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Abstract

Two important topics in the study of Quadratically Constrained Quadratic Programming
(QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how
to find an inexpensive and strong relaxation bound for a QCQP with many constraints.
In this thesis, we first review some important results on QCQP, like the S-Procedure, and
the strength of Lagrangian Relaxation and the semidefinite relaxation. Then we focus
on two special classes of QCQP, whose objective and constraint functions take the form
trace (XTQX + 2CTX) + β, and trace (XTQX +XPXT + 2CTX) + β respectively, where
X is an n by r real matrix. For each class of problems, we proposed different semidefinite
relaxation formulations and compared their strength. The theoretical results obtained
in this thesis have found interesting applications, e.g., solving the Quadratic Assignment
Problem.
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Chapter 1

Introduction

1.1 Problem and Motivation

Consider the minimization problem with a finite number of constraints

min q0(x)
s.t. qj(x) ≤ 0, j = 1, 2, . . . , m

x ∈ R
n.

(1.1.1)

If for j = 0, 1, . . . , m, qj(x) are all affine functions (i.e., qj(x) = cTj x+ βj for some cj ∈ R
n,

βj ∈ R), then (1.1.1) is the well-known linear programming problem (LP ); if q0 is a
quadratic function (q0(x) = xTQ0x+2cT0 x+β0 for some n by n real symmetric matrix Q0,
c0 ∈ R

n, and β0 ∈ R), and for j = 1, 2, . . . , m, qj(x) are affine functions, then (1.1.1) is a
Quadratic Programming problem (QP ). In this paper, we are interested in situations when
for each j = 0, 1, . . . , m, qj is a quadratic function. Usually, such an optimization problem
is called a Quadratically Constrained Quadratic Programming problem (QCQP ), and
has the form

(QCQP )
µ∗

0 := min q0(x) := xTQ0x+ 2cT0 x
s.t. qj(x) := xTQjx+ 2cTj x+ βj ≤ 0, j = 1, 2, . . . , m

x ∈ R
n.

In our definition, we allow the Qj to be zero matrices. Since the set of linear functions is
a subset of quadratic functions, QCQP is a more general category than QP or LP .

We can write any integer in a binary system with digits 0 and 1, and the binary
constraint x ∈ {0, 1} is equivalent with the quadratic equality constraint x2 − x = 0.
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Therefore, any integer programming problem can be reformulated as a QCQP . For
example, consider the classical Max-Cut problem

(MAXCUT )
max xTLx
s.t. x ∈ {−1, 1}n,

where L is the n by n Laplacian Matrix [11]. This problem can be formulated as a
QCQP like

max xTLx
s.t. xTEiix = 1, i = 1, 2, . . . , n

x ∈ R
n,

(1.1.2)

where Eii is the zero matrix with only the i-th diagonal entry equaling 1.
Some interesting subproblems in nonlinear optimization can also be formulated as a

QCQP with few constraints (typically one or two). For example, to minimize a nonlinear
smooth objective f(x), we often use a quadratic function to approximate f in the region
around the current iterate point xk, and find the next search direction dk. This is the
well-known trust-region method [10], and includes solving the trust-region subproblem

(TRS )
max 1

2
(dk)T∇2f(xk)dk + (∇f(xk))Tdk

s.t. ‖dk‖2 ≤ δ2

dk ∈ R
n.

The trust-region subproblem is actually a QCQP which has a single convex quadratic
constraint.

Also, consider applying the sequential quadratic programming method, e.g., [6], to
minimize a nonlinear objective f(x) subject to m nonlinear constraints cj(x) = 0, j =

1, 2, . . . , m. At the k−th iteration point xk, let A(xk) = (∇c1(xk) ∇c2(xk) . . . ∇cm(xk) )T ,
and ck = ( c1(x

k) c2(x
k) . . . cm(xk) )T . We need to solve a quadratic program, e.g.,[37],

max 1
2
(dk)T∇2f(xk)dk + (∇f(xk))Tdk

s.t. A(xk)dk + ck = 0,
(1.1.3)

and also maintain the search step length ‖dk‖ ≤ δ, for some δ > 0. However, such a dk

may not exist. For this reason, Celis, Dennis and Tapia proposed a new subproblem in
1985 [9] (now called the CDT trust-region subproblem). They replace the linear equality
constraint with a quadratic inequality constraint and reformulate (1.1.3) as

max 1
2
(dk)T∇2f(xk)dk + (∇f(xk))Tdk

s.t. ‖A(xk)dk + ck‖2 ≤ θ2

‖dk‖2 ≤ δ2,
(1.1.4)
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where δ, θ are some positive real numbers. The CDT trust-region subproblem is actually
a QCQP which has two convex quadratic constraints.

Theory on solving such kinds of QCQP will contribute to the development of efficient
nonlinear optimization algorithms. We will come to details in Chapter 2.

A QCQP with a large number of constraints is generally too difficult to be solved.
But for many application problems, we do not need to solve the QCQP exactly. Instead,
we may just want to obtain a bound which involves less expensive computations. This will
be another topic we will carefully study in this thesis.

1.2 Outline

We continue in this chapter to provide some preliminary background about semidefinite
relaxation and Lagrangian relaxation, and to introduce some notations which will be ex-
tensively used in the rest of the thesis. In Chapter 2, we will review some important the-
oretical results for solving a QCQP with one or two constraints. Our main contributions
lie in Chapter 3 and Chapter 4. In Chapter 3, we will discuss a special class of QCQP ,
namely Quadratic Matrix Programming (QMP ). We divide the QMP problems into
two classes, namely QMP1 and QMP2 . For each class of problems, we propose two dif-
ferent semidefinite relaxation formulations, i.e., vector-lifting semidefinite relaxation and
matrix-lifting semidefinite relaxation. The latter is cheaper to compute, but it generates
a bound never stronger than the first. For the QMP1 case, we proved in Theorem 3.2.3
that the two relaxations always generate the same bound; while for the QMP2 case, we
proved in Theorem 3.3.1 that the two relaxations generate the same bound under a cer-
tain condition. The two theorems (Theorems 3.2.3 and 3.3.1) are our main theoretical
contributions. In Chapter 4, we apply the matrix-lifting semidefinite relaxation to gen-
erate relaxation bounds for the Quadratic Assignment Problem (QAP ). The numerical
results show that the matrix-lifting semidefinite relaxation is much faster in practical com-
putations compared with the current vector-lifting semidefinite relaxation methods, while
the bounds from matrix-lifting semidefinite relaxation are also competitive compared with
other relaxation bounds for QAP .

1.3 Symbols and Notations

Denote A ∈ Mnr if A is an n by r real matrix. For two matrices A, B ∈ Mnr, the trace
inner-product over Mnr is defined as A · B = traceATB. We use A ⊗ B to denote the
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Kronecker product of A and B, i.e.,

A⊗ B =









a11B · · · a1rB
a21B · · · a2rB

...
. . .

...
an1B · · · anrB









.

Let R(A) denote the column space of A, and let N (A) denote the nullspace of A. Sn
denotes the space of n × n real symmetric matrices; Hn denotes the space of n × n Her-
mitian matrices defined on the complex field; while Sn+, Hn

+ denote the cones of positive
semidefinite matrices in Sn and Hn respectively. We let A � B denote the Löwner partial
order when A−B ∈ Sn+. The linear transformation diagX denotes the vector formed from
the diagonal of the matrix X; the adjoint linear transformation is diag ∗v = Diag v, i.e. the
diagonal matrix formed from the vector v; vec (X) denotes the vector in R

nr obtained from
the columns of an n × r matrix X. For a block-wise n2 by n2 matrix A = (Bij)i,j=1,2,...,n,
where each Bij is an n× n submatrix, we denote

b0diag (A) =
∑n

i=1Bii

o0diag (A) = (bij)i,j=1,2,...,n,
(1.3.5)

where bij = trace (Bij).
Let e denote the all-ones vector, and E denote the all-ones matrix, both with dimensions

consistent with the context. For square matrices in Mnn, O denotes the set of orthogonal
matrices, XXT = XTX = I; while, for a given B ∈ Sn, O(B) denotes the set of symmetric
matrices orthogonally similar to B, i.e., O(B) := {Y ∈ Sn : Y = XBXT , X ∈ O}.
Π denotes the set of permutation matrices; N denotes the nonnegative, element-wise,
matrices, i.e., X ≥ 0; E denotes matrices with row and column sums one. We denote the
vector of eigenvalues of a matrix A by λ(A). We define the minimal product of two vectors
〈x, y〉− := min

π

∑n

i=1 xiyπ(i), where the minimum is over all permutations of the indices

{1, 2, . . . , n}. Clearly, the minimum is attained if the vectors (xi) and (yπ(i)) are sorted
in reverse order by magnitude, i.e., x1 ≤ x2 ≤ . . . ≤ xn and yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(n).
Similarly, we define the maximal product of x, y, 〈x, y〉+ := max

π

∑n

i=1 xiyπ(i).

For a square singular matrix A with singular value decomposition [19] A = UΣAV
T ,

where ΣA = Diag (σ(A)), define its Moore-Penrose inverse [49]

A† = VΣ†
AU

T ,
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where the diagonal matrix Σ†
A has its diagonal entries

(Σ†
A)ii =

{ 1
σi(A)

if σi(A) 6= 0

0 if σi(A) = 0.

The Moore-Penrose inverse is characterized by the following four properties:

1. AA†A = A;

2. A†AA† = A†;

3. AA† = PR(A);

4. A†A = PR(AT ),

where PR(A), PR(AT ) denotes the orthogonal projection onto R(A), R(AT ) respectively.
For simplicity, instead of inf/sup, we use min/max; however it does not mean the

optimum is always finite or attained. When we say an optimal solution for a SDP ,
we allow it has an error bounded by ǫ. We also use the following simplified notations
throughout the thesis:

Qλ := Q0 +
∑m

j=1 λjQj

Pλ := P0 +
∑m

j=1 λjPj
cλ := c0 +

∑m

j=1 λjcj
βλ :=

∑m

j=1 λjβj,

(1.3.6)

for any λ = {λj}j=1,2,...,m.
Throughout this thesis, we use µ∗

j to denote optimal values of various mathematical
programming problems. We listed them in Table 1.1 for the convenience of the readers.

1.4 Convex Relaxations for QCQP

Consider a minimization problem with the form

min C ·X
s.t. Ai ·X = bi, i = 1, 2, . . . , m1

Bj ·X ≤ dj , j = 1, 2, . . . , m2

X � 0.

(1.4.7)

5



µ∗
j Corresponding Optimization Problems

µ∗
0 QCQP

µ∗
1 SDP P

µ∗
2 (2.1.12)

µ∗
3 V SDR−1

µ∗
4 MSDR−1

µ∗
5 V SDR−1

′

µ∗
6 V SDR−2

µ∗
7 MSDR−2

µ∗
8 DV −2

µ∗
9 DM −2

µ∗
10 (3.3.2)

µ∗
11 (3.3.71)

µ∗
12 (3.3.89)

µ∗
13 (4.1.97)

µ∗
14 (4.2.100)

µ∗
15 MSR

µ∗
LR Bounds from Lagrangian Relaxations

Table 1.1: The Optimization Problems Corresponding to µ∗
j
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We refer to (1.4.7) as a semidefinite program (SDP ). It has been studied as far back
as the 1940s, and became popular in the 1990s due to its important applications and the
development of interior point algorithms. SDP is much more general than LP , because
the positive semidefinite constraint is a nonlinear constraint. With a primal-dual interior
point method, SDP can be solved to optimality with an error bounded by a given ǫ
in polynomial time [36]. In this section, we will discuss the semidefinite relaxations for
QCQP , i.e., generating a lower bound for a QCQP with a SDP . If the generated
bound equals the optimal value of the original program, the relaxation is called to be tight.

We can rewrite a quadratic function as a trace inner-product between two matrices:

qj(x) := xTQjx+ 2cTj x+ βj = M(qj(•)) ·
(

1 xT

x xxT

)

, where M(qj(•)) :=

(

βj cTj
cj Qj

)

.

So the feasible set in QCQP admits a lifted representation

{x ∈ R
n|xTQjx+ 2cTj x+ βj ≤ 0, j = 1, 2, . . . , m}

=

{

x ∈ R
n|M(qj(•)) · Z ≤ 0, j = 1, 2, . . . , m, for some Z =

(

1 xT

x xxT

)}

.

The equality constraint Z =

(

1 xT

x xxT

)

is still nonconvex. A usual approach is to relax

the nonconvex equality constraint to the convex constraint: Z =

(

1 xT

x Y

)

� 0 for some

n by n real symmetric matrix Y . Then we get a semidefinite relaxation (named SDPP in
this thesis)

(SDPP )

µ∗
1 := min M(q0(•)) · Z

s.t. M(qj(•)) · Z ≤ 0, j = 1, 2, . . . , m
Z11 = 1
Z � 0.

Now let P := cone {M(qj(•))|j = 1, 2, . . . , m}, i.e., the closed convex cone generated
by M(qj(•)) (j = 1, 2, . . . , m), and let P ∗ := {Y |X · Y ≥ 0 for all X ∈ P}, i.e., the dual
cone of P . We also denote the feasible set of SDPP with FSDPP , then we have the
following theorem, which is from Theorem 4.2 in [29].

Theorem 1.4.1 The semidefinite relaxation SDPP is as strong as a QCQP which in-
cludes all the convex quadratic constraints q(x) ≤ 0 with M(q(•)) in the cone generated by

7



M(qj(•)), or equivalently,
{

x ∈ R
n|Z =

(

1 xT

x Y

)

∈ FSDPP for some Y ∈ Sn
}

=

{

x ∈ R
n|xTQx+ 2cTx+ β ≤ 0, ∀

(

β cT

c Q

)

∈ P with Q � 0

}

.
(1.4.8)

Proof. See the proof to Theorem 4.2 in [29].

A quadratic function q(x) = xTQx + 2cTx + β is convex if and only if Q � 0. A
QCQP is called convex if all the objective and constraint functions are convex. A convex
QCQP can be solved in polynomial time by nonlinear optimization methods [37] or a
Second Order Cone Programming (SOCP ), or more trivially, a SDP [5].

Proposition 1.4.1 If a QCQP is convex and its minimum is attained, then SDPP solves
QCQP to optimality, i.e. µ∗

1 = µ∗
0.

Proof. Suppose SDPP is minimized at Z∗ =

(

1 (x∗)T

x∗ Y ∗

)

, then Z∗ � 0 implies

Y ∗ � x∗(x∗)T . Denote Ȳ = x∗(x∗)T . Then Y ∗ � Ȳ . Because Y ∗ � Ȳ and Qj � 0, we

have M(qj(•)) ·
(

1 (x∗)T

x∗ Ȳ

)

≤ M(qj(•)) ·
(

1 (x∗)T

x∗ Y ∗

)

, for j = 1, . . . , m. Therefore,

Z̄ :=

(

1 (x∗)T

x∗ Ȳ

)

is also feasible for SDPP . Furthermore, Y ∗ � Ȳ indicates the

objective M(q0(•)) ·
(

1 (x∗)T

x∗ Ȳ

)

≤ M(q0(•)) ·
(

1 (x∗)T

x∗ Y ∗

)

. Together with the fact

that Z∗ =

(

1 (x∗)T

x∗ Y ∗

)

minimizes SDPP , we conclude that Z̄ also minimizes SDPP .

Because Ȳ = x∗(x∗)T , and x∗ is feasible to the original QCQP , we know µ∗
0 ≤ q0(x

∗) = µ∗
1,

which implies the tightness of SDPP for QCQP .

Remark 1.4.1 In fact, minimum attainment is not the necessary condition to establish
Proposition 1.4.1. It has been shown in [18] that semidefinite relaxation, or Lagrangian
relaxation (see succeeding paragraph), always admits zero gap for a convex QCQP .
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If not all Qj � 0 for j = 0, 1, . . . , m, then we get a nonconvex QCQP . In this case,
SDPP can fail to solve the QCQP exactly but provides a lower bound, i.e., µ∗

1 ≤ µ∗
0.

Another form of convex relaxation for QCQP is the so-called Lagrangian dual relax-
ation (LR )

µ∗
0 = min

x∈Rn
max
λ∈R

m
+

xT (Q0 +
∑m

j=1 λjQj)x+ 2(c0 +
∑m

j=1 λjcj)
Tx+

∑m

j=1 λjβj

≥ max
λ∈R

m
+

min
x∈Rn

xT (Q0 +
∑m

j=1 λjQj)x+ 2(c0 +
∑m

j=1 λjcj)
Tx+

∑m

j=1 λjβj

=: µ∗
LR.

Here µ∗
LR denotes the Lagrangian relaxation bound for QCQP . The inequality here is

due to the weak duality min
x

max
λ

L(x, λ) ≥ max
λ

min
x
L(x, λ) for any real valued function

L(x, λ) [7].
In fact, the Lagrangian dual program can be formulated as a SDP . To see that, we

first homogenize L(x, λ) as

µ∗
LR = max

λ∈R
m
+

min
x∈Rn

xTQλx+ 2cTλx+ βλ

= max
λ∈R

m
+

min
x∈Rn,x2

0=1
xTQλx+ 2x0c

T
λx+ βλx

2
0

(1.4.9a)

= max
λ∈R

m
+ ,α∈R

min
x∈Rn,x0∈R

xTQλx+ 2x0c
T
λx+ βλ + α(x2

0 − 1)

= max
λ∈R

m
+ ,α∈R

min
x∈Rn,x0∈R

βλ − α+ ( x0 xT )

(

α cTλ
cλ Qλ

) (

x0

x

)

,
(1.4.9b)

where Qλ, cλ, βλ follow from the notations introduced in (1.3.6). The equality (1.4.9b)
follows from the losslessness of S-Procedure [15], which will be discussed in later sections.

Note that the value min
x∈Rn,x0∈R

(x0 xT )

(

α cTλ
cλ Qλ

) (

x0

x

)

is finite only when

(

α cTλ
cλ Qλ

)

�
0, and then the minimal value always equals zero (when x0 = 0, x = 0). So the right hand
side of (1.4.9b) can be further formulated as [42]

(SDPD )

µ∗
LR = max

∑m

j=1 λjβj − α

s.t.

(

α (c0 +
∑m

j=1 λjcj)
T

c0 +
∑m

j=1 λjcj Q0 +
∑m

j=1 λjQj

)

� 0

λj ≥ 0, j = 1, 2, . . .m.
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It is easy to check that SDPD is just the conic dual program of SDPP . According to
[25], the minimal value of SDPP (µ∗

1) and the maximal value of SDPD (µ∗
LR) coincide

if the so-called generalized Slater condition holds, i.e.,

∃α ∈ R, λj ≥ 0, j = 1, 2 . . . , m,

s.t.

(

α (c0 +
∑m

j=1 λjcj)
T

c0 +
∑m

j=1 λjcj Q0 +
∑m

j=1 λjQj

)

≻ 0.
(1.4.10)

Because α can be an arbitrarily large number, condition (1.4.10) is equivalent with

∃λj ≥ 0, j = 1, 2, . . .m, s.t. Q0 +
m

∑

j=1

λjQj ≻ 0. (1.4.11)

So under condition (1.4.11), SDPP and SDPD generate the same bounds. Because
SDPD is just the Lagrangian relaxation, we have the following theorem.

Theorem 1.4.2 For a QCQP , if condition (1.4.11) holds, then the semidefinite relax-
ation SDPP and Lagrangian relaxation LR generate the same bounds .
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Chapter 2

QCQP with Few Constraints

In this chapter, we will move to the theory behind solving QCQP with few constraints.
Let m denote the number of constraints in a QCQP . It can be shown that the difficulty of
solving a QCQP grows dramatically with the increase of m. For example, a QCQP with
m = 1 is solvable in polynomial time; a QCQP with m = 2 is solvable in polynomial
time when one of the constraints is not active at optimality; whereas efficiently solving a
QCQP with m > 2 to optimality is still an open problem. A QCQP can be solved in
polynomial time if the convex relaxation (semidefinite relaxation or Lagrangian relaxation)
provides a tight bound. However, it is quite challenging to recognize special nonconvex
QCQP problems that admit tight convex relaxations. Different approaches have been
employed to study this issue, including methods based on separation theory, Lagrangian
saddle function, and the rank-reduction procedure for a positive semidefinite matrix in an
affine space. And several remarkable theories have been established, e.g., the S-Procedure
[16].

2.1 S-Procedure

One important result on the strength of the Lagrangian relaxation for QCQP is the so-
called S-Procedure [16]. Suppose qj : V → R, for j = 0, 1, . . . , m, are m real valued
functionals defined on a vector space V . Consider a minimization problem

µ∗
2 := min{q0(x)| qj(x) ≤ 0, j = 1, 2, . . . , m}. (2.1.12)

11



We define the Lagrangian function

L(x, λ) = q0(x) +

m
∑

j=1

λjqj(x), (2.1.13)

where λ1, . . . , λm are real numbers. Then consider the following two conditions:

q0(x) ≥ 0 for ∀x ∈ V, s.t. qj ≤ 0, j = 1, 2, . . . , m, (2.1.14)

∃λj ≥ 0, j = 1, 2, . . . , m, s.t. ∀x ∈ V, L(x, λ) ≥ 0. (2.1.15)

It is straightforward to check that (2.1.15) implies (2.1.14); however, the converse may not
be true. People call the S-procedure lossless for (2.1.12) if (2.1.14) also leads to (2.1.15)
[16].

In fact, the losslessness of the S-Procedure is equivalent with the tightness of La-
grangian relaxation for (2.1.12). To see this, put q̂0(x) := q0(x) − µ∗

2, then it is straight-
forward to check that the S-Procedure is lossless for q̂0, qj , j = 1, 2, . . . , m, if and only if
max
λ

min
x

q0(x) +
∑m

j=1 λjqj(x) = µ∗
2, i.e., the Lagrangian relaxation is tight.

(2.1.12) is said to satisfy the regularity condition ([16]) if

∃x ∈ V, s.t. qj(x) < 0 for each j = 1, 2, . . . , m. (2.1.16)

A sufficient condition for the losslessness of the S-Procedure is the convexity of the joint
image and the regularity condition (2.1.16).

Lemma 2.1.1 ([52]) For (2.1.12), define a mapping from V to R
m+1,

ϕ(x) =









q0(x)
q1(x)

...
qm(x)









. (2.1.17)

If its image Γ := {ϕ(x)|x ∈ X} is convex, and condition (2.1.16) holds, then the S-procedure
is lossless for (2.1.12).

Proof. Let

S :=















t :=









t0
t1
...
tm









∈ R
m+1|t0 < 0, tj ≤ 0, j = 1, 2, . . . , m















. (2.1.18)
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Suppose (2.1.14) holds, then Γ ∩ S = ∅. Both Γ and S are convex sets. By the separation
theorem [27], and the fact 0 ∈ cl(S), we deduce that there exist λ̂j , j = 0, 1, . . . , m, such
that

λ̂0q0(x) +

m
∑

j=1

λ̂jqj(x) ≥ 0, for all x ∈ V, (2.1.19a)

λ̂0t0 +

m
∑

j=1

λ̂jtj ≤ 0, for all t ∈ S. (2.1.19b)

(2.1.19b) implies λ̂j ≥ 0, j = 0, 1, . . . , m; while (2.1.19a) together with condition (2.1.16)

implies λ̂0 > 0. By multiplying 1/λ̂0 through (2.1.19a), we get

q0(x) +
m

∑

j=1

λ̂0

λ̂j
qj(x) ≥ 0, for all x ∈ V. (2.1.20)

Let λj := λ̂j/λ̂0, j = 1, 2, . . . , m. Then λj ≥ 0, j = 1, 2, . . . , m. Therefore, (2.1.20) leads
to (2.1.15), and the S-Procedure is lossless for (2.1.12).

In [16], based on Lemma 2.1.1 and the convexity of the image

{(

xTQ0x
xTQ1x

)

|x ∈ R
n

}

,

the S-procedure is proved lossless for (2.1.12) when m = 1 and q0, q1 are both quadratic
functions. This leads to the following result.

Theorem 2.1.1 The Lagrangian relaxation (LR ), or the semidefinite relaxation (SDPP )
is tight for a QCQP with m = 1.

Proof. Equivalent results have been proved in [16, 52, 48] with different methods.

Now we will extend this result to the complex QCQP case.

Theorem 2.1.2 Consider a QCQP over the complex space

min x∗Q0x+ 2Re(c∗0x) + β0

s.t. x∗Qjx+ 2Re(c∗jx) + βj , j = 1, 2, . . . , m
x ∈ Cn,

(2.1.21)

where Qj are real symmetric matrices, x∗ , c∗j denote the conjugate transposition of the
vectors x, c ∈ C2. If m ≤ 2, then the Lagrangian relaxation (LR ), or equivalently the
semidefinite relaxation (SDPP ) is tight for (2.1.21).

13



Proof. The proof to Theorem 2.1.1 [16] can be extended to prove Theorem 2.1.2 word-
by-word, except for the need to show the convexity of the joint image of three quadratic
mappings over the complex space (Lemma 2.1.2), instead of two quadratic mappings over
the real space.

Lemma 2.1.2 Let ϕ(x) =





x∗Q1x
x∗Q2x
x∗Q3x



 , x ∈ Cn. Then its image: Γ := {ϕ(x)|x ∈ Cn} ⊆ R
3

is convex.

Proof. We first prove the case of n = 2, i.e., when the variable vector is in the two
dimensional complex space C2. For given x1, x2 ∈ C2, λ ∈ [0, 1], we want to prove

λϕ(x1) + (1 − λ)ϕ(x2) ∈ Γ,

that is,

{x ∈ C2|ϕ(x) = λϕ(x1) + (1 − λ)ϕ(x2)} 6= ∅. (2.1.22)

We define a mapping from H2 to C3,

ψ(X) :=





trace (Q1X)
trace (Q2X)
trace (Q3X)



 .

If X � 0 and rank (X) = 1, then X = xx∗ and ψ(X) = ϕ(x). Therefore, to prove (2.1.22),
we only need to prove

{X ∈ H2
+|rank (X) = 1, ψ(X) = λψ(X1) + (1 − λ)ψ(X2)} 6= ∅. (2.1.23)

Since ψ is a linear mapping, for any λ ∈ [0, 1], by defining Xλ = λX1 + (1− λ)X2, we have
ψ(Xλ) = λψ(X1) + (1 − λ)ψ(X2) and Xλ � 0. So if Xλ is a singular 2 by 2 matrix, then
it should belong to the left hand side of (2.1.23). Otherwise, we have Xλ ≻ 0. Then we
consider the linear equation system

trace (Q1X) = 0
trace (Q2X) = 0
trace (Q3X) = 0

X ∈ H2,

(2.1.24)
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which admits a nontrivial solution X̄ :=

(

0 −i
i 0

)

∈ H2. Thus, ∀c ∈ R, ψ(Xλ + cX̄) =

ψ(Xλ) = λψ(X1) + (1− λ)ψ(X2). Because X̄ 6= 0 and Xλ ≻ 0, we know the matrix pencil
Xλ + cX̄ will intersect the positive semidefinite cone for some c̄ ∈ R. Therefore, ∃c̄ ∈ R,
such that rank (Xλ + c̄X̄) < n = 2, and

Xλ + c̄X̄ ∈ {X ∈ H2
+|rank (X) = 1, ψ(X) = λψ(X1) + (1 − λ)ψ(X2)},

i.e., (2.1.23) holds. Hence, Lemma 2.1.2 is proved in the case n = 2.
Now we move to the case n > 2. For any x1, x2 ∈ Cn that are linearly dependent,

and for any given λ ∈ (0, 1), we can find a scalar α∗ such that α∗x1 belongs to the set
in (2.1.22), which makes (2.1.22) satisfied. If x1 and x2 are linearly independent, then we
will prove there exists an x̄ in the two dimensional subspace spanned by x1 and x2, i.e.,
x̄ = ( x1 x2 ) v for some v ∈ C2, and x̄ belongs to the set in (2.1.22). The proof is as
following. Let Q̄i = ( x1 x2 )T Qi ( x1 x2 ) for i = 1, 2, 3, define ϕ̄ : C2 → R

3 as

ϕ̄(v) :=





v∗Q̄1v
v∗Q̄2v
v∗Q3v



 . (2.1.25)

Thus, if x = ( x1 x2 ) v, we have

ϕ(x) =





x∗Q1x
x∗Q2x
x∗Q3x



 =





v∗Q̄1v
v∗Q̄2v
v∗Q̄3v



 = ϕ̄(v). (2.1.26)

Therefore, to prove (2.1.22), we just need to prove

{v ∈ C2|ϕ̄(v) = λϕ̄(v1) + (1 − λ)ϕ̄(v2)} 6= ∅, (2.1.27)

where v1 :=

(

1
0

)

, v2 :=

(

0
1

)

, so that ϕ̄(v1) = ϕ(x1), ϕ̄(v2) = ϕ(x2). Note that (2.1.27)

is just the n = 2 case we have proved. So Lemma 2.1.2 holds true for any n ≥ 2.

Theorem 2.1.3 ([41]) Consider a QCQP with m constraints, and each qj is a homoge-
neous quadratic function (cj = 0) for j = 0, 1, . . .m with m ≤ n. If (2.1.14) holds, then
there exists λj ≥ 0, such that Q0 + Σm

i=1λiQi has at most m− 1 negative eigenvalues.
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Theorem 2.1.3 is a more general result about the S-Procedure for quadratic functions.
It is interesting that if m = 2 and qj = x∗Qjx (j = 0, 1, 2), then the losslessness of the
S-Procedure for (2.1.12) can be easily proved by Theorem 2.1.3. Note that any Hermitian
form z∗Qz could be represented with

(ℜ(z) ℑ(z) )

(

ℜ(Q) ℑ(Q)
−ℑ(Q) ℜ(Q)

) (

ℜ(z)
ℑ(z)

)

,

where ℜ(Q) and ℑ(Q) denote the real and imaginary part of Q, respectively. By assuming

Q is real, the Hermitian matrix will take the form of

(

ℜ(Q) 0
0 ℜ(Q)

)

, which indicates

all the eigenvalues of the Hessian Q0 + Σm
j=1λjQj will appear in pairs. So the number of

negative eigenvalues will always be even. According to Theorem 2.1.3, if (2.1.14) holds,
then there exists λ ∈ R

m such that Q0 + Σm
j=1λjQj has at most one negative eigenvalue

(but the number should be even!), which actually implies Q0 + Σm
j=1λjQj � 0. So (2.1.15)

holds.
Finally, we give a result derived in [32] that generalizes the S-Lemma to the matrix

case.

Lemma 2.1.3 ([32]) Suppose Q0, B0, Q1 ∈ Sn, C0 ∈ Mnn, then

XTQ0X + CT
0 X +XTC0 +B0 � 0, for all X ∈ Mnn with I −XTQ1X � 0, (2.1.28)

if and only if
(

B0 CT
0

C0 Q0

)

− t

(

I 0
0 −Q1

)

� 0, for some t ≥ 0. (2.1.29)

Proof. First establish the equivalence between (2.1.28) and

xT1B0x1 + 2xT2C0x1 + xT2Q0x2 ≥ 0, for all x1, x2 with xT1 x1 − xT2Q1x2 ≥ 0. (2.1.30)

Then deduce the equivalence between (2.1.30) and (2.1.29) by the losslessness of S-Procedure
for the one quadratic constraint case. For details, see [32].
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2.2 Strength of Semidefinite Relaxations

Another approach to study the tightness of Lagrangian relaxation is to check the existence
of a rank-one optimal solution to the semidefinite relaxation program SDPP . Suppose

there is a rank-one solution Z∗ =

(

1 (x∗)T

x∗ Y ∗

)

� 0 that minimizes SDPP , then it is not

difficult to see Y ∗ = x∗(x∗)T by the Schur complement [33], which implies the feasibility
of x∗ and the tightness of SDPP .

There is a well-known theorem saying that a low rank positive semidefinite matrix
always exists in an affine space that has dimensionality high enough.

Theorem 2.2.1 ([39, 40, 3]) Consider the semidefinite program (1.4.7). If m1 + m2 ≤
(

r + 2
2

)

− 1, then (1.4.7) has an optimal solution X∗ with rank (X∗) ≤ r.

With Theorem 2.2.1, the tightness of semidefinite relaxation for a QCQP with m = 1
can be easily proved. To see this, we notice that the relaxation SDPP for a QCQP with
m = 1 has two constraints (with an additional constraint Z11 = 1). Because the inequality

2 ≤
(

r + 2
2

)

−1 holds for r = 1, Theorem 2.2.1 implies the existence of a rank-one optimal

solution to SDPP . So the SDPP is tight for a QCQP with m = 1.
However, Theorem 2.2.1 is too general, so we can not expect to get very surprising

results by directly applying Theorem 2.2.1. To further explore the low rank attributes, a
new rank-one decomposition technique is proposed in [50].

Proposition 2.2.1 ([50]) Given a symmetric matrix G, and a positive semidefinite sym-
metric matrix X with rank (X) = r, then G · X = 0 if and only if there is a rank-one
decomposition X =

∑r

m=1 pip
T
i , such that

pTi Gpi = 0 for i = 1, 2, . . . , r.

Proof. The sufficiency is clear. We can prove the necessity by showing that the following
rank-one decomposition procedure is correct.

Rank-one Decomposition Procedure [50]: Input : X,G ∈ Sn, such thatX � 0, rank (X) =
r and G ·X = 0. Output : Vector y ∈ R

n, such that yTGy = 0, X− yyT � 0 and with rank
r − 1.
Step 0: Compute r linear independent vectors p1, p2, . . . , pr such that X =

∑r

i=1 pip
T
i .
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Step 1: If pT1Gp1 = 0, then return y = p1, and the procedure completes; otherwise, suppose
pT1Gp1 > 0, and choose j such that pTj Gpj < 0.
Step 2: Determine α such that (p1 + αpj)

TG(p1 + αpj) = 0. Return y = 1√
1+α2 (p1 + αpj).

By repeating this procedure, we can decompose X =
∑r

i=1 pip
T
i and for each i, pTi Gpi =

0.
We now show the correctness of this procedure. Firstly, if pT1Xp1 > 0, then

∑r

i=1 p
T
i Gpi =

0 implies the existence of a j such that pTj Xpj < 0. Then, consider the quadratic function

(p1 + αpj)
TG(p1 + αpj) = (pTj Gpj)α

2 + 2(pT1Gpj)α + pT1Gp1. (2.2.31)

Since (pT1Gp1)(p
T
j Gpj) ≤ 0, the discriminant of (2.2.31) as a polynomial in α is nonnegative.

Therefore, there exists α such that (p1 + αpj)
TG(p1 + αpj) = 0. Let y = 1√

1+α2 (p1 + αpj),

define u = 1√
1+α2 (pj − αp1), we will have X − yyT = uuT +

∑

i=2,3,...,r, i 6=j
pip

T
i with its rank

equaling r−1. So the procedure can successfully return a y that satisfies the requirements.

The rank-one decomposition procedure can be trivially implemented to get a similar
result for G ·X ≥ 0 case.

Proposition 2.2.2 ([50]) Given a symmetric matrix G, and a positive semidefinite sym-
metric matrix X with rank r, then G·X ≥ 0 if and only if there is a rank-one decomposition
X =

∑r

m=1 pip
T
i , such that

pTi Gpi ≥ 0 for i = 1, 2, . . . , r.

The rank-one decomposition procedure is a powerful tool to study the strength of
semidefinite relaxation. Below are several interesting results obtained by applying the
rank-one decomposition procedure.

Lemma 2.2.1 ([50]) Consider the problem of minimizing a quadratic function subject to
a convex quadratic constraint together with a linear inequality constraint:

min q0(x) := xTQ0x+ 2cT0 x
s.t. q1(x) := xTQ1x+ 2cT1 x+ β1 ≤ 0

q2(x) := 2cT2 x+ β2 ≤ 0.
(2.2.32)
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(2.2.32) could be solved by the following semidefinite formulation:

min M(q0(•)) · Z
s.t. M(q1(•)) · Z ≤ 0

Z

(

β2

c2

)

∈ S

Z11 = 1
Z � 0,

(2.2.33)

where S is a convex set defined as

S := {
(

t0
t

)

∈ R
n+1|t0 ≥ 0, t20β1 + 2t0c

T
1 t+ tTQ1t ≤ 0, t0β1 + 2cT1 t ≤ 0}.

Remark 2.2.1 Due to the difficulty to formulate S, (2.2.33) turns out no easier than the
original problem, but it is an interesting theoretical result. Because a direct semidefinite
relaxation

min M(q0(•)) · Z
s.t. M(q1(•)) · Z ≤ 0

cT2 x+ β2 ≤ 0
Z11 = 1

Z(:=

(

1 xT

x Y

)

) � 0

(2.2.34)

may not be tight. See the following example.

Example 2.2.1 In (2.2.32), take n = 1, q0(x) = −x2+2x, q1(x) = x2−1 and q2(x) = −x,
then a direct semidefinite relaxation (2.2.34) returns an optimal value −1; whereas for this
example the minimum is attained at x = 0 with an optimal value equaling 0. So a direct
semidefinite relaxation (2.2.34) is not tight. In fact, this example is a trust region problem
with an additional linear inequality constraint. In this example, the linear constraint has
cut off the global minimizer of the trust region problem, and left a local minimizer at which
the Hessian of the Lagrangian function is not positive semidefinite [35]. As a result, the
Lagrangian relaxation, or equivalently, the semidefinite relaxation can never be tight.
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Lemma 2.2.2 ([53]) Consider the problem of minimizing a quadratic function subject to
two quadratic constraints

min q0(x) := xTQ0x+ 2cT0 x
s.t. q1(x) := xTQ1x+ 2cT1 x+ β1 ≤ 0

q2(x) := xTQ2x+ 2cT2 x+ β2 ≤ 0,
(2.2.35)

and its semidefinite relaxation

min M(q0(•)) · Z
s.t. M(q1(•)) · Z ≤ 0

M(q2(•)) · Z ≤ 0
Z11 = 1
Z � 0.

(2.2.36)

Suppose (2.2.36) attains its optimal at Z∗, and M(qi(•))·Z∗ < 0 for at lease one of i = 1, 2.
Then the relaxation (2.2.36) is tight for (2.2.35). Moreover, an optimal solution to (2.2.35)
can be constructed in polynomial time.

Lemma 2.2.3 ([53]) Consider a homogeneous QCQP with m = 2

min q0(x) := xTQ0x
s.t. q1(x) := xTQ1x ≤ 1

q2(x) := xTQ2x ≤ 1.
(2.2.37)

Then its semidefinite relaxation

min Q0 · Z
s.t. Q1 · Z ≤ 1

Q2 · Z ≤ 1
Z11 = 1
Z � 0

(2.2.38)

is tight. Moreover, an optimal solution to (2.2.37) can be constructed in polynomial time.

20



We have seen that the rank reduction procedure often help us to recognize tight semidef-
inite relaxations. However, it is still an open problem to determine the minimal rank opti-
mal solution to a given SDP . To be less ambitious, the following theorem shows that it
is likely to find a sufficiently low rank solution in an approximate affine space.

Theorem 2.2.2 ([46]) Let A1, A2, . . . , Am ∈ Sn+, and let b1, b2, . . . , bm ≥ 0. Suppose that

∃Z � 0 such that Ai · Z = bi for i = 1, 2, . . . , m. Let r = min{
√

2m,n}. Then, for any
d ≥ 1, ∃Z0 � 0 with rank(Z0) ≤ d, such that

β(m,n, d)bi ≤ Ai · Z0 ≤ α(m,n, d)bi for i = 1, 2, . . . , m,

where:

α(m,n, d) =

{

1 + 12 ln(4mr)
d

for1 ≤ d ≤ 12 ln(4mr)

1 +
√

12 ln(4mr)
d

otherwise
, (2.2.39)

β(m,n, d) =















1
5em2/d for 1 ≤ d ≤ 2 lnm

ln ln(2m)
1

4e lnf(m)/d(2m)
for 2 lnm

ln ln(2m)
< d ≤ 4 ln(4mr)

1 −
√

4 ln(4mr)
d

for d > 4 ln(4mr)

, (2.2.40)

and f(m) = 3 lnm
ln ln(2m)

. Moreover, such an Z0 can be found in randomized polynomial time.

Proof. Proof to Theorem 2.2.2 is based on probabilistic methods, see [46].
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Chapter 3

Theory of SDP Relaxations for QMP

A nonconvex QCQP with a large m is generally considered intractable. To be less ambi-
tious, we are more interested in generating inexpensive and strong relaxation bounds. Ei-
ther SDPP or SDPD is polynomially solvable via a primal-dual interior point method
[36], and will provide a lower bound in polynomial time. However, both are difficult to
compute when the problem scale is large. A possible way to improve the computational
efficiency is to explore the sparsity of the matrices and use the concepts of positive semi-
definite completion, as illustrated below.

Definition 3.0.1 ([2, 51, 47]) For an undirected graph G, a chord is an edge joining two
non-consecutive vertices of a cycle. G is said to be chordal if every cycle with length greater
than three has a chord.

Definition 3.0.2 ([47]) A partial symmetric matrix is a symmetric matrix in which not
all of its entries are specified.

Definition 3.0.3 ([51]) A partial positive semidefinite matrix is a partial symmetric ma-
trix with each of its fully specified principal submatrices positive semidefinite.

Definition 3.0.4 ([26, 47]) A positive semidefinite completion for a partial symmetric
matrix X is a fully specified symmetric matrix X̄ with X̄ � 0 and X̄ij = Xij for any
specified entries Xij in X.

For a sparse matrix X, its sparsity pattern, which is defined as the set of row/column
indices of nonzero entries of X, can be represented with an undirected graph G = (V,E) ,
where V = {1, 2, . . . , n} and E = {{i, j} : Xij 6= 0, i 6= j} [47]. A partial symmetric matrix
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can also be treated as a sparse matrix by regarding its unspecified entries as zeros, and
hence its sparsity pattern can be represented by a graph G [47]. For a simple undirected
graph G, let S(G) denote the set of partial symmetric matrices with sparsity pattern
represented by G. Then there is a well-known theorem that establishes the connections
between chordal graphs and positive semidefinite completions.

Theorem 3.0.3 ([20, 26]) Every partial positive semidefinite matrix X ∈ S(G) has a
positive semidefinite completion if and only if G is a chordal graph.

Therefore, for the dual program SDPD , if

(

α (c0 +
∑m

j=1 λjcj)
T

c0 +
∑m

j=1 λjcj Q0 +
∑m

j=1 λjQj

)

is

sparse and its nonzero entries correspond to a chordal graph, we can simplify the positive
semidefinite constraint according to Theorem 3.0.3. In this chapter, we will introduce a
particular type of QCQP , called Quadratic Matrix Programming, whose dual program
can be reduced to smaller SDP with this trick.

3.1 Quadratic Matrix Programming

We now study a special class of QCQP that allows for smaller SDP relaxations. In [4],
the term Quadratic Matrix Programming (QMP ) is used to define the following type of
QCQP , which we refer to as QMP1

(QMP1 )
min trace (XTQ0X + 2CT

0 X)
s.t. trace (XTQjX + 2CT

j X) + βj ≤ 0, j = 1, 2, . . . , m
X ∈ Mnr,

where Qj ∈ Sn, C ∈ Mnr.
In this thesis, we will extend the class of problems studied in [4]. We will study another

quadratic minimization problem for which all the objective and constraint functions are in
the form of f(X) := trace (XTQX +XPXT + 2CTX) + β. We name it as QMP2 , which
has the general form

(QMP2 )
min trace (XTQ0X +XP0X

T + 2CT
0 X)

s.t. trace (XTQjX +XPjX
T + 2CjX) + βj ≤ 0, j = 1, 2, . . . , m

X ∈ Mnr,
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where Qj ∈ Sn, Pj ∈ Sr, Cj ∈ Mnr.
Both QMP1 and QMP2 are named as Quadratic Matrix Programming (QMP ) in

this thesis.
Note that the trace of the matrix products can be expressed using Kronecker products

as follows:

trace (XTQX) = vec (X)T (Ir ⊗Q)vec (X);
trace (XPXT ) = vec (X)T (P ⊗ In)vec (X).

Therefore, QMP can be reformulated in vectorized forms, which implies that QMP is a
special class of QCQP . However, by exploiting the special structure of QMP problems,
we can formulate a semidefinite relaxation for QMP which maintains the matrices rather
than vectorizing them. We call the semidefinite relaxation based on the vectorized form
of QMP the Vector-Lifting Semidefinite Relaxation (V SDR ); while the new type of
semidefinite relaxation is called Matrix-Lifting Semidefinite Relaxation (MSDR ). Later,
we will prove that the bounds from MSDR are equal or weaker than those from V SDR .
And we will focus on the comparison between V SDR and MSDR , and provide sufficient
conditions under which V SDR and MSDR generate the same bounds.

By the fact trace (XTQX + XPXT ) = vec (X)T (Ir ⊗ Q + P ⊗ In)vec (X), QMP2 is
no more general than QMP1 . However, reformulating with matrix Ir ⊗ Q + P ⊗ In
can destroy the sparsity patterns, which will be discussed in later sections. Therefore,
QMP2 is interesting to be studied independently.

3.2 QMP1

We will focus on QMP1 in this section. To distinguish between the vector and matrix
formulations, we adopt the notation

qVj (X) := vec (X)T (Ir ⊗Qj)vec (X) + 2vec (Cj)
Tvec (X) + βj ,

qMj (X) := trace (XTQjX + 2CT
j X) + βj .

Now denote

M(qVj (•)) :=

(

βj vec (Cj)
T

vec (Cj) Ir ⊗Qj

)

,

M(qMj (•)) :=

(

βj

r
Ir CT

j

Cj Qj

)

.
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We now propose two different SDP relaxations for QMP1 , i.e. V SDR−1 and
MSDR−1 :

(V SDR−1 )

µ∗
3 := min M(qV0 (•)) · ZV

s.t. M(qVj (•)) · ZV ≤ 0, j = 1, 2, . . . , m
(ZV )1,1 = 1

ZV

(

:=

(

1 vec (X)T

vec (X) YV

))

� 0;

(MSDR−1 )

µ∗
4 := min M(qM0 (•)) · ZM

s.t. M(qMj (•)) · ZM ≤ 0, j = 1, 2, . . . , m
(ZM)1:r,1:r = Ir

ZM

(

:=

(

Ir XT

X YM

))

� 0.

V SDR−1 is relaxing the quadratic equality constraint YV = vec (X)vec (X)T to YV �
vec (X)vec (X)T . This can be formulated as a conic constraint ZV =

(

1 vec (X)T

vec (X) YV

)

�

0; while MSDR−1 is relaxing YM = XXT to the conic constraint ZM =

(

Ir XT

X YM

)

� 0.

Both V SDR−1 and MSDR−1 can be interpreted from the perspective of Lagrange
relaxation. By the equivalence between the Lagrangian relaxation and semidefinite relax-
ation for QCQP (Theorem 1.4.2), we may deduce that V SDR−1 generates a bound as
strong as Lagrangian relaxation under condition (1.4.11), which can be illustrated as

µ∗
LR = max

λ∈R
m
+

min
X∈Mnr

vec (X)T (Ir ⊗Qλ)vec (X) + 2x0(vec (Cλ))
Tvec (X) + βλ

= max
λ∈R

m
+

min
X∈Mnr ,x2

0=1
vec (X)T (Ir ⊗Qλ)vec (X) + 2x0(vec (Cλ))

Tvec (X) + βλ

= max
λ∈R

m
+ ,α∈R

min
X∈Mnr ,x0∈R

vec (X)T (Ir ⊗Qλ)vec (X) + 2x0(vec (Cλ))
Tvec (X)

+ βλ + α(x2
0 − 1)

= max − α +
∑m

j=1 λjβj

s.t.

(

α (C0 +
∑m

j=1 λjCj)
T

vec (C0 +
∑m

j=1 λjCj) Ir ⊗ (Q0 +
∑m

j=1 λjQj)

)

� 0

λj ≥ 0, j = 1, 2, . . . , m,

where µ∗
LR denotes the Lagrangian relaxation bound, Qλ, Cλ, βλ follows the definition in-

troduced in (1.3.6). It is easy to see the right hand side of the last equality is the dual of
V SDR−1 . Therefore, under condition (1.4.11), µ∗

LR = µ∗
3.
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We could also explain MSDR−1 from the perspective of Lagrangian relaxation

µ∗
LR = max

λ∈R
M
+

min
X∈Mnr

trace (XTQλX + 2CT
λX) + βλ

= max
λ∈R

M
+

min
X∈Mnr ,X0X

T
0 =Ir

trace (XTQλX + 2XT
0 C

T
λX) + βλ

≥ max
λ∈RM

+ ,T∈Sr
min

X,X0∈Mnr
trace (XTQλX + 2XT

0 C
T
λX + T (X0X

T
0 − Ir)) + βλ

= max − trT +
∑m

j=1 λjβj

s.t.

(

T (C0 +
∑m

j=1 λjCj)
T

C0 +
∑m

j=1 λjCj Q0 +
∑m

j=1 λjQj

)

� 0

λj ≥ 0, j = 1, 2, . . . , m
T ∈ Sn.

(3.2.41)

The right-hand side of the last equality is the conic dual of MSDR−1 . Therefore,
MSDR−1 can never be stronger than the Lagrangian relaxation or V SDR−1 , i.e.,
µ∗

4 ≤ µ∗
LR = µ∗

3. However, the following theorem indicates that under condition (1.4.11),
the inequality in (3.2.41) can be replaced with an equality.

Theorem 3.2.1 ([4]) For QMP1 , if the equivalent generalized Slater condition (1.4.11)
holds, then the optimal values of MSDR−1 and V SDR−1 coincide, i.e., µ∗

3 = µ∗
4.

The proof to Theorem 3.2.1 in [4] needs the following theorem.

Theorem 3.2.2 If the minimum of a QMP1 is attainable and its total number of con-
straints (equality or inequality) does not exceed r, then MSDR−1 solves QMP1 exactly.

Proof. Apply Theorem 2.2.1 to deduce that MSDR−1 has an optimal solution Z∗
M

with rank (Z∗
M) ≤ r. For details, see [4].

We will provide a similar but even stronger result than Theorem 3.2.1 by using Theorem
3.0.3. To be different from the proof in [4], our proof is completely based on the analysis
to the primal program and hence does not need the equivalent generalized Slater condition
(1.4.11). And we will also prove that the feasible sets of the two relaxations have the same
projection on the X part.
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Lemma 3.2.1 For QMP1 , denote the columns of X with xj , j = 1, 2, . . . , r, and let
V SDR−1′ denote the semidefinite relaxation

(V SDR−1′ )

µ∗
5 := min Q0 ·

∑r

j=1 Yjj + 2C0 ·X
s.t. Qj ·

∑r

j=1 Yjj + 2Cj ·X + βj ≤ 0, j = 1, 2, . . . , m

Zjj =

(

1 xTj
xj Yjj

)

� 0, j = 1, 2, . . . , m.

If both V SDR−1 and V SDR−1′ attain their minima, then their optimal values coin-
cide, i.e., µ∗

3 = µ∗
5.

Proof.

1. µ∗
3 ≤ µ∗

5:

Suppose V SDR−1′ has an optimal solution Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, . . . , r),

we may construct a partial symmetric matrix

Z∗
V =













1 (x∗1)
T (x∗2)

T . . . (x∗r)
T

x∗1 Y ∗
11 ? ? ?

x∗2 ? Y ∗
22 ? ?

... ? ?
. . . ?

x∗r ? ? ? Y ∗
rr













.

By observation, the unspecified entries of Z∗
V (marked by ?) are not involved in

any of the constraint and objective functions of V SDR−1 . In other words, we
can assign any values to those positions without changing the feasibility and the
objective value. Because Z∗

jj (j = 1, 2, . . . , r) is feasible to V SDR−1′ , we have
(

1 (x∗j )
T

x∗j Y ∗
jj

)

� 0 for each j = 1, 2, . . . , r. So all the principal submatrices of Z∗
V are

positive semidefinite, and hence Z∗
V is a partial positive semidefinite matrix according

to Definition 3.0.3. It is clear that the arrow sparsity pattern of Z∗
V corresponds to

a chordal graph. By Theorem 3.0.3, Z∗
V has a semidefinite completion Z̄∗

V which is
feasible to V SDR−1 , so

µ∗
3 ≤M(qV0 (•)) · Z̄∗

V . (3.2.42)
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Let X∗ = ( x∗1 x∗2 · · · x∗r ), then

M(qV0 (•)) · Z̄∗
V = Q0 ·

r
∑

j=1

Y ∗
jj + 2C0 ·X∗. (3.2.43)

Because Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, . . . , r) minimizes V SDR−1′ , we got Q0 ·
∑r

j=1 Y
∗
jj + 2C0 ·X∗ = µ∗

5. Together with (3.2.42) and (3.2.43), we conclude µ∗
3 ≤ µ∗

5.

2. µ∗
3 ≥ µ∗

5:

Suppose

Z∗
V =













1 (x∗1)
T (x∗2)

T . . . (x∗r)
T

x∗1 Y ∗
11 Y ∗

12 . . . Y ∗
1r

x∗2 Y ∗
21 Y ∗

22 . . . Y ∗
2r

...
...

...
. . .

...
x∗r Y ∗

r1 Y ∗
r2 . . . Y ∗

rr













� 0

is an optimal solution to V SDR−1 . Now we construct Z∗
jj :=

(

1 (x∗j )
T

x∗j Y ∗
jj

)

,

j = 1, 2, . . . , r. Because each Z∗
jj is a principal submatrix of the positive semidefinite

matrix Z∗
V , we have Z∗

jj � 0 for each j = 1, 2, . . . , r. Because Z∗
V is feasible to

V SDR−1 , we have

M(qVi (•)) · Z∗
V ≤ 0, i = 1, 2, . . . , m. (3.2.44)

If X∗ = (x∗1 x∗2 · · · x∗r ), it is easy to check

Qi ·
r

∑

j=1

Y ∗
jj + 2Ci ·X∗ + βi = M(qVi (•)) · Z∗

V , i = 1, 2, . . . , m. (3.2.45)

So the m constraints of V SDR−1′

Qi ·
r

∑

j=1

Y ∗
jj + 2Ci ·X∗ + βi ≤ 0, i = 1, 2, . . . , m (3.2.46)
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are satisfied by Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, . . . , r). Because µ∗
5 denotes the optimal

value of V SDR−1′ , we have

µ∗
5 ≤ Q0 ·

r
∑

i=1

Y ∗
ii + 2C0 ·X∗. (3.2.47)

Because Z∗
V minimizes V SDR−1 , we have

µ∗
3 = M(qV0 (•)) · Z∗

V . (3.2.48)

Also, by inspection,

M(qV0 (•)) · Z∗
V = ·Q0 ·

r
∑

i=1

Y ∗
ii + 2C0 ·X∗. (3.2.49)

Therefore, (3.2.47), (3.2.48) and (3.2.49) together lead to µ∗
3 ≥ µ∗

5.

Lemma 3.2.1 shows that V SDR−1′ is as strong as V SDR−1 , although it includes
fewer variables. The following lemma shows that the V SDR−1′ can be further reduced
to MSDR−1 without weakening the bounds.

Lemma 3.2.2 If both MSDR−1 and V SDR−1′ attain their minima, then their opti-
mal values coincide, i.e., µ∗

4 = µ∗
5.

Proof.

1. µ∗
4 ≤ µ∗

5:

Suppose V SDR−1′ has an optimal solution Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, · · · , m).

Let X∗ = (x∗1 x∗2 · · · x∗r ), and Y ∗
M =

∑r

j=1 Y
∗
jj. Now we construct Z∗

M :=
(

Ir (X∗)T

X∗ Y ∗
M

)

. Then by Z∗
jj � 0 for each j = 1, 2, . . . , r, we have Z∗

M � 0, and

M(qM0 (•)) · Z∗
M = Q0 ·

r
∑

i=1

Y ∗
ii + 2C0 ·X∗, (3.2.50)
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M(qMj (•)) · Z∗
M = Qj ·

r
∑

i=1

Y ∗
ii + 2Cj ·X∗ + βj , j = 1, . . . , m. (3.2.51)

Because Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, . . . , m) minimize V SDR−1′ , we have

Q0 ·
r

∑

i=1

Y ∗
ii + 2C0 ·X∗ = µ∗

5, (3.2.52)

and

Qj ·
r

∑

i=1

Y ∗
ii + 2Cj ·X∗ + βj ≤ 0, j = 1, . . . , m. (3.2.53)

By (3.2.51) and (3.2.53), we deduce

M(qMj (•)) · Z∗
M ≤ 0, j = 1, . . . , m. (3.2.54)

(3.2.54) and Z∗
M � 0 imply that Z∗

M is a feasible solution to MSDR−1 , whose
minimal objective value equals µ∗

4. So

µ∗
4 ≤M(qM0 (•)) · Z∗

M . (3.2.55)

Then by (3.2.50), (3.2.52) and (3.2.55), we conclude µ∗
4 ≤ µ∗

5.

2. µ∗
5 ≤ µ∗

4:

Suppose Z∗
M =

(

Ir (X∗)T

X∗ Y ∗
M

)

� 0 minimizes MSDR−1 , andX∗ = ( x∗1 x∗2 · · · x∗r ).

Then let Y ∗
ii = x∗i (x

∗
i )
T for i = 1, 2, . . . , r−1, and let Yrr = x∗r(x

∗
r)
T +(Y ∗

M−X∗(X∗)T ).
As a result, Y ∗

ii � x∗i (x
∗
i )
T for i = 1, 2, . . . , r, and

∑r

i=1 Y
∗
ii = Y ∗

M . So by constructing

Z∗
jj =

(

1 (x∗j )
T

x∗j Y ∗
jj

)

(j = 1, 2, · · · , r), (3.2.50) and (3.2.51) hold.

Because Z∗
M minimizes MSDR−1 , we deduce (3.2.54) holds and

µ∗
4 = M(qM0 (•)) · Z∗

M . (3.2.56)
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By (3.2.51) and (3.2.54), we can deduce (3.2.53), i.e., Z∗
jj (j = 1, 2, . . . , r) feasible

to V SDR−1′ . Because the minimal objective value of V SDR−1′ equals µ∗
5, we

have

µ∗
5 ≤ Q0 ·

r
∑

i=1

Y ∗
ii + 2C0 ·X∗. (3.2.57)

Now (3.2.50), (3.2.56) and (3.2.57) together imply µ∗
5 ≤ µ∗

4.

As a conclusion for this section, we propose the following theorem, which is a stronger
result than Theorem 3.2.1.

Theorem 3.2.3 The two programs, V SDR−1 and MSDR−1 , either both reach the
same optimal value, i.e., µ∗

4 = µ∗
5, or neither of them attains its minima.

Proof. According to Lemma 3.2.1 and Lemma 3.2.2, given any Z∗
V =

(

1 vec (X)T

vec (X) YV

)

feasible to V SDR−1 , we can construct a Z∗
M =

(

Ir XT

X YM

)

that is feasible to

MSDR−1 and reaches the same objective value. And the converse is also true. There-
fore, the primal optimum of V SDR−1 is attained if and only if the primal optimum
of MSDR−1 is attained. Furthermore, if they both attain their minima, then their
objective values coincide according to Lemma 3.2.1 and Lemma 3.2.2.

3.3 QMP2

In this section, we will move to the second type of Quadratic Matrix Programming,
i.e., QMP2 . We propose the Vector-Lifting Semidefinite Relaxation (V SDR−2 ) for
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QMP2 as

(V SDR−2 )

µ∗
6 := min

(

0 vec (C0)
T

vec (C0) Ir ⊗Q0 + P0 ⊗ In

)

· ZV

s.t.

(

βj vec (Cj)
T

vec (Cj) Ir ⊗Qj + Pj ⊗ In

)

· ZV ≤ 0, j = 1, 2, . . . , m

ZV (=

(

1 vec (X)T

vec (X) YV

)

) � 0.

We also propose the Matrix-Lifting Semidefinite Relaxation (MSDR−2 ) for QMP2 as

(MSDR−2 )

µ∗
7 := min Y1 ·Q0 + Y2 · P0 + 2C0 ·X

s.t. Y1 ·Qj + Y2 · Pj + 2Cj ·X + βj ≤ 0, j = 1, 2, . . . , m

Z1(=

(

Ir XT

X Y1

)

) � 0

Z2(=

(

In X
XT Y2

)

) � 0

traceY1 = traceY2.

Now we conclude the comparison for the numbers of variables and constraints of
V SDR−1 and MSDR−1 , V SDR−2 and MSDR−2 in Table 3.1.

Methods V SDR−1 MSDR−1 V SDR−2 MSDR−2

Variables (nr + 1)2 (n + r)2 (nr + 1)2 2(n + r)2

Constraints m + 1 m + 0.5r2 m + 1 m + 1 + 0.5(n + r)2

Table 3.1: Comparison of Costs for Different Semidefinite Relaxations

Because most problems can be reformulated as a QMP with m as the same order of nr,
it is often cheaper to compute an MSDR−2 rather than to compute a V SDR−2 . How-
ever, the bound from MSDR−2 turns out never stronger than that from V SDR−2 ,

because for any ZV =

(

1 vec (X)T

vec (X) YV

)

that minimizes V SDR−2 , by construct-

ing Y1 = o0diag (YV ), Y2 = b0diag (YV ) (o0diag , b0diag defined in (1.3.5)), it is easy to

check that Z1 =

(

Ir XT

X Y1

)

, Z2 =

(

In X
XT Y2

)

are feasible to MSDR−2 and reaches

the same objective value µ∗
6. So µ∗

6 ≥ µ∗
7 holds consistently. We can also interpret the fact

µ∗
6 ≥ µ∗

7 in another way. By the fact that Z1, Z2 can be constructed with the entries of
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ZV (using o0diag , b0diag ), MSDR−2 actually only restricts the sum of some principal
submatrices of ZV to be positive semidefinite; while in V SDR−2 , the whole matrix ZV
is restricted to stay positive semidefinite. So the constraints of MSDR−2 are not as
strong as those of V SDR−2 .

Now the question arises. Will V SDR−2 be strictly stronger than MSDR−2 for
some instances? For the QMP1 case, the answer is NO, so it encourages us to use the
cheaper MSDR−1 formulation instead of V SDR−1 whenever we encounter a QMP1 .
However, the situation is different for the QMP2 . By a close inspection, the entries of
YV involved in the operators o0diag (•), b0diag (•) will form a partial semi-definite matrix
whose sparsity pattern is not chordal and hence they do not necessarily admit a semidefinite
completion. Therefore, for given Y1, Y2 feasible to MSDR−2 , there is no guarantee to

find a ZV =

(

1 vec (X)T

vec (X) YV

)

� 0 with o0diag (YV ) = Y1 and b0diag (YV ) = Y2. In

later sections, we will see that MSDR−2 is as strong as V SDR−2 only under certain
conditions.

3.3.1 VSDR-2 V.S. MSDR-2

Due to the computational advantage of MSDR−2 , we are motivated to study the con-
ditions under which MSDR−2 is as strong as V SDR−2 . We come to study the dual
programs of V SDR−2 and MSDR−2 , i.e., DM −2 and DV −2 , because the struc-
tures of the dual programs are easier to explore. The dual of the V SDR−2 is

(DV −2 )

µ∗
8 := max βλ − α

s.t.

(

α vec (Cλ)
T

vec (Cλ) Ir ⊗Qλ + Pλ ⊗ In

)

� 0

λj ≥ 0, j = 1, 2, . . . , m.

And the dual of MSDR−2 is

(DM −2 )

µ∗
9 := max βλ − traceS1 − traceS2

s.t.

(

S1 RT
1

R1 Qλ − tIn

)

� 0
(

S2 R2

RT
2 Pλ + tIr

)

� 0

R1 +R2 = Cλ
λj ≥ 0, j = 1, 2, . . . , m
S1 ∈ Sr, S2 ∈ Sn, R1, R2 ∈ Mnr, t ∈ R,
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where βλ, Cλ, Qλ , Pλ follow the definitions in (1.3.6). The following lemma provides a
key observation for the connections between the two dual programs.

Lemma 3.3.1 Let P ∈ Sr, Q ∈ Sn, and Ir, In denote the identity matrices in Sr,Sn,
respectively. Then

P ⊗ In + Ir ⊗Q � (≻)0,

if and only if

P + tIr � (≻)0, Q− tIn � 0, for some t ∈ R.

Proof.

1. Necessity

Let the symmetric matrix P , Q have spectral decomposition

P = UΣPU
T , Q = V ΣQV

T ,

where

ΣP = Diag (λ1(P ), λ2(P ), . . . , λr(P )),

ΣQ = Diag (λ1(Q), λ2(Q), . . . , λn(Q)).

So

P ⊗ In + Ir ⊗Q = (U ⊗ V )(ΣP ⊗ In + Ir ⊗ ΣQ)(U ⊗ V )T � (≻)0 (3.3.58)

implies the diagonal matrix, ΣP ⊗ In + Ir ⊗ ΣQ � (≻)0. In other words,

∀i = 1, 2, . . . r, ∀j = 1, 2, . . . n, λi(P ) + λj(Q) ≥ (>)0. (3.3.59)

Therefore,

min
i
λi(P ) + min

j
λj(Q) ≥ (>)0. (3.3.60)

Now with t = min
j
λj(Q), we have Q− tI � 0 and P + tI � (≻)0.
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2. Sufficiency

We still use the spectral decomposition and deduce P⊗In+Im⊗Q � (≻)0 if (3.3.60)
holds. Then by P + tIr � (≻)0, we know min

i
λi(P ) ≥ (>) − t; also by Q− tIn � 0,

we get min
j
λj(Q) ≥ t. So min

i
λi(P ) + min

j
λj(P ) ≥ (>) − t + t = 0, which leads to

P ⊗ In + Im ⊗Q � (≻)0.

Remark 3.3.1 By the equivalence between (1.4.11) and (1.4.10), we know the generalized
Slater condition [25] holds for DV −2 if and only if

∃λ ∈ R
m
+ , s.t. (

m
∑

j=1

λjPj + P0) ⊗ In + Ir ⊗ (
m

∑

j=1

λjQj +Q0) ≻ 0. (3.3.61)

As a result of Lemma 3.3.1, (3.3.61) holds if and only if

∃t ∈ R, λ ∈ R
m
+ , s.t.

m
∑

j=1

λjPj + P0 + tIn ≻ 0,

m
∑

j=1

λjQj +Q0 − tIr ≻ 0, (3.3.62)

which is equivalent with the generalized Slater condition for DM −2 . So by classical con-
vex analysis theory [45], under condition (3.3.62), both V SDR−2 and MSDR−2 attain
their minima and their optimal values coincide with their dual programs respectively, i.e.,

µ∗
6 = µ∗

8, µ∗
7 = µ∗

9.

Therefore, under condition (3.3.62), to prove that V SDR−2 and MSDR−2 generate
the same bound (i.e., µ∗

6 = µ∗
7), it is enough to show that the optimal values of DV −2 and

DM −2 coincide (i.e., µ∗
8 = µ∗

9).

Now we come to prove the main results, i.e., Theorem 3.3.1. Please recall the definition of
the Moore-Penrose inverse (†) of a singular symmetric matrix in section 1.3. We have to
prove several useful propositions and lemmas before proving Theorem 3.3.1.
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Proposition 3.3.1 ([4]) A quadratic mapping f(x) = xTQx + 2cTx + β is nonnegative

for any x ∈ Rn if and only if the matrix

(

β cT

c Q

)

� 0.

Proposition 3.3.2 Suppose DV −2 is feasible, and its maximum is attained at λ∗ ∈ Rm
+ ,

then

µ∗
8 = −vec (Cλ∗)

T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)
†vec (Cλ∗) + βλ∗ . (3.3.63)

Proof. Due to Proposition 3.3.1,
(

α vec (Cλ∗)
T

vec (Cλ∗) Ir ⊗Qλ∗ + Pλ∗ ⊗ In

)

� 0 (3.3.64)

if and only if

∀X ∈ Mnr, vec (X)T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)vec (X) + 2vec (Cλ∗)
Tvec (X) + α ≥ 0.

Therefore, α satisfies (3.3.64) if and only if −α ≤ min
X∈Mnr

vec (X)T (Ir ⊗ Qλ∗ + Pλ∗ ⊗
In)vec (X) + 2vec (Cλ∗)

Tvec (X). So we can deduce

min
X∈Mnr

vec (X)T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)vec (X) + 2vec (Cλ∗)
Tvec (X)

= max
α∈R

−α

s.t.

(

α vec (Cλ∗)
T

vec (Cλ∗) Ir ⊗Qλ∗ + Pλ∗ ⊗ In

)

� 0.

(3.3.65)

The feasibility of λ∗ to DV −2 implies vec (Cλ∗) ∈ R(Ir ⊗Qλ∗ + Pλ∗ ⊗ In), so

min
X∈Mnr

vec (X)T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)vec (X) + 2vec (Cλ)
Tvec (X)

= −vec (Cλ∗)
T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)

†vec (Cλ∗).
(3.3.66)

Since DV −2 is maximized at λ∗ ∈ R
m
+ , by fixing λ = λ∗ in DV −2 , we have

µ∗
8 = max

α∈R

−α + βλ∗

s.t.

(

α vec (Cλ∗)
T

vec (Cλ∗) Ir ⊗Qλ∗ + Pλ∗ ⊗ In

)

� 0.
(3.3.67)

Then (3.3.63) follows from (3.3.65), (3.3.66) and (3.3.67).
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Proposition 3.3.3 If A,B ∈ Sn+ and A � B, then N (B) ⊆ N (A), and R(A) ⊆ R(B).

Proof. Suppose v ∈ N (B), then B � A � 0 leads to 0 = vTBv ≥ vTAv ≥ 0,
so vTAv = 0. Since A ∈ Sn+, A has a Cholesky decomposition A = RTR. Then
vTRTRv = 0 implies Rv = 0, which leads to Av = RT (Rv) = 0. Therefore, v ∈ N (A),
and hence N (B) ⊆ N (A). Because A, B are symmetric matrices, by [23], we have
R(A) = (N (AT ))⊥ = (N (A))⊥, and R(B) = (N (BT ))⊥ = (N (B))⊥, so N (B) ⊆ N (A)
implies R(B) = (N (B))⊥ ⊇ (N (A))⊥ = R(A).

The following Lemma is a key step to establish the connections between DV −2 and
DM −2 .

Lemma 3.3.2 Suppose DV −2 has its maximum attained at λ∗ ∈ Rm
+ , and condition

(3.3.62) holds, then ∃t such that Qλ∗,t :=
∑m

j=1 λjQj +Q0 − tI � 0, Pλ∗,t :=
∑m

j=1 λjPj +
P0 + tI � 0. If we denote

µ∗
10 := max −vec (R1)

T (Ir ⊗Qλ∗,t)
†vec (R1) − vec (R2)

T (Pλ∗,t ⊗ In)
†vec (R2) + βλ∗

s.t. R1 +R2 = Cλ∗

R1, R2 ∈ Mnr,

Then µ∗
8 = µ∗

10.

We first introduce some notations before proving the lemma. Let Pλ∗,t = UpΣpU
T
p ,

Qλ∗,t = UqΣqU
T
q be the spectral decompositions for Pλ∗,t, Qλ∗,t (so Up, Uq are orthogonal

square matrices and Σp,Σq are diagonal matrices with eigenvalues of Pλ∗,t, Qλ∗,t). Now we
begin to prove Lemma 3.3.2.

Proof. Condition 3.3.62 and remark 3.3.1 implies the existence of such a t (by taking
t = min

j=1,2,...,n
λj(Qλ∗)). In fact, if (Ir⊗Qλ∗ +Pλ∗⊗In) is positive semidefinite but not positive

definite, then such a t is unique. By Proposition 3.3.2,

µ∗
8 = −vec (Cλ∗)

T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)
†vec (Cλ∗) + βλ∗ .

Thus, to prove µ∗
8 = µ∗

10, it suffice to prove

µ∗
10 = −vec (Cλ∗)

T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)
†vec (Cλ∗) + βλ∗ . (3.3.68)

By denoting

φ(R1) := βλ∗ − vec (R1)
T ((Ir ⊗Qλ∗,t)

† + (Pλ∗,t ⊗ In)
†)vec (R1)

+2vec (Cλ∗)
T (Pλ∗,t ⊗ In)

†vec (R1) − vec (Cλ∗)
T (Pλ∗,t ⊗ In)

†vec (Cλ∗),
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according to the definition of µ∗
10, we have

µ∗
10 = max

R1∈Mnr
φ(R1). (3.3.69)

Since Qλ∗,t � 0, Pλ∗,t � 0, we know (Ir ⊗ Qλ∗,t)
† + (Pλ∗,t ⊗ In)

† � 0 and hence φ is
concave. Because (Pλ∗,t⊗ In)

† � (Ir ⊗Qλ∗,t)
† + (Pλ∗,t⊗ In)

† and Proposition 3.3.3, we can
further deduce (Pλ∗,t ⊗ In)

†vec (Cλ∗) ∈ R((Pλ∗,t ⊗ In)
†) ⊆ R((Ir ⊗ Qλ∗,t)

† + (Pλ∗,t ⊗ In)
†).

Therefore, the maximum of the quadratic concave function φ(R1) is finite and attained at

vec (R∗
1) = ((Ir ⊗Qλ∗,t)

† + (Pλ∗,t ⊗ In)
†)†(Pλ∗,t ⊗ In)

†vec (Cλ∗)

= (Pλ∗,t ⊗Q†
λ∗,t + Pλ∗,tP

†
λ∗,t ⊗ In)

†vec (Cλ∗).
(3.3.70)

Now put R1 = R∗
1 into (3.3.69),

µ∗
10 = φ(R∗

1)

= vec (Cλ∗)
T (Pλ∗,t ⊗Q†

λ∗,t + Pλ∗,tP
†
λ∗,t ⊗ In)

†(Pλ∗,t ⊗ In)
†vec (Cλ∗)

−vec (Cλ∗)
T (Pλ∗,t ⊗ In)

†vec (Cλ∗) + βλ∗

= vec (Cλ∗)
T ((P 2

λ∗,t ⊗Q†
λ∗,t + Pλ∗,t ⊗ In)

† − (Pλ∗,t ⊗ In)
†)vec (Cλ∗) + βλ∗

= vec (Cλ∗)
T (Up ⊗ Uq)Σ(Up ⊗ Uq)

Tvec (Cλ∗) + βλ∗ ,

where

Σ := (Σ2
p ⊗ Σ†

q + Σp ⊗ In)
† − Σ†

p ⊗ In.

For Σp = Diag (λp,i), i = 1, 2, . . . , r, and Σq = Diag (λq,j), j = 1, 2, . . . , n, the diagonal
entries of the diagonal matrix Σ can be calculated as

Σni+j =

{ − 1
λp,i+λq,j

if λp,i 6= 0, λq,j 6= 0

0 if λp,i = 0 or λq,j = 0.

So we may deduce Σ = −(Σp ⊗ In + Ir ⊗ Σq)
†. As a consequence,

µ∗
10 = vec (Cλ∗)

T (Up ⊗ Uq)Σ(Up ⊗ Uq)
Tvec (Cλ∗) + βλ∗

= −vec (Cλ∗)
T (Ir ⊗Qλ∗,t + Pλ∗,t ⊗ In)

†vec (Cλ∗) + βλ∗
= −vec (Cλ∗)

T (Ir ⊗Qλ∗ + Pλ∗ ⊗ In)
†vec (Cλ∗) + βλ∗ .

So (3.3.68) is proved and Lemma 3.3.2 has been established.

Then we come to establish the connections between µ∗
9 and µ∗

10.
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Proposition 3.3.4 ([4]) f(X) = trace (XTQX + 2CTX) + β ≥ 0 for any X ∈ Mnr if

and only if ∃S ∈ Sr, such that traceS ≤ 0 and

(

S + β

r
Ir CT

C Q

)

� 0.

Remark 3.3.2 An immediate result following Proposition 3.3.4 is, if R(C) ⊆ R(Q), then

min
X∈Mnr

trace (XTQX + 2CTX)

= max
ψ∈Sr

−traceψ

s.t.

(

ψ CT

C Q

)

� 0.

Suppose DV −2 is maximized at λ∗ ∈ Rm
+ . Then consider the following subproblem

of DM −2

µ∗
11 := max βλ∗ − traceS1 − traceS2

s.t. R1 +R2 = Cλ∗
(

S1 RT
1

R1 Qλ∗,t

)

� 0
(

S2 R2

RT
2 Pλ∗,t

)

� 0

R1, R2 ∈ Mnr, S1 ∈ Sr S2 ∈ Sn,

(3.3.71)

where we have fixed λ = λ∗ and fixed t as the real number satisfying Qλ∗,t := Qλ∗ − tIn �
0, Pλ∗,t := Pλ∗ + tIr � 0. Because we have fixed λ to be particular values, the maximal
value of (3.3.71) can never exceed the maximum of the original problem DM −2 , i.e.,
µ∗

11 ≤ µ∗
9. The following Proposition further reveals µ∗

11 = µ∗
10 under a certain condition.

Lemma 3.3.3 Suppose DV −2 is maximized at λ∗ ∈ Rm
+ , and t is the real number sat-

isfying Qλ∗,t := Qλ∗ − tIn � 0, Pλ∗,t := Pλ∗ + tIr � 0. µ∗
11 follows from the definition in

(3.3.71). Then

µ∗
10 = µ∗

11,

if and only if

∃M ∈ Mnr, Cλ∗ = Qλ∗,tMPλ∗,t. (3.3.72)
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We firstly introduce some notations to simplify the proof to this proposition. We rearrange

Σp =

(

Σp1 0
0 0

)

, Σq =

(

Σq1 0
0 0

)

, where Σp1,Σq1 are diagonal matrix with positive

diagonal entries, and we then rewrite Up = (Up1 Up2 ) , Uq = (Uq1 Uq2 ), where Up1, Uq1
are eigenvectors corresponding to nonzero eigenvalues of Pλ∗,t, Qλ∗,t respectively.

Proof. By Proposition 3.3.4 and Remark 3.3.2, we can deduce

µ∗
11 = max

R1+R2=Cλ∗

(βλ∗ + min
X∈Mnr

trace (XTQλ∗,tX + 2RT
1X)

+ min
Y ∈Mnr

(traceY Pλ∗,tY
T + 2R2Y

T ))

= max βλ∗ − vec (R1)
T (Ir ⊗Qλ∗,t)

†vec (R1) − vec (R2)
T (Pλ∗,t ⊗ In)

†vec (R2)
s.t. R1 +R2 = Cλ∗

vec (R1) ∈ R(Ir ⊗Qλ∗,t)
vec (R2) ∈ R(Pλ∗,t ⊗ In).

Recall the definition of φ(R1) in Lemma 3.3.2, we can deduce

µ∗
11 = max φ(R1)

s.t. vec (R1) ∈ R(Ir ⊗Qλ∗,t)
vec (Cλ∗ − R1) ∈ R(Pλ∗,t ⊗ In).

(3.3.73)

We want to find the sufficient and necessary condition for µ∗
11 = µ∗

10. By comparing
(3.3.69) and (3.3.73), we find that (3.3.73) has two more constraints than (3.3.69). There-
fore, µ∗

11 ≤ µ∗
10, and the equality holds if and only if (3.3.69) has a maximizer which also

satisfies the two constraints in (3.3.73), i.e.,

∃R1 ∈ argmax(φ), vec (R1) ∈ R(Ir ⊗Qλ∗,t), vec (Cλ∗ −R1) ∈ R(Pλ∗,t ⊗ In), (3.3.74)

where argmax(φ) denotes the set of the maximizers of φ.
So (3.3.74) is the sufficient and necessary condition for µ∗

11 = µ∗
10. Now our aim is

to find a simpler condition equivalent with (3.3.74). We first study the conditions under
which there is an R1 ∈ argmax(φ), such that vec (R1) ∈ R(Ir ⊗Qλ∗,t).

By (3.3.70), vec (R∗
1) = (Pλ∗,t ⊗ Q†

λ∗,t + Pλ∗,tP
†
λ∗,t ⊗ In)

†vec (Cλ∗) ∈ argmax(φ). So the
set argmax(φ) can be characterized as

argmax(φ) = {R∗
1 + V | vec (V ) ∈ N (Ir ⊗Qλ∗,t + Pλ∗,t ⊗ In)}. (3.3.75)

If vec (R∗
1) /∈ R(Ir⊗Qλ∗,t) (but always vec (R∗

1) ∈ R(Ir⊗Qλ∗,t+Pλ∗,t⊗In) by (3.3.70)), then
the projection of R∗

1 on R(Pλ∗,t⊗ In) is nonzero. So for any V ∈ N (Ir⊗Qλ∗,t+Pλ∗,t⊗ In),
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the projection of R∗
1 + V on R(Pλ∗,t ⊗ In) is still nonzero. So if vec (R∗

1) /∈ R(Ir ⊗Qλ∗,t),
we get argmax(φ)∩{R1|vec (R1) ∈ R(Ir⊗Qλ∗,t)} = ∅. Therefore, we only need to concern
under which conditions R∗

1 satisfies the constraint vec (R∗
1) ∈ R(Ir ⊗ Qλ∗,t), instead of

checking the feasibility of each member of argmax(φ).
We know vec (R∗

1) ∈ R(Ir⊗Qλ∗,t) if and only if there exists a vector v ∈ Rnr, such that

vec (R∗
1) = (Ir ⊗Qλ∗,t)v = (Up ⊗ Uq)(Ir ⊗ Σq)(Up ⊗ Uq)

Tv. (3.3.76)

By (3.3.70),

vec (R∗
1) = (Pλ∗,t ⊗Q†

λ∗,t + Pλ∗,tP
†
λ∗,t ⊗ In)

†vec (Cλ∗)

= (Up ⊗ Uq)(Σp ⊗ Σ†
q + ΣpΣ

†
p ⊗ In)

†(Up ⊗ Uq)
Tvec (Cλ∗)

= (Up ⊗ Uq)D(Up ⊗ Uq)
Tvec (Cλ∗),

(3.3.77)

where the diagonal matrix D := (Σp ⊗ Σ†
q + ΣpΣ

†
p ⊗ In)

†.
So by (3.3.76) and (3.3.77), vec (R∗

1) ∈ R(Ir ⊗Qλ∗,t) if and only if ∃v ∈ R
nr, such that

(Up ⊗ Uq)(Ir ⊗ Σq)(Up ⊗ Uq)
Tv = (Up ⊗ Uq)D(Up ⊗ Uq)

Tvec (Cλ∗). (3.3.78)

Furthermore, (3.3.78) holds if and only if

v = (Up ⊗ Uq)(Ir ⊗ Σ†
q)D(Up ⊗ Uq)

Tvec (Cλ∗), (3.3.79)

and

(Ir ⊗ ΣqΣ
†
q)D(Up ⊗ Uq)

Tvec (Cλ∗) = D(Up ⊗ Uq)
Tvec (Cλ∗). (3.3.80)

By a close observation for (3.3.80), the diagonal entry of the diagonal matrix Ir⊗ΣqΣ
†
q

equals zero if and only if it finally corresponds to a row of (Up ⊗ Uq,2)
T in the production

of (3.3.80) (rows of (Up ⊗ Uq,2)
T are a subset of rows of (Up ⊗ Uq)

T ). And the diagonal
entries of D can be calculated as

Dni+j

{

> 0 if (Σp)ii 6= 0
= 0 if (Σp)ii = 0

i = 1, 2, . . . , r, j = 1, 2, . . . , n.

So the diagonal entry of the diagonal matrix D equals zero if and only if it corresponds
to a row of (Up,2 ⊗ Uq)

T in the production of (3.3.80). Therefore, (Ir ⊗ ΣqΣ
†
q)D actually

diminishes the positive diagonal entries of D that correspond to the rows of (Up,1 ⊗ Uq,2)
T

in the production of (3.3.80). Therefore, (3.3.80) holds if and only if vec (Cλ∗) originally
has no components on the subspace spanned by Up,1 ⊗ Uq,2. So we conclude

(Up,1 ⊗ Uq,2)
Tvec (Cλ∗) = 0 (3.3.81)
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is the sufficient and necessary condition for (3.3.78), and hence for vec (R∗
1) ∈ R(Ir⊗Qλ∗,t).

For the other constraint vec (Cλ∗ − R1) ∈ R(Pλ∗,t ⊗ In) in (3.3.74), note

vec (Cλ∗ − R∗
1) = (P †

λ∗,t ⊗Qλ∗,t + Ir ⊗Qλ∗,tQ
†
λ∗,t)

†vec (Cλ∗),

which has an identical structure with the formulation (3.3.70) for R∗
1, except swapping

the positions of Pλ∗,t and Qλ∗,t. So by analogy, the sufficient and necessary condition for
vec (Cλ∗ − R∗

1) ∈ R(Pλ∗,t ⊗ In) is

(Up,2 ⊗ Uq,1)
Tvec (Cλ∗) = 0. (3.3.82)

Because λ∗ is feasible to DV −2 , we have vec (Cλ∗) ∈ R(Ir ⊗ Qλ∗,t + Pλ∗,t ⊗ In), which
implies the projection of vec (Cλ∗) on N (Ir ⊗Qλ∗,t + Pλ∗,t ⊗ In) is zero, i.e.,

(Up,2 ⊗ Uq,2)
Tvec (Cλ∗) = 0. (3.3.83)

We know, Up,1 ⊗ Uq,1, Up,2 ⊗ Uq,1, Up,1 ⊗ Uq,2 and Up,2 ⊗ Uq,2 span the whole space, so
condition (3.3.81), (3.3.82), (3.3.83) together imply that

vec (Cλ∗) ∈ R(Up,1 ⊗ Uq,1) (3.3.84)

is the sufficient and necessary condition for (3.3.74), hence also the sufficient and necessary
condition for µ∗

11 = µ∗
10. Furthermore, condition (3.3.84) can be equivalently formulated as

(3.3.72), which establishes Lemma 3.3.3.

Remark 3.3.3 The proof to Lemma 3.3.3 shows that the difference between DV −2 and
DM −2 originates from the different feasible sets for (3.3.73) and (3.3.69). One can verify
that the maximizers for (3.3.69) are

vec (R∗
1) = (Ir ⊗ Uq,2U

T
q,2)vec (Cλ∗) + vec (R̄∗

1),
vec (R∗

2) = (Up,2U
T
p,2 ⊗ In)vec (Cλ∗) + vec (R̄∗

2)
(3.3.85)

for some vec (R̄∗
1), vec (R̄∗

2) ∈ R(Pλ∗,t ⊗ Qλ∗,t). One can also verify that the maximizers
for (3.3.73) are

vec (R̂∗
1) = (Up,2U

T
p,2 ⊗ In)vec (Cλ∗) + vec (R̄∗

1),

vec (R̂∗
2) = (Ir ⊗ Uq,2U

T
q,2)vec (Cλ∗) + vec (R̄∗

2),
(3.3.86)
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where R̄∗
1, R̄

∗
2 are the same as in (3.3.85).

Therefore, the difference between µ∗
11 and µ∗

10 can be calculated as

µ∗
10 − µ∗

11 = φ(R∗
1) − φ(R̂∗

1)
= vec (Cλ∗)

T (Up,2U
T
p,2 ⊗ In)

T (Ir ⊗Qλ∗,t)
†(Up,2U

T
p,2 ⊗ In)vec (Cλ∗)

+vec (Cλ∗)
T (Ir ⊗ Uq,2U

T
q,2)

T (Pλ∗,t ⊗ In)
†(Ir ⊗ Uq,2U

T
q,2)vec (Cλ∗).

(3.3.87)

Because µ∗
9 ≥ µ∗

11, µ
∗
8 = µ∗

10, (3.3.87) provides a bound for the difference between DM −2 and
DV −2 , i.e.,

µ∗
8 − µ∗

9 ≤ vec (Cλ∗)
T (Up,2U

T
p,2 ⊗ In)

T (Ir ⊗Qλ∗,t)
†(Up,2U

T
p,2 ⊗ In)vec (Cλ∗)

+ vec (Cλ∗)
T (Ir ⊗ Uq,2U

T
q,2)

T (Pλ∗,t ⊗ In)
†(Ir ⊗ Uq,2U

T
q,2)vec (Cλ∗).

(3.3.88)

Now we give the main theorem.

Theorem 3.3.1 If DV −2 satisfies condition (3.3.62) and attains its maximum at λ∗,
and condition (3.3.72) holds, then V SDR−2 and MSDR−2 generate the same bound
for QMP2 , i.e., µ∗

6 = µ∗
7. Furthermore, if λ∗ is the unique maximizer for DV −2 , then

the condition (3.3.72) is also necessary to establish µ∗
6 = µ∗

7.

Proof. Through previous arguments, we have established µ∗
8 = µ∗

10 = µ∗
11 ≤ µ∗

9 under
condition (3.3.72). We also have shown DM −2 is never stronger than DV −2 , i.e. µ∗

8 ≥
µ∗

9. Thus under condition (3.3.72), the two dual programs, DV −2 and DM −2 generate
the same bounds, i.e., µ∗

8 = µ∗
9. By Remark 3.3.1, under condition (3.3.62), both dual

programs have their optimal values equaling their primal programs, so the optimal values
of V SDR−2 and MSDR−2 coincide, i.e., µ∗

6 = µ∗
7.

Furthermore, the condition (3.3.72) is also necessary to establish µ∗
6 = µ∗

7 when λ∗ is
the unique maximizer for DV −2 . Because if (3.3.72) fails, then by Lemma 3.3.3, we
have µ∗

11 < µ∗
10 = µ∗

8. If DM −2 is also maximized at λ = λ∗, then µ∗
9 = µ∗

11, so we
have µ∗

9 < µ∗
8; if DM −2 is maximized at λ̄ 6= λ∗, then its optimal value µ∗

9 will never
exceed the subproblem of DV −2 by fixing λ = λ̄. Because λ∗ is the unique maximizer to
DV −2 , we conclude µ∗

9 < µ∗
8 in this case. Then by condition (3.3.62) and Remark 3.3.1,

the objective values of their primal programs also have the strict inequality µ∗
7 < µ∗

6.

There is an immediate result following Theorem 3.3.1, which is useful and nontrivial.
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Lemma 3.3.4 For a homogeneous QMP2 (Cj = 0, for all j = 0, 1, . . . , m) satisfying
condition (3.3.62), V SDR−2 and MSDR−2 always generate the same bound.

3.3.2 Improving the Bound of MSDR-2

If a MSDR−2 is solved and returns an optimal value µ∗
9 and the dual maximizers λ̄, R∗

1,
then we can further improve the bound of µ∗

9 without much computational effort.
Suppose λ̄, t, R̂1, R̂2 maximizes DM −2 , then the feasibility implies Pλ̄,t � 0, Qλ̄,t � 0,

and vec (R̂1) ∈ R(Ir ⊗Qλ̄,t), vec (R̂2) ∈ R(Pλ̄,t ⊗ In). Therefore, Ir ⊗Qλ̄,t + Pλ̄,t ⊗ In � 0

and vec (Cλ̄) = vec (R̂1 + R̂2) ∈ R(Ir ⊗ Qλ̄,t + Pλ̄,t ⊗ In). So there is an α ∈ R such that
(λ̄, α) is feasible to DV −2 , and let µ∗

12 denotes the objective value of the subproblem of
DV −2 by fixing λ = λ̄, i.e.,

µ∗
12 = max

α
βλ̄ − α

s.t.

(

α vec (Cλ̄)
T

vec (Cλ̄) Ir ⊗Qλ̄,t + Pλ̄,t ⊗ In

)

� 0.
(3.3.89)

Then µ∗
12 ≤ µ∗

8, so µ∗
12 is also a valid lower bound for QMP2 , which is no stronger than

the bound of V SDR−2 .
According to the discussion in Lemma 3.3.2, if we denote

φ̂(R1) := −vec (R1)
T ((Ir ⊗Qλ̄,t)

† + (Pλ̄,t ⊗ In)
†)vec (R1)

+2vec (Cλ̄)
T (Pλ∗,t ⊗ In)

†vec (R1) − vec (Cλ̄)
T (Pλ∗,t ⊗ In)

†vec (Cλ̄) + βλ̄,

then

µ∗
12 = max φ̂(R1), (3.3.90)

and its maximizer R∗
1 satisfies

vec (R∗
1) = (Ir ⊗ Ûq,2Û

T
q,2)vec (Cλ̄) + vec (R̄∗

1),

vec (R∗
2) = (Ûp,2Û

T
p,2 ⊗ In)vec (Cλ̄) + vec (R̄∗

2),
(3.3.91)

where Ûp,2, Ûq,2 consist of eigenvectors corresponding to the zero eigenvalues of Qλ̄,t, Pλ̄,t,
and vec (R̄∗

1), vec (R̄∗
2) ∈ R(Qλ̄,t ⊗ Pλ̄,t).
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At the other side, because λ̄ maximizes DM −2 , by Proposition 3.3.4,

µ∗
9 = max φ̂(R1)

= s.t. vec (R1) ∈ R(Ir ⊗Qλ̄,t)
vec (Cλ̄ − R1) ∈ R(Pλ̄,t ⊗ In).

(3.3.92)

The above program is maximized at R̂1, R̂2 = Cλ̄ − R̂1 (the maximizers for DM −2 ),
which satisfy

vec (R̂1) = (Ûp,2Û
T
p,2 ⊗ In)vec (Cλ̄) + vec (R̄∗

1),

vec (R̂2) = (Ir ⊗ Ûq,2Û
T
q,2)vec (Cλ̄) + vec (R̄∗

2).
(3.3.93)

Therefore, by (3.3.90), (3.3.91),(3.3.92) and (3.3.93), we can establish the relations between
µ∗

9 and µ∗
12 as

µ∗
12 − µ∗

9 = φ̂(R∗
1) − φ̂(R̂1)

= vec (Cλ̄)
T (Ûp,2Û

T
p,2 ⊗ In)

T (Ir ⊗Qλ̄,t)
†(Ûp,2Û

T
p,2 ⊗ In)vec (Cλ̄)

+vec (Cλ̄)
T (Ir ⊗ Ûq,2Û

T
q,2)

T (Pλ̄,t ⊗ In)
†(Ir ⊗ Ûq,2Û

T
q,2)vec (Cλ̄)

≥ 0.

(3.3.94)

Thus, we can always improve the DM −2 bound µ∗
9 to µ∗

12, which is also a valid lower
bound. By (3.3.88) and (3.3.94), the difference between the improved bound µ∗

12 and the
bound from DV −2 can be bounded as

µ∗
8 − µ∗

12 ≤ vec (Cλ∗)
T (Up,2U

T
p,2 ⊗ In)

T (Ir ⊗Qλ∗,t)
†(Up,2U

T
p,2 ⊗ In)vec (Cλ∗)

+ vec (Cλ∗)
T (Ir ⊗ Uq,2U

T
q,2)

T (Pλ∗,t ⊗ In)
†(Ir ⊗ Uq,2U

T
q,2)vec (Cλ∗)

− vec (Cλ̄)
T (Ûp,2Û

T
p,2 ⊗ In)

T (Ir ⊗Qλ̄,t)
†(Ûp,2Û

T
p,2 ⊗ In)vec (Cλ̄)

− vec (Cλ̄)
T (Ir ⊗ Ûq,2Û

T
q,2)

T (Pλ̄,t ⊗ In)
†(Ir ⊗ Ûq,2Û

T
q,2)vec (Cλ̄),

where λ∗ is the maximizer for DV −2 , and Up,2, Uq,2 are eigenvectors corresponding to
zero eigenvalues of Pλ∗,t, Qλ∗,t.
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Chapter 4

Applications: Quadratic Assignment
Problem

As we introduced in the first section, any integer programming can be formulated as a
QCQP . Furthermore, most of them admit a QMP formulation. For example, the
quadratic assignment problem (QAP ) proposed by Koopmans and Beckman in 1957 [30]
is well-known to be NP-hard, and many famous problems like traveling-salesman-problem
(TSP) can be reformulated as a QAP . The original QAP problem is a minimization
problem over all the possible permutations

min
π∈Π(n)

n
∑

i=1

n
∑

j=1

ai,jbπ(i),π(j),

where Π(n) denotes the set of permutations of n entries, ai,j, bi,j i, j = 1, 2, . . . , n are weights
corresponding to the distance or cost in real life. Because permutations can also be repre-
sented with a permutation matrix, the QAP has a nice Koopmans-Beckman formulation
[30]

min
X∈Π(n)

traceAXBXT .

In practice, the objective function may include a linear term 2C ·X. By the fact Π(n) =
{X ∈ Mnn|XXT = I, Xe = XTe = e, X ≥ 0}, the QAP can be formulated as

min trace (AXBXT + 2CTX)
s.t. XXT = XTX = I

Xe = XT e = e
X ≥ 0.

(4.0.95)
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Some constraints in (4.0.95) are redundant, but they help improve the bound when we do
a relaxation.

4.1 Matrix-Lifting Semidefinite Relaxation for QAP

Due to its severe nonconvexity, QAP has been a challenging problem to optimizers and
engineers for many decades. Solving a QAP to optimality normally requires to run a
branch and bound algorithm, in which getting strong, inexpensive relaxation bound is
critical to expedite the computation. One of the earliest and least expensive relaxations for
QAP is based on a Linear Programming (LP ) formulation, e.g. Gilmore-Lawler (GLB)
[17, 12], and related dual-based LP bounds [28, 38, 12]. These inexpensive formulations
are able to handle problems with n up to several tens, see [17, 31]. However, the bounds
are too weak to handle large problems. Improved bounds include classes of: eigenvalue
and parametric eigenvalue bounds EB [14, 44], projected eigenvalue bounds PB [21, 13],
convex quadratic programming bounds QPB [1], and SDP bounds [43, 54]. Classical
SDP bounds vectorize the matrix X and lift (1, vec (X)) ∈ Rn2+1 into the semidefinite

cone Sn2+1
+ and provide a rich amount of cuts for the convex hull of the feasible set.

However, this vector-lifting SDP formulation, even the cheapest SDP1, requires O(n4)
variables and hence turns out to be too expensive in practical computation. Problems
with n > 25 become impractical to solve by such methods.

Here we are interested in applying the theory in Chapter 3 and reformulate (4.0.95) as
a QMP by replacing R = XB

(QAP −QMP )

min trace (X R )

(

0 1
2
A

1
2
A 0

) (

X
R

)

+ traceCX

s.t. R = XB
Xe = XT e = e

X ≥ 0
XTE(ii)X = 1, i = 1, 2, . . . n
XTE(ij)X = 0, i, j = 1, 2, . . . n,

where E(ij), i, j = 1, 2, . . . , n denotes the sparse matrix with a unique 1 at the i−th row
and j−th column. The constraints XTE(ii)X = 1, XTE(ij)X = 0 (i, j = 1, 2, . . . n) stands
for XXT = I.

So we have formulated a QAP as a QMP1 . By Theorem 3.2.3, the relaxations
V SDR−1 and MSDR−1 always generate the same bound. Therefore, we can use

47



the inexpensive MSDR−1 formulation to get a relaxation bound

min traceAY + traceCX
s.t. R = XB

Xe = XT e = e
X ≥ 0





I XT RT

X I Y
R Y Z



 � 0

X,R ∈ R
n,n, Y, Z ∈ Sn.

(4.1.96)

Also, given that Xe = XT e = e and Y = XBXT , Z = XBXT for all X, Y, Z feasible
to original QAP, we have Y e = XBe, Ze = XB2e. These constraints can be added into
(4.1.96) to improve the bound, and we get a new formulation

µ∗
13 := min traceAY + traceCX

s.t. R = XB
Xe = XT e = e

X ≥ 0
diag (Y ) = Xdiag (B)
diag (Z) = Xdiag (B2)

Y e = XBe
Ze = XB2e





I XT RT

X I Y
R Y Z



 � 0

X,R ∈ R
n,n, Y, Z ∈ Sn.

(4.1.97)

4.2 The Convex Hull of the Orthogonal Similarity Set

of B

Just as in any LP relaxation, the relaxation (4.1.97) uses only O(n2) variables. So the
MSDR−1 formulation is indeed very cheap to compute. However, our numerical tests
show that the bound generated by (4.1.97) is often weaker than that from QPB. Therefore,
we are motivated to add more constraints in order to strengthen (4.1.97) . Here we will first
introduce the concept of majorization, which is an equivalence relation on R

n. By abuse of
notation, we denote x majorizes y or y is majorized by x with x � y or y � x. The precise
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definition is as follows, see e.g. [34]: Let x, y ∈ R
n and, without loss of generality, let the

components of both vectors be sorted in non-increasing order. Then x � y if and only if

x1 + x2 + . . .+ xp ≥ y1 + y2 + . . .+ yp, ∀p = 1, 2, . . . , n− 1,
x1 + x2 + . . .+ xn = y1 + y2 + . . .+ yn.

In [34], it is shown that x � y if and only if ∃S ∈ E ∩ N with Sx = y. Note that for a
fixed y, the constraint x � y is not a convex constraint; while x � y is a convex constraint
and it has an equivalent LP formulation [22].

Now in (4.1.97), Y actually stands for XBXT with X an orthogonal matrix. So λ(Y ) =
λ(B). Suppose A = UT

ADiag (λ(A))UA is the spectral decomposition of A, and the elements
of λ(A) are in nondecreasing order. We have λ(UT

AY UA) = λ(B), and by the Schur-Horn
Theorem [24], we have

diag (UT
AY UA) � λ(B). (4.2.98)

For each p = 1, 2, . . . , n− 1, let Γp denote the index set {n− p+ 1, n− p+ 2, . . . , n}, i.e.,
the last p indices of {1, 2, . . . , n}, and define the vector δp as

δpi =

{

1 if i ∈ Γp
0 otherwise.

Then

diag (UT
AY UA) � λ(B) ⇒

〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉−, for p = 1, 2, . . . , n− 1.

(4.2.99)

Now we take 〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉−, p = 1, 2, . . . , n − 1, as an approximation

to the constraint diag (UT
AY UA) � λ(B), and get an even stronger relaxation than (4.1.97)

as

µ∗
14 := min 〈A, Y 〉 + 〈C,X〉

s.t. Xe = XT e = e
X ≥ 0

diag (Y ) = Xdiag (B)
diag (Z) = Xdiag (B2)

Y e = XBe
Ze = XB2e

〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉−, p = 1, 2, . . . , n− 1





I XT BTXT

X I Y
XB Y Z



 � 0

X ∈ Mnn, Y, Z ∈ Sn.

(4.2.100)
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Note that, after taking the inner-product with e, the constraint diag (Y ) = Xdiag (B)
implies trace (Y ) = trace (B). So there is no need to include the constraint trace (Y ) =
trace (B).

Lemma 4.2.1 u∗14 ≥ 〈λ(A), λ(B)〉− + min
Xe=XT e=e,X≥0

〈C,X〉,
i.e. the bound of (4.2.100) is no weaker than the eigenvalue bound, EB, proposed in

[14, 44].

Proof. It is enough to show that the first term of the objective of (4.2.100) satisfies

〈A, Y 〉 ≥ 〈λ(A), λ(B)〉−,
for any Y feasible in (4.2.100) . Note that

〈A, Y 〉 = 〈UADiag (λ(A))UT
A , Y 〉 = 〈λ(A), diag (UT

AY UA)〉,
and

λ(A) =

n−1
∑

p=1

(λn−p+1(A) − λn−p(A))δp + λ1(A)e.

Therefore we have

〈A, Y 〉 =

n−1
∑

p=1

(λn−p+1(A) − λn−p(A))〈δp, diag (UAY U
T
A )〉 + λ1(A)〈e, λ(B)〉.

Since 〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉− , p = 1, 2, . . . , n − 1, holds for any Y feasible to

(4.2.100), we deduce that

〈A, Y 〉 ≥
n−1
∑

p=1

(λn−p+1(A) − λn−p(A))〈δp, λ(B)〉− + λ1(A)〈e, λ(B)〉−.

By ordering the entries of λ(B) into nondecreasing order, λj(1)(B) ≤ λj(2)(B) ≤ . . . ≤
λj(n)(B), we get 〈δp, λ(B)〉− =

∑p

i=1 λj(i)(B), i.e. 〈δp, λ(B)〉 is equal to the sum of the p
minimal entries of λ(B). Therefore, for any Y feasible to (4.2.100), we have

〈A, Y 〉 ≥ ∑n−1
p=1 (λn−p+1(A) − λn−p(A))〈δp, λ(B)〉− + λ1(A)〈e, λ(B)〉−

=
∑n−1

p=1 (λn−p+1(A) − λn−p(A))
∑p

i=1 λj(i)(B) + λ1(A)
∑n

i=1 λj(i)(B)

=
∑n

i=1 λj(i)(B)(
∑n−1

p=i λn−p+1(A) − λn−p(A)) + λ1(A))

= 〈λ(A), λ(B)〉−.
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4.3 Projected Bound MSR

The row and column sum equality constraints of QAP , E = {X ∈ Mnn : Xe = XTe = e},
can be eliminated using a null-space method.

Proposition 4.3.1 ([21]) Let V ∈ Mn,n−1 be full column rank and satisfy V T e = 0. Then
X ∈ E ∩ O if and only if

X =
1

n
E + V X̂V T , for some X̂ ∈ O. (4.3.101)

After substituting X with (4.3.101), and denoting Â = V TAV, B̂ = V TBV , the
QAP can now be reformulated as the projected version (PQAP )

(PQAB)

min trace (ÂX̂B̂X̂T + 1
n
ÂX̂B̂E + 1

n
ÂEB̂X̂T + 1

n2 ÂEB̂E)

s.t. X̂X̂T = X̂T X̂ = I

X(X̂) = 1
n
E + V X̂V T ≥ 0.

We now define Ŷ = X̂B̂X̂T , and Ẑ = Ŷ Ŷ = X̂B̂B̂X̂T ; and we replaceX with 1
n
E+V X̂V T .

Then the terms XBX, XBV V TBXT admit linear representations as

XBXT = V X̂B̂X̂TV T +
1

n
EBV X̂TV T +

1

n
V X̂V TBE +

1

n2
EB̂E,

XBV V TBXT = V ẐV T +
1

n
EBV V TBVXTV T +

1

n
V XV TBV V TBE +

1

n2
EBV V TBE.

In (4.2.100) , we use Y to represent/approximate XBXT , and use Z to represent/approximate
XBBXT . However, XBBXT cannot be linearly represented with X̂, Ŷ . Therefore, in the
projected version, we have to let Z represent XBV V TBXT instead of XBBXT , and re-
place the corresponding diagonal constraint with diag (Z) = Xdiag (BV V TB).
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Based on these definitions, PQAP can be formulated as

min trace (AY + CX)
s.t. diag Y = Xdiag (B)

diagZ = Xdiag (BV V TB)

X(X̂) = V X̂V T + 1
n
E

Y (X̂, Ŷ ) = V Ŷ V T + 1
n
EBV X̂TV T + 1

n
V X̂V TBE + 1

n2EB̂E

Z(X̂, Ẑ) = V ẐV T + 1
n
EBV V TBVXTV T + 1

n
V XV TBV V TBE + 1

n2EBV V
TBE

R̂ = X̂B̂
(

I Ŷ
Ŷ Ẑ

)

=

(

X̂X̂T X̂R̂T

R̂X̂T R̂R̂T

)

X(X̂) ≥ 0

X̂, R̂ ∈ Mn−1, Ŷ , Ẑ ∈ Sn−1.

We still use idea of the matrix-lifting semidefinite relaxation, relaxing the nonconvex
quadratic equality constraint

(

I Ŷ
Ŷ Ẑ

)

=

(

X̂X̂T X̂R̂T

R̂X̂T R̂R̂T

)

into the semidefinite constraint




I X̂T R̂T

X̂ I Ŷ
R̂ Ŷ Ẑ



 � 0.

And as in (4.2.100) , we add cuts

〈δp, diag (UT

Â
Ŷ UÂ〉 ≥ 〈δp, λ(B̂)〉, p = 1, 2, . . . , n− 2

for Ŷ ∈ convO(X̂), where Â = UÂDiag (λ(Â))UT

Â
is the spectral decomposition of Â,

and λ1(Â) ≤ λ2(Â) ≤ . . . ≤ λn(Â). Let δp follow the definition in section 4.2, i.e.,
δp ∈ R

n−1, δp = {0, 0, . . . , 0, 1, . . . , 1}T . Then we reach the final relaxation formulation
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named MSR ,

(MSR )

µ∗
15 := min 〈A, Y (X̂, Ŷ )〉 + 〈C,X(X̂)〉

s.t. diag (Y (X̂, Ŷ )) = X(X̂)diag (B)

diag (Z(X̂, Ẑ)) = X(X̂)diag (BV V TB)

〈δp, diag (UT

Â
Ŷ UÂ〉 ≥ 〈δp, λ(B̂)〉, p = 1, 2, . . . , n− 2

X(X̂) ≥ 0




I X̂T B̂T X̂T

X̂ I Ŷ
X̂B̂ Ŷ Ẑ



 � 0

X̂ ∈ Mn−1, Ŷ , Ẑ ∈ Sn−1,

where

X(X̂) = 1
n
E + V X̂V T ,

Y (X̂, Ŷ ) = V Ŷ V T + 1
n
EBV X̂TV T + 1

n
V X̂V TBE + 1

n2EB̂E,

Z(X̂, Ẑ) = V ẐV T + 1
n
EBV V TBV X̂TV T + 1

n
V X̂V TBV V TBE + 1

n2EBV V
TBE.

Notice Y e = XBe, Ze = XB2e are no longer included in MSR , because any X, Y, Z
as the projection of X̂, Ŷ , Ẑ automatically satisfy these linear equalities.

In MSR , all the constraints act on the lower dimensional space. Such a strategy, i.e.,
first a projection followed by a cut, has also been used in the projected eigenvalue bound PB
and the quadratic programming bound QPB. It is numerically superior to directly adding
cuts to the high-dimensional image space of the projection, e.g., the projected eigenvalue
bound PB is much stronger than the eigenvalue bound EB. For this reason, we propose
using MSR instead of (4.2.100) .

4.4 Comparing Bounds for QAPLIB Problems

Table 4.1 is a comparison of bounds obtained from MSR and other relaxation methods
applied to the instances from QAPLIB [8]. The first column OPT denotes the exact opti-
mal value of the problem instance, while the following columns contain the lower bounds
from the relaxation methods: GLB, the Gilmore-Lawler bound [17]; KCCEB, the dual
linear programming bound [28]; PB, the projected eigenvalue bound [21]; QPB, the convex
quadratic programming bound [1]; SDR1, SDR2, SDR3, the three vector-lifting semidef-
inite relaxation bounds [54] computed by the bundle method [43]; the last column is our
MSR . All output values are rounded up to the nearest integer.

53



To solve QAP , the minimization of traceAXBXT and traceBXAXT are equivalent.
But for the relaxation MSR , exchanging the roles of A and B results in two different
formulations and bounds. In our tests we use both versions and take the larger output as
the bound of MSR . We then keep the better formulation throughout the branch and
bound process, so that we do not double the computational work.

From Table 4.1, we see that the relative performances between the LP -based bounds
GLB, KCCEB are unpredictable. At some instances, both are weaker than even the least
expensive PB bounds. For the other bounds, the average performance can be ranked as
follows: PB < QPB < MSR ≈ SDR1 < SDR2 < SDR3.

By comparing the number of variables and constraints of QPB and different SDP methods
in Table 4.2, we see MSR uses O(n2) variables and O(n2) constraints, which is the same
with QPB and strictly less than other vector-lifting SDP methods. If we solve MSR or
QPB with an interior point method, the complexity of computing the Newton direction in
each iteration are both O(n6). And, the number of iterations of an interior point method
is bounded by O(

√
n2 ln 1

ǫ
) = O(n ln 1

ǫ
) [36]. So the complexity of computing MSR or

QPB with an interior point methods to accuracy ǫ are both O(n7 ln 1
ǫ
). Note that for the

most expensive SDP formulation, SDP3, the computation complexity is O(n14 ln 1
ǫ
) for ǫ

accuracy. So MSR is significantly faster than SDR3. Compared with QPB, computing
MSR is still slower, but their complexity with respect to the order of n is the same.

Table 4.3 listed the CPU time (in seconds) for MSR to compute some of the Nugent
instances on a sun4c UNIX machine. Here we use the well known SDP package SeDuMi1.

We believe the speed can be much improved by using more specific software. So
MSR is an excellent relaxation algorithm and can be used under the Branch and Bound
frame and solve the QAP to optimality.

As a conclusion of this chapter, the idea of matrix-lifting semidefinite relaxation pro-
posed in Chapter 3 has found an important application in efficiently solving the QAP problem.
We believe that there are more examples where the matrix-lifting semidefinite relaxation
can contribute, and are still studying those examples.

1sedumi.mcmaster.ca
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Problem OPT GLB KCCEB PB QPB SDR1 SDR2 SDR3 MSR

esc16a 68 38 41 47 55 47 49 59 50
esc16b 292 220 274 250 250 250 275 288 276
esc16c 160 83 91 95 95 95 111 142 123
esc16d 16 3 4 -19 -19 -19 -13 8 1
esc16e 28 12 12 6 6 6 11 23 14
esc16g 26 12 12 9 9 9 10 20 13
esc16h 996 625 704 708 708 708 905 970 906
esc16i 14 0 0 -25 -25 -25 -22 9 0
esc16j 8 1 2 -6 -6 -6 -5 7 0

had12 1652 1536 1619 1573 1592 1604 1639 1643 1595
had14 2724 2492 2661 2609 2630 2651 2707 2715 2634
had16 3720 3358 3553 3560 3594 3612 3675 3699 3587
had18 5358 4776 5078 5104 5141 5174 5282 5317 5153
had20 692 6166 6567 6625 6674 6713 6843 6885 6681

kra30a 88900 68360 75566 63717 68257 69736 68526 77647 72480
kra30b 91420 69065 76235 63818 68400 70324 71429 81156 73155

Nug12a 578 493 521 472 482 486 528 557 502
Nug14 1014 852 n.a. 871 891 903 958 992 918
Nug15 1150 963 1033 973 994 1009 1069 1122 1016
Nug16a 1610 1314 1419 1403 1441 1461 1526 1570 1460
Nug16b 1240 1022 1082 1046 1070 1082 1136 1188 1082
Nug17 1732 1388 1498 1487 1523 1548 1619 1669 1549
Nug18 1930 1554 1656 1663 1700 1723 1798 1852 1726
Nug20 2570 2057 2173 2196 2252 2281 2380 2451 2291
Nug21 2438 1833 2008 1979 2046 2090 2244 2323 2099
Nug22 3596 2483 2834 2966 3049 3140 3372 3440 3137
Nug24 3488 2676 2857 2960 3025 3068 3217 3310 3061
Nug25 3744 2869 3064 3190 3268 3305 3438 3535 3300
Nug27 5234 3701 n.a. 4493 n.a. n.a. 4887 4965 4621
Nug30 6124 4539 4785 5266 5362 5413 5651 5803 5446

rou12 235528 202272 223543 200024 205461 208685 219018 223680 207445
rou15 354210 298548 323589 296705 303487 306833 320567 333287 303456
rou20 725522 599948 641425 597045 607362 615549 641577 663833 609102

scr12 31410 27858 29538 4727 8223 11117 23844 29321 18803
scr15 51140 44737 48547 10355 12401 17046 41881 48836 39399
scr20 110030 86766 94489 16113 23480 28535 82106 94998 50548

tai12a 224416 195918 220804 193124 199378 203595 215241 222784 202134
tai15a 388214 327501 351938 325019 330205 333437 349179 364761 331956
tai17a 491812 412722 441501 408910 415576 419619 440333 451317 418356
tai20a 703482 580674 616644 575831 584938 591994 617630 637300 587266
tai25a 1167256 962417 1005978 956657 981870 974004 908248 1041337 970788
tai30a 1818146 1504688 1565313 1500407 1517829 1529135 1573580 1652186 1521368

tho30 149936 90578 99855 119254 124286 125972 134368 136059 122778

Table 4.1: Comparison of Bounds for QAPLIB Instances
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Methods QPB SDR1 SDR2 SDR3 MSR

Variables O(n2) O(n4) O(n4) O(n4) O(n2)

Constraints O(n2) O(n2) O(n3) O(n4) O(n2)

Table 4.2: Complexity of Relaxations

Instances Nug12 Nug15 Nug18 Nug20 Nug25 Nug27 Nug30

CPU time(s) 15.1 57.6 203.9 534.9 3236.4 5211.3 12206.0

Number of iterations 18 19 22 26 27 25 29

Table 4.3: CPU Time and Iterations for Computing MSR on the Nugent Problems

56



Chapter 5

Conclusions and Future Work

In this thesis, we discussed several important issues in solving the QCQP . Solving a
QCQP with few constraints to optimality and deriving inexpensive and strong relaxation
bounds for large scale QCQP are of primal interests. Especially, we recognized a spe-
cial class of QCQP that admits an alternative efficient semidefinite relaxation, i.e., the
QMP . We then divided the QMP problems into two classes, QMP1 and QMP2 , and
proved that vector-lifting semidefinite relaxation and matrix-lifting semidefinite relaxation
are equally strong for a QMP1 or a homogeneous QMP2 . At last, we studied the effi-
cient semidefinite relaxations for the quadratic assignment problem. Based on the first class
of Matrix-lifting Semidefinite Relaxation, our formulation generates competitive bounds,
while spending much less time than the usual vector-lifting SDP .

Future work includes further exploring the condition in Theorem 3.3.1 and making
it more applicable. Also, we are interested in quadratic matrix programming including
quadratic matrix inequality constraints such like XTQX + CTX + XTC + D � 0. Such
optimization models arise extensively in robust optimization fields and deserve serious
study.
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