A Survey of the Trust Region Subproblem within a
Semidefinite Framework

Charles Fortin

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2000

(©Charles Fortin 2000

Abstract

Trust region subproblems arise within a class of unconstrained methods called trust
region methods. The subproblems consist of minimizing a quadratic function subject
to a norm constraint. This thesis is a survey of different methods developed to find an
approximate solution to the subproblem. We study the well-known method of Moré and
Sorensen [18] and two recent methods for large sparse subproblems: the so-called Lanczos
method of Gould et al. [7] and the Rendl and Wolkowicz algorithm [31]. The common
ground to explore these methods will be semidefinite programming. This approach has
been used by Rendl and Wolkowicz [31] to explain their method and the Moré and
Sorensen algorithm; we extend this work to the Lanczos method. The last chapter of this
thesis is dedicated to some improvements done to the Rendl and Wolkowicz algorithm and
to comparisons between the Lanczos method and the Rendl and Wolkowicz algorithm.
In particular, we show some weakness of the Lanczos method and show that the Rendl

and Wolkowicz algorithm is more robust.

Acknowledgements

Le temps que 'on prend, pour dire merci
Est le seul qui reste au bout de nos jours
Les voeux que 'on fait, I'effort que I'on séme
Chacun les récolte en soi-méme

Aux beaux jardins du temps qui court

C’est sur cette adaption de Gens du Pays du chanteur et poéte Gilles Vigneault que j’aimerais remercier tout
ceux et celles qui ont rendu possible cette thése de maitrise. Car si sur la page couverture n’apparait que mon
nom, le lecteur attentif pourra y lire, dissimulés sous le papier, entre le Charles et le Fortin les noms des gens
mentionnés ci-dessous.

A commencer par mes parents, Monique et Normand, qui m’ont toujours épaulé dans mes projets et mes réves
et qui se sont toujours inquie¢tés de mon sort en ce lointain Ontario.

Of course, I want to thank my supervisor Henry Wolkowicz, for his availability, his support and his devotion
to help me in my research efforts. He has succeeded in making come true everything I hoped to achieve when
coming to the University of Waterloo.

Thank you also to Philippe Toint and Nick Gould for answering my questions on the Lanczos method.

I will never forget all the friends I met here during these two years and who made my time here enjoyable.
First of all, my two German roomates, Oliver and Jan Peter; it is very rare in ones life to find two great friends all
at once. Aussi je remercie ma <€ grande > amie Mimi pour toute son attention et pour m’avoir fait connaitre le
trajet Waterloo-Toronto. Je ne saurais évidemment oublier Christian, Eve7 Philippe et Kati avec qui j’al partagé
Uexpérience Ontarienne. From my first year here, I also think of Matthias, Achim, Antonella, Jan and my school
buddy James. Ma deuxiéme année ici a été tout aussi excitante, et je le dois en partie aux charmantes Laurence
et Michelle; merci d’avoir réaffirmé par contraste mon identité Québecoise. More recent friends are Peter, Marco,
Benjamin and Eric. I will also remember the school friends and colleagues: James, Debbie, Marina, Kerri, Phil,
Lise, George, John, Hristo, Jason and Serge. A particular thanks to Brian for his encouragements and his everyday
joyousness and to Miguel for his suggestions to improve this thesis and for his help with my math and computer
problems. I also have special thoughts for the people in Aiki-Jujutsu: Charlotte, Malte, Connie, Mike, Paul and
Josh.

Je dois également remercier les amis de Québec qui ont pris le temps de m’écrire ou de me téléphoner pour
qu’on ne se perde pas de vue: Marie-Diane, Fabrice, Sophie, Marc-André, Marc-Hubert, Sébastien, mes fréres
Mario et Vincent, Isabelle, ma ni¢ce Anne-Sophie (merci de ne pas avoir grandi trop vite!), Dubé, Mike, Dan,
Labine et Annie.

Je ne serais rien sans vous tous and I owe it all to you.

ii

Contents

1 Historical Background
2 The Trust Region Method

3 The Structure of the Trust Region Subproblem
3.1 Optimality Conditions

3.2 Different Cases to Consider oo

4 Two Different Methods to Solve TRS
4.1 The Moré and Sorensen Algorithm
4.1.1 Handling the Easy Case and the Hard Case (Case 1)
4.1.2 Handling the Hard Case (Case 2)
4.1.3 The Main Algorithm
4.2 The Lanczos Method

5 Duality
5.1 Deriving the Duals L
5.2 A Semidefinite Framework for the Moré and Sorensen Algorithm

5.3 A Semidefinite Framework for the Lanczos Method

iii

14
15
19

22
23
23
27
31
32

40

The Rendl and Wolkowicz Algorithm 58

6.1 Eigenvalues and Eigenvectors of D(t) 59
6.2 Solving (UD) e 65
6.2.1 Solving the Easy Case and the Hard Case (Case 1) 66
6.3 Primal Steps to the Boundary o 0. 69
6.3.1 Equivalent Moré and Sorensen Primal Step to the Boundary . .. 69
6.3.2 A New Primal Step to the Boundary 71
6.3.3 Techniques s 77
6.4 Solving TRS e 78
Numerical Experiments 81
7.1 Testing the New Primal Step to the Boundary 81

7.2 Comparison of the Rendl and Wolkowicz Algorithm and the Lanczos Method

Within a Trust Region Method 86
Conclusion 96
Figures 99
Mathematical Background 104
B.1 Thederivatives of R(+) 104
B.2 The concavity of Aq(D(:)) 106
Details on the Test Problems 107
Matlab Programs 110
D.1 Generating Random Trust Region Subproblems 110
D.2 Files on the Trust Region Methods 111

iv

Bibliography 112

Introduction

In unconstrained optimization, we deal with the standard problem of finding the minimum
of a function f:R"™ — R. If we assume the function is twice continuously differentiable,
many methods can be applied to find the minimum. Steepest descent and Newton’s
method are probably among the best known. Newton’s method relies on a second order
approximation of the function f at each iteration. Although it has proven to be very
efficient, one of its disadvantages is that it does not possess global convergence and the
performance of the method is very dependent on the initial estimate. In particular, one
can converge to a saddle point, a local maximum, or a local minimum.

One way to get around these difficulties is to minimize at each iteration the same
quadratic model as in Newton’s method, but instead of considering the whole space for
the minimization, we restrict ourselves to a ball which is referred to as the trust region.
This is the idea behind trust region methods. The major difficulty is to efficiently solve
at each iteration the trust region subproblem (TRS)

min ¢(z) = 2T Az — 2Tz
(TRS)
st |z|* < st
Here, A is an n X n symmetric matrix, ¢ is an n X 1 vector, s is a positive scalar and x

is the n x 1 vector of unknowns. All matrix and vector entries are real. It is this last

problem that is the main subject of this thesis.

Depending on the values of A, a and s, different ways of solving the trust region
subproblem need to be considered. Two different cases may occur and are referred to in
the literature as the easy case and the hard case. The hard case or near hard case is what
causes numerical difficulties in solving the problem.

A major recent concern of TRS is exploiting the sparsity of the matrix A for large
problems. This is of course linked with the increasing speed of computers and any modern
trust region algorithm has to take this factor into account. Also, since the trust region
subproblem needs to be approximately solved many times, fast convergence in very few
iterations is needed, rather than just quadratic convergence for example. Indeed, although
quadratic convergence is fast when one gets close to the solution, it does not guarantee
that the overall number of iterations needed to obtain an approximation to the solution
will be small.

In this thesis, we study three different methods that consider all of the above diffi-
culties for TRS. The first one we study is the standard Moré and Sorensen algorithm
[18] that was published in 1983 and is the first algorithm able to handle the hard case
efficiently. The two other ones are more recent and were designed to solve large problems.
We will look at the primal-dual algorithm of Rendl and Wolkowicz [31] and the so-called
Lanczos method of Gould, Lucidi, Roma and Toint [7]. The first authors have shown that
semidefinite programming could be use to describe the steps of the Moré and Sorensen
algorithm and also to derive new algorithms like theirs. We use the same framework to
show that the same can be done with the Lanczos method. Semidefinite programming will
therefore be the link between all the above methods. Other recent algorithms for large
and sparse trust region subproblems are the ones of Sorensen [27], Santos and Sorensen
[25] and Hager [8]; though they will not be considered here.

This thesis has the following structure: in Chapter 1, we look at the evolution of

the ideas and methods behind the trust region subproblem. In Chapter 2, we study the
motivation for solving this problem, i.e. trust region methods. We give an algorithm for
trust region methods and outline their attractive properties. In Chapter 3, we present the
general theory needed to approach the trust region subproblem. Necessary and sufficient
conditions are derived and what differentiates the easy and the hard case is explained.
In Chapter 4, we consider the Moré and Sorensen algorithm and the Lanczos method. In
Chapter 5, we present the duality results associated with TRS. This section is the key
to derive our semidefinite framework and explain the Rendl and Wolkowicz algorithm
which is described in Chapter 6. In Chapter 7, we give numerical results. First, we
study the performance of a new step to the boundary used in the Rendl and Wolkowicz
algorithm. Second, we compare the performance of the Lanczos method and the Rendl
and Wolkowicz algorithm when, respectively, used to solve the trust region subproblems
within a trust region method.

The new contributions of this thesis are found in Chapters 5, 6 and 7. In Section 5.1,
we polished the work of Rendl and Wolkowicz [31] concerning the different dual problems
related to the trust region subproblem. Section 5.3 sets the Lanczos method within a
semidefinite framework is entirely new. In Chapter 6, a new primal step to the boundary
for the Rendl and Wolkowicz algorithm is suggested in Section 6.3.2. Finally, the results
and conclusion of the numerical experiments of Chapter 7 are also new contributions to

the field.

Chapter 1

Historical Background

Among the papers related to trust region methods and to the trust region subproblem,
many of them cite the work by Levenberg [12] in 1944 who introduced the basic idea

behind trust region methods. Levenberg was interested by the least squares problem
min Y _ fi(z)’ (1.1)
1=1

encountered particularly in curve fitting, where the f;’s are nonlinear functions. The usual
approach for this problem was to approximate f; with a first order Taylor’s approximation
F; about xj and to set the derivative of the function > ;' F,(av)2 to 0 to get xpyq. Of
course, this method is faced with the problem that xr4q can be too far away from ay
and a decrease in the initial program (1.1) might not occur because the linear model does
not hold so far away. Levenberg thought of a way to restrict the distance where the next
iterate can be found, therefore setting the basic idea of trust region methods. His idea

though was different to what is now used in trust region methods. Actually, he used a

CHAPTER 1. HISTORICAL BACKGROUND 5

quadratic penalty method and solved
n
min w Y fi(2)® + |||,
1=1

where w was a well chosen scalar. He proved that with this method he could get decrease
at each iterate for problem (1.1).

A more direct link to trust region methods is the work of Marquardt [14] in 1963.
He solved the same problem as Levenberg, i.e. he was minimizing Y 1, F;(2)?, but at
each iteration he would really find the solution to a trust region subproblem. Due to
the structure of the problem, he would only face trust region subproblems for which the
quadratic objective was a convex function. He would not directly find the minimum of
a convex quadratic inside a given sphere, but rather within an unknown sphere (i.e. the
radius of the sphere was not known a priori, but was instead implicitly determined in
solving his subproblem). Similarly to what is done in trust region methods, he also had
a scheme to adjust the radius of his trust region at each iteration. It is the work of
Marquardt and Levenberg that would eventually inspire Powell, in 1970, to derive the
first trust region algorithm for solving unconstrained minimization problems (see [20] and
21)).

In 1966, Goldfeld, Quandt and Trotter [5] wrote a paper called Mazimization by
quadratic hill-climbing which is the origin of trust region methods and they solved trust
region subproblems for non-convex quadratic objectives. Although their paper did not
go through all the subtleties of the trust region subproblem, as for example the dis-
tinction between the easy case and the hard case, they gave the necessary and sufficient
optimality conditions. Their trust region method could solve unconstrained minimization
problems, but, with Marquardt, their trust region subroutine would not directly minimize

a quadratic inside a fixed sphere.

CHAPTER 1. HISTORICAL BACKGROUND 6

The disadvantage of the methods of Marquardt and Goldfeld, Quandt and Trotter
was that the trust region subproblems they could solve had a small neighborhood when a
special case occurred which is now referred to as the hard case in the literature. Moreover,
being able to handle this so-called hard case is essential when the minimum of a quadratic
over a fixed sphere is sought. In 1981, Gay [4] showed how to recognize the hard case
numerically and stated a theorem that could be used to solve the problem when this case
occurred. His theorem, as mentioned two years later in a paper by Moré and Sorensen
[18], had some numerical disadvantages, since many iterations were needed to be able to
recognize the hard case when it occurred.

As the theory of the trust region subproblem evolved, so too did the theory surround-
ing its reason for existence: trust regions methods. One example would be the paper by
Sorensen [26] in 1982 where he derived strong convergence results for his algorithm, which
is similar to the one found in recent nonlinear optimization books (see for example [1] and
[3]). In his paper, Sorensen proved, under some mild assumptions, global convergence
and quadratic convergence for his method.

In 1983, Moré and Sorensen [18] wrote Computing a trust region step, which now
remains a classic for the trust region subproblem. They developed a way to solve efficiently
the problem in the easy case using Newton’s method on a nearly linear function and only
basic linear algebra techniques needed to be applied. In the hard case, they stated a lemma
that was not as restrive as what Gay [4] initially proposed. In fact, their algorithm is
very effective in this case.

Since the Moré and Sorensen algorithm uses Cholesky’s factorization, it is not designed
to take advantage of the sparsity for large sparse problems. Since the publication of their
paper, many authors considered attacking the problem in a different way that would not
compromise sparsity (see for example [7],[25],[27] and [31]). This is where the research is

now, as increasingly fast computers enable us to solve problems with a large number of

CHAPTER 1. HISTORICAL BACKGROUND

variables and handling sparsity is a key factor now in any algorithm.

Chapter 2

The Trust Region Method

In this chapter, we study how the trust region method (TRM) is a natural way to im-
plement Newton’s method in unconstrained optimization. The convergence properties of
TRM are very appealing as we can expect to satisfy first and second order optimality
conditions. Furthermore, under some assumptions we will specify, TRM achieves global
convergence. This is a noticeable improvement to Newton’s method.

Newton’s method can be applied to the problem of finding the unconstrained minimum

of a continuous function, say f(-), i.e. solving

min f(z)
s.t. xeR"™

Given zp, the next iterate 2341 is computed by finding a minimum of the quadratic model

of f(-) about zg, i.e.

1 € argmin §(z) == fla) + VF(er)" (@ — o) + 52 — 2) TV fer) (2 — wr)

s.t. x € R™

CHAPTER 2. THE TRUST REGION METHOD 9

Assuming positive definiteness for V2 f(zy) yields

ppr = 2, — (V2 F(2r)) 7'V ().

Usually, the restricted step Newton’s method is written as

Tht1 = Tf — ak(sz(xk))_1Vf(xk), af € (0, 1], (2.1)

where «y, is a carefully chosen step length. Two problems arise with this method. First,
because we need to solve a linear system, if it is ill-conditioned we will have difficulties
in computing agy1. Second, if V2f(xy) is not positive definite, zxy; might not yield a
decrease for the objective function f(-) as (V2f(zx)) 'V f(zx) might not be a descent
direction and the step oy (V?f(xx)) 'V f(2r) might increase f(-) for any positive a.
The idea behind TRM is to correct these difficulties by restricting the iterate x54q to
belong to a closed neighborhood of 2 and to set x441 to be the minimum of the quadratic
model about zj within this neighborhood. More precisely, for s € Ry a positive scalar,

Tg+1 1s set to be

Try1 € argmin g(z)

s.t. lo — 2x]|* < s3.

Because the feasible set is compact, #4411 is now well defined independently of V2 f(xy).
Furthermore, for sufficiently small sg, f(2g41) < f(xg) unless both Vf(zx) = 0 and
V2f(zk) = 0, i.e. unless first and second order necessary optimality conditions hold at
xg. The above problem can be solved if, given A, an n X n real symmetric matrix, ¢ € R",

and s € R the following problem, which we refer to as the trust region subproblem (TRS),

CHAPTER 2. THE TRUST REGION METHOD 10
can be solved:

min ¢(z) = 2T Az — 2Tz

(TRS) (2.2)
st ||lz|* < st

The next step now is to construct an efficient algorithm. The idea is to modify the
size of the neighborhood at each iteration depending on how well the quadratic model
approximates the function f. If the model is valid in a large neighborhood, then we
wish to take a neighborhood as large as possible. On the other hand, if the model is a
poor approximation of f, we may need to reduce the size of our neighborhood to ensure
a decrease in the objective function. Let aj be our current iterate and xj + 0 be the
solution to the minimization of our quadratic model about x; over the ball of radius s

centered at zp. Then

flor) = flak + 0k)

will be the actual reduction of our objective function and

q(zk) — gk + 0k)

will be the predicted reduction of our objective function made by our quadratic model. To
measure how good our quadratic model is, we compute the ratio of the actual reduction

to the predicted reduction, i.e.

(
(

rE =

[=SRh™

) — flzr + ok)
) — qeg +0k)

Lk
Lk

If the ratio is close to 1 or greater than 1, we might want to enlarge the neighborhood

where we trust our model to allow a larger step. On the other hand, if the ratio is small,

CHAPTER 2. THE TRUST REGION METHOD 11

or even negative, then we will reduce our neighborhood.
We can now outline the trust region method. Many variants exist. Our algorithm is

taken from Fletcher [3].
Algorithm 2.1. (Trust Region Method)
1. Given xy, and sy, calculate V f(zy) and V2 f(xy).
2. Solve for &,
ok € argmin Vf(axp) 0 + S8V F(ar)dk
s.t. |6k |1* < s3.
$. Evaluate ry,.

4. (a) If ri, < 0.25 set spyq1 = ||0k]|/4.
(b) If ri, > 0.75 and ||6k|| = sk set spy1 = 25k.

(c) Otherwise set sgy1 = si.
5. Ifr, <0 set a1 = xp else a1 = T + Of.

We end this section with two theorems about first and second order optimality condi-

tions when minimizing function f(-). Proofs of these theorems can be found in Fletcher

[3).

Theorem 2.1 (Global convergence). For Algorithm 2.1, if x, € B C R" Vk, where
B is bounded, and if f € C? on B, then there ezxists an accumulation point x> which

satisfies first and second order necessary conditions.

Theorem 2.2 (Quadratic Convergence). If the accumulation point x* of Theorem

2.1 also satisfies the second order sufficient conditions, then for the main sequence r — 1,

CHAPTER 2. THE TRUST REGION METHOD 12

zp — ¢, inf s > 0 and the bound ||8]|* < s is inactive for sufficiently large k. Also the

convergence is quadratic.

The first theorem tells us, if the sequence of iterates is bounded, that we can expect
to have an accumulation point satisfying the first and second order optimality conditions.
The second theorem tells us that eventually the method reduces to Newton’s method if
we converge to a local minimum where the second order sufficient optimality condition
holds, hence quadratic convergence occurs.

An interesting fact to be aware of for a trust region algorithm like Algorithm 2.1
is that accumulation points for which stationarity does not hold may exist. This has
recently been shown by Yuan [34]. He constructed an example where one stationary
accumulation point exists (as expected according to Theorem 2.1), but where two non-
stationary accumulation points also exist. Yuan [34] shows that trust region methods that
feature a step similar to step 5 of Algorithm 2.1 may have non-stationary accumulation

points, i.e. we may have

limsup |V f(ar)|| > 0.

k— oo

On the other hand, trust region algorithms that set x3y1 = ax if rix < 79, where 79 is a

positive number greater than 0, all have stationary accumulation points, i.e.
lim ||V ()| = 0.
k—o0

In the numerical tests of Chapter 7, we use a trust region method (Algorithm 7.1)
that has this feature.
This chapter gave the motivation for studying TRS. The next chapter deals with how

one might compute the desired minimum. Fortunately, the problem has a fair amount of

CHAPTER 2. THE TRUST REGION METHOD

structure.

13

Chapter 3

The Structure of the Trust Region

Subproblem

In this chapter, we present the theory needed to understand TRS. We will from now
on refer to TRS as it was stated in (2.2). Of course the first step is to derive the
Karush-Kuhn-Tucker optimality conditions. It is shown that the second order optimality
condition has a strengthened form for TRS. We also demonstrate that unless a special
situation occurs, the optimal solution will always lie on the boundary. The two theorems
needed to show this and their proofs are taken from Sorensen [26] (see also Gay [4]). Of
course, knowing these optimality conditions is essential as any algorithm for TRS will
alm at satisfying them.

We end this chapter with two different cases we need to be aware of to solve TRS
efficiently. Most of the difficulties come from the case referred to as the hard case and we

show by example why being able to solve this case is essential.

14

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 15

3.1 Optimality Conditions

We first derive the Karush-Kuhn-Tucker necessary optimality conditions and establish
that the second order necessary conditions can be stated in a strengthened form to make
them also sufficient. In particular, we show that the convexity of the Lagrangian function
and the complementary slackness equation implies that the conditions are sufficient. We
let in the following theorem and for the rest of this thesis the symbol = be the Léwner
partial order on positive semidefinite matrices, i.e. A > B if A— B is positive semidefinite.

Similarly, 4 > B if A — B is positive definite.

Theorem 3.1 (Necessary and Sufficient Conditions). z* is a solution to (2.2) if
and only if ||2*||* < s and z* is a solution to an equation of the form

(A= XI)z*=a
with A — X*I = 0, A* < 0, and X*(s? — ||z*||) = 0. Furthermore, if A — *I = 0, a* is

UNLQUE.

Proof:

First suppose that z* is a solution to TRS. Since s > 0, without loss of generality, we
can assume that the trivial case z* = 0 does not hold. Note that z* is a regular point,
since the only constraint has non zero gradient and therefore is linearly independent.

Therefore, there exists a unique Lagrange multiplier A*. Define the Lagrangian function

L(z,) =2l Az — 2aTx — \(||z]|* - 5?).

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 16

The Karush-Kuhn-Tucker conditions for (2.2) yield

|lo*||* < s* (Feasibility),

VeL(z*, X)) =(A—-X1)2" —a=0 (Stationarity),
M()lz*|| — s?) =0 (Complementary Slackness),

A" <0,

and if ||2*]|? = 5%, yT(A-XND)y>0 forally>yTa*=0 (2nd order nec. cond.).
We now prove that the second order necessary condition can in fact be strengthened to
A — XTI > 0. Since z* solves TRS, ¢(z) > ¢(z*) for all = satisfying ||z||* = ||«*||*. This
with (A — A*T)z™ = a yields
el Ax — 2$*T(A - XDz > v Az — 2$*T(A — X I)z™.

Using ||z||* = ||z*||?, we can write the previous equation in the following way:

eT(A = XD — 2$*T(A — XDz > —w*T(A - Xz~

sl (A- X1z - 2$*T(A — X1z + x*T(A —AX)z" >0

o @ -o)TA-ND(2"—z)>0.
This yields

yI(A=XNDy>0 forallysyla*#0,

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 17

since for y 3 yT2* # 0, y = a(z* — @) for a well chosen a # 0 and z (choose o = 2||ny||2

x*

and x = z* — éy) This last inequality in addition to the second order necessary condition

yields

A—XT*»0.

To prove the converse, let z* and A* < 0 be a solution to

la]* < 7,
(A—XIaz*=a,
A(lla|* = s%) = 0,
A-XT+x0.

Then for any z € R”

(@ — &) (A= M) (2" —2) > 0 (3.1)

al(A- N1z - 2$*T(A — Az > x*T(A — A" Da™ — 2$*T(A — A"z~

ST (A= XDz —2a"e > x*T(A — N)a* — 242"

& q(2) > q(™) = A (l27)1* = fl=*)-

Now since A*(||z*||? — s?) = 0, either A* = 0 or ||2*||* = s®. If A* = 0, the last inequal-

ity establishes that 2* solves TRS and that it is an unconstrained minimizer for ¢(z),

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 18

i.e a minimizer over R". Alternatively, if ||z*||* = s%, then —A*(]|z*||* — ||=||*) > 0 for
all o such that ||]|* < s* and again the last inequality establishes that 2* solves TRS.
Note also that if ||z*]|2 = s? then the last inequality implies that z* is a solution to
min{q(z) : ||z||* = s?} independent of the sign of A*. Finally, uniqueness follows because

(3.1) holds strictly for o # 2* if A — X*I > 0. |

We now show that if an unconstrained minimum exists for ¢(-), unless it is unique

and lies in the interior of the trust region {z : ||z||* < s?}, there will exist a solution on

the boundary, that is ||2*||* = s? for some optimal z*.

Theorem 3.2. The problem (2.2) has no solution on the boundary if and only if A is

positive definite and ||[A™1a|]? < s2.

Proof:

If A is positive definite and |47 a||* < s?, then it follows that the minimizer of ¢(z) is
unique and because it lies within the trust region, there is no solution on the boundary.
If no solution lies on the boundary, then the optimal solution x* satisfies ||2*[|? < s?
and by complementary slackness we must have A* = 0. Since A — A*I > 0 by Theorem
3.1, then A > 0. If A was singular, then choosing z 3 Az = 0 for some z such that
||z* 4 2]|* = s* would imply, by Theorem 3.1, that 2* + = is an optimal solution to TRS,
contradicting the fact that no solution lies on the boundary. Therefore, A must be posi-

tive definite. By stationarity, s* > ||2*||* = |4~ a||% [|

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 19

3.2 Different Cases to Consider

Looking back at the optimality conditions, if we assume a solution to TRS occurs on the

boundary, it would seem natural to attempt solving the equation

(A= AI)"ta|)? = 5% (3.2)

This leads us to wonder when is A — A*I singular. The conditions for this to occur are
well know in the literature. Singularity of the matrix A — A*I is referred to as case 2 of
the hard case. Non-singularity can result in either the so-called easy case and also case 1
of the hard case. Some authors refer both to the easy case and case 1 of the hard case as
the easy case.

If @ is not perpendicular to the null space

{z: (A - X (A))z= 0},

where A;(A) is the smallest eigenvalue of A, then we have the easy case and A —A*I > 0.

In particular A — A*I is invertible. We can therefore solve (3.2). To see this, note that

af NA- A =ag RA-MA) =3 (A-\(A)]z = a,

where the first implication follows from N (A — Ay (A)I) L R(A — A\ (A)) (N stands for
the null space and R for the range space). The last result implies that for A = A1 (A4)
stationarity is not satisfied, hence A* # A;(A). Since A — A*I = 0 = A* < A\(A4) and
A-XNIT=05 X < A (A), then A — X > 0.

In a complementary manner, the hard case occurs when «a is perpendicular to the

eigenspace of the smallest eigenvalue of A. Two possibilities may occur: A* < A;(A) and

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 20

this is referred to as the hard case (case 1), or A* = A;(A) and we call this the hard case

(case 2). We resume the three different cases in the following table:

Easy case Hard case (case 1) Hard case (case 2)

1 a f NA-MAD | 1) al NA-MNAT) | 1) al VA=A

2) A" < Ay(A) 2) A* < Ay (A) 2) A" = Ay(A)

Note that 1) implies 2)

Table 3.1: The three different cases for the trust region subproblem.

In the hard case (case 1) no difficulty occurs and we can still solve (3.2). On the other
hand, in the hard case (case 2), it is possible that |[(A — AI)~!a||? is considerably less
than s? for all the A that make A — AT positive definite. We show this with the following

example taken from [18].

Example 3.1. Let

A= and a=

Here A1 (A) = —1 and clearly this is the hard case. For a given X, let x()\) be

z(A) = (A—A)"ta.

A short computation gives

1

e OIP = =y

For A—AI » 0, A < =1, and the right hand term takes values between (0,1/4). Therefore,

CHAPTER 3. THE STRUCTURE OF THE TRUST REGION SUBPROBLEM 21

for s < 1/2, ||lz(N)||? = s* has a solution X < —1 and we find ourselves in the hard case

(case 1). If s > 1/2, then X* has to be —1 and letting

s2—1/4
1/2

shows, after a quick check, that * and z* satisfy the optimality conditions. This is then

the hard case (case 2).

This example shows that if the hard case occurs, solutions () for different values of
A < A1(A) might have a norm much smaller than the radius of the trust region. Being
able to handle such problems is important since in the trust region method we want to
take steps as large as possible between each iterate. Restricting ourselves to the easy case
implies that a large step might be impossible if we find ourselves in the hard case. This
was a flaw in the algorithms of Marquardt [14] and Goldfeld and al. [5].

Numerically, when « has small components in the null space of 4 — A;(A)I, we have
to consider the hard case. Not being able to handle the hard case leads to numerical
difficulties due to the ill-conditioning of the matrix A — AT for X close to A\;(A4). Fortu-
nately, the handling of the hard case has been solved by Gay [4] and perfected by Moré

and Sorensen [18]. We study the Moré and Sorensen algorithm in the next chapter.

Chapter 4

Two Different Methods to Solve
TRS

In this chapter, we explore two different methods that solve TRS. The first method is the
one developed by Moré and Sorensen [18] in a paper they published in 1983. The paper
is commonly cited in the field, since it is the first algorithm to have an efficient numerical
method for handling the hard case and, as we mentioned previously, this seems like an
important feature for a trust region algorithm.

The second method is due to Gould, Lucidi, Roma and Toint [7]. This method is quite
new, as it was published in 1999, and presents a way to exploit sparsity of the matrix A.
The motivation comes from the increasing speed of computers and the desire to handle
larger problems. Since A is the Hessian of f(-), for a problem with a large number of
variables, the Hessian is likely to have many zero entries.

A third method will be presented in this thesis, but in Chapter 6, since we first need
to present the duality theory for TRS in Chapter 5. The duality theory will also be used

to explain the first two methods in a different way than what will be done in this chapter.

22

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 23

4.1 The Moré and Sorensen Algorithm

This algorithm features efficient handling of the easy and the hard case, but it does not
exploit sparsity. In the easy case and the hard case (case 1), Newton’s method is used
implicitly to solve (for A) the equation ||(4 — AI)~!a||*> = s?, although this is not the
equation Newton’s method is applied to. The hard case (case 2) is handled by moving
from a feasible solution to the boundary. The technique is meant to handle the hard case
(case 2), but also proves to be of use in the other cases. It is executed every time a solution
in the interior of the feasible set is encountered, and therefore few iterations are needed
when the hard case (case 2) occurs. Also, if a unique unconstrained minimizer exists and
is in the trust region, then in at most two iterations the algorithm will terminate and find

this optimal solution.

4.1.1 Handling the Easy Case and the Hard Case (Case 1)

Agsuming the solution of TRS lies on the boundary, the easy case is handled by finding

a A which satisfies the equation
(A= XI)"ta||* =%, A—-A>0.

This is possible in the easy case since we know that A — A*I is invertible. First, let
z(A) == (A — A)7ta, and let QAQT = A, where @ is an orthonormal matrix having
eigenvectors of A as its columns and A is a diagonal matrix having the eigenvalues of A
on its diagonal in nondecreasing order, that is Aj; = A(A4) < ... < Apn = An(A). This

can be done since A is a symmetric matrix. Then we have

lz)IF = I(A = AD) ™ al® = [Q(A = AD)T'QTal* = [[(A = A1) 'Q"a]?

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 24

n 2

= eI =3 e (1)

=1

where v; is the jth component of QTa. This expression will help in the analysis that

follows.

Instead of applying Newton’s method on the function [|z(A)]|? — s? to find its zero,

Moré and Sorensen consider the function

which shares the same zero (see Reinsch [22],[23] and Hebden [24]). It can be shown,
using the rational structure of ||z ())]|?, that this function is less nonlinear. In fact, if A
is a multiple of the identity, then it is purely linear. Therefore, Newton’s method applied
to this function will be much more efficient. Now, by definition of Newton’s method, and
given Ay, then Az4q is obtained in the following way:

A
AW:M‘ﬁ&'

In practice, the Moré and Sorensen algorithm uses the algorithm below to compute Agyq.
In this algorithm A is assumed to be nonpositive, not to be equal to A;(A) and to
strictly satisfy the strengthened second order optimality conditions (so that the Cholesky

factorization can be used).

Algorithm 4.1. Assume A\, <0 and A — M\ I = 0 (i.e. A\ < A(4)).
1. Factor A — M\ = RTR (Cholesky factorization).
2. Solve, for x, RTRx = a (z is then x(\y)).

3. Solve, fory, RTy=z.

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 25

4. Let Ny = A — {Mr [els)).

(vl

We now show that these linear algebra computations are indeed executing Newton’s

method. First note that

QA - MDNQT=R"R= (R")7'Q = RQ(A — \.])7! (4.2)
and also
Q"RTRQ = A — Ml = (RQ(A - M) TAHT(RQA — N I)V?) =1
= RQ(A — \I)™Y? is an orthonormal matrix. (4.3)
We have

y= (R e =R YRTR) o= (RN M A - D)7 ta = (RDTIQA - M) 71Qa

= (RH)'QA - D)"Yy = RQ(A - M)y

where the last equality follows from (4.2). This gives

n 2

2 _ 1/2 3/2.12 _ 3/2. 112 oy
Il = [RQ(A — AeD)™ (A = MI) ™| = (A = MI) ™/]? =]Z:;W(A)_w’

where we have used (4.3) in the second equality. Now we have

1N

= 22 = 2ly|I*.

axllz(x

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 26

This gives
d 2
AT ‘
Aeol] = aepe| - e Oy e
dx A=A\, dx A=Ak 2||@(Ax)]| 2 ()|]|
Therefore
d
S I NN
/)\ = d ‘ = d (1 __ 1 ‘ — A=A _ y
(b(k) d)\(b()\) A=A dX (s ||x()\)||) A=AL ||$()\k)||2 ||$||3

and Agy1 can then be expressed as

d(M) (1 1 >||x||3 B <||x||—s> Bl
Ak — = =-— S VR (1 |
Fe0w s el D s)yl

as given in the algorithm.

If one can find a Ag such that A\g < A1(A) and ¢(Ag) > 0, then Algorithm 4.1 converges
quadratically, since ¢(A) is a convex function strictly increasing on (—oo, A;(A4)). Hence it
has a unique zero of multiplicity one and Newton’s method ensures quadratic convergence
when initiated from a A, inside the interval where the function is increasing and convex,
that satisfies ¢(A) > 0. In practice, it is always possible to find such a A, because we
always find ourselves in the easy case (equation (4.1) shows that in the easy case ||z ()|
is a function that takes all values from 0 to oo when A varies from —oo to Aj(A). Hence,
for A < A1(A) and close to A1 (A), ¢(N) is positive.), since, generically, a is not exactly
perpendicular to the null space of S;. Yet, we have to be careful when « is almost
perpendicular to the null space of Sy. This is called the almost hard case. In the almost
hard case, ¢(-) has a sharp simple cusp at A;(A) and this is due to the fact that in theory
|[z(A)]| is bounded when A < A;(A4). In the almost hard case, problems occur if A* is

close to A;(A), since the A for which A < A;(A4) and ¢(A) > 0 are contained in a very

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 27

small interval. Furthermore, Algorithm 4.1 may have computational difficulties, since
eventually the matrices A — A will be ill-conditioned. Figure (A.3) illustrates this case
which is referred to as the almost hard case (case 2). On the other hand, in the easy
case, or even in the almost hard case (case 1), the function is smooth near * and also,
because A* is not close to A;(A), there is no ill-conditioning of the matrices A — A\ I and
no difficulties are encountered when Algorithm 4.1 is applied. Figures (A.1) and (A.2)
illustrate these two cases.

The Moré and Sorensen algorithm applies Algorithm 4.1 and uses a backtracking
scheme, on the iterate A\, that was obtained, to guarantee Ay < 0 and Ap < A;(4).
Quadratic convergence occurs once a A that satisfies A < A;(A4) and ¢(A) > 0 is found.
The difficulty of finding such A in the almost hard case (case 2) and the ill-conditioning
problems would slow down the algorithm. Fortunately, the Moré and Sorensen algorithm

has a very efficient way to handle this case. This is what we explain in the next section.

4.1.2 Handling the Hard Case (Case 2)

In the almost hard case (case 1), i.e. when A* is far enough from A;(A), then the above
algorithm still gives good results and numerical difficulties don’t occur. On the other
hand, the almost hard case (case 2) requires more care, since A* is close to A;(A). In
theory, in the hard case (case 2), a solution to TRS can be obtained by finding a solution

z(A1(A4)) to the system

(A-MA)DNz=qa

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 28

with a norm less than or equal to s and an eigenvector z € Sy. Then, for some 7 € R,

such that ||z(A1(4)) + 72| = s,

¥ =z(M(A)+ 712

satisfies the optimality conditions of Theorem 3.1. The following lemma is the key to
implement this idea numerically and it elaborates on Lemma 3.4 in Moré and Sorensen

[18].

Lemma 4.1 (Primal step to the boundary). Let 0 < ¢ < 1 be given and suppose

that

A-X=R'R, (A-Xz=a, X<O0.

Let z € R™ satisfy

o+ 21" = 5%, [|[R2]]* < o (|| Ra||* — As?).

Then

—q(z+2) > (1= o)(||Rz|* = As*) > —(1 = 0)q(a7), (4.4)

where x* is optimal for TRS. Therefore

lg(z + 2) = q(27)] < alg(+7)]. (4.5)

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 29

Proof:

For any z € R"™ we have

gz +2) = @+2)TA-XD(z+2)—2aT (2 4+ 2)+ M|z + 2|)?
= (2 +2)TRTR(x 4 2) — 22TRTR(x + 2) + ||z + 2|?
= 2T'RTRy + 22T RTR> 4+ :"RTRz — 22" RTR2y — 22T RTR> + Az 4+ z||2

= —([R2]l* = Allz + =[*) + | R=]]". (4.6)

If ||z + z||? = s? and ||Rz||* < o(||Rz||? — As?), then

—q(z +2) > (1= o) (|| Rx]|* = As?). (4.7)

If 2 + 2* = «™, where z* is optimal for TRS, then

gl +27) > =(|[Ra]* = As) + || R2||* > (|| Ra|* = As?)

and

—glo+27) < [Re|]? - s, (4.8)

Inequalities (4.7) and (4.8) yield (4.4), which implies

— gt 2) > (1 o) (—qla+)
= e +2) - qle+) < —oqla+ =) (4.9)

= lale+2) —qgle+27) |[<afglz+27)].

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 30

The last inequality is (4.5) and follows since ¢(z + z) — ¢(z 4 z*) > 0. Therefore the left

hand side of (4.9) is positive and —q(z + 2*) = |¢(z + 2¥)|. |

A consequence of this lemma is that if we can choose a small ¢ for which there exists
a z that satisfies ||Rz||* < o(]|Rz||> — As?) , @ + z is nearly optimal, i.e., according to
(4.5), the relative distance between ¢(z 4 z) and ¢(z*) is less than ¢. In the almost hard
case (case 2), when A is close to A1(A), we can expect this to happen as R will be nearly
singular. Moreover, given a feasible solution inside the trust region, taking such a step
might still improve the objective if ||Rz|| can be made small. Therefore, the lemma’s
application goes beyond the almost hard case (case 2). Because the goal of this step is
to improve the objective of TRS, to which we will refer to as the primal objective, in
opposition to the dual objective of the next chapter, we call this technique a primal step
to the boundary.

We end this section by discussing two technical details of this step. First, given R, a
normalized vector z is computed such that ||Rz|| is as small as possible using a LINPACK
(now LAPACK could be used) technique. Second, a scalar 7 such that ||z + 72||* = s% is

obtained by the following formula:

s —||x
- : 4.10
T T + sgn(aT2)2((aT2)2 + (s2 — ||2]]2))1/2 (4.10)

This expression comes from the fact that for such a z and a feasible solution z there are
two values of 7 such that ||z +72]|* — s* = 0 (the left hand term is a quadratic polynomial

in 7). Using equation (4.6), we have

q(z +72) —(IR=[* = Allz + 72[1%) + |R(72)|*

= —([Ra|]* = As*) + || R2||".

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 31

This implies that we must pick the solution 7 with smallest magnitude, i.e. among the
two possible steps to the boundary, we choose the closest one to #. This is how the above
expression for 7 is obtained.

Lemma 4.1 is very handy in practice. Every time a solution is inside the trust re-
gion, we can try to obtain an improvement for the objective function using this lemma.
Moreover, if the almost hard case (case 2) is encountered, the algorithm handles it im-
mediately and very few iterations are needed in practice (2-3 iterations). This idea has
been generalized to the sparse case in the Rendl and Wolkowicz algorithm presented in

Chapter 6.

4.1.3 The Main Algorithm

Basically, the algorithm tries to solve TRS using Algorithm 4.1 and a safeguarding scheme
is used to ensure the Ap are such that A — Al > 0 and Ap < 0. This scheme also keeps
upper and lower bounds on A* and makes sure the gap decreases after each iteration.
Furthermore, the safeguarding scheme is such that if the solution to TRS lies inside the
trust region (i.e. it is an unconstrained minimum), then after at most two iterations,
A =0 is tried and an optimal solution is found. If the almost hard case occurs, as stated
above, z(Ag) lies in the interior of the trust region and a primal step to the boundary is
taken.

The Moré and Sorensen algorithm, at the time it was published, was a breakthrough,
as it could handle any of the cases that occurred for TRS very efficiently. Especially,
in the almost hard case (case 2), it takes only few iterations, as opposed to previous
algorithms that were slowed down in this case. Since then, other algorithms have worked
on exploiting the possible sparsity of A which occurs in large problems. The Moré and

Sorensen algorithm fails to exploit sparsity because the Cholesky factorization is used

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 32

(though for some problems, a sparse Cholesky algorithm may work). For example, if A
has non-zero components only on its diagonal and its first row and column, the matrix R
obtained with the Cholesky factorization will be full (assuming symmetric permutations

are not used). We present in the next section an algorithm that exploits sparsity.

4.2 The Lanczos Method

The method presented here is issued from a paper by Gould, Lucidi, Roma and Toint
[7] and is quite recent since it was published in 1999. As mentioned before, current
attempts to solve TRS now focus on how sparsity of the matrix A can by exploited.
The algorithm developed by Gould et al. only requires matrix-vector multiplications and
therefore exploits the sparse property of A. The main technique used in the algorithm
involves a Lanzcos tridiagonalization of the matrix A. Hence, this TRS method is referred
to as the Lanczos method.

The approach used here is to solve the relaxed problem

min ¢(z)
st |22 < s (4.11)
x €S,

where S is a specially chosen subspace of R™. The way S is chosen is inspired by the
Steihaug-Toint algorithm [28], where the conjugate gradient method is used to find an
approximation to the solution of TRS. Unless a global minimizer exists for ¢(-) and lies
in the interior of the trust region (so the conjugate gradient method converges to this
minimizer), this algorithm follows the piecewise linear path obtained from the conjugate
gradient method. Once the path hits the boundary, the location where the path and the

boundary meet is set to be the approximation.

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 33

When the boundary has not been attained after k iterations of the conjugate gradient

method, 41 is the solution to (4.11) with the subspace S defined by

S := span{a, Aa, A%a, A%, ..., AFa} (4.12)

(see Bertsekas [1] p.133). The Lanczos method uses the same kind of subspaces.
Lanczos tridiagonalization (see Golub [6]) can be used to build an orthonormal basis
{90, q1,- ., qr} for the subspace S. Moreover, if Q is the matrix Qx := (g0, ¢1,- -, @),

then the following equations hold

AQk = QiTe = Vet1k+1€h415 (4.13)
QLQr = Ig, (4.14)
QLAQr = T, (4.15)
—Qfa = e, (4.16)

—a = 7040, (4.17)

where Ir1q is the identity matrix of dimension k + 1, egyq is its k+ 1 — th column, T} is

the tridiagonal matrix

Tk: . . .)

&k = qf Aqi, 0 = |lall, ¢-1 = 0, g0 = a/||a||, and v = ||(A— ¢}, Agr—11)qk—1— Vi1 qr—2]|

and qp = (A — ¢f_ | Aqe—1D)qr—1 — Vk—1qk—2)/ vk for k > 0.

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 34

The T} have the property that their extremal eigenvalues become better approxima-

tions, as k grows, of the extremal eigenvalues of A. Now, (4.11) is equivalent to

min ¢(z) = min ATQTAQrh - 2(QLa)Th
st [lz])? < s st ||RTQLIQkR|? < s2.

x = Qrh

h € R!

Using (4.14), (4.15) and (4.16) yields the equivalent problem

min AL TLh + 27061Th (4.18)
s.t. [|A]|? < st
The Lanczos method works initially as the Steihaug-Toint algorithm, i.e. the conju-
gate gradient method is applied until it converges or until it hits the boundary. If the
boundary is attained, it starts solving problems of the type (4.11) using the subspaces of
the form (4.12). When this step is reached, this means that there is no global minimizer
in the interior of the trust region and the solution must be on the boundary. Therefore,
instead of solving problem (4.18), the following problem is solved:
min ATTLh + 27061Th (4.19)
st ||R|]* = s
The advantage of solving problem (4.19) is that the Moré and Sorensen algorithm may
be used to find the optimum, even for large problems, since the Cholesky factorization
can take advantage of the tridiagonal form of Ty to preserve sparsity. They do not use
the full power of the Moré and Sorensen algorithm, since they handle the almost hard

case (case 2) like the easy case and since they are able to find a A to start Algorithm 4.1

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 35

such that

1 1

oV =3 Tmon

>0, Trgr —M >0 and A<O0.

Therefore, the generated sequence of A immediately converges quadratically towards A*
and no safeguarding is necessary. We will refer to this modified form of the Moré and
Sorensen algorithm as the simplified Moré and Sorensen algorithm. Because this algo-
rithm is also used in the almost hard case (case 2), ill-conditioning in this case will slow
down Algorithm 4.1, as mentioned in the previous section.

We return to problem (4.19). By the proof of Theorem 3.1, the necessary and suf-
ficient optimality conditions are that there exist an optimal solution hy to (4.19) and a

corresponding Lagrange multiplier Ag such that

Ihl? = 5%,
(Tk—)\k_[)hk = 7o¢€1, (420)

To— MI = 0.

Now, zy := Qhy is an optimal solution to the relaxed problem (4.11) and is in particular
a feasible solution for (2.2), since ||zg||* = s*. We then get, using (4.14), (4.15) and

(4.16),
QL (A =MD = QF (A — MD)Qurhr = (Th — MeIig1) b = 061 = Qra
and

A <0 and Ag(||zg* - %) = 0.

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 36

Hence, the stationarity of zj for problem (2.2) is satisfied up to a matrix multiplication
on the left hand side, complementary slackness is satisfied and the sign of Ay is correct.
Yet, the positive semidefiniteness of A — AiI is not ensured, although for large k we can
expect it since Ap < A1(T%) by optimality and since Lanczos tridiagonalization implies
that Ay (T%) — A1(A4) (and reaches it eventually for some k < n—1). To decide how good

the approximation zj is, we have the following theorem, which is Theorem 5.1 in [7].

Theorem 4.1.

(A= MDzr—a = Yrp1€y hades

and [|(A =MDz —all = Fierlerpahel-

Proof:

Az = AQihy
= QrTihi + Yep1@rr1€i he (from (4.13))
= Qr(Axhr + voer) + ’Yk+1€£+1hqu+1 (from (4.20))
= MQrhi + 70Qxe1 + V16t 41 Pk @it
= ATk + Y090 + Vo164 1 Mt

= Map+a+ 'yk+1e£_|_1hqu+1 (from (4.17)).

The norm equality follows since qg+1qk+1 =1. |

This theorem is used in the stopping criteria of the algorithm: when 'yk+1|e£_|_1hk| is

small, the relationship (A — A\pl)z, = a is almost satisfied and zy is considered a good

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 37

approximation to TRS.

We now state their algorithm.

Algorithm 4.2 (Lanczos method). Let zo = 0,90 = —a, o = ||90|| and po = —go. Set

the flag INTERIOR as true. For k =0,1,... until convergence, perform the iteration,

ar = |lgkl1*/ (F Apr)-
Obtain Ty, from Tp_q.
If INTERIOR is true, but oy < 0 or ||z + agpi]|? > s%,
reset INTERIOR to false.
If INTERIOR is true,
T4+1 = Tk + 0Pk,
else
solve the tridiagonal trust region subproblem (4.19), using
the simplified More and Sorensen algorithm,to obtain hy.
end if
Jkt+1 = gk + arApr.
If INTERIOR is true,
stop if ||grs1|| < max(107%,1075||al]),
else
stop if Ve1lef ikl < max(107%,1077||al]).
end if
B = llgr+1l1/ll gl
Pr+1 = —Gkt1 + Brpr-
If INTERIOR is false, set x, = Qhyg.

A first note on the algorithm is that if INTERIOR is always true throughout the algo-

rithm, then the algorithm is the conjugate gradient method and convergence is satisfied

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 38

when the norm of the gradient of the global minimizer sought is close to 0. A second note
is that the conjugate gradient method is used to generate the vectors qo, q1, . . . , g of the

Lanczos tridiagonalization algorithm, since we can obtain them from the relationship

qk = ok gk/||gk||, where o = —sign(ag_1)ok—1 and o9 = 1,

and the tridiagonal matrix T} can be obtained from

1 V8o
g oo
VB 1 + Bo V8L
lao] a1 T ao o |
VB 14 B
T, — ol A T

1L Br—2 vV Br—1

A —1 A —2 |ak—1|
V Br—1 1 Br
L |ak—1| ap A —1

This also gives the relationship between T} _; and Tj. A third note is that if the almost
hard case (case 2) occurs for a problem of type (4.19), the method is slowed down. The
paper of Gould et al. [7] describes a way of handling this case, but it remains ineffective
in practice. A last note is that min(0.1, ||a]|®!)||a|| was used in the stopping criteria
of the original Lanczos method. We use max(107%,107>||a||). This expression was also
suggested in [7]. In the Rendl and Wolkowicz algorithm, we use this tolerance for the
duality gap. As we will show in the duality chapter, the stopping criteria of the Lanczos
method partially measures the same duality gap. We use the same tolerance in both
algorithms , i.e. max(107% 107"||a||), so that we can compare both algorithms in the
numerical section.

Concluding remarks on this algorithm would first be that convergence of the Lanczos

method is based on the quadratic convergence of Newton’s method applied to the function

CHAPTER 4. TWO DIFFERENT METHODS TO SOLVE TRS 39

#(+). Yet, quadratic convergence of a trust region algorithm is not what is most important.
Rather, quick finite termination is what is needed and is what the Moré and Sorensen
algorithm achieves. To obtain this, handling of the almost hard case (case 2) is essential.
A second remark is that compared to the Moré and Sorensen algorithm, the Lanczos
method is able to use the sparsity of A, but loses the handling of the almost hard case
(case 2). It would be nice if both the almost hard case (case 2) and sparsity could be
handled in an algorithm. We present such an algorithm in Chapter 6. To come to this,
we first need to derive the duality theory behind TRS. This is the subject of the next

chapter.

Chapter 5

Duality

In this chapter we study the duality theory behind TRS. One of the main theorems
of this section is that strong Lagrangian duality holds for TRS. It enables us to build
different dual problems whose properties give us a new look at the previous algorithms.
In particular, we will show that the three algorithms we consider in this thesis can be
set within a semidefinite framework. Rendl and Wolkowicz [31] showed that this was the
case for their algorithm and the one of Moré and Sorensen. In this chapter we show that
it is indeed also the case for the Lanczos method. We show that their stopping criteria

is in fact measuring a duality gap.

5.1 Deriving the Duals

For the purpose of this section, we will deal with TRS where equality holds for the

constraint (¢(-) and s are defined in Chapter 2):

40

CHAPTER 5. DUALITY 41

(trs.) LT oA (5.1)

st ||z|]* = s%
We will refer to this problem as TRS_ . The necessary and sufficient optimality conditions
for this problem are the same as those given by Theorem 3.1 for TRS, except that A* € R

*

(the proof can be derived from the proof of Theorem 3.1). Precisely, z* is optimal for

TRS_ if and only if there exists a unique Lagrange multiplier A* € R such that

(A—A1)az"=a,
(A=X1I) =0, (5.2)
27| = s*.

We first show that strong duality holds for TRS— . The result is due to Stern and
Wolkowicz [32] who showed the deeper result that strong duality holds for the minimiza-
tion of a quadratic objective subject to the constraints 8 < 27Ca < «, where C is a
symmetric matrix (no definiteness is assumed) and where 3 and « are constants such

that § < a.
Theorem 5.1 (Strong Duality). Strong Lagrangian duality holds for (5.1), i.e.
¢* = min sup L(z,\) = max inf L(z,A),
x by x

where L(z,\) = q(z) — A(||z]|* — s?) is the Lagrangian function, and the dual is attained.

Proof:

The left equality follows easily and we only need to prove the right equality. Define the

CHAPTER 5. DUALITY 42
dual functional
d(A) = iI;f L(z,).
Then, by weak duality,
¢" > max ¢(A). (5:3)

One can show that limy_,_o ¢(A) = —oo (to show this refer to equation (5.11) in the
proof of our next theorem) and that ¢(A\) = —oo for A > A;(A), hence ¢(A) is a coercive
function and the right expression is well defined. Now, if ™ is optimal for TRS_ and A*

is its Lagrange multiplier, we have
L(z*,*) =inf L(z,\™).

This is true by the optimality conditions (5.2),i.e. L(z,*) = 2T (A - Az —2aTz 4+ *s?
is a convex function (since A — A*I » 0) which has a stationary point at z* (since

(A= X1)z* —a=0). We then have the following:

¢ = q(@*) =X (]]2*]|* —s*) (by feasibility of z*)
= L(2*,\") = inf L(z,\)

= 6(V) < max H(N).

This yields

¢ < max 6(). (5.4)

CHAPTER 5. DUALITY 43

Equations (5.3) and (5.4) imply that there is a zero duality gap. The attainment of the

dual follows from the optimality conditions (5.2). |

It is not too difficult to modify this proof to show that strong duality also holds for

TRS. Theorem 5.1 modified to show strong duality for TRS would yield

min i?g Lz, \) = r)r\lgéc lI;f L(z,\) = r)r\lgéc o(A). (5.5)

We now use the last theorem to derive some dual problems to TRS_ . References to the
work done in this section are Stern and Wolkowicz [32] and Rendl and Wolkowicz [31].

First, we consider the Lagrangian dual
max inf L(z,), (5.6)

for which we proved the optimum is ¢*.
Since L(z,)\) = 2T (A — M)2 — 2aTz + As?, then the inner infimum in (5.6) goes to

—oo if A — Al is not positive semidefinite. This yields the equivalent problem
= inf Lz, \).
O Y
Define

h(\) = As? —al (A - AD)a,

where { stands for the Moore-Penrose generalized inverse. Now if A < A{(A4), then

CHAPTER 5. DUALITY 44

A=Al =0and
inf L(z,\)=L((4- A)7ra, A) = h(N). (5.7)

When A = XA;(A), if the system (A — A;(A)I)z = « has a solution, then one of them is
z = (A— X (A)I)Ta and this vector is therefore a minimizer of L(z,\;(A)). Hence, when

the system (A — A\ (A)I)x = a is consistent, then
inf L(z,A\(A) = L((A = M(A)DTa, M(A)) = h(M(4)). (5.8)

In the hard case, since a is perpendicular to N'(A — A\ (A)I), then a € R(A — A\ (A)]),
i.e. the system (A — A{(A4)I)z = a has a solution. Using (5.7) and (5.8) we deduce the

following result in the hard case:

¢ = max h(X). (5.9)

In the easy case and the hard case (case 1), since A* < A1(A4), then A* can be found
among the A such that A — AT > 0. Thus

*=L(z",\) = inf L(z,\) = in L(x,\).
q (™, A7) max in (x,A) ,max - min (x,A)

Again, (5.7) implies that in the easy case and the hard case (case 1)

* = R(N). 1
¢ = max (A) (5.10)

Problems (5.9) and (5.10) are quite similar and it would be nice to have a single problem

that would include both. This is what the next theorem provides.

CHAPTER 5. DUALITY 45

Theorem 5.2. The following problem is the Lagrangian dual for TRS_

(D) ¢ = sup h(N).
A—AI>0

In the easy case and hard case (case 1), the sup can be replaced by a max.

Proof:

Let A; be the smallest eigenvalue of A such that a £ N (A — N(A)I). Such a A\; may not
exist, but this implies that « = 0 and h(A\) = As? and the theorem trivially holds). Thus,
assume)\; exists. Note that in the easy case, \; = Aj(A). Also, let A = QAQT be defined
as in section 4.1.1. Because a L N (A—X;(A)I) for j=1...1—1, then a is perpendicular
to q1 ...q_1, where ¢j is the j-th column of Q. Hence, (Q7a); =, =0,forj=1...1-1.
Now let (A,) be a sequence converging to = (—o0, Af] such that, for all w € N, A\, €
(—oo, A7) and A — A, I is invertible. Then

h(w) = —at (A = ApD) 7o+ Aps® = —(QTa) (A = Mo D) 71QTa + Ny s?

n

2

J 2

=3 st (5.11)
= (A= Aw)

Note that A; — A, > 0 for j =1...n. Note also that by the definition of A;, if r is the
multiplicity of A; (e. Aoy < Ap=XNg1 = ... = Ngr—1 < Ai44), then there exist v; # 0
for j € {I,I+1...14r —1}. As a consequence, when A = X, h(Aw) — —o0. Therefore,
h(-) has a vertical asymptote and is not continuous in ;.

When X € (—00, A7), by equation (5.11) and since A; — A>0for j=1...n we have

—aT (A= XoD)7la + Mps? = —aT (A = AD)Ta + \s?,

CHAPTER 5. DUALITY 46

i.e. h(-) is a continuous function over (—oo, A;). In the hard case, since \; > A;(A4), then

h(-) is a continuous function over (—oo, A;(A)]. Therefore

Combining this result with (5.10) yields (D). Equation (5.10) also implies that in the easy

case and the hard case (case 1) the sup can be replaced by a max. |

This theorem, adapted to TRS, yields the following corollary:

Corollary 5.1. The following problem is the Lagrangian dual for TRS

¢ = sup h(A). (5.12)
A<0,A—AT>0

In the easy case and the hard case (case 1), the sup can be replaced by a max.

We need to note three things from this theorem. First, h(-) is a concave function on
(—o0, A7). To prove this, let {\,} be a sequence, defined exactly as in the proof of the

previous theorem, which converges to A€ (—o0, A7). We have

B (M) = —2aT (A = M\I)™ 22 o _A - = 22

(a note on the derivatives of h(+) can be found in Appendix B). Since A; — X > 0, then

the right term is nonpositive. Now note that

CHAPTER 5. DUALITY 47

Hence, for A € (—o0, Aj),

R'(\) = =247 ((A—= AX)H32a <0

and this proves the concavity of () on (—oc, A;). This shows that TRS— is equivalent to
finding the supremum of a concave function over an open interval (Appendix A provides
the graph of h(-) for the different cases).

A second comment on Theorem 5.2 is that despite the fact that A — AT needs to be
positive definite (since positive semidefiniteness is not enough as we will show below),
(D) is analogous to a nonlinear semidefinite program.

A third comment is that in the easy case, (5.9) does not necessarily hold. We show

this with the following example.

Example 5.1. Let

A= , a= , s=1/2.

Obviously, a is not perpendicular to N (A — M\ (A)I) and the easy case holds. A quick

computation shows that

1/2
¥ = and A= -3

CHAPTER 5. DUALITY 48

and q(z*) = —5/4, in agreement with (5.10). Now

0 0 1 _
h<A1<A>>=h<—1>:—[1 o] ol Lente Tt

Therefore, for this example h(A1(A)) > h(X*) = ¢*.

The next dual we consider is the one we obtain by taking the Lagrangian dual of (D)
in the hard case, i.e. problem (5.9). We showed previously that /(-) is a concave function
over (—oo, A7) and furthermore any A < A;(A) is a Slater point for (5.9). Therefore, there
is no duality gap between (5.9) and its Lagrangian dual (see Bertsekas [1]) and strong
duality holds, i.e

= h(A) = inf A(A)+t X(A- M
T A M = R i MO race (XA = AT

= min sup h(A)+ trace (X (A — \])).
pin, sup H() + trace (X (4 = A7)

Now
h(A) + trace (X (A — AI)) = h(A) — Atrace (X) 4 trace (X A)

is still a concave function in A over the interval (—oo, \;) and goes to —oo as A approaches
A; from the left. When A — —oo, different cases occur depending on the trace of X.
If trace (X) > s?, then the inner supremum goes to oo and we may wish to ignore
these X. When trace (X) = s%, it is not too hard to show that the function tends to
trace (X A) as A — —oo, and since the function is concave, then the inner supremum is

trace (X A). When trace (X) < s?, the function goes to —oo as A — —oc and therefore

CHAPTER 5. DUALITY 49

the supremum is attained at a value of A were the derivative is zero, i.e. for a A such that
s —al ((A— A 2%a — trace (X) = 0. Furthermore, if X is such that trace (X) = s* and
{X,} is a sequence of positive definite matrices such that trace (X,,) < s and X,, — X,

then for n large enough,
sup h(A) 4 trace (X, (4 — A\I))
A

is as close as we want to trace (X A). Hence we may also ignore the X such that
trace (X) = s% (yet to be rigorous, we need then to replace the outside min by an inf).
This yields the following dual, which is also similar to a nonlinear semidefinite program,

and to which we refer as (DD):

¢* = inf h(A)+ trace (X (A — AI))
s.t. s —al((A— M) 2%a — trace (X) = 0,
(DD) A< AL (5.13)
trace (X) < s?,

X > 0.

We end this section with a last dual problem which will be the key for the Rendl and
Wolkowicz algorithm. (D) shows that TRS— is equivalent to finding the supremum of a
concave function over an open interval. This last dual problem will show that TRS_ is
also equivalent to the maximization of a single variable concave function over R.

We start by homogenizing TRS— and obtain

¢ = min 2T Az — 2ypa’x
st [lz]|? = s, (5.14)

yS:l.

CHAPTER 5. DUALITY 50

To establish that this problem is equivalent to TRS— , assume 2* and yj are optimum
for the homogenized problem. If y; = 1, clearly there is nothing to show. If yj = —1,
then setting 2* < —2* and yj = 1 gives another optimal solution to the homogenized
problem and the equivalence between TRS_ and its homogenized form follows. Now, the

homogenized problem is equal to

max min el Az — 2yoa’ w4+ t(yd — 1)
b lollP=sy3=1
> max min el Az — 2yoa e 4 t(yd — 1) (5.15)

el 4= 41

> sup inf 2T Az — 2ypa x4+ t(y2 — 1) + A(||z])? + y2 — s* — 1).
t7)\ Z,Y0

=sup inf 27Az — 2ypa’x + r(yg — 1) + A(||z|]* = s*)
7»7)\ Z,Y0

= sup (sup inf 2T Az — 2yoa x4+ r(yd — 1) + \(||2])* - 82)>

A r &40

where r = ¢t + .
Now because strong duality holds (here we need the full power of the Strong Duality
Theorem of Stern and Wolkowicz [32]), this is equal to

sup (inf sup a1 Az — 2yoa x + r(y2 — 1) 4+ A(||2]|* - 82)>

A &40 r

CHAPTER 5. DUALITY 51
=sup inf 2T Az —2yealz 4+ M(||z|* — 5?).

A wyi=1

Again, by strong duality this is equivalent to

inf sup 2’ Az — 2ypa’ @ + Az = %)

x7yg:1 A
= min zlAz —2ypalzs = ¢*
s.t. [z])? = s

ye = 1.

So all of the above turn out to be equal. Now, if we consider (5.15), then

¢" = max min 2T Ar — 2y0aT$ + t(yS -1)
|22 tyg =s2+1

=max min 2] D(t)z —t = max (s> + 1)\ (D(t)) — t,
EoflalP=s+1 t

t —at

where z = %0 and D(t) = . If we define
x —a A

E(t) := (s> + 1)A(D(t)) — t,

then we have the following unconstrained dual problem for TRS which we refer to as

(UD):

(UD) max E(t).

CHAPTER 5. DUALITY 52

Since A1(D(-)) is a concave function (see Appendix B), then k(:) is concave and
this shows that TRS_ is equivalent to an unconstrained concave maximization problem.
We can also rewrite (UD) in the following way so that it becomes a linear semidefinite
program:

2 j—
D{rtl)at}gl (s + 1A —t. (5.16)

In the next two sections we show that (D) and (DD) can be used to explain the Moré
and Sorensen algorithm and the Lanczos method. (UD) is used to solve efficiently TRS

in the Rendl and Wolkowicz algorithm of the next chapter.

5.2 A Semidefinite Framework for the Moré and Sorensen

Algorithm

In this section, we use the dual problems of the previous section to show that the Moré
and Sorensen algorithm can be set within a semidefinite framework. We use the structure
of the two dual programs (D) and (DD), which are similar to semidefinite programs, to
show that the algorithm is in fact trying to solve those duals. Our analysis is restricted
to the case where a solution lies on the boundary of the trust region. We show that, in
the easy case and the hard case (case 1), the algorithm is trying solve a modified form of
the stationarity condition for (D). In the hard case (case 2), (DD) is used to show that
the primal step to the boundary is used to reduce the gap between (D) and (DD). The
work outlined here is due to Rendl and Wolkowicz [31].
In the easy case and the hard case (case 1), Theorem 5.2 shows that

* — R(N). 1
¢"= max (A) (5.17)

CHAPTER 5. DUALITY 53

Furthermore A\; = A;(A) and h(A) is concave on the open interval (—oo, A;(4)). It
goes to —oo as A approaches Aq(A) from the left and also as A — —oo. Therefore, to

solve problem (5.17), we only need to find a A* € (—oo, A;(A4)) such that

RN = —a’ (A= X)) 2a+s? = 0.

Since the A we consider are less than A;(A), A — AT is invertible for those A and therefore

we need to find a A* such that
R(A) = —al (A= X1)"2a4 s = —||(A-XT)"la|)? +s* = 0.

As mentioned in section 4.1.1, the algorithm solves with Newton’s method the modified

equation

1 1

s MA@ D Ta

Although the function h(-) is not used explicitly, they really are trying to solve (5.17)
using backtracking on the A to insure feasibility.

In the hard case (case 2), as mentioned in section 4.1.2, given a feasible vector =
z(A) = (A — AI)ta, where A < A\{(A), the idea to handle this case is to find a proper z to
reduce the primal objective and move to the boundary (i.e. ||z+2||* = s?). Our framework

suggests how such a z should be chosen and the result follows from the following equations:

gz +2) = (+2)TA@+2) —2d (x4 2)
= (@+2)TA(@+2) —2aT (@ + 2) + As* = Az + 2|)?

= A4+l (A-ADe+22T(A - ADz2+ 2T (A= M)z —2aT2 — 247 2.

CHAPTER 5. DUALITY 54

Using (A — AI)z = a we get

= A+l (A-ADe+20T(A -)2+ 2T (A= M)z — 22T (A — M)z — 22T (A = \I)z

= —2T(A-ADa4+ A+ 2T (A= D)z

= —aT(A- MDY A-XD(A- DT+ 22+ 2T (A - \])2

= —al(A-XDTa+ s +27(4 - A=

This implies that z should be chosen to make 27 (A — AI)z small. For a fixed feasible \

for (D), the duality gap between (D) and (DD) is dependent of X and equals

trace (X (A4 — AI)).

If we set X = 22T, then

trace (X (A — A1) = trace (227 (A — A1) = trace (2T (A — A1)z = 2T (4 — \I))=.

Note that in the Moré and Sorensen algorithm, ||Rz||? = 2T (A — AI))z. Therefore, when
a z is found such that ||z 4 z||? = s? and ||Rz|| is small, the algorithm is trying to reduce

the duality gap between (D) and (DD), while maintaining feasibility for (DD).

5.3 A Semidefinite Framework for the Lanczos Method

Similarly to the previous section, we now show that the Lanczos method can also be
explained using problem (D). Here we show that their stopping criteria is in fact measuring

the duality gap between TRS—- and the Lagrangian dual (D). Furthermore, this brings

CHAPTER 5. DUALITY 55

us to wonder on how one might attempt to improve the algorithm or show where it fails
using this framework.

Recall that the Lanczos method first looks for an unconstrained minimizer until it
hits the trust region boundary of TRS, and solves problems of type (4.11) with larger
and larger subspace .S until an approximate solution is found. When problems of the
type (4.11) are solved, solutions to TRS are known to be on the boundary and only
TRS= needs to be solved. A solution zj of (4.11) is said to be a good approximation if
'yk+1|e£_|_1hk| is small and this is used as the stopping criteria for the algorithm. We now

show the relationship between the duality gap and the stopping criteria.

2

Since ||zg]|? = s?, we have

q(zr) = af Avg — 2Tz, — Me(||2g|? = 57)

= xg(A — Mel)ay — 20T zp + \ps?.

But Theorem 4.1 implies that 2 = (A—)\kI)J‘a—I—'kaeg_l_lhk(A— MeD)Tqry1 and therefore

qzr) = a’ (A= MDA - NI)(A - MD)a
g (Ch he) gl (A = MDA = MDA = M) g
+29kp1ef b’ (A = MDA = M) (A = M) gy

—2aT(A —)\kI)J‘a — 2'yk+1e£_|_1hkaT(A —)\kI)J'qk_H + st
Some simplification and the properties of the generalized inverse yield

q(zg) = _QT(A - AkI)Ta +)‘k52 + 713+1(€£+1hk)2‘11z+1 (A— AkI)T‘Jk-I—l

= h(M) + Verrletgpr 7)) 2 alr (A = M) g

CHAPTER 5. DUALITY 56

Thus

a(z) — (M) = (Vetrletpor b)) 2 aigr (A — MeI) g -

If we assume Ay feasible for (D), i.e. (A — AgI) > 0, then, the right hand term is the
duality gap between TRS— and (D). When this term is small, we can therefore expect
xg to be almost optimal for TRS. This is in agreement with the stopping criteria for
the Lanczos method, since 'yk+1|e£_|_1hk| appears in the duality gap. Note though that
qg_l_l (A—MeI)tqr 1 is not taken into account in the measurement of the gap. Furthermore,

for M a positive definite symmetric matrix, define the M-norm of a vector z as
2|3, = 2T M.
Then, for M = A — A\, the duality gap can be written in the form

a(zr) = h(A) = | lefpahu) s |3 - (5.18)

Two comments come from writing the duality gap in this form . First, the stopping
criteria used by the Lanczos method is an incomplete measure of the duality gap. This
suggests that one might find some example where the Lanczos method stops, but where
lgk+11%_y, s 1s large enough so that the duality gap is also large.

Second, we may ask how (5.18) might be used to improve the Lanczos method. It
could be used to replace the stopping criteria, but the need to compute the inverse of a
large matrix makes this idea very costly. Unfortunately, so far no improvement to the
method have been found using the information given by our framework.

The semidefinite framework we showed here for the Lanczos Method, presents a clearer

way to understand the algorithm. It shows that it is mostly a primal algorithm, since

CHAPTER 5. DUALITY 57

simpler primal problems are solved to approximate the solution to TRS. Yet, the measure
of how good the approximation is, is directly linked to the duality gap between TRS and
the dual problem (D). Furthermore, at each iteration, since feasibility is not insured for

Ak, the algorithm compares to a primal-dual infeasible algorithm.

We have seen in this chapter how much the duality theory is hidden behind the
two algorithms considered so far. The duals also present some attractive structure like
concavity and a simpler function to work with. The next chapter presents an algorithm

that directly solves the dual (UD).

Chapter 6

The Rendl and Wolkowicz
Algorithm

In this chapter, we present an algorithm that both exploits the sparsity of A and handles
the hard case (case 2). The algorithm is due to Rendl and Wolkowicz [31] and is mainly
based on the dual program (UD). Most of the theory behind the method is based on
properties of the eigenvalues and eigenvectors of the parametric matrix D(¢). Our first
section is dedicated to this subject. This will lead us to understand how k(-) behaves in
the easy and the hard case and how the algorithm handles these two cases. Many tricks
of the Moré and Sorensen [18] paper are being used in the algorithm, in particular, the
primal step to the boundary. Furthermore, we show that a new way to take a step to
the boundary may be used. We also outline many other tricks used in the algorithm that
take advantage of the structure of k(-) and accelerate convergence. Finally, we end the

chapter explaining how the algorithm solves TRS.

58

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 59

6.1 Eigenvalues and Eigenvectors of D(t)

Recall that
E(t) :== (82 + H)A(D(t)) —t.

As we mentioned before, A1(D(+)) is a concave function and therefore k(-) is a concave
function too. The function also has special asymptotic structure. But, before examining

this, we first need the following (which elaborates on Proposition 8, Lemma 9 and Lemma

15 in Rendl and Wolkowicz [31]):

Theorem 6.1. Let A = QT AQ be defined as in section 4.1.1. In the easy case, for t € R,
A (D(t)) < A (A) and has multiplicity 1. In the hard case, for t < to, A (D(t)) < A1 (A)
and has multiplicity 1, for t = to, A\ (D(t)) = M (A) and has multiplicity 1 + ¢ and for
t > to, M(D(t)) = M(A) and has multiplicity i, where ¢ is the multiplicity of A\ (A) and

to is defined by

Proof:
We assume here without loss of generality that A is a diagonal matrix with diagonal
elements A;(A), and that they are in nondecreasing order, i.e. A;; = A;(A4). Note that

in this case) = I. There is no loss of generality, because we have

g(2) = (QT2)"AQT2) - 2(QTa)T (Q"2)

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 60

and

T
t —(QTa)T 10 t —al 10

—(Q%a) A 0 Q —a A 0 Q

Therefore, the eigenvalues of D(t) are the same as the above matrix on the left. So to
simplify our analysis, we redefine a + (Q7a) and A < A. We also assume that i is the

multiplicity of A\;(4), i.e.
AM(A) = 22(4) = ... = N(A) < A (A) < <A (A4).

In particular, we get the easy case if and only if 35 € {1,...,¢} such that a; # 0. We

then have, expanding with respect to the first column of D(¢),

det(D(t) = AT) = (t = A) [T (4) = A) = > (a;ﬁ [Tu4) - A)) :

k=1 k=1 17k

Let J = {i]a; # 0} and, for A ¢ {\;(A4)|j € J}, define

() = ”ZX(Zﬁ‘ (6.1)
jeJ 7
Then
det(D(#) = A1) = (¢ = dON T4 =N for g ()€ T} (62)

Note that the eigenvalues of A are not necessarily eigenvalues for D(¢) since d(-) might
not be defined for any of these values. Yet, if A\ ¢ {X;(A)|j € J} then Ai(A) is an

eigenvalue for D(t), since in this case d(-) is then well defined at Ag(A). In the easy

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 61

case, there exits A\p(A4) € {X;(A)|j € J} with h € {1,...,¢}. Without loss of generality,
assume Aj(A) € {A;(A)]j € J}. Therefore

. (flll)r&o\l " d(X) = o0 (6.3)

and we also have

Al_i}r{loo d(\) = —oc. (6.4)
Moreover
dN) =1+ (A‘(Acgij—h)? >0 (6.5)
jeg
and
=Y (AJ(Z%W >0 ifA< A (A).

Therefore, d(-) is strictly monotonically increasing and convex on (—oo, A1(A)). In the
hard case, Ap(A4) € {X;(A)|j € J} for h € {1...i} and d(A;(A4)) := to is well defined. If
A(A) == min(A;(A)|j € J), then a similar analysis shows that d(-) is strictly monotoni-
cally increasing and convex on (—oo, \j(A)).

We conclude from this analysis of d(-), that in the easy case, for a fixed ¢t € R, the
equation t — d(A) = 0 always has a solution A < A;(A4) and that this solution is unique.
Because the eigenvalues of A and D(t) interlace (see [9]), in particular A;(D(t)) < A1 (4),
if A < A1(A) and t —d(X) = 0, then, by (6.2), A = A;(D(t)). Since A is the unique solution
less than Aq(A), then A;(D(¢)) has multiplicity one. This shows that in the easy case, for

any t, A1(D(t)) < A1(A) and has multiplicity 1.

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 62

In the hard case, for t < tg, by an argument similar to the easy case, the equation
t — d()\) = 0 also has a unique solution strictly less than A;(A) which is, by equation
(6.2), A1 (D(t)). So fort < tg, Ai(D(t)) < A1(A) and has multiplicity 1. When t = ¢,
because in the hard case Aj(A4) > A;(A), then d'(X) > 0if A < A;(A4). Therefore,

A< AL(A) = d(A) < d(M(A) =0 < tg—d(N).
Since

det(D(to) = M) = (to = d(3)) [T(Aj(4) =). (6.6)

then for A < A1(A), det(D(tg) — AI) > 0. But det(D(to — A1 (A)I) = 0, and therefore
A (D(t)) = A (A) and has multiplicity ¢4 1 by (6.6). When ¢ > to, ¢t — d(A) = 0 does not
have a solution A < Ay(A). Since A1(A) is a solution to det(D(t) — AI) = 0, then again

by equation (6.2) we get that Ay (D(t)) = A;(A) and has multiplicity i. |

From this theorem we derive some basic properties of k(). First, note from (6.4) that
when ¢ — —o0, the solutions in A to t — d(A) = 0 tends to —oo and by equation (6.1) it

is asymptotic to t. Therefore

lim A\ (D(t)) =—oc and A(D(t)) ~t ast— —oo.

t——oco

In the easy case (6.3) implies

lim A (D(t) = A1 (A).

t—oc0

In the hard case, for t large enough, t > tg and A\ (D(t)) = A\ (A).

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 63

These results for Ay (D(t)) yield the following for k(-):

E(t) ~ s* ast— —oo, (6.7)
E(t) ~ (s*+1)A(A) —t ast— ooin the easy case, (6.8)
E(t) = (s*+1)A(A) —t fort >ty in the hard case. (6.9)

We now look at the differentiability of the function k(-). For this we need to look at
the eigenvectors of A1 (D(t)). We have the following theorem derived from Lemma 12 and
Lemma 15 in Rendl and Wolkowicz [31].

Theorem 6.2. Let y(t) be an eigenvector for A (D(t)) and let yo(t) be its first component.
Then in the easy case, for t € R, yo(t) # 0. In the hard case, for t < to, yo(t) # 0, for
t > to, yo(t) =0, and for t = ty, there exists a basis for the eigenspace of A\ (D(tg)) such
that one eigenvector of this basis satisfies yo(t) # 0 and the other eigenvectors satisfy

Proof:

Consider the easy case and the case where t < tp in the hard case. By Theorem 6.1,
A (D(t)) < A1(A)). Assume yo(t) = 0. Then a short computation shows that this implies
A1(D(t)) is an eigenvalues of A, which is a contradiction.

In the hard case, when t > ¢y, by Theorem 6.1 we know that A;(D(t)) = A;(A) and has
multiplicity ¢. Let {zy,29,...,2;} be a basis for the eigenspace of A corresponding to

A1(A) and let z; be one of these vectors. Then

2k —-a A 2k Az 2k

where last equality follows from the fact that in the hard case a is perpendicular to z.

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 64

This shows that

(6.10)

is a basis for the eigenspace of D(t) corresponding to A(D(t)) and yo(t) = 0 for any
eigenvector of Ay (D(t)).

Finally, when t = ¢y in the hard case, by Theorem 6.1 we have A;(D(t)) = A1(A) with
multiplicity ¢ + 1. By the same argument as above, (6.10) is an independent set of
eigenvectors for A\;(D(t)) and since the multiplicity of this eigenvalue is i + 1, there must
exist an eigenvector in the orthogonal complement of the space spanned by the vectors
of this set. Let w be this eigenvector. Again, without loss of generality, assume A to be
diagonal. Therefore zj, = e; for k € {1,...,4} and w = (wp,0,...,0,Wiy1,... ,wp)’. If

wp = 0, then

0 0 0
0 0 0
D(t) = = Ai(4))
Wit >\i+1 (A)wi+1 Wit
Wy, An(A)wy, Wy,

where the first equality follows from multiplying D(¢) with w and the second equality
follows since w is an eigenvector for D(t). Now there exists wy Z0for k€ {i+1,...,n}
and this implies A;(A4) = Ag(A), which is a contradiction to A (A) < Aj(A) for j > i.
Hence wy # 0. Since the union of w with the set (6.10) is a basis for the eigenspace of

A1(D(t)), the result of the theorem follows. |

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 65

It is known that the function A;(D(¢)) is differentiable at points where the multiplicity
of the eigenvalue is 1. Its derivative is given by yo(t)?, where y(t) is a normalized eigen-
vector for A1 (D(t)), i.e. |ly(t)]| =1 (see [9]). We know from Theorem 6.1 that A;(D(t))
has multiplicity 1 in the easy case and when ¢t < g in the hard case. Hence, for these

E(t) = (s* 4+ Dyo(t)* — 1. (6.11)

In the hard case, when ¢ > tg, by equation (6.9), equation (6.11) still holds. It is well
defined because yo(t) = 0 for all eigenvectors of A1 (D(t)).

When t =ty in the hard case, k(-) is not differentiable and this is caused by a change
in the multiplicity of the eigenvalue A;(D(¢)). The directional derivative from the left is
w2; while the directional derivative from the right is —1 (see Appendix A for the graph
of k(-) in the different cases).

Since k() is a concave and coercive (i.e. diverges to —oo as |t| — oo) function, to solve
the dual (UD) in the differentiable case we need simply solve k’(¢) = 0. This will always
be possible except when the maximum occurs at tg, i.e. where k(-) is not differentiable.
In the next section we will see that &'(¢t) = 0 always has a solution in the easy case and

the hard case (case 1) and that otherwise, the hard case (case 2) occurs.

6.2 Solving (UD)

In this section, we see how the Rendl and Wolkowicz algorithm solves TRS_ . The easy
case is solved in a way similar to the Moré and Sorensen algorithm, except that the

function used is not h(-), but k(-) in order to exploit sparsity. They handle the almost

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 66

hard case (case 2) similarly to what is done in the Moré and Sorensen algorithm, but no
LAPACK routine is used to find the step direction. Instead, the direction is obtained

from an eigenvector previously computed.

6.2.1 Solving the Easy Case and the Hard Case (Case 1)

We start this section with a theorem, derived from Theorem 14 in Rendl and Wolkowicz
[31], showing that, in the easy case, to each ¢ corresponds a solution to ¢(-) on a sphere

of a certain radius.

Theorem 6.3. Lett € R and suppose y(t) = [yo(t), 2(t)T]T is a normalized eigenvector
of D(t) corresponding to A1 (D(t)). If yo(t) # 0, then

1
e Z(t
DR
is an optimal solution of
. 1 — yo(t)?
min{q(z) : ||z]? = —=5—
{a(z) |l NOER
and X* = X\ (D(t)) s its Lagrange multiplier.
Proof:
By the definition of y(t) we have
t—a || w() Yo(t)

a0 | P aa et

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 67

Expanding these equations gives

() — a”=(8) = Ay (D) olt).
(4= M(DE)D)=(0) = yolt)a,

and yo(t)? +2(1)72(t) = 1.

Since yo(t) # 0, let 2* := —L~2(¢). Then

t—ale* =\ (D(t)),

(A= X (D))a* = a, (6.12)
and 2 2% = %?)(;)2. (6.13)

Since the interlacing properties of D(t) and A implies A1 (D(t)) < A1(A), we also have

A=\ (D) > 0. (6.14)

Let A* = X;(D(t)), by the optimality conditions (5.2), then (6.12), (6.13) and (6.14)

imply that z* and A* are optimal for TRS_ with s := 1;;’&(;2)2. |

Lemma 13 in Rendl and Wolkowicz [31] shows that, in the easy case, if y(¢) is a
normalized eigenvector with yo(t) > 0, yo(t) is a function of R — (0,1) and is strictly

l—yo (t)2

monotonically decreasing. It is easy to show then that the function ()2 is a strictly

decreasing function (0,1) — (0,00). Hence for a given s, we can solve TRS_ in the easy

case by finding a ¢ such that

s — 1- yo(t)z

()2 (6.15)

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 68

Now note that &'(#) = 0 if and only if the previous equation is satisfied. Let

t* .= argmax{k(t) : t € R}.

Hence TRS= in the easy case can be solved by finding ¢* that satisfies (6.15). Setting

S 2(t7) and A" = A(D(t7))

gives an optimal solution to TRS—- and its Lagrange multiplier, according to Theorem
6.3.

In the hard case, we can use the same approach, if at t* the function k(-) is differen-
tiable; hence k'(t*) = 0. Since k(-) is not differentiable only at o, and since the directional

derivatives from the left and right are, respectively,
Ftg)= (" + Dwd -1 and K(t}) = 1,

we get by the concavity of k(-), that this function is differentiable at the optimum if and

only if the directional derivative from the left of ¢y is negative, i.e.

2
(F+wi-1<0s — 0 5 2,
2

> s
“o

This implies that t* < to. Since the function yo(-)? is strictly positive on the interval
(—o0, tp) and is the derivative of the function Ay (D(+)), then the latter is strictly increasing
on the interval (—o00,tg). A1(D(:)) is also a continuous function, hence it is strictly

increasing on the interval (—oo, tg]. Therefore

t* <to = Al(D(t*)) <)\1(150).

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 69

The right inequality implies A* < A;(A) and the hard case (case 1) occurs.
This shows we can solve TRS= in the easy case and the hard case (case 1) by solving

the equation
E(t) = (s> + Dyo(t)* —1=0.
The Rendl and Wolkowicz algorithm does this by finding the zero of the function

B = VR T —— (6.16)

Note that this trick is analogous to the use of the function ¢(:) in the Moré and Sorensen
algorithm. The function 1 (-) has the advantage of being almost linear near ¢* and there-

fore interpolating to find ¢ such that i (-) equals 0 will be more efficient.

6.3 Primal Steps to the Boundary

In this section, we first show that t(-) has no zero in the hard case (case 2). We then
show how the Rendl and Wolkowicz algorithm handles this case. As in the Moré and
Sorensen algorithm, a step to the boundary is taken. We end the section with a new
way of stepping to the boundary and show that improvement of the objective function is

guaranteed.

6.3.1 Equivalent Moré and Sorensen Primal Step to the Boundary

In the hard case, when

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 70

then £'(-) is positive to the left of ¢y and negative on its right. Hence, by the concavity
of k(+), its maximum occurs at fg and so t* = #g. Note also that A* = A\ (D(tg)) = A1 (4).
This is true since for w = [wo, @]T, where w is as in Theorem 6.1 and where & € R”, &
is by construction perpendicular to the eigenvectors of A;(A) and a short computation

shows that

with z € Sy, satisfies the optimality conditions (5.2) with A* := A1(A) and we are in the
hard case (case 2).

Now, we cannot solve k’(t) = 0 anymore to find the optimum of k(-) and the function
¥(-) is positive on the interval (—oo,tg) and does not exists for higher values of ¢. To
handle this case, we take a primal step to the boundary. Let t, be such that k'(¢,) < 0,
then t, is defined to be on the good side. This expression comes from the fact that the
good side is where we want to be in the Moré and Sorensen algorithm, that is when
@(A) > 0. Similarly, if for ¢, we have k’(t;) > 0, then ¢ is defined to be on the bad side.
If we have a point t, from the bad side, then #, < fg and this implies that yo(t5) # 0. Let

y(t) = [yo(t), z(t)]F. We have

1 — yo(tp)?

1
Ety) <0< 82—|-1yt52—1<0<:> < e z(t)|I? < s
(1) <0 (52 + () it =t
Theorem 6.2 implies that
1
Ty 1= z(t
$ i

minimizes ¢(-) on the sphere of radius 1;:(()t(bt)b2)2, which is less than s.

In the next section, we will show, if A;(D(ty)) > 0 for a ¢, on the bad side, then

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 71

an unconstrained minimum lies within the trust region and we can solve TRS with the
conjugate gradient method. For this section, we assume A (D(t)) < 0. We can now
apply Lemma 4.1 with the feasible solution z3, since

(A= X (D(tp)))ap=a and A (D(t)) <0

Yet, we need to find a vector z, with ||z|| = 1, such that 27 (A — A\ (D(t))I)z is small.
Let ¢4 be a point from the good side. Then, by Theorem 6.2, in the hard case (case 2),
for any eigenvector y(t,) of A (D(ty)), 2(ty) is an eigenvector for A;(A) and has a unit

norm, since yo(ty) = 0 (notice that in the hard case (case 2), t; > to). Hence

2(tg) (A= MD () D)z(ty) = 2(tg)" (A= M(A)T+ (A (A) = MD(te))) =(t,)

= (M(D(to)) = A(D(tb)))-

Therefore, for t; close to tg, z(ty)T (A — A(D(ty))I)2(t,) will be small. The new solution
obtained on the boundary is then 3 4+ 72(t,), where 7 is defined as in equation (4.10).
As in the Moré and Sorensen algorithm, every time a feasible solution to TRS is
obtained (each new point f; from the bad side gives us a new feasible solution), if we
have a point ¢, from the good side, we take a primal step to the boundary. This handles
the almost hard case (case 2), but may also prove to be of use in the two other cases if a

decrease in the objective function is obtained.

6.3.2 A New Primal Step to the Boundary

We show here a new way to take a primal step to the boundary which may give an
improvement in the easy case and the hard case (case 1). It is justified by the fact that

in these cases the n last components of y(t4), where t; is a point from the good side,

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 72

might not be an eigenvector for A;(A). This is because yo(ty) # 0 in the easy case and
Yo(ty) # 0 might occur in the hard case (case 1) if t* < ty. Hence the theoretical reasons
behind the primal step direction z(¢;) of the previous section do not hold.

If we have a point ¢, from the bad side (hence yo(tp) # 0) with A;(D(#)) < 0, then

we showed in the previous section that

1
= i 6.17
b yo(tb)Z(b) (6.17)
minimizes ¢(-) on the boundary of the trust region of radius 1;:(075(:)2)2, which is less

than s. According to Theorem 3.1, the sign of the Lagrange multiplier for this solution
implies that x; also minimizes ¢(-) within the trust region of the same radius. Similarly,
we can show, if we have a point ¢, from the good side, with yo(ty) # 0 (i.e t; < tg) and
A (D(ty)) <0, that

#(t,) (6.18)

will minimize ¢(-) within a trust region of radius 1;;’(0t(t)92)2 which is larger than s. A
g

natural way to approximate the solution of TRS and take a step to the boundary would
be to pick a point on the boundary of the trust region of radius s which is on the segment
linking xp, with z,. This is somehow a linear interpolation of the solution to TRS using
zp and x4, With the use of the 2 following lemmas, we show that this primal step to the

boundary yields a decrease in the objective function, i.e.

q(xp) > qap + T(2g — 21)), (6.19)

for 0 < 7 < 1 such that ||z + (x4 — 2p)||? = s%.

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 73

Lemma 6.1. Let 0 < s < s9 and let

vy € argmin{q(e) : [2]]? < 57

r, € argmin{q() : [l2]|? < 53},

If ||zo]|? = s2 and ||z4||* = s2 and =] (v, — x) # 0, then z] (z, —) > 0.

Proof:
By the optimality of z; and using (5.2), there exits A < 0 such that (A — M)z, = a and

A — X = 0. By equation (4.6) we have

gz +aleg —2p)) = —(2 (A= Ay = Mz + a(zg — w)|*)

+a?(xy —)T (A = M) (2, — 23). (6.20)
Since ||zp||* = s% < 2, it is possible to find 2 different values a; and ay such that
loy + @i(ag — 20)||? =53 i=1,2.

A short computation shows that

—ay (wg —) + \/(965(969 — @) + [lvg — @l (s3 — [las]?)

o] =
' g — @3]]? ’

— (g — 76) - \/(965(969 — @) + [lvg — @l (s3 — [las]?)

leg — |2

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 74

Now suppose a{ (x4 — 3) < 0, then g > 0, az < 0 and |az| < |aq|. By (6.20) then

q(xy + o (zy — 1)) = — (2] (A = XDy — Ask) + 2 (xy — ap) T (A = M) (2y — 23) (6.21)

q(xp+ az(wy — 2p)) = —(af (A= AD)ap — As2) + ab(z, — 2p)T (A = M) (2, — 3). (6.22)

Since ||z4||* = s3, then a = 1 solves ||ap + a(zy — 2p)||* = s5 and therefore a; = 1. By

the optimality of , and by equations (6.21) and (6.22) we must have |ay| < |ag|. This

is a contradiction, hence be(acg —ap) > 0. |

Lemma 6.2. Let x, and x4 be defined as in Lemma 6.1. Suppose be(acg —ap) #0. Let
m(a) == q(zp + azy — 23)).
Then
m'(a) <0 for0<a<1
and therefore
gz + alzg —ap)) < g(zp) for0<a <1

Proof:

By lemma (6.20), 2/ (z4 — 23) > 0. Let

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 75

Note f(0) = s?. Then
() = 2ellag — al® = 225 (2 —).

Therefore for € small enough f(e) < 0 and this yields ||ap — e(zy — 2p)]|* < s

Since

m(=) = m(0) — m'(0)e + ole) = g(xp) — m(0)e + ofe),

if m/(0) > 0, then ¢(ap — (24 — 2p)) < q(ap) for € small enough. Since for € small enough
||lzp — €(xy — p)||* < s%, then this contradicts the optimality of z;. Hence
m'(0) < 0. (6.23)

Let

w(e) = [|lzp + (1= €)(2g — 20)*-

Note w(0) = s3. Then

w'(€) = ~2(1 - ¢)|lag — wl]* — 2] (g —).

For 0 < e < 1, w'(€) < 0, hence ||z + (1 — €) (x4 — p)||* < s3. Now since

m(1— &) = m(1) — m' (e + o(e) = glag) — m'(1)e + ofe),

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM
again, by the optimality of z,, we have
m'(1) < 0.

Since ¢(+) is a quadratic function, then m(-) is a parabola, i.e.

m(a) = ao® +ba+c, wherea,b,c€R,
and

m'(a) = 2ac + b.

From (6.23) and (6.24) we have

m'(0)=b<0 and m'(1)=2a+b<0.
Let 0 < o< 1, thenifa >0

a<l=m(a)=2aa+b<2a+b<0.
If a <0,

0<a=m(a)=2aa+b<b<0.

Ifa=0

76

(6.24)

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 77

Therefore, these inequalities with (6.23) and (6.24) show that
m'(a) <0 for0<a<1.
Hence, by the definition of m(-),
d
Lgentale, —m) <0 for0<a<]

and the lemma follows. [|

If 2, and x4, defined by equations (6.17) and (6.18), satisfy z{ (z4 — z3) # 0, then a
consequence of the previous lemma is equation (6.19). This equation yields a primal step
to the boundary in the easy case and hard case (case 1) which insures a decrease of the

primal objective.

6.3.3 Techniques

We briefly describe some techniques that are used in the algorithm to take advantage of
the structure of the different functions used. A first technique that is used is triangle
interpolation. Given a point from the bad side ¢, and a point from the good side ¢4, since
E'(ty) > 0, k'(ty) < 0 and k() is a concave function, then an upper bound to ¢* can be
found at the intersection of the two tangent lines to k(-) in ¢, and t;. The t-value at the
point of intersection also updates the approximation for ¢*.

A second technique is also used when as above we have points ¢, and t, from the bad
and good side. If k(t;) > k(tp), then the intersection of the tangent line to k(-) at #
and the constant function going through (¢4, k(t,)) gives an approximation to t* that is

a lower bound for t*. This technique is called wvertical cut. A similar trick can be done if

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 78

k(ty) < k(tp) and we obtain an upper bound for ¢* in this case.

A third technique involves the use of the function ¢ (-). In the easy case and the hard
case (case 1) it is strictly decreasing and its domain is R. Therefore we can let #(1)) be
its inverse function. Because lim;_,_. 9 (t) = v/s2 + 1 — 1, t(3) will have an asymptote
in ¥ = Vs21+1—1 and will be strictly decreasing on the interval (—oo,vs?+ 1 — 1).
Hence, in the easy case and the hard case (case 1), using #(1)), we can use values of ¢ to

interpolate t* = t(0).

6.4 Solving TRS

In the previous section we showed how the Rendl and Wolkowicz algorithm is able, when
the optimal solution is on the boundary, to solve TRS by maximizing the function k().
We now show how it handles the case where the minimum is inside the trust region and
outline how it solves TRS in general.

In Theorem 3.2, we showed that there does not exist a solution on the boundary of
the trust region if and only if A is positive definite and the unconstrained minimizer for
q(-) lies in the interior of the trust region. The following theorem is the key to recognizing

this case and the proof follows easily from Theorem 3.1.

Theorem 6.4. Let & be a solution to (A — A)a = a with A — X[» 0. If A <0, then
z s a solution to min{zT Az — 24’z : ||2]|? < ||2]|?}. If A > 0, then is a solution to

min{z" Az — 2”2 : ||2||* > ||z]]*}.

Now suppose that z;, satisfies (A — AI)zp = a with A — AT > 0, that ||zp||? < s? and
that A > 0, then, by Theorem 6.4, x; is a solution to min{z? Az —2aTz : ||2[|? > ||2]|*}.
Since A is positive and since A — Al is positive semidefinite, then A is positive definite.
Moreover, by the optimality of xp, we know that the unconstrained minimum lies inside

the region {z : ||z||* < ||p||*} which is included in the trust region {z : ||z]|* < s*}.

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 79

Therefore, the unconstrained minimizer lies in the trust region and we can apply an
unconstrained method to find it, for example a conjugate gradient method.

In the algorithm, we get successive solutions z; from the bad side and associated
multipliers Ay that satisfy the equation (A—ApI)zp = a with (A—AI) = 0. Therefore each
ap is a solution to min{zT Az — 24Tz : ||2||? = ||2p||*}. Checking the sign of the multiplier
Ap tells us if @, is a solution to min{z” Az —2a”z : ||z]|? < ||2s||?} or min{zT Az — 24"z :
||| > ||@p||*}. If the latter case holds, since ||zp||? < s?, then we know the unconstrained
minimum lies in the trust region.

The algorithm solves TRS by trying to solve k’(t) = 0 using the function #(-). Doing
s0, points on the good and the bad side are obtained and their respective eigenvalues and
eigenvectors A1 (D(t)) and y(t) are computed. The algorithm uses inverse interpolation,
triangle interpolation and vertical cut to approximate t*. When a point ¢, on the bad
side is obtained, a feasible solution z; is obtained from equation (6.17). If Ay (D(#)) > 0,
then we know that an unconstrained minimizer lies in the trust region and we can apply
the conjugate gradient method to obtain a solution to TRS. If the sign of the multiplier
is nonpositive and a point from the good side has already been obtained, we can take
a primal step to the boundary to obtain a new feasible solution with possibly a smaller
objective value. Doing this primal step to the boundary handles the almost hard case
(case 2), but note that the triangle interpolation in this case is also very effective, since
the function k(-) is linear for ¢t > to and asymptotically linear for ¢ < ¢o. Each iteration
gives us a new value of ¢ for which A;(D(¢)) and y(t) are computed. This is done until we
find a suitable approximation to the maximum of k(-). Bounds on t* are always available
and, if no better approximations to t* is known, we take the middle point of the interval
we know contains t* to get a new t-value. Note that to speed up the algorithm, a line

search such as the ones used in [33] could have been applied.

CHAPTER 6. THE RENDL AND WOLKOWICZ ALGORITHM 80

To conclude this chapter, note that the Rendl and Wolkowicz algorithm has the advan-
tage over the Moré and Sorensen algorithm and the Lanczos method to handle sparsity
and the almost hard case (case 2). The algorithm is mainly a dual algorithm, yet it
uses the primal objective when taking primal steps to the boundary and in the stopping
criteria when the duality gap is computed. Finally, the way of rewriting the dual (UD)
in the form of problem (5.16) shows again that a semidefinite program is related to the

algorithm.

Chapter 7

Numerical Experiments

This chapter deals with the numerical implementations of some of the ideas and methods
discussed in the previous chapters. In the first section, we study the practical use of
the new primal step to the boundary we suggested in section 6.3.2 for the Rendl and
Wolkowicz algorithm. The second section is a comparison of the Rendl and Wolkowicz
algorithm and the Lanczos method within a trust region method. The reader will find in
Appendix D the different programs used to generate the results. All programming was

done using Matlab 5.2.1.1420 and testing were done on a SUN SPARC station 4.

7.1 Testing the New Primal Step to the Boundary

As proposed in Section 6.3.2, in the Rendl and Wolkowicz algorithm, a primal step to
the boundary may be taken when points from the good and the bad side are available.
The new step we suggested can be applied when the first component of an eigenvector
y(ty) for the smallest eigenvalue of the matrix D(t;) of a point ¢, from the good side is
non-zero. Hence, it may be applicable in the easy case and the hard case (case 1).

We included this step in the Rendl and Wolkowicz algorithm. More precisely, assume

81

CHAPTER 7. NUMERICAL EXPERIMENTS 82

points from the good and the bad side, say t; and t,, are available at a stage of the
algorithm and that ¢, and ¢, are the most recent points found from both sides. Then we
apply our new step if yo(t,) > 1073/n, where n is the size of the problem. Otherwise,
the primal step of Section 6.3.1 is taken. We refer to this modification of the method as
the modified Rendl and Wolkowicz algorithm.

The following tables show how this change improves the Rendl and Wolkowicz al-
gorithm. For the first two tables, we considered dense trust region subproblems, i.e.
subproblems where the Hessians of the quadratic objective were not sparse (we use the
word sparse when less than half of the entries of a matrix are non-zero). In Table 7.1,
we ran, for different dimensions of subproblems (n=20, 40, 60, 80, 100), 100 random
subproblems (see Appendix D to see how those subproblems were constructed) and con-
sidered the ones where the easy case or the hard case (case 1) occurred and where a primal
step to the boundary was taken to obtain an approximate solution using the Rendl and
Wolkowicz algorithm. This allowed us to test the performance of our new primal step in
the conditions it was meant to be applied. Our criteria to distinguish the easy case and

the hard case (case 1) from the hard case (case 2) or almost hard case (case 2) is

A(A) — A

If (7.1) holds, we say the easy case or the hard case (case 1) occurs. We considered
the improvement for the number of iterations and for the number of matrix-vector mul-
tiplications. The percentages given in the tables represent on average the reduction in
iterations (matrix-vector multiplications) of the Rendl and Wolkowicz algorithm when
we apply the modified Rendl and Wolkowicz algorithm to the same subproblems. We
see in Table 7.1 that on average the modified Rendl and Wolkowicz algorithm will take

nearly 19% fewer iterations then the original Rendl and Wolkowicz algorithm and that it

CHAPTER 7. NUMERICAL EXPERIMENTS 83

seems to be independent of the size of the problem. Similarly, the improvement for the
number of matrix-vector multiplications is in the range of 16% and again it seems to be
independent of the size of the problem.

In Table 7.2, we considered again 100 subproblems for each dimension, but in this case
we considered all the subproblems to compute our average percentages of improvement,
i.e. we did not reject the subproblems where the hard case (case 2) or almost hard case
(case 2) occurred and the subproblems where no primal step to the boundary were taken
to find approximate solutions using the Rendl and Wolkowicz algorithm. In the latter
case, the two algorithms perform exactly the same operations and the percentages of im-
provement are negligible. Hence, we can expect the average percentages of improvement
to be lower than in Table 7.1. The idea is to see how helpful the new primal step is
in general. We see that we improve the Rendl and Wolkowicz algorithm in general by
about 14% for the number of iterations required and by about 11% for the number of

matrix-vector multiplications.

=20 (%) | 1=40 (%) | 2=60 (%) | n=80 (%) | n=100 (%)
Percentage of improvement 19.24 17.70 19.33 20.05 20.40
for the number of iterations

Percentage of improvement 17.23 14.70 15.28 15.74 17.86

for the number of matrix-
vector multiplications

Table 7.1: Improvements obtained using the new primal step to the boundary in the easy
case or the hard case (case 1) when steps to the boundary need to be taken.

We see that using this new step improves the performance of the Rendl and Wolkowicz
algorithm significantly, and the results outlined here indicate that this will be the case
for problems of all sizes. Furthermore, the modified Rendl and Wolkowicz algorithm

never needed more iterations to solve any trust region subproblem than the Rendl and

Wolkowicz algorithm and the optimal values found when the algorithm stopped were

CHAPTER 7. NUMERICAL EXPERIMENTS 84
=20 (%) | 1=40 (%) | 2=60 (%) | n=80 (%) | n=100 (%)
Percentage of improvement 15.38 15.67 11.85 13.61 13.53
for the number of iterations
Percentage of improvement 13.76 12.93 9.48 10.76 10.49

for the number of matrix-
vector multiplications

Table 7.2: Improvements obtained using the new primal step to the boundary on general

subproblems.

always at least as good.

So far we left out the performance of the modified algorithm on sparse subproblems.

Tables 7.3, 7.4 and 7.5 illustrate how the algorithm performs when the density of the

Hessian of the quadratic objective function is varied. For example, if the density is 0.1,

then approximately 0.1 n? entries of the Hessian are non-zero. We considered again, for

each dimension, 100 random subproblems. The percentages of improvement given are

averages obtained when considering all of the subproblems (as in Table 7.2). We added

a new row to give the proportion of problems that would have been accepted if a criteria

similar to (7.1) would have been used.

cepted

1=20 (%) | 1=40 (%) | 1=60 (%) | 1=80 (%) | u=100 (%)
Percentage of improvement 14.38 17.50 14.17 22.62 15.52
for the number of iterations
Percentage of improvement 12.79 14.99 11.54 17.55 12.36
for the number of matrix-
vector multiplications
Percentage of problems ac- 65 67 73 75 73

Table 7.3: Improvements obtained using the new primal step to the boundary when the

density of the Hessian is 0.3.

CHAPTER 7. NUMERICAL EXPERIMENTS 85
n=20 (%) | n=40 (%) | n=60 (%) | n=80 (%) | u=100 (%)

Percentage of improvement 17.18 17.67 14.56 15.58 14.52

for the number of iterations

Percentage of improvement 15.32 15.10 11.65 12.25 10.91

for the number of matrix-

vector multiplications

Percentage of problems ac- 67 69 70 71 63

cepted

Table 7.4: Improvements obtained using the new primal step to the boundary when the

density of the Hessian is 0.2.

cepted

1=20 (%) | 1=40 (%) | 1=60 (%) | 1=80 (%) | u=100 (%)
Percentage of improvement 11.30 15.37 11.06 11.85 11.68
for the number of iterations

Percentage of improvement 9.77 13.20 13.61 9.60 9.12
for the number of matrix-

vector multiplications

Percentage of problems ac- 62 66 65 70 66

Table 7.5: Improvements obtained using the new primal step to the boundary when the

density of the Hessian is 0.1.

The results confirm again that the improvements we get with the modified Rendl and

Wolkowicz algorithm are independent of the size of the problem, yet as the density of the

Hessian decreases, the improvements are slightly lower. More precisely, as the density

takes the values 0.3, 0.2 and 0.1, the percentages of improvement for the number of itera-

tion are approximately 17%, 16% and 12% respectively. Similarly, we get approximately

14%, 13% and 11% improvement in the number of matrix-vector multiplications as the

density varies. Again, this shows that the modified Rendl and Wolkowicz algorithm is an

improvement to the original method.

CHAPTER 7. NUMERICAL EXPERIMENTS 86

7.2 Comparison of the Rendl and Wolkowicz Algorithm

and the Lanczos Method Within a Trust Region Method

In this section, we compare the performance of the Rendl and Wolkowicz algorithm and
Lanczos method when used respectively within a trust region method. In the article
of Gould et al. [7], the authors suggest that the Lanczos method may be stopped if
convergence occurs or if a limited extra number of iterations, say k, have been done once
the boundary has been encountered (i.e. in Algorithm 4.2, once the variable INTERIOR
is set to false, at most &k extra iterations are completed). The reason for doing so and
obtaining a rather cheap approximation to the subproblem is motivated by the following,

which can be found in the conclusion of the paper:

”We must admit to being slightly disappointed that the new method” (Lanc-
zos method) ”did not perform uniformly better than the Steihaug-Toint scheme”
(Lanczos method when k = 0) 7, and we were genuinely surprised that a more
accurate approximation does not appear to significantly reduce the number
of function evaluations within a standard trust-region method, at least in
the tests we performed. While this may limit the use of the methods devel-
oped here,” (the Lanczos methods) ”it also calls into question a number of
other recent eigensolution-based proposals for solving the trust-region sub-
problem” (in particular, the Rendl and Wolkowicz algorithm).” While these
authors demonstrate that their methods provide an effective means of solv-
ing the subproblem, they make no efforts to evaluate whether this is actually
useful within a trust-region method. The results given in this paper suggest
that this may not in fact be the case. (...) We believe that further testing is

needed to confirm the trends we have observed here.”

CHAPTER 7. NUMERICAL EXPERIMENTS 87

Gould et al. [7] question if the trust region subproblem needs to be solved accurately
if we want a trust region method to be efficient. From the results obtained in their
paper, they suggest that, indeed, the high accuracy is unnecessary. This is why they
propose that, using the Lanczos method, at most a few iterations should be done once
the INTERIOR variable is false. For the problems we tested here, we have set this limit
to 10, i.e. k = 10. The previous quote also questions if being able to handle the hard case
(case 2) or near hard case (case 2) is a desirable feature for a trust region subproblem
algorithm.

The goal of this section is to answer all of the above questions. The first tests of this
section are done on the following eleven problems (more details on the problems can be

found in Appendix C):

1. BRYBND: Broyden banded function [10],

2. GENROSE: Generalized Rosenbrock [19],

3. EXPWSF: Extended Powell singular function [10],
4. TRIDIA: [13],

5. EXTROS: [13)],

6. DBNDVF': Discrete boundary value function [10],
7. BTRDIA: Broyden tridiagonal function [10],

8. BNALIN: Brown almost-linear function [10],

9. LINFRK: Linear function full rank [10],
10. SENSORS: Optimal sensor placement [30],

11. WATSON: Watson function [10].

CHAPTER 7. NUMERICAL EXPERIMENTS 88

Except for the last four problems, these problems have a sparse Hessian.

Throughout this section, we will minimize a function f(-) of n real variables z. To
do so, we use the trust region method described by the following algorithm. In this
algorithm, f(-) represents the function to be minimized, z; is an approximation of a
minimizer after k iterations and si is a positive number - the radius of the trust region

at iteration k.
Algorithm 7.1. (Trust Region Method)

1. Given xy and si, calculate V f(z) and V2 f(xy). Stop if

INFACZI|

¥ f(oo)] < 107", (7.2)

2. Solve for &,

O € argmin gx(zx) = Vf(er)'6+ 56TV f(2x)d
s.t. 15117 < s2.

fog)—fzrtdn)
ar(wr)—qr(ep+dr)

$. Ewvaluate r, =
4. (a) Ifri > 0.95, set spy1 = 25, and T41 = Tk + Ok
(b) If 0.01 < ri < 0.95, set sgy1 = sk and Tpy1 = Tk + Ok

(c) If rp < 0.01, set sgr1 = 0.5sg and g1 = T

Except for the stopping criteria which has been scaled here, this algorithm is Algo-
rithm 6.1 in Gould et al. [7]. The initial approximation z¢ for a minimizer is problem
dependent and the initial size of the trust region, sg, is chosen to be 1. We use either
the Rendl and Wolkowicz algorithm (in the modified form of Section 7.1) or the Lanczos

method to solve the second step of the algorithm. When the Lanczos method is used, we

CHAPTER 7. NUMERICAL EXPERIMENTS 89

stop when convergence is reached (see the convergence criteria of Algorithm 4.2) or when
at most 10 extra iterations have been done once the INTERIOR variable is set to be false.
When the Rendl and Wolkowicz algorithm is used, if the solution is in the interior of the

trust region, then we stop when we have a 0 such that
IV £(xr) + VEf(2r) 8] < max(107%,1075||V £(21)|]).

When the solution is on the boundary of the trust region, we first need some notation
to define the stopping criteria. At some stage of the algorithm, let ¢,, and #;,, be upper
and lower bound for t*, let ¢, and g, be upper and lower bounds on ¢* and let xpey
be the current approximation to a minimizer of the trust region subproblem. Define the

following scalars

dgaptol = max(107% 107%||V f(zx)]|),
normtol = dgaptol,

zerotol = dgaptol/log(n'?).

Let wy = 1, if ||@pest]] < (14 normtol)s. Let wy = 1, if % < 2dgaptol . Let

wg = 1, if % < dgaptol . Let wy = 1, if the number of iteration is greater than 30.

Let ws = 1, if ti‘i;“i” < zerotol . Let these last five variables be 0 otherwise. When the
up

solution is on the boundary, we stop when:

((wq or wq) and ws) or w4 or ws.

CHAPTER 7. NUMERICAL EXPERIMENTS 90

For each problem solved, we are interested in the number of function evaluations, the
number of iterations, the number of matrix-vector multiplications and the computation
time taken to obtain an approximation to the solution of each problem using Algorithm
7.1. In Table 7.6, under each variable of interest, there are two columns that show
each the results obtained when using the Rendl and Wolkowicz algorithm (RW) or the
Lanczos method (LM) was used to solve the trust region subproblems. For the Rendl
and Wolkowicz algorithm, the Matlab function eigs was used to compute the eigenvalues
when the Hessian is sparse. For the last four problems, the Hessians are dense and eig
was used instead (this function however does not allow us to keep track of the number of

matrix-vector multiplications).

n function iterations | matrix-vector cpu time
evaluations multiplications (seconds)
RW | LM | RW | LM | RW LM RW LM
BRYBND | 1000 | 26 26 25 | 25 | 41941 505 612.94 | 125.63
GENROSE | 100 | 68 69 79 | 85 | 37218 | 5857 | 508.66 | 255.38
EXPWSF 100 | 18 18 17 | 17 | 1250 297 13.88 2.43
TRIDIA 100 5 6 4 5 1496 577 23.09 1.78
EXTROS 500 | 14 14 15 | 15 | 1644 147 93.14 | 46.57
DBNDVF 25 3 11 2 10 429 1050 6.78 0.94
BTRDIA 200 7 7 6 6 3662 338 200.44 | 3.11

BNALIN 30 13 6 13 5 - 37 291 0.88
LINFRK 100 8 8 9 9 - 45 9.07 4.94
SENSORS | 100 | 18 18 18 | 18 - 826 50.00 | 67.93
WATSON 31 13 13 14 | 12 - 700 28.88 | 23.81

Table 7.6: Comparing the performance of the Rendl and Wolkowicz algorithm and the
Lanczos method within a trust region algorithm on different problems.

In the next table, we make a similar kind of comparison, but the Rendl and Wolkowicz
algorithm is slightly changed based on the following idea: since we initially compute the
smallest eigenvalue of A in the algorithm, if the latter is positive we may compute the

Newton direction which will be a descent direction in this case. We take the Newton

CHAPTER 7. NUMERICAL EXPERIMENTS 91

step if the ratio of the actual improvement over the predicted improvement is above
0.95, otherwise we backtrack by 0.5 along the Newton direction until the ratio becomes
higher than 0.95. If we take a step along the Newton direction, then the trust region
radius is set to be the length of that step, unless it is less than 0.5s, s or 2s depending
if the performance ratio when moving along the Newton step is respectively less than
0.01, between 0.01 and 0.95 or greater than 0.95. This modification of the Rendl and

Wolkowicz algorithm is referred to as RW2 in the following table.

n function iterations matrix-vector cpu time
evaluations multiplications (seconds)
RW2 | LM | RW2 | LM | RW2 LM RW2 LM
BRYBND 1000 | 23 26 22 25 | 2507 505 316.74 | 125.63
GENROSE | 100 | 100 | 69 78 85 | 30808 | 5857 | 343.69 | 255.38
EXPWSF 100 17 18 16 17 | 5805 297 56.07 2.43
TRIDIA 100 3 6 2 5 552 577 5.83 1.78
EXTROS 500 20 14 14 15 | 1708 147 69.64 | 46.57
DBNDVF 25 3 11 2 10 970 1050 3.01 0.94
BTRDIA 200 6 7 5 6 3345 338 191.22 | 3.11
BNALIN 30 10 6 9 5 316 37 1.73 0.88

LINFRK 100 3 8 1 9 37 45 1.41 4.94
SENSORS 100 18 18 18 18 - 826 52.57 | 67.93
WATSON 31 13 13 15 12 - 700 30.98 | 23.81

Table 7.7: Comparing the performance of the Rendl and Wolkowicz algorithm using
the Newton step and the Lanczos method within a trust region algorithm on different
problems.

From this set of problems, we derive from the last two tables a conclusion similar
to the one in Gould et al. [7], i.e. it is not clear, looking at the number of function
evaluations or iterations, which method performs the best. The version of the Rendl
and Wolkowicz algorithm that moves along the Newton direction when it is a descent
direction seems to do slightly better then the first version on these problems in terms

of the number of iterations and as well for the number of function evaluations. Also,

CHAPTER 7. NUMERICAL EXPERIMENTS 92

because backtracking may be necessary when using the Newton direction, more functions
evaluations are needed on some problems. When the Lanczos method is used, because
the solutions to the trust region subproblems obtained are found on a subspace rather
then on the whole space as in the Rendl and Wolkowicz algorithm, the number of matrix-
vector multiplications and the computation times are on average higher when the latter
is used. Thus, the previous results suggest that on the previous set of problems, most of
the time one should choose the Lanczos method to solve the trust region subproblems,
since this translates into lower computation costs. Hence, should we conclude as well that
high accuracy solutions for the subproblems are not useful? Before answering, consider

the following function:

The gradient of this function is zero when |z;]=1or0Ofor¢=1...n—1and 2, = 1.
For the Hessian to be positive semidefinite when the gradient is zero, we need |z;| = 1 for
i=1...n—1, otherwise the Hessian is indefinite. Hence, when |2;] =1fori=1...n—1
and z, = 1, then we have a local minimum and looking back at the function we see that
it is also a global minimum.

In the following, we will minimize this function using a trust region method. Let

To = [07 07 07 07 07 07 07 07 07 3/2]T

CHAPTER 7. NUMERICAL EXPERIMENTS 93

be the initial point to start the method. We have

0 -4 0 0
:) 0

Vf(%) = \4 f(%) =
0 -4 0
1 0 0 2

zo in this problem is chosen to create the hard case (case 2) initially. Indeed, the gra-
dient is perpendicular to the space spanned by the eigenvectors of the smallest eigenvalue
of the Hessian. Easy computations as in Example 3.1 show that the hard case (case 2)
occurs if the initial size of the trust region (i.e. sg) is greater or equal to 1/6. Therefore,
choosing sg = 1 makes the hard case (case 2) occur initially.

When the trust region method 7.1 is used to minimize this function, with the Rendl
and Wolkowicz algorithm used to solve the trust region subproblems, it converges to the

point

T = [17 _]—7]-7 _]—7]-7]-7]-7]-7 _17 1]T7

which is a global minimum of the function. On the other hand, when the Lanczos method

is used to solve the subproblems, the method converges to the point

#=10,0,0,0,0,0,0,0,0,1)7.

The trust region algorithm stops because the gradient at the previous point is zero.
However, the Hessian at the same point is indefinite and we stop at a point which is
neither a local or a global minimum. Since, the function is coercive, the iterates obtained

by a trust region method will be bounded and according to Theorem 2.1, there will be

CHAPTER 7. NUMERICAL EXPERIMENTS 94

an accumulation point that satisfies first and second order optimality conditions. Hence,
a trust region method should be able to escape from points where the gradient is zero
and where the Hessian is indefinite. Indeed, this is possible by moving in the direction
of an eigenvector of the smallest eigenvalue of the Hessian. Therefore, if we modify the
stopping criteria and stop when (7.2) is satisfied, as before, and when the Hessian is
positive semidefinite, we can prevent the algorithm to stop when the gradient is zero and
when the Hessian is indefinite.

In the above problem, this requires that we are able to solve the hard case (case
2), since the gradient at & being zero, it is perpendicular to the space spanned by the
eigenvectors of the smallest eigenvalue of V2 f(#) and since for any positive radius s -the
size of the trust region- the hard case (case 2) occurs. Because, the Lanczos method fails
when the gradient is zero, even if we change the stopping criteria, Algorithm 7.1, with
the Lanczos method used to solve the trust region subproblem, fails to find the optimum
of the function and dies at #. On the other hand, if the Rendl and Wolkowicz algorithm
is used to minimize the function with the starting point #, then it converges to a global
minimum of the function.

This example shows that being able to handle the hard case (case 2) is an important
feature for a trust region subproblem algorithm, since it leads to a robust trust region
method. An analysis of the iterates obtained by Algorithm 7.1, when the Rendl and
Wolkowicz algorithm is used to solve the subproblems and when z¢ is the starting point,
shows that the algorithm does not encounter points where the gradient is zero and the
Hessian is indefinite. In particular, Z is not part of the iterates. This is caused by the fact
that the solutions to the initial trust region subproblem are different depending on the
algorithm used. Because the hard case (case 2) occurs at xg, the Lanczos method cannot
find an accurate solution. On the other hand, the Rendl and Wolkowicz algorithm does

solve it up to the required accuracy and this is what explains the two different behaviors

CHAPTER 7. NUMERICAL EXPERIMENTS 95

of Algorithm 7.1. In fact, the Lanczos method in the first iteration gives an answer to the
initial trust region subproblem which is in the interior of the trust region. More precisely,
the conjugate gradient method, which is applied until the boundary is encountered, stops
because it finds a point where the gradient of the quadratic objective is zero. Yet, since
V2 f(xq) is indefinite, the problem is not convex and the solution is on the boundary. This
shows another weakness of the Lanczos method: the conjugate gradient method, which
is used before the boundary is encountered, may converge to a point where the gradient
of the quadratic objective is zero, although the solution is not in the interior.

Hence, this example contradicts the assertions found in the paragraph quoted at the
beginning of this section. As it may not come essential when minimizing some problems,
beings able to solve the subproblems accurately within a trust region method is important.
For example, one never knows when the hard case (case 2) or near hard case (case 2) may
occur and, as we have seen, the behavior of the algorithm depending on the accuracy
of the methods used to solve the subproblems may be very different. It is true that
the Rendl and Wolkowicz algorithm is more expensive than the Lanczos method, when
computation time and matrix-vector multiplications are considered, but this is the price
one has to pay for the robustness of the trust region method. In practice, one may wish
to attempt minimizing a function using the Lanczos method to approximate the solutions
of the subproblems of the trust region method. Yet, if the Hessian of the approximate
solution is not positive semidefinite, the Rendl and Wolkowicz algorithm may be necessary

to solve the subproblems.

Chapter 8

Conclusion

We have considered in this thesis, three different algorithms for solving the trust region
subproblem: the Moré and Sorensen algorithm, the Lanczos method and the Rendl and
Wolkowicz algorithm. We have put the main focus on the last two, since they are modern
algorithms that can exploit the sparsity of the Hessian. Yet, the Moré and Sorensen
algorithm, although it does not exploit sparsity, solves the easy case and the case 1 of the
hard case using Newton’s method, it handles the case 2 of the hard case and many of the
tricks used in this algorithm have been kept in the two other algorithms we considered.
Semidefinite programs were the link to explain these three algorithms. This idea came first
in the paper of Rendl and Wolkowicz [31] to explain the Moré and Sorensen algorithm
and their algorithm. They showed through two different type of dual problems, that
could be stated in the form of semidefinite programs, that the trust region subproblem
was equivalent to the maximization of a concave function. Their work appeared in the
Duality Chapter. Furthermore, we showed that one of these duals could be used to
analyze the Lanczos method. In particular, this showed that measuring the norm of the

gradient of the Lagrangian at an approximate solution was linked to measuring a duality

gap.

96

CHAPTER 8. CONCLUSION 97

We also proposed in the chapter reviewing the Rendl and Wolkowicz algorithm a new
primal step to the boundary. A step that was equivalent to the Moré and Sorensen primal
step to the boundary was used in the algorithm, but the new step presented was based
on the fact that a decrease in the objective function could be obtained if one moves from
a bad side point in the direction of a good side point when the sign of the multipliers are
nonpositive.

It is this idea that was first tested in our numerical section and it seemed to improve
the original Rendl and Wolkowicz algorithm. The second part of our numerical section
compared the Lanczos method and the Rendl and Wolkowicz algorithm when used within
a trust region method. Because the Rendl and Wolkowicz algorithm is able to handle the
case 2 of the hard case and always give an accurate solution to the subproblem, unlike the
Lanczos method that does not handle this case, the goal of this section was to see if we
would obtain a similar conclusion to the one in the Gould et al. [7] paper. These authors
suggested that solving the subproblem more accurately does not appear to reduce the
number of function evaluations in a trust region method. We compared the Rendl and
Wolkowicz algorithm and the Lanczos method when used within a trust region method to
solve different test problems. On the first eleven problems we considered, our conclusions
were similar to the ones of Gould et al. Yet, we constructed an example showing that on
some problems, a trust region method that uses the Lanczos method to approximate the
subproblems may get stuck at points where the gradient is zero and the Hessian indefinite.
On the other hand, the Rendl and Wolkowicz algorithm, although more expensive, proved
to solve all the problems considered. Hence, the extra computations of the Rendl and
Wolkowicz algorithm compared to the Lanczos method is the price one has to pay for a
more robust trust region method.

It appears that in some cases low accuracy solutions to the subproblems are as good

as high accuracy solutions when the overall number of function evaluations is considered,

CHAPTER 8. CONCLUSION 98

yet since one never knows when the case 2 of the hard case may occur, a robust trust
region algorithm needs a subroutine that can solve the subproblems accurately, especially

if the case 2 of the hard case occurs.

Appendix A

Figures

I I I I I
-70 -65 -60 -55 -50 —-45 -40

Figure A.1: ¢(A) in the easy case

In this figure A;(A) = —40.1048 and A* = —59.8596.

99

APPENDIX A. FIGURES 100

I I I I I I I
-15 -14.5 -14 -13.5 -13 -12.5 -12 -11.5 -11

Figure A.2: ¢(\) in the almost hard case (case 1)

In this figure A;(A) = —12.0000 and A* = —13.4545.

1

—al 4

-6 L L L L L I I
-15 -14.5 -14 -13.5 -13 -12.5 -12 -11.5 -11

Figure A.3: ¢(A) in the almost hard case (case 2)

In this figure A;(A) = —12 and A* is almost -12.

APPENDIX A. FIGURES 101

-0.5

-1

In this figure Ay (

-140
-145
-150
-155
-160
-165
-170
-175

-180

In this figure A;(

I I I I I I
-30 -28 -26 -24 -22 -20 -18 -16

x 10

Figure A.4: h(\) in the easy case

A) = —50.4601 and A* = —58.8700. Note that &/(A*) = 0.

Figure A.5: h(A) in the hard case (case 1)

A) = —17.8085 and A* = —18.4342. Note that 2/(A*) = 0 and that

the function is continuous in A;(4).

APPENDIX A. FIGURES 102

—3500

—4000

-4500

-5000

—5500

-6000

-6500
-15

I I I I I
-14 -13 -12 -11 -10 -9

Figure A.6: h(\) in the hard case (case 2)

In this figure A;(A) = A* = —12. Again, the function is continuous in A;(A) and
striclty increasing on (—oo, A1(A)]. This is why A* = A (A).

-28

—-36 L L L I
-25 -20 -15 -10 -5 o]

Figure A.7: k(t) in the easy case

In this figure, t* = —14.2617. Note that the function is differentiable everywhere and

E'(t*) = 0. We have also in this case A* = —21.2191 and A (A) = —17.4435.

APPENDIX A. FIGURES 103

-144

—146

-148

-150

-152

-154

-156 L L L L L L I I I
30 32 34 36 38 40 42 44 46 48 50

Figure A.8: k(t) in the hard case (case 1)

In this figure, t* = 37.0878 and ¢ty = 41.0549. Note three things: the function is
differentiable everywhere except in tq, this is the hard case (case 1) since &' (¢t*) = 0 and the

function is purely linear for ¢ > to. We also have A* = —18.4391 and A\;(A) = —17.8085.

-219

-220
-221 \\\\\\\\\
-222

-223
-224
-225

—226

-227

-228

—229 L L L L L L I I I
30 32 34 36 38 40 42 44 46 48 50

Figure A.9: k(¢) in the hard case (case 2)

In this figure, t* = to = 41.0549. Note three things: the function is differentiable
everywhere except in to, this is the hard case (case 2) since k(-) is not differentiable in

t* = to and the function is purely linear for ¢ > t5. We also have * = A\;(A) = —17.8085.

Appendix B

Mathematical Background

B.1 The derivatives of h(-)

Recall that
h(\) = —aT (A= XD)Ta + X%

Let A; and the sequence {),} be defined as in section 5.1 and assume that the sequence

converges to A € (—o0, Aj). Then for w € N
h(w) = —al (A = D) 7La+ Ayps?.

Since

104

APPENDIX B. MATHEMATICAL BACKGROUND 105

then

h(w+h) = —aT (A= NoD)7 = (A = X D)"H(=RI)(A = M\oI) " Ya+ o(h)aTa + A\ps® + hs?

= —al (A - AoD)7la+ Aps? — ha® (A = M\oI)"2a + hs* + o(h)a” a.

Therefore
_ _hal (A — -2 2 T
i h(Aw+ h) — h(Ay) — lm ha' (A — AyI)"2a+ hs* + o(h)a' a
h—0 h h—0 h
h
= —al (4 - o) %a+ 5% + lim aTaa() = —al (A - AoD)2a+ 5%
h—0 h
Hence

2
+ s,

W (Aw) = —aT(A=AI)Pa+ 7 = —(QTa) (A= A\) 2(QTa) + 7 = =)

i=l

X — o

where we have used the fact that v; = 0 for j € {l,...,l — 1}. Using the last equation

and the fact that A; — A>0forje{l,...,n}, we get that

n 2

M) == s 4 = (4= AD a4
=1 N

Since h(-) is a continuous function over (—oo, A7), then we get for A in that interval

(A = —al (A= A)H2%a + 5%

APPENDIX B. MATHEMATICAL BACKGROUND 106

To compute the second derivative of h(-) over (—oo, A;), similar computations would yield

R'(A) = —2aT ((A = AI)T)3a.

B.2 The concavity of A\(D(-))

Here we show that A;(D(+)) is a concave function. The result is based on the fact that if

A and B are two symmetric matrices, then

MA+B) = min 27(A+B)x > min 2742 4+ min 27 Bz = M\ (4) +)\ (B)

st. |zl =1 st. |zl =1 st. |lz||=1

Now let o € [0,1], t; € R and t3 € R. Then by the inequalities above we have
)\1(_D(O'tl + (]_ — O')tz)) =)\1(0’D(tl) + (]_ — U)D(tz)) Z O')\l(_D(tl)) + (]_ — O'))\l(_D(tz))

This proves A;(D(+)) is a concave function.

Appendix C

Details on the Test Problems

We briefly outline the parameter values and starting points we have chosen for each of
the 10 problems we used for testing. For most of the problems, a standard starting point
exists and for some of them we needed to provide one. We denote the starting point by
xg. We use the variable n for the number of variables in each problems. These problems

are of the form

Zf,»(x).

We now give the corresponding informations for each problem:

1. BRYBND: Broyden banded function [10],

(a) n =1000, m = n,

(b) zo=[-1,...,-1],
2. GENROSE: Generalized Rosenbrock [19],

(a) n =100, m =n,

107

APPENDIX C. DETAILS ON THE TEST PROBLEMS 108

(b) 2o = [y 747)

3. EXPWSF: Extended Powell singular function [10],
(a) n =52, m=n,
(b) (20)aj—3 =3, (20)4j—2 = =1, (0)4j1 =0, (20)a; = 1,
4. TRIDIA: [13],
(a) n =100, m = n,
(b) zo=1[1,...,1],
5. EXTROS: [13)],
(a) n =500, m=n/2,
(b) zo=1[1,...,1],
6. DBNDVF': Discrete boundary value function [10],
(a) n =25 m=n,
(b) (z0)i =
7. BTRDIA: Broyden tridiagonal function [10],
(a) n =200, m = n,
(b) zo=[-1,...,-1],
8. BNALIN: Brown almost-linear function [10],
(a) n =30, m=n,
(b) 2o =1[5,--- 3],

9. LINFRK: Linear function full rank [10],

APPENDIX C. DETAILS ON THE TEST PROBLEMS

(a) n =100, m = n,
(b) zo=1[1,...,1],
10. SENSORS: Optimal sensor placement [30],
(a) n =100,
(b) wo=1[%,2...,1],

n’n

11. WATSON: Watson function [10],

(a) n =31, m=n,

(b) 2o =10,...,0].

109

Appendix D

Matlab Programs

D.1 Generating Random Trust Region Subproblems

In Section 7.1, we tested our new primal step to the boundary on hundreds of random trust

region subproblems. This is the Matlab file that was used to generate these problems:
% INPUT: n order of matrix

s=rand/rand

tt=1/rand

A=tt*randn(n)

A=A+ A’

tt=1/rand

a=tt*randn(n,1)

% The objective is 2’ Az — 2a” 2 and the trust region radius is s.

110

APPENDIX D. MATLAB PROGRAMS 111

D.2 Files on the Trust Region Methods

The files that were used for testing in Section 7.2 can be found on the World Wide Web
at the following address: http://orion.uwaterloo.ca/ hwolkowi. The files used to enter the
information for each problem are initialize.m, objective.m and objgradhess.m. The
files newtrust.m and lanczoslim.m respectively are the Rendl and Wolkowicz algorithm
and the Lanczos method. trmgould.m and trmbgouldlanczoslim.m implement the
trust region method of Algorithm 7.1 depending respectively if the Rendl and Wolkowicz

algorithm or the Lanczos method is used to solve the trust region subproblems.

Bibliography

[1] D.P. BERTSEKAS. Nonlinear Programming. Athena Scientific, 1995.

[2] P.G. CIARLET. Introduction a l'analyse numérique matricielle et a optimisation.

Collection mathématiques apppliquées pour la maitrise. Masson, fifth edition, 1990.

[3] R. FLETCHER. Practical methods on optimization. John Wiley and Sons, second

edition, 1987.

[4] D.M. Gay. Computing optimal locally constrained steps. SIAM Journal on Scientific
and Statistical Computing, 2(2):186-197, 1981.

[65] S.M. GoLDpFELD, R.E. QuanDT, and H.F. TROTTER. Maximization by quadratic

hill-climbing. Econometrica, 34(2):541-551, 1966.

[6] G.H. GoLuB and C.F. VAN LoaN. Matriz Computation. The Johns Hopkins Uni-

versity Press, third edition, 1996.

[7] N.LM. GouLp, S. Lucipi, M. RoMa, and P.L. ToINT. Solving the trust-region
subproblem using the lanczos method. SIAM Journal on Optimization, 9(2):504—
525, 1999.

[8] W.W. HAGER. Minimizing a quadratic over a sphere. Technical report, University

of Florida, Gainsville, Fa, 2000.

112

BIBLIOGRAPHY 113

[9] R.A. HorN and C.R. JOHNSON. Matriz Analysis. Cambridge University Press, 1987.

[10] B.S. GarBOW J.J. MoRE and K.E. HiLLSTROM. Testing unconstrained optimization

software. ACM Trans. Math. Software, 7(1):17-41, 1981.

[11] C. LEMARECHAL and F. OUsTRY. Semidefinite relaxations and lagrangian duality
with application to combinatorial optimization. Technical Report 3710, INRIA, 655,

avenue de I’Europe,38330 Montbonnot St-Martin (France), 1999.

[12] K. LEVENBERG. A method for the solution of certain nonlinear problems. Quarterly

of Applied Mathematics, 2:164-168, 1944.

[13] G. Liu and J. NocEDAL. Test results of two limited memory methods for large scale
optimization. Technical Report NAM 04, Department of Electrical Engineering and

Computer Science, Northwestern University, Evanston, Illinois, 1985.

[14] D.W. MARQUARDT. An algorithm for least-squares estimation of nonlinear param-

eters. SIAM Journal on Applied Mathematics, 11(2):431-441, 1963.

[15] J.M. MARTiNEZ. Local minimizers of quadratic functions on euclidian balls and

spheres. SIAM Journal on Optimization, 4(1):159-176, 1994.

[16] J.M. MARTINEZ and S.A. SANTOS. A trust-region strategy for minimization on

arbitrary domains. Mathematical Programming, 68(3):267-301, 1995.

[17] J.J. MoRE. Generalizations of the trust region problem. Technical report, Argonne

National Laboratory, 1993. Preprint MCS-P349-0193.

[18] J.J. MoRE and D.C. SORENSEN. Computing a trust region step. SIAM Journal on
Scientific and Statistical Computing, 4(3):553-572, 1983.

BIBLIOGRAPHY 114

[19]

[20]

[21]

[27]

[28]

S. NasH. Newton-type minimization via the lanczos process. STAM journal on

numerarical analysis, 21:770-788, 1984.

M.J.D. PowELL. A new algorithm for unconstrained optimization. In J.B. Rosen,
O.L. Mangasarian, and K. Ritter, editors, Nonlinear Programming, pages 31-65.
Academic Press, New York, NY, 1970.

M.J.D. PowEgLL. Convergence properties of a class of minimization algorithms. In
O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, editors, Nonlinear Programming
2, pages 1-27. Academic Press, New York, NY, 1975.

C. REINSCH. Smoothing by spline functions. Numerische Mathematik, 10:177-183,
1967.

C. REINSCH. Smoothing by spline functions ii. Numerische Mathematik, 16:451-454,
1971.

M.D. REINSCH. An algorithm for minimization using exact second derivatives. Tech-

nical Report 515, Harwell Laboratory, Harwell, Oxfordshire,England, 1973.

M. Rojas, S.A. SanTos, and D.C. SORENSEN. A new matrix-free algorithm for
the large-scale trust-region subproblem. Technical Report TR99-19, Rice University,
Houston, TX, 1999.

D.C. SORENSEN. Newton’s method with a model trust region modification. SIAM

Journal on Numerical Analysis, 19(2):409-426, 1982.

D.C. SOrRENSEN. Minimization of a large-scale quadratic function subject to a spher-

ical constraint. SIAM Journal on Optimization, 7(1):141-161, 1997.

T. STEIHAUG. The conjuguate gradient method and trust regions in large scale

optimization. SIAM Journal on Numerical Analysis, 20(3), 1983.

BIBLIOGRAPHY 115

[29]

[30]

[31]

[33]

[34]

[35]

P.D. Tao and L.T.H. An. Difference of convex functions optimization algorithms
(dca) for globally minimizing nonconvex quadratic forms on euclidean balls and

spheres. Oper. Res. Lett, 19(5):207-216, 1996.
X. WaNG and H. ZHANG. Optimal sensor placement. STAM Review, 35:641, 1993.

H. WorLkowicz and F. RENDL. A semidefinite framework for trust region sub-
problems with applications to large scale minimization. Mathematical Programming

Series B, 77(2):273-299, 1997.

H. WoLkowicz and R.J. STERN. Indefinite trust region subproblems and non-
symmetric eigenvalue perturbations. STAM Journal on Optimization, 5(2):286-313,
1995.

Y. YE. Combining binary search and Newton’s method to compute real roots for a

class of real functions. Journal of Complezity, 10:271-280, 1994.

Y.X. YUAN. An example of non-convergence of trust region algorithms. In Applied
Optimization, volume 14 of Advances in nonlinear programming (Beijing, 1996),

pages 205-215. Kluwer Acad. Publ., Dordrecht, 1998.

Y. ZHANG. Computing a celis-dennis-tapia trust-region step for equality constrained

optimization. Mathematical Programming, 55(1):109-124, 1992.

