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Abstract

We present a characterization of those Euclidean distance matrices D
which can be expressed as D = A(E — (') for some nonnegative scalar A
and some correlation matrix C, where E is the matrix of all ones. This
shows that the cones

cone (E —&,) #cone (E —&,) = Dy,

where &, is the elliptope (set of correlation matrices) and D, is the
(closed convex) cone of Euclidean distance matrices.

The characterization is given using the Gale transform of the points
generating D. We also show that given points p', p?, ..., p* € R, for
any scalars A1, A2, ..., A, such that

=0, > A=0,
j=1 j=1
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we have "
Z)\j sz _p7'||2 =aforalli=1,...,n,
j:l

for some scalar o independent of 1.

1 Introduction

An n X n matrix D = (d;;) is said to be a Fuclidean distance matriz (EDM)
if there exist n points p',p?, ...,p" in some Euclidean space R, such that
lp* — p?||> = d;j for all i,j = 1,...,n where || . || is the Euclidean norm. It
is well known, e.g. [5, 8], that D with zero diagonal is EDM if and only if D
is negative semidefinite on the orthogonal complement of e, the vector of all
ones. Hence, the set of n x n EDM matrices is a closed convex cone, to be
denoted by D,,.

Let &, denote the set of n X n correlation matrices. i.e., the set of all
positive semidefinite symmetric matrices whose diagonal is equal to e. It is
also well known [3] that D, is the tangent cone of &, at E, the matrix of all
ones, i.e.,

D,=cone (E-&,)={XNE-C):2>0,C€&,}, (1)

where - denotes closure.

In this paper, we present a characterization of EDM matrices D that can
be represented as D = A(E — C), where X is a nonnegative scalar and C' is
a correlation matrix. This characterization is given using the Gale transform
of the points p’, i = 1,...,n that generate D. (This transform is a powerful
technique used in the theory of polytopes [4, 6].) The Gale transform of a set
P of n points in R is another set of n points in R("~1~7), These new points
reflect the affine dependencies of the set P.

The characterization shows that closure is essential in (1), i.e. the cone
generated by the compact convex set E — &, is not closed. In general, it is
hard to show whether the cone generated by a closed convex set is closed. One
usually needs special structure such as the set does not contain the origin, (e.g.
7).

Applications of Euclidean distance matrices include among others, molec-
ular conformation theory, protein folding, and the statistical theory of multi-
dimensional scaling, see e.g. [1] for a list of applications.



2 Preliminaries

Positive semidefiniteness of a symmetric matrix C is denoted by C' > 0; e
and FE denote, respectively, the vector and the matrix of all ones. The n X n
identity matrix is denoted by I,,. The diagonal of a matrix A is denoted by
diag A, and its null space by N'(A). Finally, || . || denotes the Euclidean norm.

An n X n matrix D = (d;;) is said to be a Fuclidean distance matric
(EDM) if there exist points p!,p? ..., p" in some Euclidean space R" such
that ||p' —p’||? = d;; for all i, = 1,...,n. The dimension of the smallest such
Euclidean space containing p', p?,...,p" is called the embedding dimension of
D. Tt is well known that the matrix D with zero diagonal is EDM if and only
if D is negative semidefinite on

M:={e}t ={z e R :elz =0]}.

Let V be the n x (n — 1) matrix whose columns form an orthonormal basis
of M; that is, V satisfies:

Vvie=0, VIv=1,_. (2)

The orthogonal projection on M, denoted by .J, is then given by J :=
VVT = I —ee” /n. Hence, it follows that D with zero diagonal is EDM if and
only if

1
B:= -2 JDJ 0. (3)

Furthermore, the embedding dimension of D is equal to the rank of B. Let
rank B = r. Then, the points p', p?, ..., p" that generate D are given by the
rows of the n X r matrix P where B := PPT. Note that since Be = 0, it follows
that the centroid of the points p’, i = 1,..., n coincides with the origin.

Let p', p?,...,p" be points in " whose centroid coincides with the origin.
Assume that the points p', p?, ..., p" are not contained in a proper hyperplane.
Then

1T
2T

P = P
o

is of rank . Let B = PPT. Then it easily follows that the EDM matrix D
generated by p’, i = 1,...,n is given by

D = diag Be” + e (diag B)" — 2B. (4)



Let Z be an n X r matrix, 7 = n — 1 — r, whose columns form a basis for

T
the null space of the (r 4+ 1) X n matrix [ IZT ] ie.,

PT'Z=0, ¢'Z=0, and Z is full column rank. (5)
Let z*7 denote the i-th row of Z. ie.,
1T
2T
Z = )
ZnT

Then z' is called the Gale transform of p'; and Z is called a Gale matriz
corresponding to D. Three remarks are in order here. First, clearly the Gale
matrix Z as defined in (5) is not unique. Different Gale matrices are obtained
by multiplying Z on the right by a nonsingular 7 X 7 matrix . Second,
the entries of Z are rational whenever the entries of P are rational. Third,
the columns of Z represent the affine dependence relations among the points
pl,p?, ..., p", i.e., among the rows of P.

3 Main Results

Next we give the two main results of the paper. The proofs are given in
Section 4.

Theorem 3.1 Let D be a FEuclidean distance matric and let Z be a Gale
matriz corresponding to D. Then, the columns of DZ are proportional to e.

From the definition of Z, another equivalent statement of Theorem 3.1 is

Theorem 3.2 Let Ay, Aq, ..., A, be coefficients, not all zero, of the affine
dependence equation of the points p',p*,...,p", in R, i.e.,

>N =0, Aj=0.
i=1

1

n

J
Then

ZAJ Ip' =P ||> =a foralli=1,...,n,
j=1

for some scalar « independent of 1.



Theorem 3.3 Let D be a FEuclidean distance matric and let Z be a Gale
matriz corresponding to D. Then the following are equivalent:

1.
D=\E-C), (6)

for some nonnegative scalar A and some correlation matriz C;
DZ =0. (7)

4 Proof of the Main Results
We start by proving the following technical lemma.

Lemma 4.1 Let D be a Fuclidean distance matriz and let B be the matriz

defined in (3). Then:
1.

1
—§VTDV =vTBV;

NVTDV)=N(PTV).

Proof. The first part follows directly from (4) and the definition of V.. This
vields the second part since B = PPT and N(VTBV) = ,/\/(VTPPTV) -
N(PTV). [ |

The following lemma was first proved in [2], where Euclidean distance
matrices and Gale transforms were used to study the problems of realizability
and rigidity of weighted graphs. We include the proof here for completeness.

Lemma 4.2 Let D be a Fuclidean distance matriz and let U be the matriz
whose columns form an orthonormal basis of the null space of VI DV . Then
VU is a Gale matriz corresponding to D.



Proof. It follows from Lemma 4.1 that PTVU = VIDVU = 0 and
from the definition of V in (2) that e/ VU = 0. Hence, the columns of VU

T
form an orthonormal basis for the null space of [ ];T ] . [ |

Proof of Theorem 3.1. Let Z be a Gale matrix corresponding to D. Then It
follows from Lemma 4.2 that VU = Z@) for some nonsingular 7 X ¥ matrix Q.
Thus VIDZ = VIDVUQ~" = 0. Hence, the columns of DZ are proportional
to e. [ |

Proof of Theorem 3.3. D = A(E — C) for some nonnegative scalar A and
some correlation matrix C' if and only if £ — %D is positive semidefinite. Let

Q = [-%= V]. Then, E — D/A > 0 if and only if QT (E — D/\) Q > 0. But

\/E
n— x5 e De —5i=e DV
QT(E—D/)\)Q:[ An A/
vz V'De -3VTDV

Recall that VT (—D)V > 0 follows from Lemma 4.1. Let W and U be the
matrices whose columns form an orthonormal basis for the range space and
null space of VT (—D)V, respectively. Hence, VT (—=D)V = WAWT, where
A is the diagonal matrix of the positive eigenvalues of VT (—=D)V. Let Q' =

1 0 0 . " . . .
l oW U ] Then, E — D/) is positive semidefinite if and only if

R = QTQT(E-D/NQY

n—xme'De  —5l=e'DVW —x1=e"DVU (8)
= | —xim W'V De 1 A 0 = 0.
1 Ty T
Now for sufficiently large A the submatrix
n— ﬁ el De —ﬁﬁ e’ DVW
3= \1/5 WTVT De % A

is positive definite. Thus E — D/X is positive semidefinite if and only if
e'DVU = e¢I'DZ = 0. But it follows from Theorem 3.1 that ¢! DZ = 0
if and only if DZ = 0 and the result follows. [ |



5 Example

Next we present the following example to illustrate our new characterization.
Given the two Euclidean distance matrices

01 4
Di=|10 1|, Dy=
410

o = O
—_ o
o = O

The Gale matrices corresponding to Dy and Dj are

1 1
Zi=| -2, Z,=| 0],
1 -1

respectively. Now D;Z; = 2e and DyZ5 = 0. It is easy to verify that Dy =
E — Cy, where

1 01
Co=]101 0] >0
1 01
However, there exists no A > 0 such that D; = A(E — () for some correlation
matrix C.
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