust region, taking su
h a stepmight still improve the obje
tive if kRzk 
an be made small. Therefore, the lemma'sappli
ation goes beyond the almost hard 
ase (
ase 2). Be
ause the goal of this step isto improve the obje
tive of TRS, to whi
h we will refer to as the primal obje
tive, inopposition to the dual obje
tive of the next 
hapter, we 
all this te
hnique a primal stepto the boundary.We end this se
tion by dis
ussing two te
hni
al details of this step. First, given R, anormalized ve
tor z is 
omputed su
h that kRzk is as small as possible using a LINPACK(now LAPACK 
ould be used) te
hnique. Se
ond, a s
alar � su
h that kx+ �zk2 = s2 isobtained by the following formula:� = s2 � kxk2xTz + sgn(xTz)2((xTz)2 + (s2 � kxk2))1=2 : (4.10)This expression 
omes from the fa
t that for su
h a z and a feasible solution x there aretwo values of � su
h that kx+�zk2�s2 = 0 (the left hand term is a quadrati
 polynomialin �). Using equation (4.6), we haveq(x+ �z) = �(kRxk2 � �kx+ �zk2) + kR(�z)k2= �(kRxk2 � �s2) + �2kRzk2:



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 31This implies that we must pi
k the solution � with smallest magnitude, i.e. among thetwo possible steps to the boundary, we 
hoose the 
losest one to x. This is how the aboveexpression for � is obtained.Lemma 4.1 is very handy in pra
ti
e. Every time a solution is inside the trust re-gion, we 
an try to obtain an improvement for the obje
tive fun
tion using this lemma.Moreover, if the almost hard 
ase (
ase 2) is en
ountered, the algorithm handles it im-mediately and very few iterations are needed in pra
ti
e (2-3 iterations). This idea hasbeen generalized to the sparse 
ase in the Rendl and Wolkowi
z algorithm presented inChapter 6.4.1.3 The Main AlgorithmBasi
ally, the algorithm tries to solve TRS using Algorithm 4.1 and a safeguarding s
hemeis used to ensure the �k are su
h that A� �kI � 0 and �k � 0. This s
heme also keepsupper and lower bounds on �� and makes sure the gap de
reases after ea
h iteration.Furthermore, the safeguarding s
heme is su
h that if the solution to TRS lies inside thetrust region (i.e. it is an un
onstrained minimum), then after at most two iterations,� = 0 is tried and an optimal solution is found. If the almost hard 
ase o

urs, as statedabove, x(�k) lies in the interior of the trust region and a primal step to the boundary istaken.The Mor�e and Sorensen algorithm, at the time it was published, was a breakthrough,as it 
ould handle any of the 
ases that o

urred for TRS very eÆ
iently. Espe
ially,in the almost hard 
ase (
ase 2), it takes only few iterations, as opposed to previousalgorithms that were slowed down in this 
ase. Sin
e then, other algorithms have workedon exploiting the possible sparsity of A whi
h o

urs in large problems. The Mor�e andSorensen algorithm fails to exploit sparsity be
ause the Cholesky fa
torization is used



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 32(though for some problems, a sparse Cholesky algorithm may work). For example, if Ahas non-zero 
omponents only on its diagonal and its �rst row and 
olumn, the matrix Robtained with the Cholesky fa
torization will be full (assuming symmetri
 permutationsare not used). We present in the next se
tion an algorithm that exploits sparsity.4.2 The Lan
zos MethodThe method presented here is issued from a paper by Gould, Lu
idi, Roma and Toint[7℄ and is quite re
ent sin
e it was published in 1999. As mentioned before, 
urrentattempts to solve TRS now fo
us on how sparsity of the matrix A 
an by exploited.The algorithm developed by Gould et al. only requires matrix-ve
tor multipli
ations andtherefore exploits the sparse property of A. The main te
hnique used in the algorithminvolves a Lanz
os tridiagonalization of the matrix A. Hen
e, this TRS method is referredto as the Lan
zos method.The approa
h used here is to solve the relaxed problemmin q(x)s.t. kxk2 � s2x 2 S; (4.11)where S is a spe
ially 
hosen subspa
e of Rn. The way S is 
hosen is inspired by theSteihaug-Toint algorithm [28℄, where the 
onjugate gradient method is used to �nd anapproximation to the solution of TRS. Unless a global minimizer exists for q(�) and liesin the interior of the trust region (so the 
onjugate gradient method 
onverges to thisminimizer), this algorithm follows the pie
ewise linear path obtained from the 
onjugategradient method. On
e the path hits the boundary, the lo
ation where the path and theboundary meet is set to be the approximation.



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 33When the boundary has not been attained after k iterations of the 
onjugate gradientmethod, xk+1 is the solution to (4.11) with the subspa
e S de�ned byS := spanfa; Aa; A2a; A3a; : : : ; Akag (4.12)(see Bertsekas [1℄ p.133). The Lan
zos method uses the same kind of subspa
es.Lan
zos tridiagonalization (see Golub [6℄) 
an be used to build an orthonormal basisfq0; q1; : : : ; qkg for the subspa
e S. Moreover, if Qk is the matrix Qk := (q0; q1; : : : ; qk),then the following equations holdAQk �QkTk = 
k+1qk+1eTk+1; (4.13)QTkQk = Ik+1; (4.14)QTkAQk = Tk; (4.15)�QTk a = 
0e1; (4.16)�a = 
0q0; (4.17)where Ik+1 is the identity matrix of dimension k+ 1, ek+1 is its k+ 1� th 
olumn, Tk isthe tridiagonal matrix Tk = 266666666664 Æ0 
1
1 Æ1 :: : :: Æk�1 
k
k Æk 377777777775 ;Æk = qTk Aqk, 
0 = kak, q�1 = 0, q0 = a=kak, and 
k = k(A�qTk�1Aqk�1I)qk�1�
k�1qk�2kand qk = ((A� qTk�1Aqk�1I)qk�1 � 
k�1qk�2)=
k for k > 0.



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 34The Tk have the property that their extremal eigenvalues be
ome better approxima-tions, as k grows, of the extremal eigenvalues of A. Now, (4.11) is equivalent tomin q(x) = min hTQTkAQkh� 2(QTk a)Ths.t. kxk2 � s2 s.t. khTQTkQkhk2 � s2:x = Qkhh 2 Rk+1Using (4.14), (4.15) and (4.16) yields the equivalent problemmin hTTkh+ 2
0eT1 hs.t. khk2 � s2: (4.18)The Lan
zos method works initially as the Steihaug-Toint algorithm, i.e. the 
onju-gate gradient method is applied until it 
onverges or until it hits the boundary. If theboundary is attained, it starts solving problems of the type (4.11) using the subspa
es ofthe form (4.12). When this step is rea
hed, this means that there is no global minimizerin the interior of the trust region and the solution must be on the boundary. Therefore,instead of solving problem (4.18), the following problem is solved:min hTTkh+ 2
0eT1 hs.t. khk2 = s2: (4.19)The advantage of solving problem (4.19) is that the Mor�e and Sorensen algorithm maybe used to �nd the optimum, even for large problems, sin
e the Cholesky fa
torization
an take advantage of the tridiagonal form of Tk to preserve sparsity. They do not usethe full power of the Mor�e and Sorensen algorithm, sin
e they handle the almost hard
ase (
ase 2) like the easy 
ase and sin
e they are able to �nd a �� to start Algorithm 4.1
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h that �(��) = 1s � 1kh(��)k > 0; Tk+1 � ��I � 0 and � � 0:Therefore, the generated sequen
e of � immediately 
onverges quadrati
ally towards ��and no safeguarding is ne
essary. We will refer to this modi�ed form of the Mor�e andSorensen algorithm as the simpli�ed Mor�e and Sorensen algorithm. Be
ause this algo-rithm is also used in the almost hard 
ase (
ase 2), ill-
onditioning in this 
ase will slowdown Algorithm 4.1, as mentioned in the previous se
tion.We return to problem (4.19). By the proof of Theorem 3.1, the ne
essary and suf-�
ient optimality 
onditions are that there exist an optimal solution hk to (4.19) and a
orresponding Lagrange multiplier �k su
h thatkhkk2 = s2;(Tk � �kI)hk = 
0e1; (4.20)Tk � �kI � 0:Now, xk := Qkhk is an optimal solution to the relaxed problem (4.11) and is in parti
ulara feasible solution for (2.2), sin
e kxkk2 = s2. We then get, using (4.14), (4.15) and(4.16), QTk (A� �kI)xk = QTk (A� �kI)Qkhk = (Tk � �kIk+1)hk = 
0e1 = QTk aand �k � 0 and �k(kxkk2 � s2) = 0:
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e, the stationarity of xk for problem (2.2) is satis�ed up to a matrix multipli
ationon the left hand side, 
omplementary sla
kness is satis�ed and the sign of �k is 
orre
t.Yet, the positive semide�niteness of A� �kI is not ensured, although for large k we 
anexpe
t it sin
e �k � �1(Tk) by optimality and sin
e Lan
zos tridiagonalization impliesthat �1(Tk)! �1(A) (and rea
hes it eventually for some k � n� 1). To de
ide how goodthe approximation xk is, we have the following theorem, whi
h is Theorem 5.1 in [7℄.Theorem 4.1. (A� �kI)xk � a = 
k+1eTk+1hkqk+1and k(A� �kI)xk � ak = 
k+1jeTk+1hk j:Proof: Axk = AQkhk= QkTkhk + 
k+1qk+1eTk+1hk (from (4.13))= Qk(�khk + 
0e1) + 
k+1eTk+1hkqk+1 (from (4.20))= �kQkhk + 
0Qke1 + 
k+1eTk+1hkqk+1= �kxk + 
0q0 + 
k+1eTk+1hkqk+1= �kxk + a + 
k+1eTk+1hkqk+1 (from (4.17)).The norm equality follows sin
e qTk+1qk+1 = 1. �This theorem is used in the stopping 
riteria of the algorithm: when 
k+1jeTk+1hk j issmall, the relationship (A � �kI)xk = a is almost satis�ed and xk is 
onsidered a good



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 37approximation to TRS.We now state their algorithm.Algorithm 4.2 (Lan
zos method). Let x0 = 0,g0 = �a, 
0 = kg0k and p0 = �g0. Setthe 
ag INTERIOR as true. For k = 0; 1; : : : until 
onvergen
e, perform the iteration,�k = kgkk2=(pTkApk).Obtain Tk from Tk�1.If INTERIOR is true, but �k � 0 or kxk + �kpkk2 � s2,reset INTERIOR to false.If INTERIOR is true,xk+1 = xk + �kpk,else solve the tridiagonal trust region subproblem (4.19), usingthe simpli�ed More and Sorensen algorithm,to obtain hk.end ifgk+1 = gk + �kApk.If INTERIOR is true,stop if kgk+1k < max(10�8; 10�5kak),else stop if 
k+1jeTk+1hkj < max(10�8; 10�5kak).end if�k = kgk+1k2=kgkk2.pk+1 = �gk+1 + �kpk.If INTERIOR is false, set xk = Qkhk.A �rst note on the algorithm is that if INTERIOR is always true throughout the algo-rithm, then the algorithm is the 
onjugate gradient method and 
onvergen
e is satis�ed



CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 38when the norm of the gradient of the global minimizer sought is 
lose to 0. A se
ond noteis that the 
onjugate gradient method is used to generate the ve
tors q0; q1; : : : ; qk of theLan
zos tridiagonalization algorithm, sin
e we 
an obtain them from the relationshipqk = �kgk=kgkk; where �k = �sign(�k�1)�k�1 and �0 = 1;and the tridiagonal matrix Tk 
an be obtained fromTk = 2666666666666664 1�0 p�0j�0jp�0j�0j 1�1 + �0�0 p�1j�1jp�1j�1j 1�2 + �1�1 �� � �� 1�k�1 + �k�2�k�2 p�k�1j�k�1jp�k�1j�k�1j 1�k + �k�1�k�1
3777777777777775 :This also gives the relationship between Tk�1 and Tk. A third note is that if the almosthard 
ase (
ase 2) o

urs for a problem of type (4.19), the method is slowed down. Thepaper of Gould et al. [7℄ des
ribes a way of handling this 
ase, but it remains ine�e
tivein pra
ti
e. A last note is that min(0:1; kak0:1)kak was used in the stopping 
riteriaof the original Lan
zos method. We use max(10�8; 10�5kak). This expression was alsosuggested in [7℄. In the Rendl and Wolkowi
z algorithm, we use this toleran
e for theduality gap. As we will show in the duality 
hapter, the stopping 
riteria of the Lan
zosmethod partially measures the same duality gap. We use the same toleran
e in bothalgorithms , i.e. max(10�8; 10�5kak), so that we 
an 
ompare both algorithms in thenumeri
al se
tion.Con
luding remarks on this algorithm would �rst be that 
onvergen
e of the Lan
zosmethod is based on the quadrati
 
onvergen
e of Newton's method applied to the fun
tion
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onvergen
e of a trust region algorithm is not what is most important.Rather, qui
k �nite termination is what is needed and is what the Mor�e and Sorensenalgorithm a
hieves. To obtain this, handling of the almost hard 
ase (
ase 2) is essential.A se
ond remark is that 
ompared to the Mor�e and Sorensen algorithm, the Lan
zosmethod is able to use the sparsity of A, but loses the handling of the almost hard 
ase(
ase 2). It would be ni
e if both the almost hard 
ase (
ase 2) and sparsity 
ould behandled in an algorithm. We present su
h an algorithm in Chapter 6. To 
ome to this,we �rst need to derive the duality theory behind TRS. This is the subje
t of the next
hapter.



Chapter 5DualityIn this 
hapter we study the duality theory behind TRS. One of the main theoremsof this se
tion is that strong Lagrangian duality holds for TRS. It enables us to builddi�erent dual problems whose properties give us a new look at the previous algorithms.In parti
ular, we will show that the three algorithms we 
onsider in this thesis 
an beset within a semide�nite framework. Rendl and Wolkowi
z [31℄ showed that this was the
ase for their algorithm and the one of Mor�e and Sorensen. In this 
hapter we show thatit is indeed also the 
ase for the Lan
zos method. We show that their stopping 
riteriais in fa
t measuring a duality gap.5.1 Deriving the DualsFor the purpose of this se
tion, we will deal with TRS where equality holds for the
onstraint (q(�) and s are de�ned in Chapter 2):40



CHAPTER 5. DUALITY 41(TRS=) q� = min q(x)s.t. kxk2 = s2: (5.1)We will refer to this problem as TRS= . The ne
essary and suÆ
ient optimality 
onditionsfor this problem are the same as those given by Theorem 3.1 for TRS, ex
ept that �� 2 R(the proof 
an be derived from the proof of Theorem 3.1). Pre
isely, x� is optimal forTRS= if and only if there exists a unique Lagrange multiplier �� 2 R su
h that(A� ��I)x� = a;(A� ��I) � 0; (5.2)kx�k2 = s2:We �rst show that strong duality holds for TRS= . The result is due to Stern andWolkowi
z [32℄ who showed the deeper result that strong duality holds for the minimiza-tion of a quadrati
 obje
tive subje
t to the 
onstraints � � xTCx � �, where C is asymmetri
 matrix (no de�niteness is assumed) and where � and � are 
onstants su
hthat � < �.Theorem 5.1 (Strong Duality). Strong Lagrangian duality holds for (5.1), i.e.q� = minx sup� L(x; �) = max� infx L(x; �);where L(x; �) = q(x)� �(kxk2� s2) is the Lagrangian fun
tion, and the dual is attained.Proof:The left equality follows easily and we only need to prove the right equality. De�ne the



CHAPTER 5. DUALITY 42dual fun
tional �(�) := infx L(x; �):Then, by weak duality, q� � max� �(�): (5.3)One 
an show that lim�!�1 �(�) = �1 (to show this refer to equation (5.11) in theproof of our next theorem) and that �(�) = �1 for � > �1(A), hen
e �(�) is a 
oer
ivefun
tion and the right expression is well de�ned. Now, if x� is optimal for TRS= and ��is its Lagrange multiplier, we haveL(x�; ��) = infx L(x; ��):This is true by the optimality 
onditions (5.2), i.e. L(x; ��) = xT (A���I)x�2aTx+��s2is a 
onvex fun
tion (sin
e A � ��I � 0) whi
h has a stationary point at x� (sin
e(A� ��I)x� � a = 0). We then have the following:q� = q(x�)� ��(kx�k2 � s2) (by feasibility of x�)= L(x�; ��) = infx L(x; ��)= �(��) � max� �(�):This yields q� � max� �(�): (5.4)



CHAPTER 5. DUALITY 43Equations (5.3) and (5.4) imply that there is a zero duality gap. The attainment of thedual follows from the optimality 
onditions (5.2). �It is not too diÆ
ult to modify this proof to show that strong duality also holds forTRS. Theorem 5.1 modi�ed to show strong duality for TRS would yieldminx sup��0 L(x; �) = max��0 infx L(x; �) = max��0 �(�): (5.5)We now use the last theorem to derive some dual problems to TRS= . Referen
es to thework done in this se
tion are Stern and Wolkowi
z [32℄ and Rendl and Wolkowi
z [31℄.First, we 
onsider the Lagrangian dualmax� infx L(x; �); (5.6)for whi
h we proved the optimum is q�.Sin
e L(x; �) = xT (A � �I)x� 2aTx + �s2, then the inner in�mum in (5.6) goes to�1 if A� �I is not positive semide�nite. This yields the equivalent problemq� = maxA��I�0 infx L(x; �):De�ne h(�) := �s2 � aT (A� �I)ya ;where y stands for the Moore-Penrose generalized inverse. Now if � < �1(A), then



CHAPTER 5. DUALITY 44A� �I � 0 and infx L(x; �) = L((A� �I)�1a; �) = h(�): (5.7)When � = �1(A), if the system (A � �1(A)I)x = a has a solution, then one of them isx = (A��1(A)I)ya and this ve
tor is therefore a minimizer of L(x; �1(A)). Hen
e, whenthe system (A� �1(A)I)x = a is 
onsistent, theninfx L(x; �1(A)) = L((A� �1(A)I)ya; �1(A)) = h(�1(A)): (5.8)In the hard 
ase, sin
e a is perpendi
ular to N (A � �1(A)I), then a 2 R(A � �1(A)I),i.e. the system (A � �1(A)I)x = a has a solution. Using (5.7) and (5.8) we dedu
e thefollowing result in the hard 
ase: q� = maxA��I�0 h(�): (5.9)In the easy 
ase and the hard 
ase (
ase 1), sin
e �� < �1(A), then �� 
an be foundamong the � su
h that A � �I � 0. Thusq� = L(x�; ��) = max� infx L(x; �) = maxA��I�0 minx L(x; �):Again, (5.7) implies that in the easy 
ase and the hard 
ase (
ase 1)q� = maxA��I�0 h(�): (5.10)Problems (5.9) and (5.10) are quite similar and it would be ni
e to have a single problemthat would in
lude both. This is what the next theorem provides.



CHAPTER 5. DUALITY 45Theorem 5.2. The following problem is the Lagrangian dual for TRS=(D) q� = supA��I�0 h(�):In the easy 
ase and hard 
ase (
ase 1), the sup 
an be repla
ed by a max.Proof:Let �l be the smallest eigenvalue of A su
h that a ?6 N (A� �l(A)I). Su
h a �l may notexist, but this implies that a = 0 and h(�) = �s2 and the theorem trivially holds). Thus,assume �l exists. Note that in the easy 
ase, �l = �1(A). Also, let A = Q�QT be de�nedas in se
tion 4.1.1. Be
ause a ? N (A��j(A)I) for j = 1 : : : l�1, then a is perpendi
ularto q1 : : : ql�1, where qj is the j-th 
olumn of Q. Hen
e, (QTa)j = 
j = 0, for j = 1 : : : l�1.Now let (�w) be a sequen
e 
onverging to ~� 2 (�1; �l℄ su
h that, for all w 2 N, �w 2(�1; �l) and A � �wI is invertible. Thenh(�w) = �aT (A� �wI)�1a+ �ws2 = �(QTa)(�� �wI)�1QTa+ �ws2= � nXj=l 
2j(�j � �w) + �ws2: (5.11)Note that �j � �w > 0 for j = l : : :n. Note also that by the de�nition of �l, if r is themultipli
ity of �l (i.e. �l�1 < �l = �l+1 = : : : = �l+r�1 < �l+r), then there exist 
j 6= 0for j 2 fl; l+ 1 : : : l+ r � 1g. As a 
onsequen
e, when ~� = �l, h(�w)! �1. Therefore,h(�) has a verti
al asymptote and is not 
ontinuous in �l.When ~� 2 (�1; �l), by equation (5.11) and sin
e �j � ~� > 0 for j = l : : :n we have�aT (A� �wI)�1a + �ws2 ! �aT (A� ~�I)ya+ ~�s2;



CHAPTER 5. DUALITY 46i.e. h(�) is a 
ontinuous fun
tion over (�1; �l). In the hard 
ase, sin
e �l > �1(A), thenh(�) is a 
ontinuous fun
tion over (�1; �1(A)℄. Thereforeq� = maxA��I�0 h(�) = supA��I�0 h(�):Combining this result with (5.10) yields (D). Equation (5.10) also implies that in the easy
ase and the hard 
ase (
ase 1) the sup 
an be repla
ed by a max. �This theorem, adapted to TRS, yields the following 
orollary:Corollary 5.1. The following problem is the Lagrangian dual for TRSq� = sup��0;A��I�0 h(�): (5.12)In the easy 
ase and the hard 
ase (
ase 1), the sup 
an be repla
ed by a max.We need to note three things from this theorem. First, h(�) is a 
on
ave fun
tion on(�1; �l). To prove this, let f�wg be a sequen
e, de�ned exa
tly as in the proof of theprevious theorem, whi
h 
onverges to ~� 2 (�1; �l). We haveh00(�w) = �2aT (A� �wI)�3a = �2 nXj=l 
2j(�j � �w)3 !�2 nXj=l 
2j(�j � ~�)3 :(a note on the derivatives of h(�) 
an be found in Appendix B). Sin
e �j � ~� > 0, thenthe right term is nonpositive. Now note thatnXj=l 
2j(�j � ~�)3 = aT ((A� ~�I)y)3a:
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e, for � 2 (�1; �l), h00(�) = �2aT ((A� ~�I)y)3a � 0and this proves the 
on
avity of h(�) on (�1; �l). This shows that TRS= is equivalent to�nding the supremum of a 
on
ave fun
tion over an open interval (Appendix A providesthe graph of h(�) for the di�erent 
ases).A se
ond 
omment on Theorem 5.2 is that despite the fa
t that A � �I needs to bepositive de�nite (sin
e positive semide�niteness is not enough as we will show below),(D) is analogous to a nonlinear semide�nite program.A third 
omment is that in the easy 
ase, (5.9) does not ne
essarily hold. We showthis with the following example.Example 5.1. Let A = 264 �1 00 1 375 ; a = 264 10 375 ; s = 1=2:Obviously, a is not perpendi
ular to N (A � �1(A)I) and the easy 
ase holds. A qui
k
omputation shows that x� = 264 1=20 375 and �� = �3satisfy the optimality 
onditions. We haveh(��) = h(�3) = � � 1 0 �264 1=2 00 1=4 375264 10 375+ (�3)14 = �54



CHAPTER 5. DUALITY 48and q(x�) = �5=4, in agreement with (5.10). Nowh(�1(A)) = h(�1) = � � 1 0 �264 0 00 1=2 375264 10 375+ (�1)14 = �14 :Therefore, for this example h(�1(A)) > h(��) = q�.The next dual we 
onsider is the one we obtain by taking the Lagrangian dual of (D)in the hard 
ase, i.e. problem (5.9). We showed previously that h(�) is a 
on
ave fun
tionover (�1; �l) and furthermore any � < �1(A) is a Slater point for (5.9). Therefore, thereis no duality gap between (5.9) and its Lagrangian dual (see Bertsekas [1℄) and strongduality holds, i.eq� = maxA��I�0 h(�) = max�<�l infX�0 h(�) + tra
e (X(A� �I))= minX�0 sup�<�l h(�) + tra
e (X(A� �I)):Now h(�) + tra
e (X(A� �I)) = h(�)� �tra
e (X) + tra
e (XA)is still a 
on
ave fun
tion in � over the interval (�1; �l) and goes to �1 as � approa
hes�l from the left. When � ! �1, di�erent 
ases o

ur depending on the tra
e of X .If tra
e (X) > s2, then the inner supremum goes to 1 and we may wish to ignorethese X . When tra
e (X) = s2, it is not too hard to show that the fun
tion tends totra
e (XA) as � ! �1, and sin
e the fun
tion is 
on
ave, then the inner supremum istra
e (XA). When tra
e (X) < s2, the fun
tion goes to �1 as � ! �1 and therefore



CHAPTER 5. DUALITY 49the supremum is attained at a value of � were the derivative is zero, i.e. for a � su
h thats2 � aT ((A� �I)y)2a� tra
e (X) = 0. Furthermore, if X is su
h that tra
e (X) = s2 andfXng is a sequen
e of positive de�nite matri
es su
h that tra
e (Xn) < s2 and Xn ! X ,then for n large enough, sup� h(�) + tra
e (Xn(A� �I))is as 
lose as we want to tra
e (XA). Hen
e we may also ignore the X su
h thattra
e (X) = s2 (yet to be rigorous, we need then to repla
e the outside min by an inf).This yields the following dual, whi
h is also similar to a nonlinear semide�nite program,and to whi
h we refer as (DD):(DD) q� = inf h(�) + tra
e (X(A� �I))s.t. s2 � aT ((A� �I)y)2a� tra
e (X) = 0;� < �l;tra
e (X) < s2;X � 0: (5.13)We end this se
tion with a last dual problem whi
h will be the key for the Rendl andWolkowi
z algorithm. (D) shows that TRS= is equivalent to �nding the supremum of a
on
ave fun
tion over an open interval. This last dual problem will show that TRS= isalso equivalent to the maximization of a single variable 
on
ave fun
tion over R.We start by homogenizing TRS= and obtainq� = min xTAx� 2y0aTxs.t. kxk2 = s2;y20 = 1: (5.14)



CHAPTER 5. DUALITY 50To establish that this problem is equivalent to TRS= , assume x� and y�0 are optimumfor the homogenized problem. If y�0 = 1, 
learly there is nothing to show. If y�0 = �1,then setting x�  �x� and y�0 = 1 gives another optimal solution to the homogenizedproblem and the equivalen
e between TRS= and its homogenized form follows. Now, thehomogenized problem is equal tomaxt minkxk2=s2;y20=1 xTAx � 2y0aTx+ t(y20 � 1)� maxt minkxk2+y20=s2+1 xTAx� 2y0aTx+ t(y20 � 1) (5.15)� supt;� infx;y0 xTAx� 2y0aTx+ t(y20 � 1) + �(kxk2+ y20 � s2 � 1):= supr;� infx;y0 xTAx� 2y0aTx+ r(y20 � 1) + �(kxk2 � s2)= sup� �supr infx;y0 xTAx� 2y0aTx+ r(y20 � 1) + �(kxk2 � s2)�where r = t+ �.Now be
ause strong duality holds (here we need the full power of the Strong DualityTheorem of Stern and Wolkowi
z [32℄), this is equal tosup� � infx;y0 supr xTAx� 2y0aTx+ r(y20 � 1) + �(kxk2 � s2)�



CHAPTER 5. DUALITY 51= sup� infx;y20=1 xTAx� 2y0aTx+ �(kxk2� s2):Again, by strong duality this is equivalent toinfx;y20=1 sup� xTAx � 2y0aTx+ �(kxk2� s2)= min xTAx � 2y0aTx = q�s.t. kxk2 = s2y20 = 1:So all of the above turn out to be equal. Now, if we 
onsider (5.15), thenq� = maxt minkxk2+y20=s2+1 xTAx� 2y0aTx+ t(y20 � 1)= maxt minkzk2=s2+1 zTD(t)z � t = maxt (s2 + 1)�1(D(t))� t;where z = 0B� y0x 1CA and D(t) = 0B� t �aT�a A 1CA : If we de�nek(t) := (s2 + 1)�1(D(t))� t;then we have the following un
onstrained dual problem for TRS whi
h we refer to as(UD): (UD) maxt k(t):
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e �1(D(�)) is a 
on
ave fun
tion (see Appendix B), then k(�) is 
on
ave andthis shows that TRS= is equivalent to an un
onstrained 
on
ave maximization problem.We 
an also rewrite (UD) in the following way so that it be
omes a linear semide�niteprogram: maxD(t)��I (s2 + 1)�� t: (5.16)In the next two se
tions we show that (D) and (DD) 
an be used to explain the Mor�eand Sorensen algorithm and the Lan
zos method. (UD) is used to solve eÆ
iently TRSin the Rendl and Wolkowi
z algorithm of the next 
hapter.5.2 A Semide�nite Framework for the Mor�e and SorensenAlgorithmIn this se
tion, we use the dual problems of the previous se
tion to show that the Mor�eand Sorensen algorithm 
an be set within a semide�nite framework. We use the stru
tureof the two dual programs (D) and (DD), whi
h are similar to semide�nite programs, toshow that the algorithm is in fa
t trying to solve those duals. Our analysis is restri
tedto the 
ase where a solution lies on the boundary of the trust region. We show that, inthe easy 
ase and the hard 
ase (
ase 1), the algorithm is trying solve a modi�ed form ofthe stationarity 
ondition for (D). In the hard 
ase (
ase 2), (DD) is used to show thatthe primal step to the boundary is used to redu
e the gap between (D) and (DD). Thework outlined here is due to Rendl and Wolkowi
z [31℄.In the easy 
ase and the hard 
ase (
ase 1), Theorem 5.2 shows thatq� = maxA��I�0 h(�): (5.17)



CHAPTER 5. DUALITY 53Furthermore �l = �1(A) and h(�) is 
on
ave on the open interval (�1; �1(A)). Itgoes to �1 as � approa
hes �1(A) from the left and also as � ! �1. Therefore, tosolve problem (5.17), we only need to �nd a �� 2 (�1; �1(A)) su
h thath0(��) = �aT ((A� ��I)y)2a + s2 = 0:Sin
e the � we 
onsider are less than �1(A), A��I is invertible for those � and thereforewe need to �nd a �� su
h thath0(��) = �aT (A� ��I)�2a+ s2 = �k(A� ��I)�1ak2 + s2 = 0:As mentioned in se
tion 4.1.1, the algorithm solves with Newton's method the modi�edequation 1s � 1k(A� �I)�1ak = 0:Although the fun
tion h(�) is not used expli
itly, they really are trying to solve (5.17)using ba
ktra
king on the � to insure feasibility.In the hard 
ase (
ase 2), as mentioned in se
tion 4.1.2, given a feasible ve
tor x =x(�) = (A��I)ya, where � � �1(A), the idea to handle this 
ase is to �nd a proper z toredu
e the primal obje
tive and move to the boundary (i.e. kx+zk2 = s2). Our frameworksuggests how su
h a z should be 
hosen and the result follows from the following equations:q(x+ z) = (x+ z)TA(x+ z)� 2aT (x+ z)= (x+ z)TA(x+ z)� 2aT (x+ z) + �s2 � �kx+ zk2= �s2 + xT (A� �I)x+ 2xT (A� �I)z + zT (A� �I)z � 2aTx� 2aT z:



CHAPTER 5. DUALITY 54Using (A� �I)x = a we get= �s2 + xT (A� �I)x+ 2xT (A� �I)z + zT (A� �I)z � 2xT (A� �I)x� 2xT (A� �I)z= �xT (A� �I)x+ �s2 + zT (A� �I)z= �aT (A� �I)y(A� �I)(A� �I)y + �s2 + zT (A� �I)z= �aT (A� �I)ya+ �s2 + zT (A� �I)z:This implies that z should be 
hosen to make zT (A� �I)z small. For a �xed feasible �for (D), the duality gap between (D) and (DD) is dependent of X and equalstra
e (X(A� �I)):If we set X = zzT , thentra
e (X(A� �I)) = tra
e (zzT (A� �I)) = tra
e (zT (A� �I))z = zT (A� �I))z:Note that in the Mor�e and Sorensen algorithm, kRzk2 = zT (A� �I))z. Therefore, whena z is found su
h that kx+ zk2 = s2 and kRzk is small, the algorithm is trying to redu
ethe duality gap between (D) and (DD), while maintaining feasibility for (DD).5.3 A Semide�nite Framework for the Lan
zos MethodSimilarly to the previous se
tion, we now show that the Lan
zos method 
an also beexplained using problem (D). Here we show that their stopping 
riteria is in fa
t measuringthe duality gap between TRS= and the Lagrangian dual (D). Furthermore, this brings



CHAPTER 5. DUALITY 55us to wonder on how one might attempt to improve the algorithm or show where it failsusing this framework.Re
all that the Lan
zos method �rst looks for an un
onstrained minimizer until ithits the trust region boundary of TRS, and solves problems of type (4.11) with largerand larger subspa
e S until an approximate solution is found. When problems of thetype (4.11) are solved, solutions to TRS are known to be on the boundary and onlyTRS= needs to be solved. A solution xk of (4.11) is said to be a good approximation if
k+1jeTk+1hk j is small and this is used as the stopping 
riteria for the algorithm. We nowshow the relationship between the duality gap and the stopping 
riteria.Sin
e kxkk2 = s2, we haveq(xk) = xTkAxk � 2aTxk � �k(kxkk2 � s2)= xTk (A� �kI)xk � 2aTxk + �ks2:But Theorem 4.1 implies that xk = (A��kI)ya+
k+1eTk+1hk(A��kI)yqk+1 and thereforeq(xk) = aT (A� �kI)y(A� �kI)(A� �kI)ya+
2k+1(eTk+1hk)2qTk+1(A� �kI)y(A� �kI)(A� �kI)yqk+1+2
k+1eTk+1hkaT (A� �kI)y(A� �kI)(A� �kI)yqk+1�2aT (A� �kI)ya � 2
k+1eTk+1hkaT (A� �kI)yqk+1 + �ks2:Some simpli�
ation and the properties of the generalized inverse yieldq(xk) = �aT (A� �kI)ya+ �ks2 + 
2k+1(eTk+1hk)2qTk+1(A� �kI)yqk+1= h(�k) + (
k+1jeTk+1hk j)2qTk+1(A� �kI)yqk+1:



CHAPTER 5. DUALITY 56Thus q(xk)� h(�k) = (
k+1jeTk+1hkj)2qTk+1(A� �kI)yqk+1:If we assume �k feasible for (D), i.e. (A � �kI) � 0, then, the right hand term is theduality gap between TRS= and (D). When this term is small, we 
an therefore expe
txk to be almost optimal for TRS. This is in agreement with the stopping 
riteria forthe Lan
zos method, sin
e 
k+1jeTk+1hkj appears in the duality gap. Note though thatqTk+1(A��kI)yqk+1 is not taken into a

ount in the measurement of the gap. Furthermore,for M a positive de�nite symmetri
 matrix, de�ne the M -norm of a ve
tor x askxk2M := xTMx:Then, for M = A� �kI , the duality gap 
an be written in the formq(xk)� h(�k) = k(
k+1jeTk+1hk j)2qk+1k2M : (5.18)Two 
omments 
ome from writing the duality gap in this form . First, the stopping
riteria used by the Lan
zos method is an in
omplete measure of the duality gap. Thissuggests that one might �nd some example where the Lan
zos method stops, but wherekqk+1k2A��kI is large enough so that the duality gap is also large.Se
ond, we may ask how (5.18) might be used to improve the Lan
zos method. It
ould be used to repla
e the stopping 
riteria, but the need to 
ompute the inverse of alarge matrix makes this idea very 
ostly. Unfortunately, so far no improvement to themethod have been found using the information given by our framework.The semide�nite framework we showed here for the Lan
zos Method, presents a 
learerway to understand the algorithm. It shows that it is mostly a primal algorithm, sin
e



CHAPTER 5. DUALITY 57simpler primal problems are solved to approximate the solution to TRS. Yet, the measureof how good the approximation is, is dire
tly linked to the duality gap between TRS andthe dual problem (D). Furthermore, at ea
h iteration, sin
e feasibility is not insured for�k, the algorithm 
ompares to a primal-dual infeasible algorithm.We have seen in this 
hapter how mu
h the duality theory is hidden behind thetwo algorithms 
onsidered so far. The duals also present some attra
tive stru
ture like
on
avity and a simpler fun
tion to work with. The next 
hapter presents an algorithmthat dire
tly solves the dual (UD).



Chapter 6The Rendl and Wolkowi
zAlgorithmIn this 
hapter, we present an algorithm that both exploits the sparsity of A and handlesthe hard 
ase (
ase 2). The algorithm is due to Rendl and Wolkowi
z [31℄ and is mainlybased on the dual program (UD). Most of the theory behind the method is based onproperties of the eigenvalues and eigenve
tors of the parametri
 matrix D(t). Our �rstse
tion is dedi
ated to this subje
t. This will lead us to understand how k(�) behaves inthe easy and the hard 
ase and how the algorithm handles these two 
ases. Many tri
ksof the Mor�e and Sorensen [18℄ paper are being used in the algorithm, in parti
ular, theprimal step to the boundary. Furthermore, we show that a new way to take a step tothe boundary may be used. We also outline many other tri
ks used in the algorithm thattake advantage of the stru
ture of k(�) and a

elerate 
onvergen
e. Finally, we end the
hapter explaining how the algorithm solves TRS.58



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 596.1 Eigenvalues and Eigenve
tors of D(t)Re
all that k(t) := (s2 + 1)�1(D(t))� t:As we mentioned before, �1(D(�)) is a 
on
ave fun
tion and therefore k(�) is a 
on
avefun
tion too. The fun
tion also has spe
ial asymptoti
 stru
ture. But, before examiningthis, we �rst need the following (whi
h elaborates on Proposition 8, Lemma 9 and Lemma15 in Rendl and Wolkowi
z [31℄):Theorem 6.1. Let A = QT�Q be de�ned as in se
tion 4.1.1. In the easy 
ase, for t 2 R,�1(D(t)) < �1(A) and has multipli
ity 1. In the hard 
ase, for t < t0, �1(D(t)) < �1(A)and has multipli
ity 1, for t = t0, �1(D(t)) = �1(A) and has multipli
ity 1 + i and fort > t0, �1(D(t)) = �1(A) and has multipli
ity i, where i is the multipli
ity of �1(A) andt0 is de�ned by t0 := d(�1(A)) = �1(A) + Xj2fij(QTa)i 6=0g (QTa)2j�j(A)� �1(A) :Proof:We assume here without loss of generality that A is a diagonal matrix with diagonalelements �j(A), and that they are in nonde
reasing order, i.e. Ajj = �j(A). Note thatin this 
ase Q = I . There is no loss of generality, be
ause we haveq(x) = (QTx)T�(QTx)� 2(QTa)T (QTx)



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 60and 264 t �(QTa)T�(QTa) � 375 = 264 1 00 Q 375T 264 t �aT�a A 375264 1 00 Q 375 :Therefore, the eigenvalues of D(t) are the same as the above matrix on the left. So tosimplify our analysis, we rede�ne a  (QTa) and A  �. We also assume that i is themultipli
ity of �1(A), i.e.�1(A) = �2(A) = : : : = �i(A) < �i+1(A) � : : : � �n(A):In parti
ular, we get the easy 
ase if and only if 9j 2 f1; : : : ; ig su
h that aj 6= 0. Wethen have, expanding with respe
t to the �rst 
olumn of D(t),det(D(t)� �I) = (t� �) nYk=1(�k(A)� �)� nXk=10�a2k nYj 6=k(�j(A)� �)1A :Let J = fijai 6= 0g and, for � 62 f�j(A)jj 2 Jg, de�ned(�) := �+Xj2J a2j�j(A)� �: (6.1)Then det(D(t)� �I) = (t� d(�)) nYj=1(�j(A)� �) for � 62 f�j(A)jj 2 Jg: (6.2)Note that the eigenvalues of A are not ne
essarily eigenvalues for D(t) sin
e d(�) mightnot be de�ned for any of these values. Yet, if �k 62 f�j(A)jj 2 Jg then �k(A) is aneigenvalue for D(t), sin
e in this 
ase d(�) is then well de�ned at �k(A). In the easy
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ase, there exits �h(A) 2 f�j(A)jj 2 Jg with h 2 f1; : : : ; ig. Without loss of generality,assume �1(A) 2 f�j(A)jj 2 Jg. Thereforelim�!�1(A);�<�1(A)d(�) =1 (6.3)and we also have lim�!�1 d(�) = �1: (6.4)Moreover d0(�) = 1 +Xj2J a2j(�j(A)� �)2 > 0 (6.5)and d00(�) =Xj2J 2a2j(�j(A)� �)3 > 0 if� < �1(A):Therefore, d(�) is stri
tly monotoni
ally in
reasing and 
onvex on (�1; �1(A)). In thehard 
ase, �h(A) 62 f�j(A)jj 2 Jg for h 2 f1 : : : ig and d(�1(A)) := t0 is well de�ned. If�l(A) := min(�j(A)jj 2 J), then a similar analysis shows that d(�) is stri
tly monotoni-
ally in
reasing and 
onvex on (�1; �l(A)).We 
on
lude from this analysis of d(�), that in the easy 
ase, for a �xed t 2 R, theequation t � d(�) = 0 always has a solution � < �1(A) and that this solution is unique.Be
ause the eigenvalues of A and D(t) interla
e (see [9℄), in parti
ular �1(D(t)) � �1(A),if � < �1(A) and t�d(�) = 0, then, by (6.2), � = �1(D(t)). Sin
e � is the unique solutionless than �1(A), then �1(D(t)) has multipli
ity one. This shows that in the easy 
ase, forany t, �1(D(t)) < �1(A) and has multipli
ity 1.



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 62In the hard 
ase, for t < t0, by an argument similar to the easy 
ase, the equationt � d(�) = 0 also has a unique solution stri
tly less than �1(A) whi
h is, by equation(6.2), �1(D(t)). So for t < t0, �1(D(t)) < �1(A) and has multipli
ity 1. When t = t0,be
ause in the hard 
ase �l(A) > �1(A), then d0(�) > 0 if � � �1(A). Therefore,� < �1(A)) d(�) < d(�1(A))) 0 < t0 � d(�):Sin
e det(D(t0)� �I) = (t0 � d(�)) nYj=1(�j(A)� �); (6.6)then for � < �1(A), det(D(t0) � �I) > 0. But det(D(t0 � �1(A)I) = 0, and therefore�1(D(t)) = �1(A) and has multipli
ity i+1 by (6.6). When t > t0, t� d(�) = 0 does nothave a solution � � �1(A). Sin
e �1(A) is a solution to det(D(t)� �I) = 0, then againby equation (6.2) we get that �1(D(t)) = �1(A) and has multipli
ity i. �From this theorem we derive some basi
 properties of k(�). First, note from (6.4) thatwhen t ! �1, the solutions in � to t � d(�) = 0 tends to �1 and by equation (6.1) itis asymptoti
 to t. Thereforelimt!�1�1(D(t)) = �1 and �1(D(t)) � t as t!�1:In the easy 
ase (6.3) implies limt!1�1(D(t)) = �1(A):In the hard 
ase, for t large enough, t > t0 and �1(D(t)) = �1(A).



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 63These results for �1(D(t)) yield the following for k(�):k(t) � s2t as t! �1; (6.7)k(t) � (s2 + 1)�1(A)� t as t!1 in the easy 
ase, (6.8)k(t) = (s2 + 1)�1(A)� t for t � t0 in the hard 
ase. (6.9)We now look at the di�erentiability of the fun
tion k(�). For this we need to look atthe eigenve
tors of �1(D(t)). We have the following theorem derived from Lemma 12 andLemma 15 in Rendl and Wolkowi
z [31℄.Theorem 6.2. Let y(t) be an eigenve
tor for �1(D(t)) and let y0(t) be its �rst 
omponent.Then in the easy 
ase, for t 2 R, y0(t) 6= 0. In the hard 
ase, for t < t0, y0(t) 6= 0, fort > t0, y0(t) = 0, and for t = t0, there exists a basis for the eigenspa
e of �1(D(t0)) su
hthat one eigenve
tor of this basis satis�es y0(t) 6= 0 and the other eigenve
tors satisfyy0(t) = 0.Proof:Consider the easy 
ase and the 
ase where t < t0 in the hard 
ase. By Theorem 6.1,�1(D(t)) < �1(A)). Assume y0(t) = 0. Then a short 
omputation shows that this implies�1(D(t)) is an eigenvalues of A, whi
h is a 
ontradi
tion.In the hard 
ase, when t > t0, by Theorem 6.1 we know that �1(D(t)) = �1(A) and hasmultipli
ity i. Let fz1; z2; : : : ; zig be a basis for the eigenspa
e of A 
orresponding to�1(A) and let zk be one of these ve
tors. ThenD(t)264 0zk 375 = 264 t �aT�a A 375264 0zk 375 = 264 �aTzkAzk 375 = �1(A)264 0zk 375 ;where last equality follows from the fa
t that in the hard 
ase a is perpendi
ular to zk.



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 64This shows that 8><>: 264 0z1 375 ; : : : ;264 0zi 375 9>=>; (6.10)is a basis for the eigenspa
e of D(t) 
orresponding to �1(D(t)) and y0(t) = 0 for anyeigenve
tor of �1(D(t)).Finally, when t = t0 in the hard 
ase, by Theorem 6.1 we have �1(D(t)) = �1(A) withmultipli
ity i + 1. By the same argument as above, (6.10) is an independent set ofeigenve
tors for �1(D(t)) and sin
e the multipli
ity of this eigenvalue is i+ 1, there mustexist an eigenve
tor in the orthogonal 
omplement of the spa
e spanned by the ve
torsof this set. Let ! be this eigenve
tor. Again, without loss of generality, assume A to bediagonal. Therefore zk = ek for k 2 f1; : : : ; ig and ! = (!0; 0; : : : ; 0; !i+1; : : : ; !n)T . If!0 = 0, then D(t)2666666666666664 0...0!i+1...!n
3777777777777775 = 2666666666666664 0...0�i+1(A)!i+1...�n(A)!n

3777777777777775 = �1(A)2666666666666664 0...0!i+1...!n
3777777777777775 ;where the �rst equality follows from multiplying D(t) with w and the se
ond equalityfollows sin
e w is an eigenve
tor for D(t). Now there exists !k 6= 0 for k 2 fi+ 1; : : : ; ngand this implies �1(A) = �k(A), whi
h is a 
ontradi
tion to �1(A) < �j(A) for j > i.Hen
e !0 6= 0. Sin
e the union of ! with the set (6.10) is a basis for the eigenspa
e of�1(D(t)); the result of the theorem follows. �



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 65It is known that the fun
tion �1(D(t)) is di�erentiable at points where the multipli
ityof the eigenvalue is 1. Its derivative is given by y0(t)2, where y(t) is a normalized eigen-ve
tor for �1(D(t)), i.e. ky(t)k = 1 (see [9℄). We know from Theorem 6.1 that �1(D(t))has multipli
ity 1 in the easy 
ase and when t < t0 in the hard 
ase. Hen
e, for these
ases, k0(t) = (s2 + 1)y0(t)2 � 1: (6.11)In the hard 
ase, when t > t0, by equation (6.9), equation (6.11) still holds. It is wellde�ned be
ause y0(t) = 0 for all eigenve
tors of �1(D(t)).When t = t0 in the hard 
ase, k(�) is not di�erentiable and this is 
aused by a 
hangein the multipli
ity of the eigenvalue �1(D(t)). The dire
tional derivative from the left is!20 ; while the dire
tional derivative from the right is �1 (see Appendix A for the graphof k(�) in the di�erent 
ases).Sin
e k(�) is a 
on
ave and 
oer
ive (i.e. diverges to �1 as jtj ! 1) fun
tion, to solvethe dual (UD) in the di�erentiable 
ase we need simply solve k0(t) = 0. This will alwaysbe possible ex
ept when the maximum o

urs at t0, i.e. where k(�) is not di�erentiable.In the next se
tion we will see that k0(t) = 0 always has a solution in the easy 
ase andthe hard 
ase (
ase 1) and that otherwise, the hard 
ase (
ase 2) o

urs.6.2 Solving (UD)In this se
tion, we see how the Rendl and Wolkowi
z algorithm solves TRS= . The easy
ase is solved in a way similar to the Mor�e and Sorensen algorithm, ex
ept that thefun
tion used is not h(�), but k(�) in order to exploit sparsity. They handle the almost
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ase (
ase 2) similarly to what is done in the Mor�e and Sorensen algorithm, but noLAPACK routine is used to �nd the step dire
tion. Instead, the dire
tion is obtainedfrom an eigenve
tor previously 
omputed.6.2.1 Solving the Easy Case and the Hard Case (Case 1)We start this se
tion with a theorem, derived from Theorem 14 in Rendl and Wolkowi
z[31℄, showing that, in the easy 
ase, to ea
h t 
orresponds a solution to q(�) on a sphereof a 
ertain radius.Theorem 6.3. Let t 2 R and suppose y(t) = [y0(t); z(t)T ℄T is a normalized eigenve
torof D(t) 
orresponding to �1(D(t)). If y0(t) 6= 0, thenx� := 1y0(t)z(t)is an optimal solution of minfq(x) : kxk2 = 1� y0(t)2y0(t)2 gand �� = �1(D(t)) is its Lagrange multiplier.Proof:By the de�nition of y(t) we have264 t �aT�a A 375264 y0(t)z(t) 375 = �1(D(t))264 y0(t)z(t) 375 and ky(t)k2 = 1:



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 67Expanding these equations givesty0(t)� aT z(t) = �1(D(t))y0(t);(A� �1(D(t))I)z(t) = y0(t)a;and y0(t)2 + z(t)T z(t) = 1:Sin
e y0(t) 6= 0, let x� := 1y0(t)z(t). Thent � aTx� = �1(D(t));(A� �1(D(t))I)x� = a; (6.12)and x�T x� = 1� y0(t)2y0(t)2 : (6.13)Sin
e the interla
ing properties of D(t) and A implies �1(D(t)) � �1(A), we also haveA� �1(D(t))I � 0: (6.14)Let �� = �1(D(t)), by the optimality 
onditions (5.2), then (6.12), (6.13) and (6.14)imply that x� and �� are optimal for TRS= with s :=q1�y0(t)2y0(t)2 . �Lemma 13 in Rendl and Wolkowi
z [31℄ shows that, in the easy 
ase, if y(t) is anormalized eigenve
tor with y0(t) > 0, y0(t) is a fun
tion of R! (0; 1) and is stri
tlymonotoni
ally de
reasing. It is easy to show then that the fun
tion 1�y0(t)2y0(t)2 is a stri
tlyde
reasing fun
tion (0; 1)! (0;1). Hen
e for a given s, we 
an solve TRS= in the easy
ase by �nding a t su
h that s2 = 1� y0(t)2y0(t)2 : (6.15)



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 68Now note that k0(t) = 0 if and only if the previous equation is satis�ed. Lett� := argmaxfk(t) : t 2 Rg:Hen
e TRS= in the easy 
ase 
an be solved by �nding t� that satis�es (6.15). Settingx� := 1y0(t�)z(t�) and �� = �1(D(t�))gives an optimal solution to TRS= and its Lagrange multiplier, a

ording to Theorem6.3.In the hard 
ase, we 
an use the same approa
h, if at t� the fun
tion k(�) is di�eren-tiable; hen
e k0(t�) = 0. Sin
e k(�) is not di�erentiable only at t0, and sin
e the dire
tionalderivatives from the left and right are, respe
tively,k0(t�0 ) = (s2 + 1)!20 � 1 and k0(t+0 ) = �1;we get by the 
on
avity of k(�), that this fun
tion is di�erentiable at the optimum if andonly if the dire
tional derivative from the left of t0 is negative, i.e.(s2 + 1)!20 � 1 < 0, 1� !20!20 > s2:This implies that t� < t0. Sin
e the fun
tion y0(�)2 is stri
tly positive on the interval(�1; t0) and is the derivative of the fun
tion �1(D(�)), then the latter is stri
tly in
reasingon the interval (�1; t0). �1(D(�)) is also a 
ontinuous fun
tion, hen
e it is stri
tlyin
reasing on the interval (�1; t0℄. Thereforet� < t0 ) �1(D(t�)) < �1(t0):
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ase (
ase 1) o

urs.This shows we 
an solve TRS= in the easy 
ase and the hard 
ase (
ase 1) by solvingthe equation k0(t) = (s2 + 1)y0(t)2 � 1 = 0:The Rendl and Wolkowi
z algorithm does this by �nding the zero of the fun
tion (t) :=ps2 + 1� 1y0(t) : (6.16)Note that this tri
k is analogous to the use of the fun
tion �(�) in the Mor�e and Sorensenalgorithm. The fun
tion  (�) has the advantage of being almost linear near t� and there-fore interpolating to �nd t su
h that  (�) equals 0 will be more eÆ
ient.6.3 Primal Steps to the BoundaryIn this se
tion, we �rst show that  (�) has no zero in the hard 
ase (
ase 2). We thenshow how the Rendl and Wolkowi
z algorithm handles this 
ase. As in the Mor�e andSorensen algorithm, a step to the boundary is taken. We end the se
tion with a newway of stepping to the boundary and show that improvement of the obje
tive fun
tion isguaranteed.6.3.1 Equivalent Mor�e and Sorensen Primal Step to the BoundaryIn the hard 
ase, when 1� !20!20 < s2;



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 70then k0(�) is positive to the left of t0 and negative on its right. Hen
e, by the 
on
avityof k(�), its maximum o

urs at t0 and so t� = t0. Note also that �� = �1(D(t0)) = �1(A).This is true sin
e for ! = [!0; ~!℄T , where ! is as in Theorem 6.1 and where ~! 2 Rn, ~!is by 
onstru
tion perpendi
ular to the eigenve
tors of �1(A) and a short 
omputationshows that x� := ~!!0 +ss2 � 1� !20!20 z;with z 2 S1, satis�es the optimality 
onditions (5.2) with �� := �1(A) and we are in thehard 
ase (
ase 2).Now, we 
annot solve k0(t) = 0 anymore to �nd the optimum of k(�) and the fun
tion (�) is positive on the interval (�1; t0) and does not exists for higher values of t. Tohandle this 
ase, we take a primal step to the boundary. Let tg be su
h that k0(tg) < 0,then tg is de�ned to be on the good side. This expression 
omes from the fa
t that thegood side is where we want to be in the Mor�e and Sorensen algorithm, that is when�(�) > 0. Similarly, if for tb we have k0(tb) > 0, then tb is de�ned to be on the bad side.If we have a point tb from the bad side, then tb < t0 and this implies that y0(tb) 6= 0. Lety(t) = [y0(t); z(t)℄T . We havek0(tb) < 0, (s2 + 1)y0(tb)2 � 1 < 0, 1� y0(tb)2y0(tb)2 < s2 , k 1y0(tb)z(tb)k2 < s2:Theorem 6.2 implies that xb := 1y0(tb)z(tb)minimizes q(�) on the sphere of radius q1�y0(tb)2y0(tb)2 , whi
h is less than s.In the next se
tion, we will show, if �1(D(tb)) > 0 for a tb on the bad side, then
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onstrained minimum lies within the trust region and we 
an solve TRS with the
onjugate gradient method. For this se
tion, we assume �1(D(tb)) � 0. We 
an nowapply Lemma 4.1 with the feasible solution xb, sin
e(A� �1(D(tb))I)xb = a and �1(D(tb)) � 0:Yet, we need to �nd a ve
tor z, with kzk = 1, su
h that zT (A � �1(D(tb))I)z is small.Let tg be a point from the good side. Then, by Theorem 6.2, in the hard 
ase (
ase 2),for any eigenve
tor y(tg) of �1(D(tg)), z(tg) is an eigenve
tor for �1(A) and has a unitnorm, sin
e y0(tg) = 0 (noti
e that in the hard 
ase (
ase 2), tg > t0). Hen
ez(tg)T (A� �(D(tb))I)z(tg) = z(tg)T (A� �1(A)I + (�1(A)� �(D(tb)))I)z(tg)= (�1(D(t0))� �(D(tb))):Therefore, for tb 
lose to t0, z(tg)T (A � �(D(tb))I)z(tg) will be small. The new solutionobtained on the boundary is then xb + �z(tg), where � is de�ned as in equation (4.10).As in the Mor�e and Sorensen algorithm, every time a feasible solution to TRS isobtained (ea
h new point tb from the bad side gives us a new feasible solution), if wehave a point tg from the good side, we take a primal step to the boundary. This handlesthe almost hard 
ase (
ase 2), but may also prove to be of use in the two other 
ases if ade
rease in the obje
tive fun
tion is obtained.6.3.2 A New Primal Step to the BoundaryWe show here a new way to take a primal step to the boundary whi
h may give animprovement in the easy 
ase and the hard 
ase (
ase 1). It is justi�ed by the fa
t thatin these 
ases the n last 
omponents of y(tg), where tg is a point from the good side,
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tor for �1(A). This is be
ause y0(tg) 6= 0 in the easy 
ase andy0(tg) 6= 0 might o

ur in the hard 
ase (
ase 1) if t� < t0. Hen
e the theoreti
al reasonsbehind the primal step dire
tion z(tg) of the previous se
tion do not hold.If we have a point tb from the bad side (hen
e y0(tb) 6= 0) with �1(D(tb)) � 0, thenwe showed in the previous se
tion thatxb := 1y0(tb)z(tb) (6.17)minimizes q(�) on the boundary of the trust region of radius q1�y0(tb)2y0(tb)2 , whi
h is lessthan s. A

ording to Theorem 3.1, the sign of the Lagrange multiplier for this solutionimplies that xb also minimizes q(�) within the trust region of the same radius. Similarly,we 
an show, if we have a point tg from the good side, with y0(tg) 6= 0 (i.e tg < t0) and�1(D(tg)) � 0, that xg := 1y0(tg)z(tg) (6.18)will minimize q(�) within a trust region of radius q1�y0(tg)2y0(tg)2 whi
h is larger than s. Anatural way to approximate the solution of TRS and take a step to the boundary wouldbe to pi
k a point on the boundary of the trust region of radius s whi
h is on the segmentlinking xb with xg. This is somehow a linear interpolation of the solution to TRS usingxb and xg. With the use of the 2 following lemmas, we show that this primal step to theboundary yields a de
rease in the obje
tive fun
tion, i.e.q(xb) � q(xb + �(xg � xb)); (6.19)for 0 � � � 1 su
h that kxb + �(xg � xb)k2 = s2.



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 73Lemma 6.1. Let 0 < s1 < s2 and letxb 2 argminfq(x) : kxk2 � s21gxg 2 argminfq(x) : kxk2 � s22g:If kxbk2 = s21 and kxgk2 = s22 and xTb (xg � xb) 6= 0, then xTb (xg � xb) > 0.Proof:By the optimality of xb and using (5.2), there exits � � 0 su
h that (A� �I)xb = a andA� �I � 0. By equation (4.6) we haveq(xb + �(xg � xb)) = �(xTb (A� �I)xb � �kxb + �(xg � xb)k2)+�2(xg � xb)T (A� �I)(xg � xb): (6.20)Sin
e kxbk2 = s21 < s22, it is possible to �nd 2 di�erent values �1 and �2 su
h thatkxb + �i(xg � xb)k2 = s22 i = 1; 2:A short 
omputation shows that�1 = �xTb (xg � xb) +q(xTb (xg � xb))2 + kxg � xbk2(s22 � kxbk2)kxg � xbk2 ;�2 = �xTb (xg � xb)�q(xTb (xg � xb))2 + kxg � xbk2(s22 � kxbk2)kxg � xbk2 :



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 74Now suppose xTb (xg � xb) < 0, then �1 > 0, �2 < 0 and j�2j < j�1j. By (6.20) thenq(xb + �1(xg � xb)) = �(xTb (A� �I)xb � �s22) + �21(xg � xb)T (A� �I)(xg � xb) (6.21)q(xb + �2(xg � xb)) = �(xTb (A� �I)xb � �s22) + �22(xg � xb)T (A� �I)(xg � xb): (6.22)Sin
e kxgk2 = s22, then � = 1 solves kxb + �(xg � xb)k2 = s22 and therefore �1 = 1. Bythe optimality of xg and by equations (6.21) and (6.22) we must have j�1j � j�2j. Thisis a 
ontradi
tion, hen
e xTb (xg � xb) > 0. �Lemma 6.2. Let xb and xg be de�ned as in Lemma 6.1. Suppose xTb (xg � xb) 6= 0. Letm(�) := q(xb + �(xg � xb)):Then m0(�) � 0 for 0 � � � 1and therefore q(xb + �(xg � xb)) � q(xb) for 0 � � � 1:Proof:By lemma (6.20), xTb (xg � xb) > 0. Letf(�) := kxb � �(xg � xb)k2:



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 75Note f(0) = s21. Then f 0(�) = 2�kxg � xbk2 � 2xTb (xg � xb):Therefore for � small enough f 0(�) < 0 and this yields kxb � �(xg � xb)k2 < s21.Sin
e m(��) =m(0)�m0(0)�+ o(�) = q(xb)�m0(0)�+ o(�);if m0(0) > 0, then q(xb� �(xg � xb)) < q(xb) for � small enough. Sin
e for � small enoughkxb � �(xg � xb)k2 < s21, then this 
ontradi
ts the optimality of xb. Hen
em0(0) � 0: (6.23)Let w(�) := kxb + (1� �)(xg � xb)k2:Note w(0) = s22. Thenw0(�) := �2(1� �)kxg � xbk2 � 2xTb (xg � xb):For 0 < � < 1, w0(�) < 0, hen
e kxb + (1� �)(xg � xb)k2 < s22. Now sin
em(1� �) = m(1)�m0(1)�+ o(�) = q(xg)�m0(1)�+ o(�);



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 76again, by the optimality of xg, we havem0(1) � 0: (6.24)Sin
e q(�) is a quadrati
 fun
tion, then m(�) is a parabola, i.e.m(�) = a�2 + b�+ 
; where a; b; 
 2 R;and m0(�) = 2a�+ b:From (6.23) and (6.24) we havem0(0) = b � 0 and m0(1) = 2a+ b � 0:Let 0 < � < 1, then if a > 0� < 1)m0(�) = 2a�+ b < 2a+ b � 0:If a < 0, 0 < �)m0(�) = 2a�+ b < b � 0:If a = 0 m0(�) = b � 0:



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 77Therefore, these inequalities with (6.23) and (6.24) show thatm0(�) � 0 for 0 � � � 1:Hen
e, by the de�nition of m(�),dd�q(xb + �(xg � xb)) � 0 for 0 � � � 1and the lemma follows. �If xb and xg, de�ned by equations (6.17) and (6.18), satisfy xTb (xg � xb) 6= 0, then a
onsequen
e of the previous lemma is equation (6.19). This equation yields a primal stepto the boundary in the easy 
ase and hard 
ase (
ase 1) whi
h insures a de
rease of theprimal obje
tive.6.3.3 Te
hniquesWe brie
y des
ribe some te
hniques that are used in the algorithm to take advantage ofthe stru
ture of the di�erent fun
tions used. A �rst te
hnique that is used is triangleinterpolation. Given a point from the bad side tb and a point from the good side tg, sin
ek0(tb) > 0, k0(tg) < 0 and k(�) is a 
on
ave fun
tion, then an upper bound to q� 
an befound at the interse
tion of the two tangent lines to k(�) in tb and tg. The t-value at thepoint of interse
tion also updates the approximation for t�.A se
ond te
hnique is also used when as above we have points tb and tg from the badand good side. If k(tg) > k(tb), then the interse
tion of the tangent line to k(�) at tband the 
onstant fun
tion going through (tg; k(tg)) gives an approximation to t� that isa lower bound for t�. This te
hnique is 
alled verti
al 
ut. A similar tri
k 
an be done if



CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 78k(tg) < k(tb) and we obtain an upper bound for t� in this 
ase.A third te
hnique involves the use of the fun
tion  (�). In the easy 
ase and the hard
ase (
ase 1) it is stri
tly de
reasing and its domain is R. Therefore we 
an let t( ) beits inverse fun
tion. Be
ause limt!�1  (t) = ps2 + 1� 1, t( ) will have an asymptotein  = ps2 + 1 � 1 and will be stri
tly de
reasing on the interval (�1;ps2 + 1 � 1).Hen
e, in the easy 
ase and the hard 
ase (
ase 1), using t( ), we 
an use values of t tointerpolate t� = t(0).6.4 Solving TRSIn the previous se
tion we showed how the Rendl and Wolkowi
z algorithm is able, whenthe optimal solution is on the boundary, to solve TRS by maximizing the fun
tion k(�).We now show how it handles the 
ase where the minimum is inside the trust region andoutline how it solves TRS in general.In Theorem 3.2, we showed that there does not exist a solution on the boundary ofthe trust region if and only if A is positive de�nite and the un
onstrained minimizer forq(�) lies in the interior of the trust region. The following theorem is the key to re
ognizingthis 
ase and the proof follows easily from Theorem 3.1.Theorem 6.4. Let �x be a solution to (A � �I)x = a with A � �I � 0. If � � 0, then�x is a solution to minfxTAx � 2aTx : kxk2 � k�xk2g. If � � 0, then �x is a solution tominfxTAx� 2aTx : kxk2 � k�xk2g.Now suppose that xb satis�es (A� �I)xb = a with A � �I � 0, that kxbk2 � s2 andthat � > 0, then, by Theorem 6.4, xb is a solution to minfxTAx� 2aTx : kxk2 � kxbk2g.Sin
e � is positive and sin
e A � �I is positive semide�nite, then A is positive de�nite.Moreover, by the optimality of xb, we know that the un
onstrained minimum lies insidethe region fx : kxk2 � kxbk2g whi
h is in
luded in the trust region fx : kxk2 � s2g.
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onstrained minimizer lies in the trust region and we 
an apply anun
onstrained method to �nd it, for example a 
onjugate gradient method.In the algorithm, we get su

essive solutions xb from the bad side and asso
iatedmultipliers �b that satisfy the equation (A��bI)xb = a with (A��bI) � 0. Therefore ea
hxb is a solution to minfxTAx�2aTx : kxk2 = kxbk2g. Che
king the sign of the multiplier�b tells us if xb is a solution to minfxTAx� 2aTx : kxk2 � kxbk2g or minfxTAx� 2aTx :kxk2 � kxbk2g. If the latter 
ase holds, sin
e kxbk2 � s2, then we know the un
onstrainedminimum lies in the trust region.The algorithm solves TRS by trying to solve k0(t) = 0 using the fun
tion  (�). Doingso, points on the good and the bad side are obtained and their respe
tive eigenvalues andeigenve
tors �1(D(t)) and y(t) are 
omputed. The algorithm uses inverse interpolation,triangle interpolation and verti
al 
ut to approximate t�. When a point tb on the badside is obtained, a feasible solution xb is obtained from equation (6.17). If �1(D(tb)) > 0,then we know that an un
onstrained minimizer lies in the trust region and we 
an applythe 
onjugate gradient method to obtain a solution to TRS. If the sign of the multiplieris nonpositive and a point from the good side has already been obtained, we 
an takea primal step to the boundary to obtain a new feasible solution with possibly a smallerobje
tive value. Doing this primal step to the boundary handles the almost hard 
ase(
ase 2), but note that the triangle interpolation in this 
ase is also very e�e
tive, sin
ethe fun
tion k(�) is linear for t > t0 and asymptoti
ally linear for t < t0. Ea
h iterationgives us a new value of t for whi
h �1(D(t)) and y(t) are 
omputed. This is done until we�nd a suitable approximation to the maximum of k(�). Bounds on t� are always availableand, if no better approximations to t� is known, we take the middle point of the intervalwe know 
ontains t� to get a new t-value. Note that to speed up the algorithm, a linesear
h su
h as the ones used in [33℄ 
ould have been applied.
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on
lude this 
hapter, note that the Rendl and Wolkowi
z algorithm has the advan-tage over the Mor�e and Sorensen algorithm and the Lan
zos method to handle sparsityand the almost hard 
ase (
ase 2). The algorithm is mainly a dual algorithm, yet ituses the primal obje
tive when taking primal steps to the boundary and in the stopping
riteria when the duality gap is 
omputed. Finally, the way of rewriting the dual (UD)in the form of problem (5.16) shows again that a semide�nite program is related to thealgorithm.



Chapter 7Numeri
al ExperimentsThis 
hapter deals with the numeri
al implementations of some of the ideas and methodsdis
ussed in the previous 
hapters. In the �rst se
tion, we study the pra
ti
al use ofthe new primal step to the boundary we suggested in se
tion 6.3.2 for the Rendl andWolkowi
z algorithm. The se
ond se
tion is a 
omparison of the Rendl and Wolkowi
zalgorithm and the Lan
zos method within a trust region method. The reader will �nd inAppendix D the di�erent programs used to generate the results. All programming wasdone using Matlab 5.2.1.1420 and testing were done on a SUN SPARC station 4.7.1 Testing the New Primal Step to the BoundaryAs proposed in Se
tion 6.3.2, in the Rendl and Wolkowi
z algorithm, a primal step tothe boundary may be taken when points from the good and the bad side are available.The new step we suggested 
an be applied when the �rst 
omponent of an eigenve
tory(tg) for the smallest eigenvalue of the matrix D(tg) of a point tg from the good side isnon-zero. Hen
e, it may be appli
able in the easy 
ase and the hard 
ase (
ase 1).We in
luded this step in the Rendl and Wolkowi
z algorithm. More pre
isely, assume81



CHAPTER 7. NUMERICAL EXPERIMENTS 82points from the good and the bad side, say tb and tg, are available at a stage of thealgorithm and that tb and tg are the most re
ent points found from both sides. Then weapply our new step if y0(tg) � 10�3=n, where n is the size of the problem. Otherwise,the primal step of Se
tion 6.3.1 is taken. We refer to this modi�
ation of the method asthe modi�ed Rendl and Wolkowi
z algorithm.The following tables show how this 
hange improves the Rendl and Wolkowi
z al-gorithm. For the �rst two tables, we 
onsidered dense trust region subproblems, i.e.subproblems where the Hessians of the quadrati
 obje
tive were not sparse (we use theword sparse when less than half of the entries of a matrix are non-zero). In Table 7.1,we ran, for di�erent dimensions of subproblems (n=20, 40, 60, 80, 100), 100 randomsubproblems (see Appendix D to see how those subproblems were 
onstru
ted) and 
on-sidered the ones where the easy 
ase or the hard 
ase (
ase 1) o

urred and where a primalstep to the boundary was taken to obtain an approximate solution using the Rendl andWolkowi
z algorithm. This allowed us to test the performan
e of our new primal step inthe 
onditions it was meant to be applied. Our 
riteria to distinguish the easy 
ase andthe hard 
ase (
ase 1) from the hard 
ase (
ase 2) or almost hard 
ase (
ase 2) is�1(A)� ��1 + j�1(A)j > 0:01: (7.1)If (7.1) holds, we say the easy 
ase or the hard 
ase (
ase 1) o

urs. We 
onsideredthe improvement for the number of iterations and for the number of matrix-ve
tor mul-tipli
ations. The per
entages given in the tables represent on average the redu
tion initerations (matrix-ve
tor multipli
ations) of the Rendl and Wolkowi
z algorithm whenwe apply the modi�ed Rendl and Wolkowi
z algorithm to the same subproblems. Wesee in Table 7.1 that on average the modi�ed Rendl and Wolkowi
z algorithm will takenearly 19% fewer iterations then the original Rendl and Wolkowi
z algorithm and that it



CHAPTER 7. NUMERICAL EXPERIMENTS 83seems to be independent of the size of the problem. Similarly, the improvement for thenumber of matrix-ve
tor multipli
ations is in the range of 16% and again it seems to beindependent of the size of the problem.In Table 7.2, we 
onsidered again 100 subproblems for ea
h dimension, but in this 
asewe 
onsidered all the subproblems to 
ompute our average per
entages of improvement,i.e. we did not reje
t the subproblems where the hard 
ase (
ase 2) or almost hard 
ase(
ase 2) o

urred and the subproblems where no primal step to the boundary were takento �nd approximate solutions using the Rendl and Wolkowi
z algorithm. In the latter
ase, the two algorithms perform exa
tly the same operations and the per
entages of im-provement are negligible. Hen
e, we 
an expe
t the average per
entages of improvementto be lower than in Table 7.1. The idea is to see how helpful the new primal step isin general. We see that we improve the Rendl and Wolkowi
z algorithm in general byabout 14% for the number of iterations required and by about 11% for the number ofmatrix-ve
tor multipli
ations. n=20 (%) n=40 (%) n=60 (%) n=80 (%) n=100 (%)Per
entage of improvementfor the number of iterations 19.24 17.70 19.33 20.05 20.40Per
entage of improvementfor the number of matrix-ve
tor multipli
ations 17.23 14.70 15.28 15.74 17.86Table 7.1: Improvements obtained using the new primal step to the boundary in the easy
ase or the hard 
ase (
ase 1) when steps to the boundary need to be taken.We see that using this new step improves the performan
e of the Rendl and Wolkowi
zalgorithm signi�
antly, and the results outlined here indi
ate that this will be the 
asefor problems of all sizes. Furthermore, the modi�ed Rendl and Wolkowi
z algorithmnever needed more iterations to solve any trust region subproblem than the Rendl andWolkowi
z algorithm and the optimal values found when the algorithm stopped were



CHAPTER 7. NUMERICAL EXPERIMENTS 84n=20 (%) n=40 (%) n=60 (%) n=80 (%) n=100 (%)Per
entage of improvementfor the number of iterations 15.38 15.67 11.85 13.61 13.53Per
entage of improvementfor the number of matrix-ve
tor multipli
ations 13.76 12.93 9.48 10.76 10.49Table 7.2: Improvements obtained using the new primal step to the boundary on generalsubproblems.always at least as good.So far we left out the performan
e of the modi�ed algorithm on sparse subproblems.Tables 7.3, 7.4 and 7.5 illustrate how the algorithm performs when the density of theHessian of the quadrati
 obje
tive fun
tion is varied. For example, if the density is 0.1,then approximately 0:1 n2 entries of the Hessian are non-zero. We 
onsidered again, forea
h dimension, 100 random subproblems. The per
entages of improvement given areaverages obtained when 
onsidering all of the subproblems (as in Table 7.2). We addeda new row to give the proportion of problems that would have been a

epted if a 
riteriasimilar to (7.1) would have been used.n=20 (%) n=40 (%) n=60 (%) n=80 (%) n=100 (%)Per
entage of improvementfor the number of iterations 14.38 17.50 14.17 22.62 15.52Per
entage of improvementfor the number of matrix-ve
tor multipli
ations 12.79 14.99 11.54 17.55 12.36Per
entage of problems a
-
epted 65 67 73 75 73Table 7.3: Improvements obtained using the new primal step to the boundary when thedensity of the Hessian is 0.3.



CHAPTER 7. NUMERICAL EXPERIMENTS 85n=20 (%) n=40 (%) n=60 (%) n=80 (%) n=100 (%)Per
entage of improvementfor the number of iterations 17.18 17.67 14.56 15.58 14.52Per
entage of improvementfor the number of matrix-ve
tor multipli
ations 15.32 15.10 11.65 12.25 10.91Per
entage of problems a
-
epted 67 69 70 71 63Table 7.4: Improvements obtained using the new primal step to the boundary when thedensity of the Hessian is 0.2. n=20 (%) n=40 (%) n=60 (%) n=80 (%) n=100 (%)Per
entage of improvementfor the number of iterations 11.30 15.37 11.06 11.85 11.68Per
entage of improvementfor the number of matrix-ve
tor multipli
ations 9.77 13.20 13.61 9.60 9.12Per
entage of problems a
-
epted 62 66 65 70 66Table 7.5: Improvements obtained using the new primal step to the boundary when thedensity of the Hessian is 0.1.The results 
on�rm again that the improvements we get with the modi�ed Rendl andWolkowi
z algorithm are independent of the size of the problem, yet as the density of theHessian de
reases, the improvements are slightly lower. More pre
isely, as the densitytakes the values 0.3, 0.2 and 0.1, the per
entages of improvement for the number of itera-tion are approximately 17%, 16% and 12% respe
tively. Similarly, we get approximately14%, 13% and 11% improvement in the number of matrix-ve
tor multipli
ations as thedensity varies. Again, this shows that the modi�ed Rendl and Wolkowi
z algorithm is animprovement to the original method.
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z Algorithmand the Lan
zosMethodWithin a Trust Region MethodIn this se
tion, we 
ompare the performan
e of the Rendl and Wolkowi
z algorithm andLan
zos method when used respe
tively within a trust region method. In the arti
leof Gould et al. [7℄, the authors suggest that the Lan
zos method may be stopped if
onvergen
e o

urs or if a limited extra number of iterations, say k, have been done on
ethe boundary has been en
ountered (i.e. in Algorithm 4.2, on
e the variable INTERIORis set to false, at most k extra iterations are 
ompleted). The reason for doing so andobtaining a rather 
heap approximation to the subproblem is motivated by the following,whi
h 
an be found in the 
on
lusion of the paper:"We must admit to being slightly disappointed that the new method" (Lan
-zos method) "did not perform uniformly better than the Steihaug-Toint s
heme"(Lan
zos method when k = 0) ", and we were genuinely surprised that a morea

urate approximation does not appear to signi�
antly redu
e the numberof fun
tion evaluations within a standard trust-region method, at least inthe tests we performed. While this may limit the use of the methods devel-oped here," (the Lan
zos methods) "it also 
alls into question a number ofother re
ent eigensolution-based proposals for solving the trust-region sub-problem" (in parti
ular, the Rendl and Wolkowi
z algorithm)."While theseauthors demonstrate that their methods provide an e�e
tive means of solv-ing the subproblem, they make no e�orts to evaluate whether this is a
tuallyuseful within a trust-region method. The results given in this paper suggestthat this may not in fa
t be the 
ase. (...) We believe that further testing isneeded to 
on�rm the trends we have observed here."



CHAPTER 7. NUMERICAL EXPERIMENTS 87Gould et al. [7℄ question if the trust region subproblem needs to be solved a

uratelyif we want a trust region method to be eÆ
ient. From the results obtained in theirpaper, they suggest that, indeed, the high a

ura
y is unne
essary. This is why theypropose that, using the Lan
zos method, at most a few iterations should be done on
ethe INTERIOR variable is false. For the problems we tested here, we have set this limitto 10, i.e. k = 10. The previous quote also questions if being able to handle the hard 
ase(
ase 2) or near hard 
ase (
ase 2) is a desirable feature for a trust region subproblemalgorithm.The goal of this se
tion is to answer all of the above questions. The �rst tests of thisse
tion are done on the following eleven problems (more details on the problems 
an befound in Appendix C):1. BRYBND: Broyden banded fun
tion [10℄,2. GENROSE: Generalized Rosenbro
k [19℄,3. EXPWSF: Extended Powell singular fun
tion [10℄,4. TRIDIA: [13℄,5. EXTROS: [13℄,6. DBNDVF: Dis
rete boundary value fun
tion [10℄,7. BTRDIA: Broyden tridiagonal fun
tion [10℄,8. BNALIN: Brown almost-linear fun
tion [10℄,9. LINFRK: Linear fun
tion full rank [10℄,10. SENSORS: Optimal sensor pla
ement [30℄,11. WATSON: Watson fun
tion [10℄.



CHAPTER 7. NUMERICAL EXPERIMENTS 88Ex
ept for the last four problems, these problems have a sparse Hessian.Throughout this se
tion, we will minimize a fun
tion f(�) of n real variables x. Todo so, we use the trust region method des
ribed by the following algorithm. In thisalgorithm, f(�) represents the fun
tion to be minimized, xk is an approximation of aminimizer after k iterations and sk is a positive number - the radius of the trust regionat iteration k.Algorithm 7.1. (Trust Region Method)1. Given xk and sk, 
al
ulate rf(xk) and r2f(xk). Stop ifkrf(xk)k1 + jf(xk)j < 10�5: (7.2)2. Solve for Æk Æk 2 argmin qk(xk) := rf(xk)T Æ + 12ÆTr2f(xk)Æs.t. kÆk2 � s2k :3. Evaluate rk = f(xk)�f(xk+Æk)qk(xk)�qk(xk+Æk).4. (a) If rk > 0:95, set sk+1 = 2sk and xk+1 = xk + Æk.(b) If 0:01 � rk < 0:95, set sk+1 = sk and xk+1 = xk + Æk.(
) If rk < 0:01, set sk+1 = 0:5sk and xk+1 = xk.Ex
ept for the stopping 
riteria whi
h has been s
aled here, this algorithm is Algo-rithm 6.1 in Gould et al. [7℄. The initial approximation x0 for a minimizer is problemdependent and the initial size of the trust region, s0, is 
hosen to be 1. We use eitherthe Rendl and Wolkowi
z algorithm (in the modi�ed form of Se
tion 7.1) or the Lan
zosmethod to solve the se
ond step of the algorithm. When the Lan
zos method is used, we
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onvergen
e is rea
hed (see the 
onvergen
e 
riteria of Algorithm 4.2) or whenat most 10 extra iterations have been done on
e the INTERIOR variable is set to be false.When the Rendl and Wolkowi
z algorithm is used, if the solution is in the interior of thetrust region, then we stop when we have a Æk su
h thatkrf(xk) +r2f(xk)Ækk < max(10�8; 10�5krf(xk)k):When the solution is on the boundary of the trust region, we �rst need some notationto de�ne the stopping 
riteria. At some stage of the algorithm, let tup and tlow be upperand lower bound for t�, let qup and qlow be upper and lower bounds on q� and let xbestbe the 
urrent approximation to a minimizer of the trust region subproblem. De�ne thefollowing s
alars dgaptol = max(10�8; 10�5krf(xk)k);normtol = dgaptol;zerotol = dgaptol=log(n10):Let w1 = 1, if kxbestk < (1 + normtol)s: Let w2 = 1; if qk(xbest)�qlow1+jqk(xbest)j) < 2dgaptol . Letw3 = 1, if qup�qlowjqupj+1 < dgaptol . Let w4 = 1, if the number of iteration is greater than 30.Let w5 = 1, if tup�tlow1+jtupj < zerotol . Let these last �ve variables be 0 otherwise. When thesolution is on the boundary, we stop when:((w1 or w2) and w3) or w4 or w5:
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h problem solved, we are interested in the number of fun
tion evaluations, thenumber of iterations, the number of matrix-ve
tor multipli
ations and the 
omputationtime taken to obtain an approximation to the solution of ea
h problem using Algorithm7.1. In Table 7.6, under ea
h variable of interest, there are two 
olumns that showea
h the results obtained when using the Rendl and Wolkowi
z algorithm (RW) or theLan
zos method (LM) was used to solve the trust region subproblems. For the Rendland Wolkowi
z algorithm, the Matlab fun
tion eigs was used to 
ompute the eigenvalueswhen the Hessian is sparse. For the last four problems, the Hessians are dense and eigwas used instead (this fun
tion however does not allow us to keep tra
k of the number ofmatrix-ve
tor multipli
ations).n fun
tion iterations matrix-ve
tor 
pu timeevaluations multipli
ations (se
onds)RW LM RW LM RW LM RW LMBRYBND 1000 26 26 25 25 41941 505 612.94 125.63GENROSE 100 68 69 79 85 37218 5857 508.66 255.38EXPWSF 100 18 18 17 17 1250 297 13.88 2.43TRIDIA 100 5 6 4 5 1496 577 23.09 1.78EXTROS 500 14 14 15 15 1644 147 93.14 46.57DBNDVF 25 3 11 2 10 429 1050 6.78 0.94BTRDIA 200 7 7 6 6 3662 338 200.44 3.11BNALIN 30 13 6 13 5 - 37 2.91 0.88LINFRK 100 8 8 9 9 - 45 9.07 4.94SENSORS 100 18 18 18 18 - 826 50.00 67.93WATSON 31 13 13 14 12 - 700 28.88 23.81Table 7.6: Comparing the performan
e of the Rendl and Wolkowi
z algorithm and theLan
zos method within a trust region algorithm on di�erent problems.In the next table, we make a similar kind of 
omparison, but the Rendl and Wolkowi
zalgorithm is slightly 
hanged based on the following idea: sin
e we initially 
ompute thesmallest eigenvalue of A in the algorithm, if the latter is positive we may 
ompute theNewton dire
tion whi
h will be a des
ent dire
tion in this 
ase. We take the Newton
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tual improvement over the predi
ted improvement is above0:95, otherwise we ba
ktra
k by 0:5 along the Newton dire
tion until the ratio be
omeshigher than 0:95. If we take a step along the Newton dire
tion, then the trust regionradius is set to be the length of that step, unless it is less than 0:5s, s or 2s dependingif the performan
e ratio when moving along the Newton step is respe
tively less than0:01, between 0:01 and 0:95 or greater than 0:95. This modi�
ation of the Rendl andWolkowi
z algorithm is referred to as RW2 in the following table.n fun
tion iterations matrix-ve
tor 
pu timeevaluations multipli
ations (se
onds)RW2 LM RW2 LM RW2 LM RW2 LMBRYBND 1000 23 26 22 25 2507 505 316.74 125.63GENROSE 100 100 69 78 85 30808 5857 343.69 255.38EXPWSF 100 17 18 16 17 5805 297 56.07 2.43TRIDIA 100 3 6 2 5 552 577 5.83 1.78EXTROS 500 20 14 14 15 1708 147 69.64 46.57DBNDVF 25 3 11 2 10 970 1050 3.01 0.94BTRDIA 200 6 7 5 6 3345 338 191.22 3.11BNALIN 30 10 6 9 5 316 37 1.73 0.88LINFRK 100 3 8 1 9 37 45 1.41 4.94SENSORS 100 18 18 18 18 - 826 52.57 67.93WATSON 31 13 13 15 12 - 700 30.98 23.81Table 7.7: Comparing the performan
e of the Rendl and Wolkowi
z algorithm usingthe Newton step and the Lan
zos method within a trust region algorithm on di�erentproblems.From this set of problems, we derive from the last two tables a 
on
lusion similarto the one in Gould et al. [7℄, i.e. it is not 
lear, looking at the number of fun
tionevaluations or iterations, whi
h method performs the best. The version of the Rendland Wolkowi
z algorithm that moves along the Newton dire
tion when it is a des
entdire
tion seems to do slightly better then the �rst version on these problems in termsof the number of iterations and as well for the number of fun
tion evaluations. Also,
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ause ba
ktra
king may be ne
essary when using the Newton dire
tion, more fun
tionsevaluations are needed on some problems. When the Lan
zos method is used, be
ausethe solutions to the trust region subproblems obtained are found on a subspa
e ratherthen on the whole spa
e as in the Rendl and Wolkowi
z algorithm, the number of matrix-ve
tor multipli
ations and the 
omputation times are on average higher when the latteris used. Thus, the previous results suggest that on the previous set of problems, most ofthe time one should 
hoose the Lan
zos method to solve the trust region subproblems,sin
e this translates into lower 
omputation 
osts. Hen
e, should we 
on
lude as well thathigh a

ura
y solutions for the subproblems are not useful? Before answering, 
onsiderthe following fun
tion: f(x) = n�1Xi=1(x2i � 1)2 + (xn � 1)2:The gradient of this fun
tion is zero when jxij = 1 or 0 for i = 1 : : :n� 1 and xn = 1.For the Hessian to be positive semide�nite when the gradient is zero, we need jxij = 1 fori = 1 : : :n� 1, otherwise the Hessian is inde�nite. Hen
e, when jxij = 1 for i = 1 : : :n� 1and xn = 1, then we have a lo
al minimum and looking ba
k at the fun
tion we see thatit is also a global minimum.In the following, we will minimize this fun
tion using a trust region method. Letx0 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 3=2℄T



CHAPTER 7. NUMERICAL EXPERIMENTS 93be the initial point to start the method. We haverf(x0) = 266666664 0...01 377777775 r2f(x0) = 266666664 �4 0 : : : 00 .. . ...... �4 00 : : : 0 2 377777775 :x0 in this problem is 
hosen to 
reate the hard 
ase (
ase 2) initially. Indeed, the gra-dient is perpendi
ular to the spa
e spanned by the eigenve
tors of the smallest eigenvalueof the Hessian. Easy 
omputations as in Example 3.1 show that the hard 
ase (
ase 2)o

urs if the initial size of the trust region (i.e. s0) is greater or equal to 1=6. Therefore,
hoosing s0 = 1 makes the hard 
ase (
ase 2) o

ur initially.When the trust region method 7.1 is used to minimize this fun
tion, with the Rendland Wolkowi
z algorithm used to solve the trust region subproblems, it 
onverges to thepoint ~x = [1;�1; 1;�1; 1; 1; 1; 1;�1; 1℄T;whi
h is a global minimum of the fun
tion. On the other hand, when the Lan
zos methodis used to solve the subproblems, the method 
onverges to the pointx̂ = [0; 0; 0; 0; 0; 0; 0; 0; 0; 1℄T:The trust region algorithm stops be
ause the gradient at the previous point is zero.However, the Hessian at the same point is inde�nite and we stop at a point whi
h isneither a lo
al or a global minimum. Sin
e, the fun
tion is 
oer
ive, the iterates obtainedby a trust region method will be bounded and a

ording to Theorem 2.1, there will be
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umulation point that satis�es �rst and se
ond order optimality 
onditions. Hen
e,a trust region method should be able to es
ape from points where the gradient is zeroand where the Hessian is inde�nite. Indeed, this is possible by moving in the dire
tionof an eigenve
tor of the smallest eigenvalue of the Hessian. Therefore, if we modify thestopping 
riteria and stop when (7.2) is satis�ed, as before, and when the Hessian ispositive semide�nite, we 
an prevent the algorithm to stop when the gradient is zero andwhen the Hessian is inde�nite.In the above problem, this requires that we are able to solve the hard 
ase (
ase2), sin
e the gradient at x̂ being zero, it is perpendi
ular to the spa
e spanned by theeigenve
tors of the smallest eigenvalue of r2f(x̂) and sin
e for any positive radius s -thesize of the trust region- the hard 
ase (
ase 2) o

urs. Be
ause, the Lan
zos method failswhen the gradient is zero, even if we 
hange the stopping 
riteria, Algorithm 7.1, withthe Lan
zos method used to solve the trust region subproblem, fails to �nd the optimumof the fun
tion and dies at x̂. On the other hand, if the Rendl and Wolkowi
z algorithmis used to minimize the fun
tion with the starting point x̂, then it 
onverges to a globalminimum of the fun
tion.This example shows that being able to handle the hard 
ase (
ase 2) is an importantfeature for a trust region subproblem algorithm, sin
e it leads to a robust trust regionmethod. An analysis of the iterates obtained by Algorithm 7.1, when the Rendl andWolkowi
z algorithm is used to solve the subproblems and when x0 is the starting point,shows that the algorithm does not en
ounter points where the gradient is zero and theHessian is inde�nite. In parti
ular, x̂ is not part of the iterates. This is 
aused by the fa
tthat the solutions to the initial trust region subproblem are di�erent depending on thealgorithm used. Be
ause the hard 
ase (
ase 2) o

urs at x0, the Lan
zos method 
annot�nd an a

urate solution. On the other hand, the Rendl and Wolkowi
z algorithm doessolve it up to the required a

ura
y and this is what explains the two di�erent behaviors
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t, the Lan
zos method in the �rst iteration gives an answer to theinitial trust region subproblem whi
h is in the interior of the trust region. More pre
isely,the 
onjugate gradient method, whi
h is applied until the boundary is en
ountered, stopsbe
ause it �nds a point where the gradient of the quadrati
 obje
tive is zero. Yet, sin
er2f(x0) is inde�nite, the problem is not 
onvex and the solution is on the boundary. Thisshows another weakness of the Lan
zos method: the 
onjugate gradient method, whi
his used before the boundary is en
ountered, may 
onverge to a point where the gradientof the quadrati
 obje
tive is zero, although the solution is not in the interior.Hen
e, this example 
ontradi
ts the assertions found in the paragraph quoted at thebeginning of this se
tion. As it may not 
ome essential when minimizing some problems,beings able to solve the subproblems a

urately within a trust region method is important.For example, one never knows when the hard 
ase (
ase 2) or near hard 
ase (
ase 2) mayo

ur and, as we have seen, the behavior of the algorithm depending on the a

ura
yof the methods used to solve the subproblems may be very di�erent. It is true thatthe Rendl and Wolkowi
z algorithm is more expensive than the Lan
zos method, when
omputation time and matrix-ve
tor multipli
ations are 
onsidered, but this is the pri
eone has to pay for the robustness of the trust region method. In pra
ti
e, one may wishto attempt minimizing a fun
tion using the Lan
zos method to approximate the solutionsof the subproblems of the trust region method. Yet, if the Hessian of the approximatesolution is not positive semide�nite, the Rendl and Wolkowi
z algorithm may be ne
essaryto solve the subproblems.



Chapter 8Con
lusionWe have 
onsidered in this thesis, three di�erent algorithms for solving the trust regionsubproblem: the Mor�e and Sorensen algorithm, the Lan
zos method and the Rendl andWolkowi
z algorithm. We have put the main fo
us on the last two, sin
e they are modernalgorithms that 
an exploit the sparsity of the Hessian. Yet, the Mor�e and Sorensenalgorithm, although it does not exploit sparsity, solves the easy 
ase and the 
ase 1 of thehard 
ase using Newton's method, it handles the 
ase 2 of the hard 
ase and many of thetri
ks used in this algorithm have been kept in the two other algorithms we 
onsidered.Semide�nite programs were the link to explain these three algorithms. This idea 
ame �rstin the paper of Rendl and Wolkowi
z [31℄ to explain the Mor�e and Sorensen algorithmand their algorithm. They showed through two di�erent type of dual problems, that
ould be stated in the form of semide�nite programs, that the trust region subproblemwas equivalent to the maximization of a 
on
ave fun
tion. Their work appeared in theDuality Chapter. Furthermore, we showed that one of these duals 
ould be used toanalyze the Lan
zos method. In parti
ular, this showed that measuring the norm of thegradient of the Lagrangian at an approximate solution was linked to measuring a dualitygap. 96



CHAPTER 8. CONCLUSION 97We also proposed in the 
hapter reviewing the Rendl and Wolkowi
z algorithm a newprimal step to the boundary. A step that was equivalent to the Mor�e and Sorensen primalstep to the boundary was used in the algorithm, but the new step presented was basedon the fa
t that a de
rease in the obje
tive fun
tion 
ould be obtained if one moves froma bad side point in the dire
tion of a good side point when the sign of the multipliers arenonpositive.It is this idea that was �rst tested in our numeri
al se
tion and it seemed to improvethe original Rendl and Wolkowi
z algorithm. The se
ond part of our numeri
al se
tion
ompared the Lan
zos method and the Rendl and Wolkowi
z algorithm when used withina trust region method. Be
ause the Rendl and Wolkowi
z algorithm is able to handle the
ase 2 of the hard 
ase and always give an a

urate solution to the subproblem, unlike theLan
zos method that does not handle this 
ase, the goal of this se
tion was to see if wewould obtain a similar 
on
lusion to the one in the Gould et al. [7℄ paper. These authorssuggested that solving the subproblem more a

urately does not appear to redu
e thenumber of fun
tion evaluations in a trust region method. We 
ompared the Rendl andWolkowi
z algorithm and the Lan
zos method when used within a trust region method tosolve di�erent test problems. On the �rst eleven problems we 
onsidered, our 
on
lusionswere similar to the ones of Gould et al. Yet, we 
onstru
ted an example showing that onsome problems, a trust region method that uses the Lan
zos method to approximate thesubproblems may get stu
k at points where the gradient is zero and the Hessian inde�nite.On the other hand, the Rendl and Wolkowi
z algorithm, although more expensive, provedto solve all the problems 
onsidered. Hen
e, the extra 
omputations of the Rendl andWolkowi
z algorithm 
ompared to the Lan
zos method is the pri
e one has to pay for amore robust trust region method.It appears that in some 
ases low a

ura
y solutions to the subproblems are as goodas high a

ura
y solutions when the overall number of fun
tion evaluations is 
onsidered,
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e one never knows when the 
ase 2 of the hard 
ase may o

ur, a robust trustregion algorithm needs a subroutine that 
an solve the subproblems a

urately, espe
iallyif the 
ase 2 of the hard 
ase o

urs.
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Figure A.2: �(�) in the almost hard 
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ase 1)In this �gure �1(A) = �12:0000 and �� = �13:4545.
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Figure A.4: h(�) in the easy 
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ase 1)In this �gure �1(A) = �17:8085 and �� = �18:4342. Note that h0(��) = 0 and thatthe fun
tion is 
ontinuous in �1(A).
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lty in
reasing on (�1; �1(A)℄. This is why �� = �1(A).
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Figure A.7: k(t) in the easy 
aseIn this �gure, t� = �14:2617. Note that the fun
tion is di�erentiable everywhere andk0(t�) = 0. We have also in this 
ase �� = �21:2191 and �1(A) = �17:4435.
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Figure A.8: k(t) in the hard 
ase (
ase 1)In this �gure, t� = 37:0878 and t0 = 41:0549. Note three things: the fun
tion isdi�erentiable everywhere ex
ept in t0, this is the hard 
ase (
ase 1) sin
e k0(t�) = 0 and thefun
tion is purely linear for t > t0. We also have �� = �18:4391 and �1(A) = �17:8085.
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Figure A.9: k(t) in the hard 
ase (
ase 2)In this �gure, t� = t0 = 41:0549. Note three things: the fun
tion is di�erentiableeverywhere ex
ept in t0, this is the hard 
ase (
ase 2) sin
e k(�) is not di�erentiable int� = t0 and the fun
tion is purely linear for t > t0. We also have �� = �1(A) = �17:8085.



Appendix BMathemati
al Ba
kgroundB.1 The derivatives of h(�)Re
all that h(�) = �aT (A� �I)ya+ �s2:Let �l and the sequen
e f�wg be de�ned as in se
tion 5.1 and assume that the sequen
e
onverges to ~� 2 (�1; �l). Then for w 2 Nh(�w) = �aT (A� �wI)�1a+ �ws2:Sin
e ddZ (Z�1)(�) = �Z�1 � Z�1;104



APPENDIX B. MATHEMATICAL BACKGROUND 105thenh(�w + h) = �aT ((A� �wI)�1 � (A� �wI)�1(�hI)(A� �wI)�1)a+ o(h)aTa+ �ws2 + hs2= �aT (A� �wI)�1a+ �ws2 � haT (A� �wI)�2a+ hs2 + o(h)aTa:Therefore limh!0 h(�w + h)� h(�w)h = limh!0 �haT (A� �wI)�2a+ hs2 + o(h)aTah= �aT (A� �wI)�2a+ s2 + limh!0 aTao(h)h = �aT (A� �wI)�2a+ s2:Hen
eh0(�w) = �aT (A� �wI)�2a+ s2 = �(QTa)T (�� �wI)�2(QTa) + s2 = � nXj=l 
2j�j � �w + s2;where we have used the fa
t that 
j = 0 for j 2 fl; : : : ; l � 1g. Using the last equationand the fa
t that �j � ~� > 0 for j 2 f1; : : : ; ng, we get thath0(�w)!� nXj=l 
2j�j � ~� + s2 = �aT ((A� ~�I)y)2a+ s2:Sin
e h(�) is a 
ontinuous fun
tion over (�1; �l), then we get for � in that intervalh0(�) = �aT ((A� ~�I)y)2a + s2:



APPENDIX B. MATHEMATICAL BACKGROUND 106To 
ompute the se
ond derivative of h(�) over (�1; �l), similar 
omputations would yieldh00(�) = �2aT ((A� ~�I)y)3a:B.2 The 
on
avity of �1(D(�))Here we show that �1(D(�)) is a 
on
ave fun
tion. The result is based on the fa
t that ifA and B are two symmetri
 matri
es, then�1(A+B) = min xT (A+B)x � min xTAx + min xTBx = �1(A) + �1(B)s.t. kxk = 1 s.t. kxk = 1 s.t. kxk = 1 :Now let � 2 [0; 1℄, t1 2 R and t2 2 R. Then by the inequalities above we have�1(D(�t1 + (1� �)t2)) = �1(�D(t1) + (1� �)D(t2)) � ��1(D(t1)) + (1� �)�1(D(t2)):This proves �1(D(�)) is a 
on
ave fun
tion.



Appendix CDetails on the Test ProblemsWe brie
y outline the parameter values and starting points we have 
hosen for ea
h ofthe 10 problems we used for testing. For most of the problems, a standard starting pointexists and for some of them we needed to provide one. We denote the starting point byx0. We use the variable n for the number of variables in ea
h problems. These problemsare of the form mXi=1 fi(x):We now give the 
orresponding informations for ea
h problem:1. BRYBND: Broyden banded fun
tion [10℄,(a) n = 1000, m = n,(b) x0 = [�1; : : : ;�1℄,2. GENROSE: Generalized Rosenbro
k [19℄,(a) n = 100, m = n, 107



APPENDIX C. DETAILS ON THE TEST PROBLEMS 108(b) x0 = [ 1n+1 ; 2n+1 ; : : : ; nn+1 ℄,3. EXPWSF: Extended Powell singular fun
tion [10℄,(a) n = 52, m = n,(b) (x0)4j�3 = 3, (x0)4j�2 = �1, (x0)4j�1 = 0, (x0)4j = 1,4. TRIDIA: [13℄,(a) n = 100, m = n,(b) x0 = [1; : : : ; 1℄,5. EXTROS: [13℄,(a) n = 500, m = n=2,(b) x0 = [1; : : : ; 1℄,6. DBNDVF: Dis
rete boundary value fun
tion [10℄,(a) n = 25, m = n,(b) (x0)i = i(i�n�1)(n+1)2 ,7. BTRDIA: Broyden tridiagonal fun
tion [10℄,(a) n = 200, m = n,(b) x0 = [�1; : : : ;�1℄,8. BNALIN: Brown almost-linear fun
tion [10℄,(a) n = 30, m = n,(b) x0 = [12 ; : : : ; 12 ℄,9. LINFRK: Linear fun
tion full rank [10℄,



APPENDIX C. DETAILS ON THE TEST PROBLEMS 109(a) n = 100, m = n,(b) x0 = [1; : : : ; 1℄,10. SENSORS: Optimal sensor pla
ement [30℄,(a) n = 100,(b) x0 = [ 1n ; 2n : : : ; 1℄,11. WATSON: Watson fun
tion [10℄,(a) n = 31, m = n,(b) x0 = [0; : : : ; 0℄.



Appendix DMatlab ProgramsD.1 Generating Random Trust Region SubproblemsIn Se
tion 7.1, we tested our new primal step to the boundary on hundreds of random trustregion subproblems. This is the Matlab �le that was used to generate these problems:% INPUT: n order of matrixs=rand/randtt=1/randA=tt*randn(n)A=A+A'tt=1/randa=tt*randn(n,1)% The obje
tive is x0Ax� 2aTx and the trust region radius is s.
110



APPENDIX D. MATLAB PROGRAMS 111D.2 Files on the Trust Region MethodsThe �les that were used for testing in Se
tion 7.2 
an be found on the World Wide Webat the following address: http://orion.uwaterloo.
a/ hwolkowi. The �les used to enter theinformation for ea
h problem are initialize.m, obje
tive.m and objgradhess.m. The�les newtrust.m and lan
zoslim.m respe
tively are the Rendl and Wolkowi
z algorithmand the Lan
zos method. trmgould.m and trmbgouldlan
zoslim.m implement thetrust region method of Algorithm 7.1 depending respe
tively if the Rendl and Wolkowi
zalgorithm or the Lan
zos method is used to solve the trust region subproblems.
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