Two Theorems On Euclidean Distance Matrices and Gale Transform

Abdo Y. Alfakih *and Henry Wolkowicz †

University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2001-06

January 28, 2001

Keywords: Euclidean distance matrices, semidefinite matrices, correlation matrices, tangent cones, Gale transform.

AMS Subject Classification: 51K05, 15A48, 52B35.

Abstract

We present a characterization of those Euclidean distance matrices D which can be expressed as $D = \lambda(E - C)$ for some nonnegative scalar λ and some correlation matrix C, where E is the matrix of all ones. This shows that the cones

cone
$$(E - \mathcal{E}_n) \neq \overline{\text{cone } (E - \mathcal{E}_n)} = \mathcal{D}_n$$
,

where \mathcal{E}_n is the elliptope (set of correlation matrices) and \mathcal{D}_n is the (closed convex) cone of Euclidean distance matrices.

The characterization is given using the Gale transform of the points generating D. We also show that given points $p^1, p^2, \ldots, p^n \in \Re^r$, for any scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$\sum_{j=1}^n \lambda_j \ p^j = 0, \qquad \sum_{j=1}^n \lambda_j = 0,$$

^{*}E-mail: aalfakih@orion.uwaterloo.ca

[†]Research supported by Natural Sciences Engineering Research Council Canada. E-mail hwolkowicz@uwaterloo.ca

we have

$$\sum_{j=1}^{n} \lambda_{j} ||p^{i} - p^{j}||^{2} = \alpha \text{ for all } i = 1, \dots, n,$$

for some scalar α independent of *i*.

1 Introduction

An $n \times n$ matrix $D = (d_{ij})$ is said to be a Euclidean distance matrix (EDM) if there exist n points p^1, p^2, \ldots, p^n in some Euclidean space \Re^r , such that $||p^i - p^j||^2 = d_{ij}$ for all $i, j = 1, \ldots, n$ where $|| \cdot ||$ is the Euclidean norm. It is well known, e.g. [5, 8], that D with zero diagonal is EDM if and only if D is negative semidefinite on the orthogonal complement of e, the vector of all ones. Hence, the set of $n \times n$ EDM matrices is a closed convex cone, to be denoted by \mathcal{D}_n .

Let \mathcal{E}_n denote the set of $n \times n$ correlation matrices. i.e., the set of all positive semidefinite symmetric matrices whose diagonal is equal to e. It is also well known [3] that \mathcal{D}_n is the tangent cone of \mathcal{E}_n at E, the matrix of all ones, i.e.,

$$\mathcal{D}_n = \overline{\text{cone } (E - \mathcal{E}_n)} = \overline{\{\lambda(E - C) : \lambda > 0, C \in \mathcal{E}_n\}},\tag{1}$$

where $\bar{\cdot}$ denotes closure.

In this paper, we present a characterization of EDM matrices D that can be represented as $D = \lambda(E - C)$, where λ is a nonnegative scalar and C is a correlation matrix. This characterization is given using the Gale transform of the points p^i , $i = 1, \ldots, n$ that generate D. (This transform is a powerful technique used in the theory of polytopes [4, 6].) The Gale transform of a set P of n points in \Re^r is another set of n points in $\Re^{(n-1-r)}$. These new points reflect the affine dependencies of the set P.

The characterization shows that closure is essential in (1), i.e. the cone generated by the compact convex set $E - \mathcal{E}_n$ is not closed. In general, it is hard to show whether the cone generated by a closed convex set is closed. One usually needs special structure such as the set does not contain the origin, (e.g. [7]).

Applications of Euclidean distance matrices include among others, molecular conformation theory, protein folding, and the statistical theory of multi-dimensional scaling, see e.g. [1] for a list of applications.

2 Preliminaries

Positive semidefiniteness of a symmetric matrix C is denoted by $C \succeq 0$; e and E denote, respectively, the vector and the matrix of all ones. The $n \times n$ identity matrix is denoted by I_n . The diagonal of a matrix A is denoted by diag A, and its null space by $\mathcal{N}(A)$. Finally, $\|\cdot\|$ denotes the Euclidean norm.

An $n \times n$ matrix $D = (d_{ij})$ is said to be a *Euclidean distance matrix* (EDM) if there exist points p^1, p^2, \ldots, p^n in some Euclidean space \Re^r such that $||p^i - p^j||^2 = d_{ij}$ for all $i, j = 1, \ldots, n$. The dimension of the smallest such Euclidean space containing p^1, p^2, \ldots, p^n is called the *embedding dimension* of D. It is well known that the matrix D with zero diagonal is EDM if and only if D is negative semidefinite on

$$M := \{e\}^{\perp} = \{x \in \Re^n : e^T x = 0\}.$$

Let V be the $n \times (n-1)$ matrix whose columns form an orthonormal basis of M; that is, V satisfies:

$$V^T e = 0 , \quad V^T V = I_{n-1} . (2)$$

The orthogonal projection on M, denoted by J, is then given by $J := VV^T = I - ee^T/n$. Hence, it follows that D with zero diagonal is EDM if and only if

$$B := -\frac{1}{2} JDJ \succeq 0. \tag{3}$$

Furthermore, the embedding dimension of D is equal to the rank of B. Let rank B = r. Then, the points p^1, p^2, \ldots, p^n that generate D are given by the rows of the $n \times r$ matrix P where $B := PP^T$. Note that since Be = 0, it follows that the centroid of the points p^i , $i = 1, \ldots, n$ coincides with the origin.

Let p^1, p^2, \ldots, p^n be points in \Re^r whose centroid coincides with the origin. Assume that the points p^1, p^2, \ldots, p^n are not contained in a proper hyperplane. Then

$$P := \left[\begin{array}{c} {p^1}^T \\ {p^2}^T \\ \vdots \\ {p^n}^T \end{array} \right]$$

is of rank r. Let $B = PP^T$. Then it easily follows that the EDM matrix D generated by p^i , i = 1, ..., n is given by

$$D = \operatorname{diag} B e^{T} + e \left(\operatorname{diag} B\right)^{T} - 2B. \tag{4}$$

Let Z be an $n \times \bar{r}$ matrix, $\bar{r} = n - 1 - r$, whose columns form a basis for the null space of the $(r+1) \times n$ matrix $\begin{bmatrix} P^T \\ e^T \end{bmatrix}$. i.e.,

$$P^T Z = 0$$
, $e^T Z = 0$, and Z is full column rank. (5)

Let z^{iT} denote the *i*-th row of Z. i.e.,

$$Z := \begin{bmatrix} z^{1^T} \\ z^{2^T} \\ \vdots \\ z^{n^T} \end{bmatrix}.$$

Then z^i is called the Gale transform of p^i ; and Z is called a *Gale matrix* corresponding to D. Three remarks are in order here. First, clearly the Gale matrix Z as defined in (5) is not unique. Different Gale matrices are obtained by multiplying Z on the right by a nonsingular $\bar{r} \times \bar{r}$ matrix Q. Second, the entries of Z are rational whenever the entries of P are rational. Third, the columns of Z represent the affine dependence relations among the points p^1, p^2, \ldots, p^n , i.e., among the rows of P.

3 Main Results

Next we give the two main results of the paper. The proofs are given in Section 4.

Theorem 3.1 Let D be a Euclidean distance matrix and let Z be a Gale matrix corresponding to D. Then, the columns of DZ are proportional to e.

From the definition of Z, another equivalent statement of Theorem 3.1 is

Theorem 3.2 Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be coefficients, not all zero, of the affine dependence equation of the points p^1, p^2, \ldots, p^n , in \Re^r , i.e.,

$$\sum_{j=1}^{n} \lambda_j p^j = 0, \quad \sum_{j=1}^{n} \lambda_j = 0.$$

Then

$$\sum_{j=1}^{n} \lambda_{j} ||p^{i} - p^{j}||^{2} = \alpha \text{ for all } i = 1, \dots, n,$$

for some scalar α independent of i.

Theorem 3.3 Let D be a Euclidean distance matrix and let Z be a Gale matrix corresponding to D. Then the following are equivalent:

1.

$$D = \lambda(E - C),\tag{6}$$

for some nonnegative scalar λ and some correlation matrix C;

2.

$$DZ = 0. (7)$$

4 Proof of the Main Results

We start by proving the following technical lemma.

Lemma 4.1 Let D be a Euclidean distance matrix and let B be the matrix defined in (3). Then:

1.

$$-\frac{1}{2}V^TDV = V^TBV;$$

2.

$$\mathcal{N}(\boldsymbol{V}^T \boldsymbol{D} \boldsymbol{V}) = \mathcal{N}(\boldsymbol{P}^T \boldsymbol{V}).$$

Proof. The first part follows directly from (4) and the definition of V. This yields the second part since $B = PP^T$ and $\mathcal{N}(V^TBV) = \mathcal{N}(V^TPP^TV) = \mathcal{N}(P^TV)$.

The following lemma was first proved in [2], where Euclidean distance matrices and Gale transforms were used to study the problems of realizability and rigidity of weighted graphs. We include the proof here for completeness.

Lemma 4.2 Let D be a Euclidean distance matrix and let U be the matrix whose columns form an orthonormal basis of the null space of V^TDV . Then VU is a Gale matrix corresponding to D.

Proof. It follows from Lemma 4.1 that $P^TVU = V^TDVU = 0$ and from the definition of V in (2) that $e^TVU = 0$. Hence, the columns of VU form an orthonormal basis for the null space of $\begin{bmatrix} P^T \\ e^T \end{bmatrix}$.

Proof of Theorem 3.1. Let Z be a Gale matrix corresponding to D. Then It follows from Lemma 4.2 that VU = ZQ for some nonsingular $\bar{r} \times \bar{r}$ matrix Q. Thus $V^TDZ = V^TDVUQ^{-1} = 0$. Hence, the columns of DZ are proportional to e.

Proof of Theorem 3.3. $D = \lambda(E - C)$ for some nonnegative scalar λ and some correlation matrix C if and only if $E - \frac{1}{\lambda}D$ is positive semidefinite. Let $Q = \left[\frac{e}{\sqrt{n}} V\right]$. Then, $E - D/\lambda \succeq 0$ if and only if $Q^T (E - D/\lambda) Q \succeq 0$. But

$$Q^T (E - D/\lambda) Q = \begin{bmatrix} n - \frac{1}{\lambda n} e^T D e & -\frac{1}{\lambda \sqrt{n}} e^T D V \\ -\frac{1}{\lambda \sqrt{n}} V^T D e & -\frac{1}{\lambda} V^T D V \end{bmatrix}.$$

Recall that $V^T(-D)V \succeq 0$ follows from Lemma 4.1. Let W and U be the matrices whose columns form an orthonormal basis for the range space and null space of $V^T(-D)V$, respectively. Hence, $V^T(-D)V = W\Lambda W^T$, where Λ is the diagonal matrix of the positive eigenvalues of $V^T(-D)V$. Let $Q' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & W & U \end{bmatrix}$. Then, $E - D/\lambda$ is positive semidefinite if and only if

$$R = Q'^T Q^T (E - D/\lambda) Q Q'$$

$$= \begin{bmatrix} n - \frac{1}{\lambda n} e^T D e & -\frac{1}{\lambda \sqrt{n}} e^T D V W & -\frac{1}{\lambda \sqrt{n}} e^T D V U \\ -\frac{1}{\lambda \sqrt{n}} W^T V^T D e & \frac{1}{\lambda} \Lambda & 0 \\ -\frac{1}{\lambda \sqrt{n}} U^T V^T D e & 0 & 0 \end{bmatrix} \succeq 0.$$
(8)

Now for sufficiently large λ the submatrix

$$\begin{bmatrix} n - \frac{1}{\lambda n} e^T D e & -\frac{1}{\lambda \sqrt{n}} e^T D V W \\ -\frac{1}{\lambda \sqrt{n}} W^T V^T D e & \frac{1}{\lambda} \Lambda \end{bmatrix}$$

is positive definite. Thus $E - D/\lambda$ is positive semidefinite if and only if $e^T DVU = e^T DZ = 0$. But it follows from Theorem 3.1 that $e^T DZ = 0$ if and only if DZ = 0 and the result follows.

5 Example

Next we present the following example to illustrate our new characterization. Given the two Euclidean distance matrices

$$D_1 = \left[egin{array}{ccc} 0 & 1 & 4 \ 1 & 0 & 1 \ 4 & 1 & 0 \end{array}
ight], \qquad D_2 = \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight],$$

The Gale matrices corresponding to D_1 and D_2 are

$$Z_1 = \left[egin{array}{c} 1 \ -2 \ 1 \end{array}
ight], \qquad Z_2 = \left[egin{array}{c} 1 \ 0 \ -1 \end{array}
ight],$$

respectively. Now $D_1Z_1 = 2e$ and $D_2Z_2 = 0$. It is easy to verify that $D_2 = E - C_2$, where

$$C_2 = \left[egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight] \succeq 0.$$

However, there exists no $\lambda \geq 0$ such that $D_1 = \lambda(E - C_1)$ for some correlation matrix C_1 .

References

- [1] S. AL-HOMIDAN. Hybrid methods for optimization problems with positive semidefinite matrix constraints. PhD thesis, University of Dundee, 1993.
- [2] A.Y. ALFAKIH. On rigidity and realizability of weighted graphs. *Linear Algebra Appl.*, 325(1-3):57-70, 2001.
- [3] M.M. DEZA and M. LAURENT. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.
- [4] D. GALE. Neighboring vertices on a convex polyhedron. In *Linear inequalities and related system*, volume 38 of *Annals of Mathematics Studies*, pages 255–263. Princeton University Press, Princeton, NJ, 1956.
- [5] J. C. GOWER. Properties of Euclidean and non-Euclidean distance matrices. *Linear Algebra Appl.*, 67:81–97, 1985.

- [6] B. GRÜNBAUM. Convex polytopes. Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16.
- [7] R.T. ROCKAFELLAR. *Convex Analysis*. Princeton University Press, Princeton, NJ, USA, 1970.
- [8] I.J. SCHOENBERG. Remarks to Maurice Frechet's article: Sur la definition axiomatique d'une classe d'espaces vectoriels distancies applicables vectoriellement sur l'espace de Hilbert. Ann. Math., 36:724-732, 1935.