Chapter 9

Approximating minimum k-connected
spanning subgraphs

9.1 Introduction

This chapter focuses on (approximately) minimum k-connected spanning subgraphs of a given
graph G = (V, E). We study both k-edge connected spanning subgraphs (abbreviated k-ECSS),
and k-node connected spanning subgraphs (k-NCSS). When stating facts that apply to both a
k-ECSS and a k-NCSS, we use the term k-connected spanning subgraph (k-CSS). We take G to
be an undirected graph. Mostly, we take G to be a simple graph (i.e., G has no loops nor multiple
edges), but while discussing the general k-ECSS problem, we study both simple graphs and multi
graphs (i.e., graphs with multiple copies of one or more edges). Let n and m denote the number of
nodes and the number of edges, respectively.

Several different types of the linear objective function (i.e., vector of edge costs c,,,) have been
studied. The most general case is when the objective function is nonnegative but is otherwise
unrestricted. Two special types of objective functions turn out to be of interest in theory and
practice: (1) the case of unit costs, i.e., the optimal solution is a k-ECSS or a k-NCSS with the
minimum number of edges, and (2) the case of metric costs, i.e., the edge costs ¢, satisfy the
triangle inequality.

Table 9.1 summarizes the best approximation guarantees currently known for the several types
of k-CSS problems discussed above. At present, for minimum k-CSS problems, approximation
guarantees better than 2 are known only for the case of unit costs and for some cases of metric
costs. For nonnegative costs, it is not known whether or not the following problem is NP-complete:
for a constant ¢ > 0, find, say, a 2-ECSS whose cost is at most (2 — €) times the minimum 2-ECSS
cost.

Note that every node in a k-CSS has degree > k, hence, the number of edges in a k-ECSS or a
k-NCSS is > kn/2.

The problem of finding a minimum k-ECSS or minimum k-NCSS is already NP-hard for the
case k = 2 and unit costs. There is a direct reduction from the Hamiltonian cycle problem because
G has a Hamiltonian cycle iff it has 2-ECSS (or 2-NCSS) with n edges. Recently, Fernandes [10,
Theorem 5.1] showed that the minimum-size 2-ECSS problem on graphs is MAX SNP-hard.
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Table 9.1: A summary of current approximation guarantees for minimum k-edge connected span-
ning subgraphs (k-ECSS), and minimum k-node connected spanning subgraphs (k-NCSS); k is an
integer > 2. The references are to:

e Cheriyan & Thurimella, IEEE F.O.C.S. (1996),

e Frederickson & Ja’Ja’, Theor. Comp. Sci. 19 (1982) pp. 189-201,

e Khuller & Vishkin, JACM 41 (1994) pp. 214-235,

e Khuller & Raghavachari, J. Algorithms 21 (1996) pp. 434-450, and

¢ Ravi & Williamson, 6th ACM-SIAM S.0.D.A. (1995) pp. 332-341.

Type of objective function
Unit costs Metric costs Nonnegative costs
k-ECSS 14 (2/(k+1)) [CTI6] see last entry 2 [KV94]
simple-edge | 1.5 for k=2 [KV94] | 1.5 for k =2 [FJ82]
model
k-NCSS 1+ (1/k) [CT96] | 2+ (2(k —1)/n) [KRI6] | 2H (k) = O(log k) [RW95]

The last section of this chapter has some bibliographic remarks, and discusses the sequence
of papers that led up to the results in this chapter, see Section 9.12. The discussion may not be
complete. (We hope to rectify any errors and omissions in future revisions of the chapter.)

9.2 Definitions and notation

For a subset S’ of a set .S, S\\S’ denotes the set {# € S|z ¢ S'}.

Let G = (V, E) be a graph. By the size of G we mean |E(G)|. For a subset M of E and a node
v, we use deg;s(v) to denote the number of edges of M incident to v; deg(v) denotes degg(v). An
z-y path refers to a path whose end nodes are # and y. We call two paths openly disjoint if every
node common to both paths is an end node of both paths. Hence, two (distinct) openly disjoint
paths have no edges in common, and possibly, have no nodes in common. A set of k& > 2 paths
is called openly disjoint if the paths are pairwise openly disjoint. By a component (or connected
component) of a graph, we mean a maximal connected subgraph, as well as the node set of such a
subgraph. Hopefully, this will not cause confusion.

For node set S C V(G), d¢(S) denotes the set of all edges in E(G) that have one end node
in S and the other end node in V(G)\S (when there is no danger of confusion, the notation is
abbreviated to 6(5)); 6(S) is called a cut, and by a k-cut we mean a cut that has exactly k edges.
A graph G = (V, E) is said to be k-edge connected if |V| > k 4 1 and the deletion of any set of
< k edges leaves a connected graph. For testing k-edge connectivity, currently Gabow [17] has a
deterministic algorithm that runs in time O(m + k?nlog(n/k)), while Karger [27] has a randomized
algorithm that runs in time O(m + kn(logn)3).

For a subset Q@ C V, N(Q) denotes the set of neighbors of Q in V\Q, {w € V\Q |wv € E, v €
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Q}. A separator S of G is asubset S C V such that G\S has at least two components. A k-separator
means a separator that has exactly k nodes. A graph G = (V, E) is said to be k-node connected if
|V| > k + 1, and the deletion of any set of < k nodes leaves a connected graph. For testing k-node
connectivity, currently Rauch Henzinger, Rao and Gabow [37] have (1) a deterministic algorithm
that runs in time O(min(k?n?, k*n + kn?)) and (2) a randomized algorithm that runs in time
O(kn?) with high probability provided k = O(n'~¢), where € > 0 is a constant.

An edge vw of a k-node connected graph G is called critical w.r.t. k-node connectivity if G\vw
is not k-node connected. Similarly, we have the notion of critical edges w.r.t. k-edge connectivity.

9.2.1 Matching

A matching of a graph G = (V,E) is an edge set M C FE such that degy,(v) < 1, Yv € V;
furthermore, if every node v € V has degy,(v) = 1, then M is called a perfect matching. A graph
G is called factor critical if for every node v € V, there is a perfect matching in G\v, see [32].
An algorithm due to Micali and Vazirani (1984) finds a matching of maximum cardinality in time
O(m+/n). If the graph is bipartite, there is a much simpler algorithm for finding a matching of
maximum cardinality due to Hopcroft and Karp (1972), but the running time remains the same.

9.3 A 2-approximation algorithm for minimum weight £-ECSS

Let G = (V, E) be a graph of edge connectivity > k, and let ¢ : E — R, assign a nonnegative cost to
each edge vw € E. This section gives an algorithm that finds a k-ECSS G’ = (V, E’) such that the
cost ¢(E') = Y em c(vw) is at most 2¢(E,yt), where E,,; denotes the edge set of a minimum-cost
kE-ECSS (i.e., for every k-ECSS (V, E"), ¢(E") > ¢(Eospt)). This result is due to Khuller & Vishkin
[30]. The algorithm is a straightforward application of the weighted matroid intersection algorithm,
which is due to Lawler and Edmonds. For our application there is an efficient implementation due
to Gabow [17]. This section and the next one use directed graphs, and so we include definitions
and notation pertaining to directed graphs in the box below.

For a directed graph D = (V, A), where V is the set of nodes and A is the set of arcs, we use (v, w)
to denote an arc (or directed edge) from v to w. The node v is called the tail of (v, w), and the node
w is called the head. The arc (v, w) is said to leave v and to enter w. For a node set S C V, an arc
(v, w) is said to leave S if v € S and w € V'\ S, and (v, w) is said to enter S if w € S and v € V'\S.
For a node set S C V, the directed cut 6p(.S) or 6(S) consists of all arcs leaving .S (note that 6(.5)
has no arcs entering S). The bidirected graph D = (V, A) of an undirected graph G = (V, E) has
the same node set, and for each edge vw € E, the arc set A has both the arcs (v, w) and (w,v). The
undirected graph G = (V, E) of a directed graph D = (V, A) has the same node set, and for each
arc (v,w) € A or each arc pair (v, w), (w,v) € A, the edge set E has one edge vw (i.e., G has one
edge corresponding to a pair of oppositely oriented arcs). A directed graph is called acyclic if its
undirected graph has no cycles. A directed graph is called a directed spanning tree if its undirected
graph is a spanning tree. A branching (V, B) with root node vy is a directed spanning tree such
that for each node w € V, there is a directed path from vy to wj; in other words, |B| = |V| — 1,
each node w € V\{vg} has precisely one entering arc, vy has no entering arc, and (V, B) is acyclic.
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The weighted matroid intersection algorithm efficiently solves the following problem (P) (and
many others). Let D = (V, A) be a directed graph, let ¢ : A — % assign a real-valued cost to
each arc, let vy be a node of D, and let £ > 0 be an integer. The goal is to find a minimum-cost
arc set ' C A such that F is the union of (the arc sets of) k arc-disjoint branchings with root
vg. In other words, the goal is to find F' C A such that ¢(F) is minimum and F = B; U...U By,
where By, ..., By are pairwise arc disjoint, and for i = 1,..., k, (V, B;) is a branching with root vg.
Gabow’s implementation [17] either finds an optimal F or reports that no feasible F' exists, and
the running time is O(k|V|log|V|(J4| + |V |log |V])).

To find a minimum-weight k-ECSS of G, ¢, we first construct the bidirected graph D = (V, A)
of G, and assign arc costs to D by taking c(v, w) = c¢(w,v) = c(vw) for each edge vw € E. Note
that ¢(A) = 2¢(F). (It may be helpful to keep an example in mind: take G to be a cycle on n > 3
nodes, and take k = 2.) Choose an arbitrary node vy € V. Observe that for every node set .S with
vg € S and S # V, the directed cut 65 (S) has > k arcs because the corresponding cut in G, §¢(5),
has > k arcs. The next result shows that this directed graph D has a feasible arc set FF C A for
problem (P) above.

Theorem 9.1 (Edmonds) If a directed graph D = (V, A) has |6p(S)| > k for every S C V with
vg €S and S # V', where vy is a node of D, then D has k arc-disjoint branchings with root vy.

We apply the weighted matroid intersection algorithm to D, ¢, vy, where vg is an arbitrary node,
to find an optimal arc set F' for problem (P). Let 67 () denote a directed cut of (V, F). Clearly,
|0F(S)| > k, for every S C V with vy € S and S # V, because F contains k arc-disjoint directed
paths from vy to w, for an arbitrary node w € V\S. Let G’ = (V, E’) be the undirected graph
of (V, F). First, note that G’ is k-edge connected (i.e., every nontrivial cut of G’ has > k edges),
because for every S C V with § # .S # V, either vy € S or vy € V\S and so either |67(S)| > k or
66 (V\S)] > E.

We claim that ¢(E') < 2¢(E,p). To see this, focus on the minimum-cost k-ECSS G =
(V, Eopt). The directed graph D, of G,y has total arc cost = 2¢(E,yp), and (reasoning as above)
the arc set of D, contains a feasible arc set F for our instance of problem (P). Hence, the arc set F
found by the weighted matroid intersection algorithm has cost < 2¢(E,;). Moreover, ¢(E’) < ¢(F),
so ¢(E') < 2¢(Eopt)-

Theorem 9.2 There is a 2-approzimation algorithm for the minimum cost k-ECSS problem. The
running time is O(knlogn(m + nlogn)).

9.4 An O(l)-approximation algorithm for minimum metric cost
k-NCSS

Let G = (V, E) be a graph of node connectivity > k, and let the edge costs ¢ : B — R form a
metric, i.e., the edge costs satisfy the triangle inequality, c¢(vw) < c(ve) + c(zw), for every ordered
triple of nodes v, w, . This section gives an algorithm that finds a k-NCSS G’ = (V, E) such that
the cost ¢c(E') = 3, ,em c(vw) is at most (2 + (2k/n))c(Eopt), where E,,; denotes the edge set of
a minimum-cost k-NCSS. This result is due to Khuller & Raghavachari [29], and it is based on an
algorithm of Frank & Tardos [14] for finding an optimal solution to the following problem. Given
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a directed graph D = (V, A) with arc costs ¢: A — £, and a node vy € V, find a minimum-cost
arc set F' C A such that (V, F') has k openly-disjoint directed paths from vy to w, for each node
w € V\{vo}. Gabow [16] has given an implementation of the Frank-Tardos algorithm that runs in
time O(k2|V|%| A]).

The k-NCSS algorithm first modifies the given undirected graph G by adding a “root” node vy.
For this, we examine all nodes v € V to find a node v; such that the total cost of the cheapest k—1

k
edges incident to v is minimum possible. Let v, ..., v; be k—1 neighbors of v; such that Z c(v1v;)
7=2
gives this minimum. We add a new node vy to G, together with the edges vgvy, vovs, . . ., vous, and

we assign each new edge a cost of zero (the edge costs may no longer form a metric, but this
does not matter). Let D = (V U {vg}, A) be the directed graph of the resulting undirected graph
(VU{wvo}, EU{wvgvy,...,vovr}). The arc costs of D are assigned by taking c(v, w) = c¢(w, v) = c(vw)
for every edge vw in the graph. We apply the Frank-Tardos algorithm to D, ¢, v, to find a minimum-
cost arc set FU{(vo,v1),- .-, (vo,v)} such that (VU{vo}, FU{(vo,v1),. .., (vo,v)}) has k openly-
disjoint directed paths from vy to w, for each w € V. We obtain a k-NCSS G’ = (V, E’) by taking
the undirected graph of (V,F) and for 1 < ¢ < j < k, adding the edge v;v; if it is not already
present, i.e., G’ is the “union” of the undirected graph of (V, F) and a clique on the nodes vy, .. ., vg.
(Note that G’ is a simple graph.)

Suppose that G’ is not k-node connected. Then G’ has a (k—1)-separator S, i.e., there is a node
set S with |S| < k—1 such that G’\'S has > 2 components. All the nodes in {vy,...,v}\S must be
in the same component since G’ has a clique on vy, . . ., v. Moreover, each node w € V has k paths to
vy, ..., U such that these paths have only the node w in common; to see this, focus on the k openly-
disjoint directed paths from vy to w in the directed graph (V U {vo}, F U {(vo,v1),-- ., (vo, vk)}).
For every node w € V\ S, at least one of these k paths is (completely) disjoint from S. Therefore,
in G'\ S, every node w € V\S has a path to some node in {vy,...,vt}. This shows that G'\S is
connected, and contradicts our assumption that S is a separator of G’. Consequently, G’ is k-node
connected.

Consider the total edge cost of G’, ¢(E’). Reasoning as in Section 9.3, note that ¢(F) < 2¢(Eopt).
(In detail, the directed graph of (V U{vo}, Eopt U {(vo,v1), ..., (vo, vx)}) has cost 2¢(E,p), and the
arc set of this directed graph gives a feasible solution for the problem solved by the Frank-Tardos
algorithm; hence, the optimal arc set F' found by the Frank-Tardos algorithm has cost < 2¢(E,pt).)
Let ¢* denote the total cost of the k — 1 cheapest edges incident to vy, i.e., ¢* = 2522 ¢(vyv;). Now
consider the total edge cost of the clique on vy, ..., ;. Since each edge v;v; (for 1 < i < j < k) has
c(vivj) < e(viv;) + ¢(v1v4), it can be seen that Z c(viv;) < (k —1)c*. For each node v € V,

1<e<i<k
let dopt(v) denote the set of edges of E,: incident to v; clearly, |8opt (V)| > k, Vv € V. By our
choice of v; and vy, ..., v, each node v € V has ¢(dype(v)) = Z c(vw) > kc*/(k —1). Since

vwESopt (v)
Y ey C(Oopt(v)) = 2¢(Eopt), we have ¢ < 2(k — 1)c(Eqpt)/(kn). Hence, Z c(vv;) < 2(k —
1<i< <k
1)2¢(E,pt)/ (kn). Summarizing, we have c(E’ F)+ Z c(vivy) < (242(k—1)%/(kn))c(Eopt)-
1<i<5<k

Theorem 9.3 Given a graph G and metric edge costs ¢, there is a (2 + (2k/n))-approzimation
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algorithm for finding a minimum-cost k-NCSS. The running time is O(k*n’m).

9.5 2-Approximation algorithms for minimum-size k-CSS

In this section, we focus on the minimum-size k-CSS problem (note that every edge has unit cost)
and sketch simple 2-approximation algorithms. Then, in preparation for algorithms with better
approximation guarantees, we give an example that illustrates the difficulty in improving on the
2-approximation guarantee for minimum-size k-CSS problems.

A graph H is called edge minimal with respect to a property P if H possesses P, but for every
edge e in H, H\e does not possess P. Thus, if a k-edge connected graph G is edge minimal, then
for every edge e € E(G), G\e has a (k — 1)-cut. Similarly, if a k-node connected graph G is edge
minimal, then for every edge e € E(G), G\e has a (k — 1)-separator.

The proof of the next proposition is sketched in the exercises, see Exercise 1

Proposition 9.4 (Mader [33, 34]) (1) If a k-edge connected graph is edge minimal, then the
number of edges is < kn.

(2) If a k-node connected graph is edge minimal, then the number of edges is < kn.

Parts (1) and (2) of this proposition immediately give 2-approximation algorithms for the
minimum-size k-ECSS problem and the minimum-size k-NCSS problem, respectively. Here is the
k-NCSS approximation algorithm; we skip the k-ECSS approximation algorithm since it is simi-
lar. Assume that the given graph G = (V, E) is k-node connected, otherwise, the approximation
algorithm will detect this and report failure. We start by taking £’ = E. At termination, £’ will
be the edge set of the approximately minimum-size k-NCSS. We examine the edges in an arbitrary
order ey, es, ..., ey, (Where E = {e1, es,...,e,}). For each edge e; (for 1 < i < m) we test whether
or not the subgraph (V, E'\e;) is k-node connected. If yes, then the edge e; is not essential for
k-node connectivity, so we update E’ by removing e; from E’| otherwise (i.e., if (V, E'\e;) is not
k-node connected), we retain e; in E’. At termination, (V, E’) will be an edge-minimal k-NCSS
because whenever we retain an edge in E’ then that edge is critical w.r.t. k-node connectivity. The
approximation guarantee of 2 follows because every k-NCSS has > kn/2 edges, whereas |E’| < kn
by the proposition. The approximation algorithm runs in polynomial time, but is not particularly
efficient, since it executes |E| tests for k-node connectivity. Simple and fast 2-approximation algo-
rithms for the minimume-size k-CSS problem are now available, yet the simplicity of the proofs for
the above approximation algorithm is an advantage.

Another easy and efficient method for finding a k-CSS with < kn edges follows from results of
Nagamochi & Ibaraki [36] and follow-up papers. A k-ECSS (V, E’) with |E’| < kn can be found
as follows (assume that G is k-edge connected): we take E’ to be the union of (the edge sets of)
k edge-disjoint forests Fi, ..., Fj, where each F; (for 1 < ¢ < k) is the edge set of a maximal but
otherwise arbitrary spanning forest of G\(Fy U ...U F;_1). In more detail, we take F; to be the
edge set of an arbitrary spanning tree of G. Then, we delete all edges in F} from G. The resulting
graph G\(F}) may have several connected components. In general, we take F; (for 2 < ¢ < k) to
be the union of the edge sets of spanning trees of each of the components of G\(F; U ...U F;_y).
The next result is due to [36] and Thurimella [39], independently.
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Proposition 9.5 If G = (V, E) is k-edge connected, then the subgraph (V, E') is also k-edge con-
nected, where E' = Fy U...UFy, and F; (1 < i < k) is the edge set of a mazimal spanning forest of
G\(FLU...UF;_;).

Proof: Suppose that (V, E’) is not k-edge connected. Then it has a cut 6'(S) of cardinality
< k — 1. Since G is k-edge connected, there must be an edge vw in G such that vw ¢ E’ and
veS wdgS (ie,vw € dg(9)). Fori=1,...,k, note that vw ¢ F; implies that F; has a v-w path
(otherwise, adding vw to F; gives a forest of larger size). Clearly, the v-w paths in Fy, ..., F} are
edge disjoint. This is a contradiction since G’ has both k edge disjoint v-w paths and a k£ — 1 cut
separating v and w. I

Obviously, |E’| < k(n — 1). Consequently, the k-ECSS found by this algorithm has size within
a factor of 2 of minimum. The obvious implementation of this algorithm runs in time O(km).
Nagamochi & Ibaraki [36] give a linear-time implementation for this algorithm.

In fact, Nagamochi & Ibaraki [36] show that the maximal forests Fy, ..., Fy, computed by their
algorithm are such that the subgraph (V, E’) is k-node connected if G is k-node connected, where
E' = Fy U...UF. A scan-first-search spanning forest with edge set F' is constructed as follows:
Initially, F/ = (. An arbitrary node v; is chosen and scanned. This may add some edges to F'. Then
repeatedly an unscanned node is chosen and scanned, until all nodes are scanned. If the current
F is incident to one or more unscanned nodes, then any such node may be chosen for scanning,
otherwise, an arbitrary unscanned node is chosen. When a node v is scanned, all edges in E\F
incident to v are examined; if the addition of an edge vw to F will create a cycle in F (i.e., if F
already has a v-w path), then the edge is rejected, otherwise vw is added to F. The next result is
due to Nagamochi & Ibaraki [36]. Other proofs are given in [13, 3]. We skip the proof.

Proposition 9.6 If G = (V,E) is k-node connected, then the subgraph (V,E') is also k-node
connected, where E' = Fy U ...UF}, and F; (1 < i < k) is the edge set of a mazimal scan-first-
search spanning forest of G\(Fy U ...U F;_1).

It follows that the algorithm in [36] is a linear-time 2-approximation algorithm for the minimum-

size k-NCSS problem.

9.5.1 An illustrative example

Here is an example illustrating the difficulty in improving on the 2-approximation guarantee for
minimum-size k-CSS problems. Let the given graph G have n nodes, where n is even. Suppose
that the edge set of G, E(G), is the union of the edge set of the complete bipartite graph K (n—t)
and the edge set E,p; of an n-node, k-regular, k-edge connected (or k-node connected) graph. For
example, for k = 2, E(G) is the union of E(Kj (,_z)) and the edge set of a Hamiltonian cycle.
A naive heuristic may return E(Kj, (,_r)) which has size k(n — k), roughly two times [Eqy[. A
heuristic that significantly improves on the 2-approximation guarantee must somehow return many
edges of E,p.
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9.6 Khuller and Vishkin’s 1.5-approximation algorithm for min-
imum size 2-ECSS

This section describes a simple and elegant algorithm of Khuller & Vishkin [30] for finding a 2-ECSS
(V,E') of a graph G = (V, E) such that |E’| < 1.5|E,,|, where E,; is the edge set of a minimum
size 2-ECSS. Assume that the given graph G = (V, E) is 2-edge connected. Khuller & Vishkin’s
algorithm is based on dfs (depth-first search). (The relevant facts about dfs are summarized below.)
We use T to denote the dfs tree as well as its edge set. The subtree of T rooted at a node v is
denoted by T'(v). For notational convenience, we identify the nodes with their dfs numbers, i.e.,
v < w means that v precedes w in the dfs traversal (or preorder traversal) of T'. For a node v, the
deepest backedge emanating from T'(v) is denoted db(v), i.e., db(v) = we, where wz is a backedge,
w is a node of T'(v), and for every backedge uy with v in T'(v), z < y.

We initialize E’ to be the edge set of the dfs tree, T. Then we make a dfs traversal of T', and
when backing up over an edge uv in T' (at this point the algorithm has already completed a dfs
traversal of T'(v)) we check whether uv is a cutedge of the current subgraph (V, E’). If yes, then
we add db(v) to E’, otherwise, we keep the same E’.

At termination, (V, E') is a 2-ECSS of G because there are no cutedges in (V, E’). To see this,
note that G has no cut edges, and so every edge uv € T has a well-defined backedge db(v) such
that ¢ < u, where z is the end node of db(v) that is not in T'(v). In other words, if uwv € T is a
cutedge of the current subgraph (V, E’), then we will “cover” uwv with a backedge wz such that w
isin T(v) and z < u.

The key result for proving the 1.5 approximation guarantee is this:

Proposition 9.7 For every pair of nodes v; and v; such that the algorithm adds backedges db(v;)
and db(v;) to E’, the cuts 6(T(v;)) and 6(T (v;)) have no edges in common.

Proof: Let v; precede v; in the dfs traversal. Let db(v;) = wz and let db(v;) = yz. Either v;
is an ancestor of v;, or there is a node v with children v; and vy such that v; is a descendant of
v and v; is a descendant of vy. In the first case, v; < z (i.e., w;v; € T is not “covered” by the
backedge db(v;), where u; is the parent of v; in T'), and so every edge in the cut §(T'(v;)) has both
end nodes in T'(v;); hence, the two cuts 6(T(v;)) and 6(T'(v;)) are edge disjoint. In the second case,

the proposition follows immediately. |

Theorem 9.8 Let G = (V,E) be a 2-edge connected graph, and let E,, be the edge set of a
minimum-size 2-ECSS. There is a linear-time algorithm to find a 2-ECSS (V, E') such that |E'| <
1.5 Egpt|.

Proof: It is easily checked that the algorithm runs in linear time. Consider the approximation
guarantee. Clearly, |E,y| > n, since every node is incident to > 2 edges of E,,;. We need
another lower bound on |E,|. Let v, vs,. .., v, denote all the nodes such that the algorithm adds
the backedge db(v;) (for ¢ = 1,...,p) to E’, i.e., E' = T U {db(v1),...,db(vp)}. Since the cuts
0(T(v1)),...,8(T(vp)) are mutually edge disjoint, and E,,; has at least two edges in each of these
cuts, we have |E,,:| > 2p. Hence, |E,,| > max(n, 2p). Since |E’| = (n — 1) + p, we have

|E'| n—l_l_p<15
|Eoptl = n 2p —
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9.7 Mader’s theorem and a 1.5-approximation algorithm for min-
imum size 2-NCSS

(a) e

Un
U1
U3 Uq Us Vs v7 Vp—
V2 Un—1
m
e B e o E— —0,

Figure 9.1: Tllustrating the 2-NCSS heuristic on a 2-node connected graph G = (V, E); n = |V| is
even, and k = 2. Adapted from Garg, Santosh & Singla [20, Figure 7].

(a) A minimum-size 2-node connected spanning subgraph has n + 1 edges, and is indicated by
thick lines (the path vy, vs,...,v, and edges viv7 and e. = vsv,,).

(b) The first step of the heuristic in Section 9.7 finds a minimum-size M C E such that every node
is incident to > (k — 1) = 1 edges of M. The thick lines indicate M; it is a perfect matching. The
second step of the heuristic finds an (inclusionwise) minimal edge set F' C E such that (V, M U F)
is 2-node connected. F' is indicated by dashed lines — the “key edge” e, is not chosen in F.
|MUF|=1.5n—5.

(c) Another variant of the heuristic first finds a minimum-size M C F such that every node is
incident to > k = 2 edges of M. The thick lines indicate M (M is the path vy, vs, ..., v, and edges
V1U3, Vp_2Vy). The second step of the heuristic finds the edge set F' C FE indicated by dashed lines
— the “key edge” e, is not chosen in F. (V, M U F) is 2-node connected, and for every edge vw in
F, (V,M U F)\vw is not 2-node connected. |M U F|=1.5n — 3.

This section focuses on the design of a 1.5-approximation algorithm for finding a minimum-size
2-NCSS. The analysis of the 1.5-approximation guarantee hinges on a deep theorem due to Mader.
Section 9.8 has a straightforward generalization (from k = 2 to an arbitrary integer k£ > 2) of the
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algorithm and its analysis for finding a k-NCSS with an approximation guarantee of 1 4 (2/k).
A more careful analysis improves the approximation guarantee of the generalized algorithm to
1+(1/k); we sketch this but skip the proof of a key theorem. Although the analysis of approximation
guarantee relies on Mader’s theorem only and not its proof, a proof of Mader’s theorem is given in
Section 9.9.

The running time of the approximation algorithm for 2-NCSS is O(m+/n), because it uses
a subroutine for maximum cardinality matching, and the fastest maximum matching algorithm
known has this running time. Given a constant ¢ > 0, the approximation algorithm for 2-NCSS
can be modified to run in linear time but the approximation guarantee becomes (1.5 + €). Also,
the linear-time variant uses a linear-time algorithm of Han et al [23] for finding an edge minimal
2-NCSS. The first algorithm to achieve an approximation guarantee of 1.5 for finding a minimum-
size 2-NCSS is due to Garg et al [20]; moreover, this algorithm runs in linear time. The Garg et
al algorithm may be easier to implement and it may run faster in practice, but the analysis of the
approximation guarantee is more sophisticated and specialized than the analysis in this section.
We do not describe the algorithm of Garg et al, but instead refer the interested reader either to
[20] or to the survey paper by Khuller [31].

Assume that the given graph G = (V, E) is 2-node connected. The algorithm for approximating
a minimum-size 2-NCSS consists of two steps.

The first step finds a minimum edge cover M C F of G. An edge cover of (G is a set of edges
X C F such that every node of G is incident with some edge in X. An edge cover of minimum
cardinality is called a minimum edge cover. One way of finding a minimum edge cover M is to start
with a mazimum matching M of G, and then to add one edge incident to each node that is not
matched by M. Clearly, M is an edge cover. Let def(G) denotes the number of nodes not matched
by a maximum matching of G, i.e., def(G) = |V| — 2|M|. Then we have |M| = | M|+ def(G). We
leave it as an exercise for the reader that every edge cover of G has cardinality > |]\7f| + def(G),
hence, M is in fact a minimum edge cover. (Hint: for an edge cover X, let ¢ be the minimum
number of edges to remove from X to obtain a matching; now focus on | X| and gq.)

The second step is equally simple. We find an (inclusionwise) minimal edge set F' C E\M such
that M U F gives a 2-NCSS. In other words, (V, M U F) is 2-node connected, but for each edge
vw € F, (V,M U F)\vw is not 2-node connected. An edge vw of a 2-node connected graph H is
critical (w.r.t. 2-node connectivity) if H\vw is not 2-node connected. The next result characterizes
critical edges; for a generalization see Proposition 9.15.

Proposition 9.9 An edge vw of a 2-node connected graph H is not critical iff there are at least 3
openly disjoint v-w paths in H (including the path vw).

Proof: If H has exactly two openly disjoint v-w paths, then vw is obviously a critical edge since
H\vw has a cut node (since H\vw does not have two openly disjoint v-w paths). For the other part,
suppose that H has > 3 openly disjoint v-w paths. By way of contradiction, let ¢ be a cut node of
H\vw, i.e., let S = {c} be a 1-separator of H\vw. Nodes v and w must be in the same component
of the graph H' obtained by deleting S from H\vw (since H\vw has > 2 > |S| openly disjoint v-w
paths). This gives a contradiction, because adding the edge vw to H' gives a disconnected graph
H' 4+ vw (since the new edge joins two nodes in the same component), but H' + vw = H\S, and
H\ S must be a connected graph, since H is 2-node connected and |S| = 1.
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To find F efficiently, we start with F = () and take the current subgraph to be G = (V, E)
(which is 2-node connected). We examine the edges of E\M in an arbitrary order, say, ey, es, . . ., e
(£ = |E\M]). For each edge e; = v,w;, we attempt to find 3 openly disjoint v;-w; paths in the
current subgraph. If we succeed, then we remove the edge e; from the current subgraph (since e; is
not critical), otherwise, we retain e; in the current subgraph and add e; to F' (since e; is critical).
At termination, the current subgraph with edge set M U F' is 2-node connected, and every edge
vw € F is critical. The running time for the second step is O(m?).

Let E’ denote M U F, and let E,,; C E denote a minimum-cardinality edge set such that
(V, Eopt) is 2-edge connected.

Our proof of the 1.5-approximation guarantee hinges on a theorem of Mader [34, Theorem 1].
A proof of Mader’s theorem appears in Section 9.9. For another proof of Mader’s theorem see
Lemma 1.4.4 and Theorem 1.4.5 in [1]. Recall that an edge vw of a k-node connected graph H is
called critical (w.r.t. k-node connectivity) if H\vw is not k-node connected.

Theorem 9.10 (Mader [34, Theorem 1]) In a k-node connected graph, a cycle consisting of
critical edges must be incident to at least one node of degree k.

Lemma 9.11 |F| <n-—1.

Proof: Consider the 2-node connected subgraph returned by the heuristic, G’ = (V, E’), where
E' = M U F. Suppose that F' contains a cycle C. Note that every edge in the cycle is critical,
since every edge in F is critical. Moreover, every node v incident to the cycle C has degree > 3 in
G’, because v is incident to two edges of C, as well as to at least 1 edge of M = E'\F. But this
contradicts Mader’s theorem. We conclude that F is acyclic, and so has < n — 1 edges. The proof
is done.

Lemma 9.12 |E'| = |M| + |F| < 1.5n 4 def(G) —

Proof: By the previous lemma, [F| < n —1. A minimum edge cover M of G has size |M| =
|M| + def(G), where M is a maximum matching of G. Obviously, |M| < n/2. The result follows.

The next result, due to Chong and Lam, gives a lower bound on the size of a 2-ECSS.

Proposition 9.13 (Chong & Lam [5, Lemma 3]) Let G = (V, E) be a graph of edge connectivity
> 2, and let |E,p| denote the minimum size of a 2-ECSS.
Then |Eyp| >max(n + def(G) — 1, n).

Proof: Consider a closed ear decomposition of (V, E,), i.e., a partition of E,p,; into paths and
cycles Py, Ps, ..., P, such that P; is a cycle, and each P; (for 2 < ¢ < ¢) has its end nodes but
no internal nodes in common with P; U ...U P,_; (the end nodes of P, may coincide). By the
minimality of E,,, each P; contains at least two edges, i.e., there are no single-edge ears. Clearly,
|Eopt| = ¢ + n — 1, where ¢ is the number of ears in the decomposition. By deleting one edge of
Py, and the first and the last edge of each P; (i > 2), we obtain a partition of V into completely
disjoint paths. Each of these disjoint paths has a matching such that at most one node is not
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matched. Taking the union of these matchings, we obtain a matching of (V, E,p) such that at most
¢ nodes are not matched. Clearly, ¢ > def(G), since def(G) is the number of nodes not matched
by a mazimum matching of G = (V, E'). Hence, |E,,| > def(G) +n — 1. I

Theorem 9.14 Let G = (V, E) be a graph of node connectivity > 2. The heuristic described
above finds a 2-NCSS (V, E') such that |E'| < 1.5|E,|, where |E,p| denotes the minimum size of
a 2-ECSS. The running time is O(m+/n).

Let € > 0 be a constant. A sequential linear-time version of the heuristic achieves an approzi-
mation guarantee of (1.5+ €).

Proof: The approximation guarantee follows from Lemma 9.12 and Proposition 9.13, since

|E'| 1.5n+ def(G) — 1 0.5n
<14 ——<1.5.
|Eopt| — max(n + def(G) — 1,n) — + n ]

Step 1 can be implemented to run in O(m+/n) time, since a maximum matching can be computed
within this time bound. The obvious implementation of Step 2 takes O(m?) time, but this can be
improved to O(n+m) time by using the algorithm of Han et al [23]. Thus the overall running time
is O(m+/n).

Consider the variant of the algorithm that runs in linear time. Let M denote a maximum
matching of G. For Step 1, we find an approximately maximum matching. For a constant e,
0 < € < 0.5, the algorithm finds a matching M’ with |[M’'| > (1 — 2¢)|M| in O((n+m)/e) time. We
obtain an (inclusionwise) minimal edge cover M of size < (1 + 2¢)|M| + def(G) by adding to M’
one edge incident to every node that is not matched by M’. Moreover, in linear time, we can find
an edge minimal 2-NCSS whose edge set contains the minimal edge cover M, see [23]. Now, the
approximation guarantee is (1.5 + ¢).

9.8 A (1+;)-approximation algorithm for minimum-size k-NCSS

This section presents the heuristic for finding an approximately minimum-size k-NCSS, and proves
an approximation guarantee of 14 (1/k). The analysis of the heuristic hinges on a theorem of Mader
[34, Theorem 1], see Theorem 9.10. Given a graph G = (V, EF), a straightforward application of
Mader’s theorem shows that the number of edges in the k-NCSS returned by the heuristic is at
most

(n— 1)+ min{|M| : M C F and degy,;(v) > (k- 1), Vv € V},

see Lemma 9.16 below. An approximation guarantee of 14(2/k) on the heuristic follows, since the
number of edges in a k-node connected graph is at least kn/2, by the “degree lower bound”, see
Proposition 9.17. Often, the key to proving improved approximation guarantees for (minimizing)
heuristics is a nontrivial lower bound on the value of every solution. We improve the approximation
guarantee from 1 + (2/k) to 1 4 (1/k) by exploiting a new lower bound on the size of a k-edge
connected spanning subgraph, see Theorem 9.18:

The number of edges in a k-edge connected spanning subgraph of a graph G = (V, E)
is at least n/2] + min{|M| : M C E and degy,;(v) > (k— 1), Vv € V}.
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Assume that the given graph G = (V, E) is k-node connected, otherwise, the heuristic will
detect this and report failure.

Let E* C E denote a minimum-cardinality edge-set such that the spanning subgraph (V, E*)
is k-edge connected. Note that every k-node connected spanning subgraph (V, E’) (such as the
optimal solution) is necessarily k-edge connected, and so has |E’| > |E*|.

We need a few facts on b-matchings, because the k-NCSS approximation algorithm uses a
subroutine for maximum b-matchings. Let G = (V, E') be a graph, and let b : V' — Z_ assign a
nonnegative integer b, to each node v € V. The perfect b-matching (or perfect degree-constrained
subgraph) problem is to find an edge set M C E such that each node v has deg;;(v) = b,. The
maximum b-matching (or maximum degree-constrained subgraph) problem is to find a maximum-
cardinality M C E such that each node v has degys(v) < b,. The b-matching problem can be
solved in time O(m!?(logn)!%\/a(m, m)), see [18, Section 11] (for our version of the problem,
note that each edge has unit cost and unit capacity, and each node v may be assumed to have
0 < b, < deg(v)). Also, see [21, Section 7.3].

The heuristic has two steps. The first finds a minimum-size spanning subgraph (V, M), M C E,
whose minimum degree is (k — 1), i.e., each node is incident to > (k — 1) edges of M. Clearly,
|M| < |E*|, because (V, E*) has minimum degree k, i.e., every node is incident to > k edges of E*.
To find M efficiently, we use the algorithm for the maximum b-matching problem. Our problem is:

min{|M]| : degps(v) > (k—1), Vo € V, and M C E}.

To see that this is a b-matching problem, consider the equivalent problem of finding the complement
M of M w.r.t. E, where M = E\M:

max{|M]| : degz7(v) < deg(v) + 1 -k, Vv € V, and M C E}.

The second step is equally simple. We find an (inclusionwise) minimal edge set F' C E\M such
that M U F gives a k-node connected spanning subgraph, i.e., (V, M U F) is k-node connected and
for each edge vw € F, (V, MU F)\vw is not k-node connected. Recall that an edge vw of a k-node
connected graph H is critical (w.r.t. k-node connectivity) if H\vw is not k-node connected. The
next result characterizes critical edges.

Proposition 9.15 . An edge vw of a k-node connected graph H is not critical iff there are at least
k + 1 openly disjoint v-w paths in H (including the path vw ).

To find F efficiently, we start with F = () and take the current subgraph to be G = (V, E)
(which is k-node connected). We examine the edges of E\M in an arbitrary order, say, ey, es, . . ., e
(£ = |E\M]). For each edge e; = v;w;, we attempt to find (k+ 1) openly disjoint v;-w; paths in the
current subgraph. If we succeed, then we remove the edge e; from the current subgraph (since e; is
not critical), otherwise, we retain e; in the current subgraph and add e; to F' (since e; is critical).
At termination, the current subgraph with edge set M U F is k-node connected, and every edge
vw € F is critical. The running time for the second step is O(km?).

The proof of the next lemma hinges on a theorem of Mader [34, Theorem 1], see Theorem 9.10.
The proof is similar to the proof of Lemma 9.11 and so is omitted.

Lemma 9.16 |F| <n-—1.
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Proposition 9.17 Let G = (V, E) be a graph of node connectivity > k. The heuristic above finds
a k-NCSS (V, E') such that |E'| < (1 + (2/k))|Eopt|, where |E,y| denotes the cardinality of an

optimal solution. The running time is O(k>n® + m!>(logn)?).

Proof: The approximation guarantee follows because |E,,:| > (kn/2), so

(M| +|F] _ M| |F

— + <1+
|E0pt| |E0pt| |E0pt|

(o) = 1+ /)

We have already seen that M can be found in time O(m!*(logn)?) via the maximum b-matching
algorithm, and F can be found in time O(km?). The running time of the second step can be
improved to O(k®n?); this is left as an exercise. I

To improve the approximation guarantee to 1 + (1/k), we present an improved lower bound
on |E*|, where E* denotes a minimum-cardinality edge set such that G* = (V, E*) is k-edge
connected. Suppose that E* contains a perfect matching Py (so |Py| = n/2). Then |E*| > (n/2) +
min{|M*| : M* C E, degp«(v) > (k—1),Vv € V}. To see this, focus on the edge set M’ =
E*\P,. Clearly, every node v € V is incident to at least (k — 1) edges of M’, because degg«(v) > k
and degp (v) = 1. Since M™* is a minimum-size edge set with degy,«(v) > (k—1), Vv € V, we have
|M*| < |M'| = |E*| — (n/2). The next theorem generalizes this lower bound to the case when E*
has no perfect matching. We skip the proof.

Theorem 9.18 Let G* = (V, E*) be a graph of edge connectivity > k > 1, and let n denote |V|.
Let M* C E* be a minimum-size edge set such that every node v € V is incident to > (k — 1) edges
of M*. Then |E*| > |M*| + |n/2].

Theorem 9.19 Let G = (V, E) be a graph of node connectivity > k. The heuristic described above
finds a k-NCSS (V, E') such that |E'| < (14 (1/k))|Eopt|, where |E,p| denotes the cardinality of

an optimal solution. The running time is O(k*n® + m!>(logn)?).

Proof: The approximation guarantee of 1 + (1/k) follows easily from Theorem 9.18, using an
argument similar to Proposition 9.17. We have E' = M U F, where |F| < (n — 1). Moreover,
since M is a minimum-size edge set with degy,;(v) > (k — 1), Yv € V, Theorem 9.18 implies that
| M| < |Eopt| — [n/2] < |Eopt| — (n—1)/2. Hence,

M|+ |F| _ B = (n—1)/2+ (n— 1)
|E0pt| - |E0pt|

<1+ 22 < qym,
|E0pt|

where the last inequality uses the “degree lower bound”, |E,p| > kn/2.

The running time analysis is the same as that in Proposition 9.17. I

9.9 Mader’s theorem

This section has Mader’s original proof of Theorem 9.10; no other proof of this theorem is known.
Recall that an edge vw of a k-node connected graph G is called critical if G\vw is not k-node
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connected. In other words, vw is critical if G\vw has a separator of cardinality < k, i.e., if
there exists a set S with |S| < k — 1 such that (G\vw)\S is disconnected. Note that this graph
has precisely two components, one containing v and the other containing w, because by adding
the edge vw to this graph we obtain the connected graph G\S (since G is k-node connected and
|S| < k). This observation is used several times in the proof.

We repeat the statement of Mader’s theorem, see Theorem 9.10.

G 2

Figure 9.2: An illustration of the proof of Mader’s theorem.

Theorem (Mader) In a k-node connected graph, a cycle consisting of critical edges must be inci-
dent to at least one node of degree k.

Proof: Let G = (V,E) be a k-node connected graph. By way of contradiction, let C' =
ag, a1, ...,a-1,09 be a cycle such that each edge is critical. Suppose that deg(ap) is > k + 1.
For notational convenience, let @ = ag, s = a; and ¢ = ay_;. In the graph G\as, let S be an
arbitrary (k — 1)-separator whose deletion results in two components (S exists because edge as is
critical for G), and let V, , and V, denote (the node sets of) the two components, where a € V, ,
and s € V;. Similarly, let V,; and V; denote (the node sets of) the two components of (G\at)\T,
where T is an arbitrary (k — 1)-separator of G\at, and a € V,; and ¢t € V;. See Figure 9.2. The key
point is that

|Vi| < |V,,s| and symmetrically |Vi| < |V,4];

this is proved as Claim 1 below.

The theorem follows easily from this inequality. Suppose that each node a; incident to the cycle
C has degree > k+ 1. For 0 < ¢ < £ —1, let n; denote the number of nodes in the component
of (G\a;a;1+1)\S; that contains node a;, where S; is an arbitrary but fixed (k — 1)-separator of
(G\a;a;41) (the indexing is modulo ¢, so ay = ag). For example, using our previous notation,
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ng = |V, 6| and ny_y = |V4|. By repeatedly applying the above inequality we have,
Ng_1 < ng<ny <...<ny_1.
This contradiction shows that some node a; incident to the cycle C has deg(a;) = k.

Claim 1 Let G be a k-node connected graph. Let a be a node with deg(a) > k+ 1, and let as and
at be critical edges. Let S and T be arbitrary (k — 1)-separators of G\as and G\at, respectively.
Let the node sets of the two components of (G\as)\S be V, , and V;, where a € V, , and s € V.
Similarly, let the node sets of the two components of (G\at)\T be V,+ and Vi, where a € V,; and
t € Vi;. Then

Vil < |Vas| and symmetrically |Vi| < |V,4].

The claim follows from three subclaims. See Figure 9.2. Observe that the node set V is
partitioned into three sets w.r.t. S, namely, V, ,,V,, S. This partition induces a partition of T' into
three sets that we denote by Ty = V,NT, Ty =V, ,NT and T5 = SNT, respectively (possibly some
of these subsets of T may be empty). Similarly, V' is partitioned into three sets w.r.t. 7', namely,
Vat, Vi, T, and this gives a partition of S into three sets So = V; NS, 51 =V, NS and So =SNT.
Let V, denote V, , NV, 4, and note that a € V.

One way to see the proof is to focus on the four “arms” of the “crossing” separators .S and 7.
By taking two consecutive “arms” together with the “hub” S NT, we get a candidate separator,
say, X; note that X may not be a separator of G. The proof focuses on the “bottom” candidate
separator X =T U (SNT)US; and the “top” one Y =Ty U (SNT)U.Sy. A closer examination
shows that X U {a} is a genuine separator of G but Y is not.

Subclaim 1 |Sg| < |T}| and symmetrically |To| < |.Sy].

By way of contradiction, suppose that |So| is > |Ti|. Focus on the set X = T3 U(SNT)US;. Since
| X| =|S| = |So|l + |T1| and |S| = k — 1, we have |X| < k — 2. Since deg(a) > k + 1, a has at least
three neighbors in V'\ X; two of these are s and ¢; let b be a third one, i.e., ab € E and b ¢ X U{s, t}.
By the definition of S and T, b ¢ V, and b ¢ Vi, hence, b € V, = V, , NV, ;. Therefore, V,\{a}
is a nonempty set. It is easily checked that N(V,\{a}) C {a} U X. (This is left as an exercise for
the reader.) Clearly, |[{a} U X| < k-1, and |V,\{a}| < |V| = (k + 3), since the complementary
node set contains S UT U {a, s, t}. We have a contradiction, because the k-node connectivity of G
implies that every node set V' with 0 < |[V'| < |V| — k has at least k neighbors. This shows that
|So| < |T1|. Similarly, it follows that |To| < |.Sy].

Subclaim 2 V, NV, = 0.

Let Y = SoU(SNT)UT,. Note that |Y| = |S|—|S1|+|To| < |S| = k—1, by the previous subclaim.
By focusing on V, NV;, and carefully observing that neither a nor one of a’s neighbors is in V, NV,
it is easily checked that |V,NV;| < |V|—(k+2) and N(V,NV;) C Y. As in the proof of the previous
subclaim, the k-node connectivity of G implies that the set V, N V; is empty.

Subclaim 3 |V}| < |V, ,| and symmetrically |V,| < |V, 4.

We have

Vil = Vas NV + SOV + VNV
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S |Va,sm‘/t|+|va,smT|
= |Va,8| - |Va| < |Va78| -1,

where the first inequality follows because |V, , N T| = |T1| > |So| = |S N V4| by Subclaim 1, and
|Vs N Vi = 0 by Subclaim 2, and the second inequality follows because |V,| = |V, , NV, > 1.
Similarly, it can be proved that |V,| < |V, 4|.

|

9.10 Approximating minimume-size k-ECSS

The heuristic can be modified to find an approximately minimum-size k-ECSS. We prove a (1 4+
(2/(k+1)))-approximation guarantee. The analysis hinges on Theorem 9.22 which may be regarded
as an analogue of Mader’s theorem [34, Theorem 1] for k-edge connected graphs.

In this section, an edge e of a k-edge connected graph H is called critical if H\e is not k-edge
connected. Assume that the given graph G = (V| E) is k-edge connected, otherwise, the heuristic
will detect this and report failure.

The first step of the heuristic finds an edge set M C E of minimum cardinality such that
every node in V is incident to > k edges of M. Clearly, |M| < |E,p|, where E,; C E denotes
a minimum-cardinality edge set such that (V, E,;) is k-edge connected. The second step of the
heuristic finds an (inclusionwise) minimal edge set F' C E\M such that M U F is the edge set of a
k-ECSS. In detail, the second step starts with F = ) and E’ = E. Note that G' = (V, E’) is k-edge
connected at the start. We examine the edges of F\M in an arbitrary order e, es,.... For each
edge e; = v;w; (where 1 < ¢ < |[E\M|), we determine whether or not v;w; is critical for the current
graph by finding the maximum number of edge disjoint v;-w; paths in G’.

Proposition 9.20 An edge v;w; of a k-edge connected graph is not critical iff there exist at least
k+1 edge disjoint v;-w; paths (including the path v;w;).

If v;w; is noncritical, then we delete it from E’ and G’, otherwise, we retain it in E’ and G’,
and also, we add it to F. At termination of the heuristic G' = (V,E’), E' = M UF, is k-edge
connected and every edge vw € F is critical w.r.t. k-edge connectivity. Theorem 9.22 below shows
that |F| < kn/(k+ 1) for k > 1. Since |E,,:| > kn/2, the minimum-size k-ECSS heuristic achieves
an approximation guarantee of 14 (2/(k + 1)) for & > 1.

The next lemma turns out to be quite useful. A straightforward counting argument gives the
proof, see Mader [33, Lemma 1].

Lemma 9.21 Let G = (V, M) be a simple graph of minimum degree k > 1.

(i) Then for every node set S C V with 1 < |S| < k, the number of edges with ezactly one end
node in S, |6(S)|, is at least k.

(i) If a node set S C V with 1 < |S| < k contains at least one node of degree > (k + 1), then
|6(S)| is at least k4 1.

The goal of Theorem 9.22 is to estimate the maximum number of critical edges in the “com-
plement” of a spanning subgraph of minimum degree k in an arbitrary k-edge connected graph H.
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Figure 9.3: Two laminar families of tight node sets for a 2-edge connected graph H (k = 2).

(a) The laminar family F covers all critical edges of H. F consists of the node sets Ay, ..., As,
where each A; is tight since |6(4;)| = 2 = k. For a node set A;, ¢; is the node set 4;\ | J{4, € F |
A; C A;, A; # A;}. Note that ¢, = A; for the inclusionwise minimal A4;, i.e., for ¢ = 1,4,5,7,8.
Also, the tree T corresponding to F U {V(H)} is illustrated.

(b) The laminar family F’ covers all critical edges of E(H)\M, where M C E(H) is such that
every node is incident to at least & = 2 edges of M. M is indicated by dotted lines. All edges
of E(H)\M are critical. F’ consists of the tight node sets A;, A;. Also, the node sets @1, ¢, are
indicated (¢; = A;), and the tree T’ representing F' U {V(H)} is illustrated.
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Clearly, every critical edge e € E(H) is in some k-cut 6(A.), Ac C V(H). By a tight node set S
of a k-edge connected graph H we mean a set S C V(H) with |6 (S)| =k, i.e., a node set S such
that 6z (S) is a k-cut. As usual, a family of sets {S;} is called laminar if for any two sets in the
family, either the two sets are disjoint, or one set is contained in the other. For an arbitrary subset
F’ of the critical edges of H, it is well known that there exists a laminar family F of tight node
sets covering F', i.e., there exists F = {A;, A, ..., As}, where A; C V(H) and 6(4;) is a k-cut, for
1 < i < ¢, such that each edge e € F' is in some 6(4;), 1 < i < £. (For details, see [11, Section 5].)
It is convenient to define a tree T corresponding to F U {V(H)}: there is a T-node corresponding
to each set A; € F and to V(H), and there is a T-edge A;A; (or V(H)A;) iff A; C A; and no other
node set in F contains A; and is contained in A;. Note that the T-node corresponding to the node
set A; of the laminar family F is denoted by A;, and the T-node corresponding to the node set
V(H) is denoted by V(H). Each T-edge corresponds to a k-cut of H. Suppose that the tree T is
rooted at the T-node V(H). We associate another node set ¢; C V(H) with each node set A; of
F:
¢ =ANJ{A € FlAC A A% A}

In other words, a T-node A; € F that is a leaf node of T has ¢; = A;, otherwise, ¢; consists of
those H-nodes of A; that are not in the node sets A’, A”, ..., where A’, A", ... € F correspond to

the children of A; in the tree T'. For distinct T-nodes A; and A;, note that ¢; and ¢; are disjoint.
£

£
Another useful fact is that U 0(4;) = U 0(¢;), because every edge in §(¢;) is either in §(4;) or in
=1 =1
0(A"),8(A"), ..., where A", A" ... € F correspond to the children of 4; in the tree T'. See Figure 9.3
for an illustration of F = {A;}, the family of node sets {¢;}, and the tree T for a particular graph.

We skip the proof of the next theorem.

Theorem 9.22 Let H be a k-edge connected, n-node graph (k > 1), and let M C E(H) be an edge
set such that every node in V(H) is incident to at least k edges of M. Let F be the set consisting
of edges of E(H)\M that are critical w.r.t. k-edge connectivity, i.e., F C E(H)\M and every edge

k
e € F isin a k-cut of H. Then, |F| < k_l_l(n—l).

Theorem 9.22 is asymptotically tight. Consider the k-edge connected graph GG obtained as
follows: take £ 4 1 copies of the (k + 1)-clique, Co, C1,...,Cy, and for each ¢ =1, ..., £, choose an
arbitrary node v; in C; and add k (nonparallel) edges between v; and Cy. Take M = |J!_, E(C}),
and F' = E(G)\M. Observe that |F| =k(n — (k+1))/(k+1).

Theorem 9.23 Let G = (V, E) be a graph of edge connectivity > k > 1. The heuristic described
above finds a k-edge connected spanning subgraph (V, E') such that |E'| < (14 (2/(k+1)))|Eopt,
where | E,p;| denotes the cardinality of an optimal solution. The running time is O(k*n’+m!>(logn)?).

9.11 The multi edge model for minimum k-ECSS problems

For minimum k-ECSS problems, two different models have been studied, depending on the number
of copies of an edge e € E(G) that can be used in the desired subgraph: (1) in the simple-edge
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Table 9.2: A summary of current approximation guarantees for minimum k-edge connected span-
ning subgraphs (k-ECSS) in the multi edge model; k is an integer > 2. The references are to:
e Goemans & Bertsimas, Math. Programming 60 (1993) pp. 145-166, and ¢ Goemans, Williamson
& Tardos, personal communication (1994) cited in Karger’s Ph.D. thesis.
Type of objective function

Unit costs Metric costs Nonnegative costs
k-ECSS see last entry see last entry | 1.5 for k even [GB93]
multi-edge | 1+ O(1)/k [GTW94] 1.5+ (1/2k) for k odd [GB93]
model

model, at most one copy of an edge can be used, and (2) in the multiedge model, an arbitrary
number of copies of an edge may be used. Some but not all of the approximation algorithms and
guarantees for the simple-edge model extend to the multiedge model; this happens when the input
graph may be taken to be a multigraph, because then we can take the given (simple) graph G and
modify it into a multigraph by taking k copies of every edge e € E(G). In the other direction,
some of the current approximation guarantees in the multiedge model are strictly better than the
corresponding guarantees in the simple-edge model.

For minimum k-ECSS problems and the multiedge model, there is no difference between metric
costs and nonnegative costs, because we can replace the given graph G and edge costs ¢ by the
“metric completion” G’, ¢/, where G’ is the complete graph on the node set of G, and ¢, is the
minimum c-cost of a v-w path in G, see Goemans & Bertsimas [22, Theorem 3].

9.12 Bibliographic remarks

Given a graph, consider the problem of finding a minimum-size 2-edge connected spanning subgraph
(2-ECSS), or a minimum-size 2-node connected spanning subgraph (2-NCSS). Khuller & Vishkin
[30] achieved the first significant advance by obtaining approximation guarantees of 1.5 for the
minimum-size 2-ECSS problem. Garg et al [20], building on the results in [30], obtained an approx-
imation guarantee of 1.5 for the minimum-size 2-NCSS problem. These algorithms are based on
depth-first search (DFS), and they do not imply efficient parallel algorithms for the PRAM model.
Subsequently, Chong & Lam [5] gave a (deterministic) NC algorithm on the PRAM model with an
approximation guarantee of (1.5 + ¢) for the minimum-size 2-ECSS problem, and later they [7] and
independently [4] gave a similar algorithm for the minimum-size 2-NCSS problem. In the context
of approximation algorithms for minimume-size k-connected spanning subgraph problems, Chong &
Lam [5] appear to be the first to use matching. For the minimum-size k-ECSS problem on simple
graphs, Cheriyan & Thurimella [4], building on earlier work by Khuller & Raghavachari [29] and
Karger [26], gave a 1+ (2/(k+1))-approximation algorithm. The k-ECSS approximation algorithm
in [4] does not apply to multigraphs. For the minimum-size k-ECSS problem on multigraphs, a
1.85-approximation algorithm is given in [29], and a randomized (Las Vegas) algorithm with an

approximation guarantee of 1 4+ /[O(logn)/k| is given in [26].
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In the context of augmenting the node connectivity of graphs, the first application of Mader’s
theorem is due to Jordan [25, 24].

One of the first algorithmic applications of Mader’s theorem appears to be due to Jordan [25, 24];
Jordan applied the theorem in his approximation algorithm for augmenting the node connectivity
of graphs. The key lemma in the analyses in Sections 9.7, 9.8 above, namely, Lemma 9.11 (also,
Lemma 9.16) is inspired by these earlier results of Jordan. The analysis of the k-NCSS heuristic
for digraphs is similar, and hinges on another theorem of Mader [35, Theorem 1], which may be
regarded as the generalization of [34, Theorem 1] to digraphs. An approximation guarantee of
14 (1/k) is proved on the digraph heuristic by employing a simpler version of Theorem 9.18, to
give a lower bound on the number of edges in a solution.

9.13 Exercises

1. Prove both parts of Proposition 9.4 using the following sketch.

For part 2, note that every edge e € E(G) is critical w.r.t. k-node connectivity, since G is
edge-minimal k-node connected. Apply Mader’s theorem (Theorem 9.10) and focus on edges
that have degree > k + 1 at both end nodes.

2. Prove the following generalization of Chong and Lam’s lower bound on the number of edges

in a 2-ECSS.

Proposition 9.24 Let G = (V, E) be a graph of edge connectivity > k > 1, and let |Ep|
denote the minimum size of a k-edge connected spanning subgraph. If G is not factor critical,

k k
then |Egpt| > §(n—|— def(G)). In general, |Eop| > §max(n—|— def(G) — 1, n).

(Hint: One way is via the Gallai-Edmonds decomposition theorem of matching theory.)

3. Adapt the 1.5-approximation algorithm for a 2-NCSS in Section 9.7 to find a 2-ECSS whose
size is within a factor of 1.5 of minimum. Assume that the given graph G is 2-edge connected.

(Hint: Focus on a block (i.e., a maximal 2-node connected subgraph) G’ of G. Is it true
that the size of an optimal 2-NCSS of G’ equals the size of an optimal 2-ECSS of G'?)

4. Show that the running time of the second step of the approximation algorithm for a minimum-
size k-NCSS can be improved to O(k*n?).

(~Hint: Use Nagamochi & Ibaraki’s [36] sparse certificate E for k-node connectivity. Here,
E C E, |E| < kn, and for all nodes v, w, (V, E) has k openly disjoint v-w paths iff G has k
openly disjoint v-w paths.)

5. (Research problem) Given a graph, is there a 1 + (1/k)-approximation algorithm for finding
a minimum-size k-ECSS? What about the special case k = 37
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