
Control of Systems Governed by
Partial Differential Equations

Kirsten Morris
Dept. of Applied Mathematics

Faculty of Mathematics
University of Waterloo
Waterloo, CANADA

1 Introduction

In many applications, such as diffusion and structural vibrations, the physi-
cal quantity of interest depends on both position and time. Some examples
are shown in Figures 1-3. These systems are modelled by partial differential
equations (PDE’s) and the solution evolves on an infinite-dimensional Hilbert
space. For this reason, these systems are often called infinite-dimensional sys-
tems. In contrast, the state of a system modelled by an ordinary differential
equation evolves on a finite-dimensional system, such as Rn, and these sys-
tems are called finite-dimensional. Since the solution of the PDE reflects the
distribution in space of a physical quantity such as the temperature of a rod
or the deflection of a beam, these systems are often also called distributed-
parameter systems (DPS). Systems modelled by delay differential equations
also have a solution that evolves on an infinite-dimensional space. Thus, al-
though the physical situations are quite different, the theory and controller
design approach is quite similar to that of systems modelled by partial differ-
ential equations. However, delay differential equations will not be discussed
directly in this article.

The purpose of controller design for infinite-dimensional systems is sim-
ilar to that for finite-dimensional systems. Every controlled system must
of course be stable. Beyond that, the goals are to improve the response in
some well-defined manner, such as by solving a linear-quadratic optimal con-
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trol problem. Another common goal is design the controller to minimize the
system’s response to disturbances.

Classical controller design is based on an input/output description of the
system, usually through the transfer function. Infinite-dimensional systems
have transfer functions. However, unlike the transfer functions of finite-
dimensional systems, the transfer function is not a rational function. If a
closed form expression of the transfer function of an infinite-dimensional sys-
tem can be obtained, it may be possible to design a controller directly. This
is known as the direct controller design approach. Generalizations of many
well-known finite-dimensional stability results such as the small gain theorem
and the Nyquist stability criterion exist, see [24, 25]. Passivity generalizes
in a straightforward way to irrational transfer functions [9, Chapters V, VI]
and just as for finite-dimensional systems, any positive real system can be
stabilized by the static output feedback u = −κy for any κ > 0. For some
of these results it is not required to know the transfer function in order to
ensure stability of the controlled system. It is only required to know whether
the transfer function lies in the appropriate class. PI-control solutions to
tracking problems for irrational transfer functions and the internal model
principle is covered in [25, 26, 35]. For a high-performance controlled sys-
tem, a model of the system needs to be used. H∞-controller design has been
successfully developed as a method for robust control and disturbance rejec-
tion in finite-dimensional systems. A theory of robust H∞-control designs
for infinite-dimensional systems using transfer functions is described in [11].
More recent results on this approach can be found in [19] and references
therein.

The chief drawback of direct controller design is that an explicit rep-
resentation of the transfer function is required. Another drawback of di-
rect controller design is that, in general, the resulting controller is infinite-
dimensional and must be approximated by a finite-dimensional system. For
this reason, direct controller design is sometimes referred to as late lumping
since a last step in the controller design is to approximate the controller by
a finite-dimensional, or lumped parameter, system.

For many practical examples, controller design based on the transfer func-
tion is not feasible, since a closed-form expression for the transfer function
may not be available. Instead, a finite-dimensional approximation of the sys-
tem is first obtained and controller design is based on this finite-dimensional
approximation. This approach is known as indirect controller design, or early
lumping. This is the most common method of controller design for systems
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Figure 1: A flexible beam is the simplest example of transverse vibrations in
a structure. It has relevance to control of flexible robots and space structures.
This photograph shows a beam controlled by means of a motor at one end.
(Photo by courtesy of Prof. M.F. Golnaraghi, Simon Fraser University.)

modeled by partial differential equations. The hope is that the controller has
the desired effect on the original system. That this method is not always
sucessful was first documented in Balas [1], where the term spillover effect
was coined. Spillover refers to the phenomenon that a controller which stabi-
lizes a reduced-order model need not necessarily stabilize the original model.
Systems with infinitely many poles either on or asymptoting to the imaginary
axis are notorious candidates for spillover effects. However, conditions under
which this practical approach to controller design works have been obtained
and are presented in this article.

In the next section a brief overview of the state-space theory for infinite-
dimensional systems is given. Some issues associated with approximation of
systems for the purpose of controller design are discussed in the following
section. Results for the most popular methods for multi-input-multi-output
controller design, linear-quadratic controller and H∞-controller design, are
then presented in sections 4 and 5.

2 State-space Formulation

Systems modelled by linear ordinary differential equations are generally writ-
ten as a set of n first-order differential equations putting the system into the
state-space form

ż(t) = Az(t) +Bu(t), (1)
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Figure 2: Acoustic noise in a duct. A noise signal is produced by a loud-
speaker placed at one end of the duct. In this photo a loudspeaker is mounted
midway down the duct where it is used to control the noise signal. The pres-
sure at the open end is measured by means of a microphone as shown in the
photo. (Photo by courtesy of Prof. S. Lipshitz, University of Waterloo.)

Figure 3: Vibrations in a plate occur due to various disturbances. In this
apparatus the vibrations are controlled via the piezo-electric patches shown.
(Photo by courtesy of Prof. M. Demetriou, Worcester Polytechnic Univer-
sity.)
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where z(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and m is the number of controls.
We write systems modelled by partial differential equations in a similar

way. The main difference is that the matrices A becomes an operator acting,
not on Rn, but on an infinite-dimensional Hilbert space, Z. Similarly, B
maps the input space into the Hilbert space Z. More detail on the systems
theory described briefly in this section can be found in [8].

We first need to generalize the idea of a matrix exponential exp(At). Let
L(X1,X2) indicate bounded linear operators from a Hilbert space X1 to a
Hilbert space X2.

Definition 2.1 A strongly continuous (C0-) semigroup S(t) on Hilbert space
Z is a family S(t) ∈ L(Z,Z) such that

1. S(0) = I,

2. S(t)S(s) = S(t+ s),

3. limt↓0 S(t)z = z, for all z ∈ Z.

Definition 2.2 The infinitesimal generator A of a C0-semigroup on Z is
defined by

Az = lim
t↓0

1

t
(S(t)z − z)

with D(A) the set of elements z ∈ Z for which the limit exists.

The matrix exponential exp(At) is a special case of a semigroup, defined
on a finite-dimensional space. Its generator is the matrix A. Note that we
only have strong convergence of S(t) to the identity I in Definition 2.1(3).
Uniform convergence implies that the generator is a bounded operator defined
on the whole space and that the semigroup can be defined as

∞∑
i=0

(At)i

i!

just as for a matrix exponential. However, for partial differential equations
the generator A is an unbounded operator and only strong convergence of
S(t) to I is obtained.

If A is the generator of a C0-semigroup S(t) on a Hilbert space Z, then
for all z0 ∈ D(A),

d

dt
S(t)z0 = AS(t)z0 = S(t)Az0.
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Figure 4: Heat Flow in a Rod. The regulation of the temperature profile
of a rod is the simplest example of a control system modelled by a partial
differential equation.

It follows that the differential equation on Z

dz(t)

dt
= Az(t), z(0) = z0

has the solution
z(t) = S(t)z0.

Furthermore, due to the properties of a semigroup, this solution is unique,
and depends continuously on the initial data z0.

Thus, for infinite-dimensional systems, instead of (1), we consider systems
described by

dz

dt
= Az(t) +Bu(t), z(0) = z0 (2)

where A with domain D(A) generates a strongly continuous semigroup S(t)
on on a Hilbert space Z and B ∈ L(U ,Z). We will assume also that U is
finite-dimensional (for instance, Rm) as is generally the case in practice.

For many situations, such as control on the boundary of the region, typ-
ical models lead to a state-space representation where the control operator
B is unbounded on the state-space. More precisely, it is a bounded operator
into a larger space than the state space. However, this complicates the anal-
ysis considerably. To simplify the exposition, this paper will consider only
bounded B. Appropriate references will be given for extension to unbounded
operators where available. Note however, that including a model for the ac-
tuator often changes a simple model with an unbounded actuator or sensor
to a more complex model with bounded control or sensing; see for instance
[17, 43].

Example 2.3 Diffusion.
Consider the temperature in a rod of length L with constant thermal con-

ductivity K0, mass density ρ and specific heat Cp. (See Figure 4.) Applying
the principle of conservation of energy to arbitrarily small volumes in the bar
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leads to the following partial-differential equation for the temperature z(x, t)
at time t at position x from the left-hand end [14, e.g. sect. 1.3]

Cpρ
∂z(x, t)

∂t
= K0

∂2z(x, t)

∂x2
, x ∈ (0, L), t ≥ 0. (3)

In addition to modeling heat flow, this equation also models other types of
diffusion, such as chemical diffusion and neutron flux. To fully determine
the temperature, one needs to specify the initial temperature profile z(x, 0)
as well as the boundary conditions at each end. Assume Dirichlet boundary
conditions:

z(0, t) = 0, z(L, t) = 0.

and some initial temperature distribution z(0) = z0, z0 ∈ L2(0, L). Define
Az = ∂2z/∂x2. Since we can’t take derivatives of all elements of L2(0, L)
and we need to consider boundary conditions, define

D(A) = {z ∈ H2(0, L); z(0) = 0, z(L) = 0}

where H2(0, L) indicates the Sobolev space of functions with weak second
derivatives [37]. We can rewrite the problem as

ż(t) = Az(t), z(0, t) = z0.

The operator A generates a strongly continuous semigroup S(t) on Z =
L2(0, L). The state z, the temperature of the rod, evolves on the infinite-
dimensional space L2(0, L).

Suppose that the temperature is controlled using an input flux u(t)

∂z

∂t
=
∂2z

∂x2
+Bu(t), 0 < x < 1,

where B ∈ L(R,Z) describes the distribution of applied energy, with the
same Dirichlet boundary conditions. Since the input space is one-dimensional
B can be defined by Bu = b(x)u for some b(x) ∈ L2(0, L). This leads to

ż(t) = Az(t) + b(x)u(t).
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Figure 5: Simply supported beam with applied force.

Example 2.4 Simply supported beam. Consider a simply supported Euler-
Bernoulli beam as shown in Figure 5 and let w(x, t) denote the deflection of
the beam from its rigid body motion at time t and position x. The control
u(t) is a force applied at the center with width δ. The analysis of beam
vibrations is useful for applications such as flexible links in robots; but also
in understanding the dynamics of more complex structures. If we normalize
the variables, we obtain the partial differential equation (see, for example,
[14, chap.6]):

∂2w

∂t2
+
∂4w

∂x4
= b(x)u(t), t ≥ 0, 0 < x < 1,

b(x) =

{
1/δ, |x− 0.5| < δ

2

0, |x− 0.5| ≥ δ
2

with boundary conditions

w(0, t) = 0, wxx(0, t) = 0, w(1, t) = 0, wxx(1, t) = 0. (4)

This system is second-order in time, and analogously to a simple mass-spring
system, we define the state as z(t) =

[
w(·, t) ẇ(·, t)

]
. Let

Hs(0, 1) = {w ∈ H2(0, 1), w(0) = 0, w(1) = 0}

and define the state-space Z = Hs(0, 1)×L2(0, 1). A state-space formulation
of the above partial differential equation problem is

d

dt
z(t) = Az(t) +Bu(t),

where

B =

 0

b(·)

 , A =

 0 I

− d4

dx4 0

 ,
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with domain

D(A) = {(φ, ψ) ∈ Hs(0, 1)×Hs(0, 1); φxx ∈ Hs(0, 1)}.

The operator A with domain D(A) generates a C0-semigroup on Z.

Even for finite-dimensional systems, the entire state cannot generally be
measured. Measurement of the entire state is never possible for systems
described by partial differential equations, and we define

y(t) = Cz(t) + Eu(t) (5)

where C ∈ L(Z,Y) , E ∈ L(U ,Y) and Y is a Hilbert space. The expression
(5) can also represent the cost in controller design. Note that as for the
control operator, it is assumed that C is a bounded operator from the state-
space Z. The operator E is a feedthrough term that is non-zero in some
control configurations.

The state at any time t and control u ∈ L2(0, t;U) is given by

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s)ds

and the output is

y = CS(t)z0 + C

∫ t

0

S(t− τ)Bu(τ)dτ,

or defining
g(t) = CS(t)B,

y(t) = CS(t)Bz0 + (g ∗ u)(t)

where ∗ indicates convolution.
The Laplace transform G of g yields the transfer function of the system:

If z(0) = 0,
ŷ(s) = G(s)û(s).

The transfer function of a system modelled by a system of ordinary differen-
tial equations is always rational with real coefficients; for example 2s+1

s2+s+25
.

Transfer functions of systems modelled by partial differential equations are
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Figure 6: Standard feedback diagram

non-rational. There are some differences in the systems theory for infinite-
dimensional systems [7]. For instance, it is possible for the transfer function
to have different limits along the real and imaginary axes.

The definitions of stability for finite-dimensional systems generalize to
infinite-dimensions.

Definition 2.5 A system is externally stable or L2-stable if for every input
u ∈ L2(0,∞;U), the output y ∈ L2(0,∞;Y). If a system is externally stable,
the maximum ratio between the norm of the input and the norm of the output
is called the L2-gain.

Define

H∞ = {G : C+
0 → C|G analytic and sup

Res>0
|G(s)| <∞}

with norm
‖G‖∞ = sup

Res>0
|G(s)|.

Matrices with entries in H∞ will be indicated by M(H∞). The H∞-norm of
matrix functions is

‖G‖∞ = sup
Res>0

σmax

(
G(s)

)
.

The theorem below is stated for systems with finite-dimensional input and
output spaces U and Y but it generalizes to infinite-dimensional U and Y .

Theorem 2.6 A linear system is externally stable if and only if its transfer
function matrix G ∈M(H∞). In this case, ‖G‖∞ is the L2-gain of the system
and we say that G is a stable transfer function.

As for finite-dimensional systems, we need additional conditions to ensure
that internal and external stability are equivalent.
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Definition 2.7 The semigroup S(t) is exponentially stable if there is M ≥
1, α > 0 such that ‖S(t)‖ ≤Me−αt for all t ≥ 0.

Definition 2.8 The system (A,B,C) is internally stable if A generates an
exponentially stable semigroup S(t).

Definition 2.9 The pair (A,B) is stabilizable if there exists K ∈ L(U ,Z)
such that A−BK generates an exponentially stable semigroup.

Definition 2.10 The pair (C,A) is detectable if there exists F ∈ L(Y ,Z)
such that A− FC generates an exponentially stable semigroup.

Theorem 2.11 [18, Thm. 26, Cor. 27] A stabilizable and detectable system
is internally stable if and only if it is externally stable.

Now, let G be the transfer function of a given plant and let H be the
transfer function of a controller, of compatible dimensions, arranged in the
standard feedback configuration shown in Figure 6. This framework is general
enough to include most common control problems. For instance, in tracking,
r is the reference signal to be tracked by the plant output y1. Since r can
also be regarded as modelling sensor noise and d as modelling actuator noise,
it is reasonable to regard the control system in Figure 6 as externally stable
if the four maps from r, d to e1, e2 are in M(H∞). (Stability could also be
defined in terms of the transfer matrix from (r, d) to (y1, y2): both notions of
stability are equivalent.) Let (A,B,C,E) be a state-space realization for G
and similarly let (Ac, Bc, Cc, Ec) be a state-space realization for H. If I+EEc
is invertible, then the 2 × 2 transfer matrix ∆(G,H) which maps the pair
(r, d) into the pair (e1, e2) is given by

∆(G,H) =

 (I +GH)−1 −G(I +HG)−1

H(I +GH)−1 (I +HG)−1

 .
Definition 2.12 The feedback system (Figure 6), or alternatively the pair
(G,H), is said to be externally stable if I + EEc is invertible, and each of
the four elements in ∆(G,H) belongs to M(H∞).

Typically the plant feedthrough E is zero and so the invertibility of I +EEc
is trivially satisfied. The above definition of external stability is sufficient to
ensure that all maps from uncontrolled inputs to outputs are bounded. Fur-
thermore, under the additional assumptions of stabilizability and detectabil-
ity, external stability and internal stability are equivalent.
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Theorem 2.13 [18, Thm. 35] Assume that (A,B,C,E) is a jointly stabi-
lizable/detectable control system and that a controller (Ac, Bc, Cc, Ec) is also
jointly stabilizable/detectable.The closed loop system is externally stable if
and only if it is internally stable.

This equivalence between internal and external stability justifies the use of
controller design techniques based on system input/output behaviour for
infinite-dimensional systems.

3 Issues in Controller Design

For most practical examples, a closed form solution of the partial differential
equation or of the transfer function is not available and an approximation
needs to be used. This approximation is generally calculated using one of the
many standard methods, such as finite elements, developed for simulation
of partial differential equation models. The resulting system of ordinary
differential equations is used in controller design. The advantage to this
approach is that the wide body of synthesis methods available for finite-
dimensional systems can be used.

The usual assumption made on an approximation scheme used for simula-
tion are as follows. Suppose the approximation lies in some finite-dimensional
subspace Zn of the state-space Z, with an orthogonal projection Pn : Z → Zn
where for each z ∈ Z, limn→∞ ‖Pnz− z‖ = 0. The space Zn is equipped with
the norm inherited from Z. Define Bn = PnB, Cn = C|Zn ( the restriction
of Cn to Zn) and define An ∈ L(Zn,Zn) using some method. This leads to a
sequence of finite-dimensional approximations

dz

dt
= Anz(t) +Bnu(t), z(0) = Pnz0,

y(t) = Cnz(t).

Let Sn indicate the semigroup (a matrix exponential) generated by An. The
following assumption is standard.

(A1) For each z ∈ Z, and all intervals of time [t1, t2]

lim
n→∞

sup
t∈[t1,t2]

‖Sn(t)Pnz − S(t)z‖ = 0.
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Assumption (A1) is required for convergence of the response to an initial con-
dition. Assumption (A1) is often satisfied by ensuring that the conditions of
the Trotter-Kato Theorem hold, see for instance, [34, sect. 3.4]. Assumption
(A1) implies that Pnz → z for all z ∈ Z. The strong convergence Pnz → z
for all z ∈ Z and the definitions of Bn = PnB and Cn = C|Zn imply that for
all u ∈ U , z ∈ Z, ‖Bnu−Bu‖ → 0, ‖CnPnz − Cz‖ → 0.

The following result on open loop convergence is straightforward.

Theorem 3.1 Suppose that the approximating systems (An, Bn, Cn) satisfy
assumption (A1). Then for each initial condition z ∈ Z, the uncontrolled ap-
proximating state z(t) converges uniformly on bounded intervals to the exact
state. Also, for each u ∈ L2(0, T ;U), yn → y in the norm on L2(0, T ;Y).

Example 3.2 Indirect Controller Design for Simply Supported Beam. (Eg.
2.4 cont.) Consider a simply supported Euler-Bernoulli beam (Figure 5).
As shown in Example 2.4, a state-space formulation with state space Z =
Hs(0, 1)× L2(0, 1) is

d

dt
z(t) = Az(t) +Bu(t),

where

A =

 0 I

− d4

dx4 0

 , B =

 0

b(·)

 ,
with domain

D(A) = {(φ, ψ) ∈ Hs(0, 1)×Hs(0, 1); φ′′ ∈ Hs(0, 1)}

and

b(x) =
{

1/δ, |x− 0.5| < δ
2

0, |x− 0.5| ≥ δ
2

.

Let φi(x) indicate the eigenfunctions of ∂
4w
∂x4 with simply supported bound-

ary conditions (4). Defining Xn to be the span of φi, i = 1..n, we choose
Zn = Xn × Xn and define Pn to be the projection onto Zn. Let 〈·, ·〉 indi-
cate the inner product on Z (and on Zn). Define the approximating system
(An, Bn) by the Galerkin approximation

〈ż(t), φi〉 = 〈Az(t), φi〉+ 〈b, φi〉u(t), i = 1...n.
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This leads to the standard modal approximation

ż(t) = Anz(t) +Bnu(t), zn(0) = Pnz(0). (6)

This approximation scheme satisfies assumption (A1).
Consider linear-quadratic (LQ) controller design [30, e.g.]: find a control

u(t) so that the cost functional

J(u, z0) =

∫ ∞
0

〈z(t), z(t)〉+ |u(t)|2dt

is minimized where z(t) is determined by (6). The resulting optimal controller
is u(t) = −Knz(t) where Kn = B∗nΠnz(t) and Πn solves the algebraic Riccati
equation

A∗nΠn + ΠnAn − ΠnBnB
∗
nΠn + I = 0

where M∗ indicates the adjoint operator of M . For a matrix M , M∗ is the
complex conjugate transpose of M . Suppose we use the first 3 modes (or
eigenfunctions) to design the controller. As expected, the controller stabi-
lizes the model used in design. However, Figure 7b shows that if even one
additional mode is added to the system model, the controller no longer sta-
bilizes the system. This phenomenon is often called spillover [1]. Figure 8
shows the sequence of controllers obtained for increasing model order. The
controller sequence is not converging to some controller appropriate for the
original infinite-dimensional system. The increase in ‖Kn‖ as approximation
order increases suggests that the original system is not stabilizable. This
is the case here. Although the approximations are stabilizable, the original
model is not stabilizable [13].

As shown by the above example, and also by an example in [29], re-
quirements additional to those sufficient for simulation are required when
an approximation is used for controller design. The issues are illustrated in
Figure 9. Possible problems that may occur are:

– The controlled system may not perform as predicted.

– The sequence of controllers for the approximating systems may not
converge.

– The original control system may not be stabilizable, even if the approx-
imations are stabilizable.
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Figure 7: A linear-quadratic feedback controller K was designed for the beam
in Example 3.2 using the first 3 modes (eigenfunctions). Simulation of the
controlled system with (a) 3 modes and (b) 4 modes is shown. The initial
condition in both cases is the first eigenfunction. Figure (b) illustrates that
the addition of only one additional mode to the model leads to instability in
the controlled system.
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Figure 8: Linear-quadratic optimal feedback for modal approximations of
the simply supported beam in Example 3.2. Since the input space U = R,
the feedback operator Kn is a bounded linear functional and hence can be
uniquely identified with a function, called the gain. The upper figure shows
the feedback gain for the position of beam; the lower figure shows the velocity
gains. Neither sequence is converging as the approximation order increases.
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(a) Open Loop Convergence

(b) Closed Loop Convergence (c) Convergence of controllers

(d) Convergence of controllers
and plants

Figure 9: Typical approximation criteria ensure that the open loops con-
verge. However, in controller design, the controller is generally implemented
as a feedback controller and control of the resulting closed loop system is
needed. Furthermore, a sequence of controllers is produced by applying a
controller synthesis technique to the approximations. This sequence of con-
trollers should converge so that closed loop performance with the original
plant is similar to that predicted by simulations with the approximations.
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– The performance of the controlled infinite-dimensional system may not
be close to that predicted by simulations with approximations (and
may be unstable).

Although (A1) guarantees open loop convergence, additional conditions are
required in order to obtain closed loop convergence.

The gap topology, first introduced in [40], is useful in establishing condi-
tions under which an approximation can be used in controller design. Con-
sider a stable system G; that is G ∈M(H∞). A sequence Gn converges to G
in the gap topology if and only if limn→∞ ‖Gn −G‖∞ = 0. The extension to
unstable systems uses coprime factorizations. Let G be the transfer function
of a system, with right coprime factorization G = ÑD̃−1:

X̃Ñ + Ỹ D̃ = I, X̃, Ñ , Ỹ , D̃ ∈M(H∞).

(If G ∈ M(H∞), then we can choose Ñ = G, D̃ = I, X̃ = 0, Ỹ = I.) A
sequence Gn converges to G in the gap topology if and only if for some right
coprime factorization (Ñn, D̃n) of Gn, Ñn converges to Ñ and D̃n converges to
D̃ in the H∞-norm. For details on the gap (or graph) topology, see [39, 42].
The importance of the gap topology in controller design is stated in the
following result.

Theorem 3.3 [39] Let Gn ∈M(H∞) be a sequence of system transfer func-
tions.

1. Suppose Gn converges to G in the gap topology. Then if H stabilizes G,
there is an N such that H stabilizes Gn for all n ≥ N and the closed
loop transfer matrix ∆(Gn, H) converges to ∆(G,H) in the H∞-norm.

2. Conversely, suppose that there exists an H that stabilizes Gn for all
n ≥ N and so that ∆(Gn, H) converges to ∆(G,H) in the H∞-norm.
Then Gn converges to G in the gap topology.

Thus, failure of a sequence of approximations to converge in the gap topol-
ogy implies that for each possible controller H at least one of the following
conditions holds:

– H does not stabilize Gn for all n sufficiently large,

– the closed loop response ∆(Gn, H) does not converge to ∆(Gn, H).
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On the other hand, if a sequence of approximations does converge in the
gap topology, then the closed loop performance ∆(Gn, H) converges and
moreover, every H that stabilizes G also stabilizes Gn for sufficiently large
approximation order.

The following condition, with assumption (A1) provides a sufficient con-
dition for convergence of approximations in the gap topology. It was first
formulated in [3] in the context of approximation of linear-quadratic regula-
tors for parabolic partial differential equations.

Definition 3.4 The control systems (An, Bn) are uniformly stabilizable if
there exists a sequence of feedback operators {Kn} with ‖Kn‖ ≤M1 for some
constant M1 such that An − BnKn generate SKn(t), ‖SKn(t)‖ ≤ M2e

−α2t,
M2 ≥ 1, α2 > 0.

Since U is assumed finite-dimensional, B is a compact operator. Thus, (A1)
and uniform stabilizability imply stabilizability of (A,B) [15, Thm 2.3] and
in fact the existence of a uniformly stabilizing sequence Kn satisfying (A3)
with limn→∞KnPnz = Kz for all z ∈ Z. The beam in Example 3.2 is
not stabilizable and therefore there is no sequence of uniformly stabilizable
approximations.

Theorem 3.5 [29, Thm. 4.2] Consider a stabilizable and detectable control
system (A,B,C,E), and a sequence of approximations (An, Bn, Cn, E) that
satisfy (A1). If the approximating systems are uniformly stabilizable then
they converge to the exact system in the gap topology.

Example 3.6 Diffusion (Eg. 2.3 cont).

∂z

∂t
=

∂2z

∂x2
+ b(x)u(t), 0 < x < 1,

z(0, t) = 0, z(1, t) = 0,

y(t) =

∫ 1

0

c(x)z(x, t)dx

for some b, c ∈ L2(0, 1). This can be written as

ż(t) = Az(t) +Bu(t),

y(t) = Cz(t)
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where A and B are as defined in Example 2.3 and

Cz =

∫ 1

0

c(x)z(x)dx.

The operatorA generates an exponentially stable semigroup S(t) with ‖S(t)‖ ≤
e−π

2t on the state-space L2(0, L) [8] and so the system is trivially stabilizable
and detectable. The eigenfunctions φi(x) =

√
2 sin(πix), i = 1, 2, ..., of A

form an orthonormal basis for L2(0, L). Defining Zn = spani=1..nφi(x), and
letting Pn be the projection onto Zn, define An by the Galerkin approxima-
tion

〈Anφj, φi〉 = 〈Aφj, φi〉 i = 1..n, j = 1..n.

It is straightforward to show that this set of approximations satisfies assump-
tion (A1) and that the semigroup generated by An has bound Sn(t) ≤ e−π

2t.
Hence the approximations are uniformly stabilizable (using Kn = 0). Thus,
the sequence of approximating systems converges in the gap topology and
will yield reliable results when used in controller design.

It is easy to show that if the original problem is exponentially stable,
and the eigenfunctions of A form an orthonormal basis for Z, then any ap-
proximation formed using the eigenfunctions as a basis, as in the previous
example, will both satisfy assumption (A1) and be trivially uniformly stabi-
lizable and detectable. However, in practice other approximation methods,
such as finite elements, are often used.

Many generators A for partial differential equation models can be de-
scribed as follows. Let V be a Hilbert space that is dense in Z. The notation
〈·, ·〉 indicates the inner product on Z, and 〈·, ·〉V indicates the inner product
on V. The norm on Z is indicated by ‖ · ‖ while the norm on V will be indi-
cated by ‖·‖V . Let the bilinear form a : V × V 7→ C be such that for some
c1 > 0

|a(φ, ψ)| ≤ c1‖φ‖V ‖ψ‖V (7)

for all φ, ψ ∈ V. An operator A can be defined through this form by

〈−Aφ, ψ〉 = a(φ, ψ), ∀ψ ∈ V

with D(A) = {φ ∈ V | a(φ, ·) ∈ Z}. Assume that in addition to (7), a(·, ·)
satisfies Garding’s inequality: there exists k ≥ 0, such that for all φ ∈ V

Re a(φ, φ) + k〈φ, φ〉 ≥ c‖φ‖2
V. (8)
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For example, in the diffusion example above, V = H1
0(0, 1) and

a(φ, ψ) =

∫ 1

0

φ′(x)ψ′(x)dx.

The inequalities (7) and (8) guarantee that A generates a C0- semigroup with
bound ‖T (t)‖ ≤ ekt [37, sect. 4.6]. This framework includes many problems
of practical interest such as diffusion and beam vibrations with Kelvin-Voigt
damping [29].

Defining a sequence of finite-dimensional subspaces Zn ⊂ V , the approx-
imating generator An is defined by

〈−Anzn, vn〉 = a(zn, vn), ∀zn, vn ∈ Zn. (9)

This type of approximation is generally referred to as a Galerkin approxi-
mation and includes finite-element as well as many other popular approxi-
mation methods. For such problems, the following result, which generalizes
[3, Lem. 3.3] is useful. It applies to a number of common applications, such
as the usual linear spline finite-elements for approximating the heat equation
and other diffusion problems. Finite-element cubic spline approximations to
damped beam vibrations are also included.

Theorem 3.7 [29, Thm. 5.2,5.3] Let Hn ⊂ V be a sequence of finite-
dimensional subspaces such that for all z ∈ V there exists a sequence zn ∈ Zn
with

lim
n→∞

‖zn − z‖V = 0. (10)

If the operator A satisfies the inequalities (7) and (8) then

1. Assumption (A1) is satisfied with ‖Sn(t)‖ ≤ ekt;

2. If K ∈ L(Z, U) is such that A − BK generates a stable semigroup
then the semigroups SnK(t) generated by An − BnKPn are uniformly
exponentially stable. In other words, there exists M ≥ 1, α > 0 such
that

‖SnK(t)‖ ≤Me−αt ∀n > N. (11)

and the approximations (An, Bn) are thus uniformly stabilizable.
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Example 3.8 Damped String. The wave equation

∂2w(x, t)

∂t2
= c2∂

2w(x, t)

∂x2
, 0 < x < 1, t ≥ 0,

describes the deflection z(x, t) of a vibrating string of unit length as well
as many other situations such as acoustic plane waves, lateral vibrations in
beams, and electrical transmission lines [38, e.g., chap.1]. Suppose the ends
are fixed:

w(0, t) = 0, w(1, t) = 0.

Including control and observation, as well as the effect of some light damping
[36] leads to the model

∂2w(x, t)

∂t2
+ ε〈∂w(·, t)

∂t
, b(·)〉b(x) =

∂2w

∂x2
+ b(x)u(t), 0 < x < 1,

y(t) =

∫ 1

0

b(x)
∂w(x, t)

∂t
dx

where ε > 0 and b ∈ L2(0, 1) describes both the control and observation
action, which is a type of distributed colocation. The state-space is Z =
H1

0(0, 1)× L2(0, 1) and the state-space equations are

d

dt

[
z
dz
dt

]
= A

[
z
dz
dt

]
+

[
0
b(x)

]
u(t),

y(t) = C

[
z
dz
dt

]
where

A

[
w
v

]
=

[
0 I
∂2w
∂x2 −ε〈v, b〉b(x)

]
,

D(A) =
{

(w, v) ∈ H1
0 (0, 1)×H1

0 (0, 1)
}
,

C

[
w
v

]
=

[
0 〈b(x), v〉

]
.

Suppose that

b(x) =

{
1, 0 < x < 1

2
,

0, 1
2
< x < 1
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The eigenvalues λn of A have all negative real parts, but asymptote to the
imaginary axis so that supn Re(λn) = 0. The results in [18] (see also [8,
sect. 5.2]) imply that the system is not exponentially stabilizable. Thus, no
sequence of approximations is uniformly stabilizable.

However, it is possible to construct a sequence of finite-dimensional ap-
proximations that converge in the gap topology. The transfer function is

G(s) =
s
2

sinh (s) + 2 cosh
(
s
2

)
− 3 cosh2

(
s
2

)
+ 1

s(s+ ε
2
) sinh (s) + ε(2 cosh

(
s
2

)
− 3 cosh2

(
s
2

)
+ 1)

.

The function G ∈ H∞, so the system is L2-stable, and furthermore,

lim
|s|→∞,Res>0

G(s) = 0.

Thus, we can find a sequence of rational functions Gn so that

lim
n→∞

‖Gn(s)−G(s)‖∞ = 0.

The state-space realizations corresponding to {Gn} are finite-dimensional
and thus there are finite-dimensional approximations that converge in the
gap topology.

The above example illustrates that uniform stabilizability is a sufficient,
not necessary, condition for convergence of approximations in the gap topol-
ogy.

Once an approximation scheme that converges in the gap topology is
found (typically, by finding one that satisfies (A1) and is uniformly stabiliz-
able), the next step is controller design. The sequence of controllers designed
using the approximations should converge to a controller for the original
infinite-dimensional system that yields the required performance, as well as
stability. (See Figure 9.)

A common procedure for controller design is to first design a state feed-
back controller: u(t) = −Kz(t). Then, since the full state is not available,
an estimator is designed to obtain an estimate of the state using knowledge
of the output y and the input u. The controller is formed by using the state
estimate as input to a state feedback controller. Controller design of this
type for infinite-dimensional systems is described in [8, sect. 5.3].

However, typically both the state feedback and the estimator are de-
signed using a finite-dimensional approximation (An, Bn, Cn, E). Suppose
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Fn ∈ L(Y ,Z) is found so that all the eigenvalues of An − FnCn have nega-
tive real parts, and similarly Kn ∈ L(Z,U) is such that all the eigenvalues
of An − BnKn have negative real parts. The resulting finite-dimensional
controller is

żc(t) = Anzc(t) +Bnu(t) + Fn
(
y(t)− Cnzc(t)

)
yc(t) = −Knzc(t)

This framework does not include the effect of disturbances to the con-
trolled system, shown as r and v in Figure 6. To include these effects, and
put the system into the standard framework, define an augmented system
output

ỹ(t) =

[
y(t)
u(t)

]
=

[
C
0

]
z(t) +

[
E
I

]
u(t)

Letting e1(t) = r − ỹ indicate the controller input, the controller equations
are then

żc(t) = (An − FnCn)zc(t)−
[
Fn Bn

]
e(t)

yc(t) = −Knzc(t)
(12)

and the plant input is yc + d.
It is well known that such a controller stabilizes the approximation (An, Bn, Cn, E)

[30, e.g.]. However, it must also stabilize the original system (A,B,C,E).
For this to happen, the controller sequence must converge in some sense.
For controller convergence, an assumption in addition to (A1) and uniform
stabilizability is required.

Definition 3.9 The observation systems (An, Cn) are uniformly detectable
if there exists a sequence of operators {Fn} with ‖Fn‖ ≤M3 for some constant
M3 such that An − FnCn generate SFn(t), ‖SFn(t)‖ ≤ M4e

−α4t, M4 ≥ 1,
α4 > 0.

The approximating systems (An, Cn) are uniformly detectable if and only
if (A∗n, C

∗
n) is uniformly stabilizable and thus uniform detectability can be

established using conditions for uniform stabilizability. In particular, if A
is defined through a bilinear form satisfying (7) and (8) and condition (10)
in Theorem 3.7 is satisfied, then detectability of (A,C) implies uniform de-
tectability of (An, Cn).
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Theorem 3.10 Assume that (A1) holds, that the operators Kn, Fn used to
define the sequence of controllers (12) satisfy Definitions 3.4 and 3.9 respec-
tively and there exists K ∈ L(U ,Z), F ∈ L(Y ,Z) such that limn→∞KnPnz =
Kz for all z ∈ Z, limn→∞ Fny = Fy for all y ∈ Y. Indicating the con-
troller transfer function by Hn, the controllers converge in the gap topology
and so for sufficiently large n, the output feedback controllers (12) stabilize
the infinite-dimensional system (2,5). Furthermore, the closed loop systems
∆(Gn, Hn) converge uniformly to the closed system ∆(G,H) where H indi-
cates the transfer function of the infinite-dimensional controller

żc(t) = (A− FC)zc(t)−
[
F B

]
e(t)

yc(t) = −Kzc(t)
(13)

Proof: The assumptions on the controller imply that, as for the plant (Thm.
3.10) the controllers converge in the gap topology. See [28] for details. This
implies that closed loops ∆(G,Hn) converge to ∆(G,H) and that the con-
trollers stabilize the original system for large enough n. Since the assump-
tions also imply that the approximating systems Gn converge in the gap
topology to G, the closed loop systems ∆(Gn, Hn) converge uniformly to the
closed system ∆(G,H). �

Controller design is explored further in the next two sections for the syn-
thesis methods most commonly used for multi-input-multi-output systems:
linear quadratic control and H∞-control.

4 Linear-Quadratic Regulators

Consider the linear-quadratic (LQ) controller design objective of finding a
control u(t) so that the cost functional

J(u, z0) =

∫ ∞
0

〈C1z(t), C1z(t)〉+ 〈u(t), Ru(t)〉dt (14)

is minimized where R ∈ L(U ,U) is a symmetric positive definite operator
weighting the control, C1 ∈ L(Z,Y) (with Hilbert space Y) weights the
state, and z(t) is determined by (2). The theoretical solution to this problem
is similar in structure to that for finite-dimensional systems [8, 12, 22, 23].

Definition 4.1 The system (2) with cost (14) is optimizable if for every
z0 ∈ Z there exists u ∈ L2(0,∞;U) such that the cost is finite.
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Theorem 4.2 [8, Thm 6.2.4, 6.2.7] If (2) with cost (14) is optimizable and
(A,C1) is detectable, then the cost function (14) has a minimum for every
z0 ∈ Z. Furthermore, there exists a self-adjoint non-negative operator Π ∈
L(H,H) such that

min
u∈L2(0,∞;U)

J(u, z0) = 〈z0,Πz0〉.

The operator Π is the unique non-negative solution to the operator equation

〈Az1,Πz2〉+〈Πz1, Az2〉+〈C1z1, C1z2〉−〈B∗Πz1, R
−1B∗Πz1〉 = 0 z1, z2 ∈ D(A).

(15)
Defining K = R−1B∗Π, the corresponding optimal control is u = −Kz(t)
and A−BK generates an exponentially stable semigroup.

It is straightforward to show that the assumption of optimizability in Theo-
rem 4.2 is equivalent to stabilizability.

The Riccati operator equation (15) is equivalent to(
A∗Π + ΠA− ΠBR−1B∗Π + C∗1C1

)
z = 0, ∀z ∈ D(A).

In practice, the operator equation (15) cannot be solved and the control is
calculated using an approximation. The cost functional becomes

J(u, z0) =

∫ ∞
0

〈C1nz(t), C1nz(t)〉+ 〈u(t), Ru(t)〉dt (16)

where z(t) is the state of the approximating system

ż(t) = Anz(t) +Bnu(t), z(0) = Pnz0,

on Zn and C1n = C1|Zn . If (An, Bn) is stabilizable and (An, C1n) is detectable,
then the cost functional has the minimum cost 〈Pnz0,ΠnPnz0〉 where Πn is
the unique non-negative solution to the algebraic Riccati equation

A∗nΠn + ΠnAn − ΠnBnR
−1B∗nΠn + C∗1nC1n = 0 (17)

on the finite-dimensional space Zn. The feedback control Kn = R−1B∗nΠn is
used to control the original system (2).

The sequence of controllers Kn, along with the associated performance
must converge in some sense in order for this approach to be valid. Assump-
tion (A1), along with uniform stabilizability, guarantees convergence of the
approximating systems. However, in order to obtain controller convergence
a set of assumptions involving the dual system (A∗, B∗, C∗1) is required.
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(A1∗) (i) For each z ∈ Z, and all intervals of time [t1, t2]

sup
t∈[t1,t2]

‖S∗n(t)Pnz − S∗(t)z‖ → 0;

(ii) For all u ∈ U , y ∈ Y , ‖C∗1ny−C∗1y‖ → 0 and ‖B∗nPnz −B∗z‖ → 0.

Theorem 4.3 [3, Thm. 6.9],[15, Thm. 2.1, Cor. 2.2] If assumptions (A1),
(A1∗) are satisfied, (An, Bn) is uniformly stabilizable and (An, C1n) is uni-
formly detectable, then for each n, the finite-dimensional ARE (17) has a
unique nonnegative solution Πn with sup ‖Πn‖ < ∞. There exists constants
M1 ≥ 1, α1 > 0, independent of n, such that the semigroup SnK(t) generated
by An −BnKn satisfy

‖SnK(t)‖ ≤M1e
−α1t.

For sufficiently large n, the semigroups SKn(t) generated by A−BKn are uni-
formly exponentially stable; that is there exists M2 ≥ 1, α2 > 0, independent
of n, such that

‖SKn(t)‖ ≤M2e
−α2t.

Furthermore, letting Π indicate the solution to the infinite-dimensional
Riccati equation (15), for all z ∈ Z,

lim
n→∞

‖ΠnPnz − Πz‖ = 0

and
lim
n→∞

‖KnPnz −Kz‖ = 0,

and the cost with feedback Knz(t) converges to the optimal cost:

J(−Knz(t), z0)→ 〈Πz0, z0〉.

The assumption (A1∗) implies open-loop convergence of the dual systems
(A∗n, C

∗
1n, B

∗
n). It is required since the optimal control Kz relates to an opti-

mization problem involving the dual system. Note that (A,C1) is uniformly
detectable if and only if (A∗, C∗1) is uniformly stabilizable, and so (A1∗) along
with uniform detectability can be regarded as dual assumptions to (A1) and
uniform stabilizability. Since the operators B and C1 are bounded, (A1∗ii)
holds if both the input and output spaces are finite-dimensional. However,
the satisfaction of (A1∗i), strong convergence of the adjoint semigroups, is
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not automatic. A counter-example may be found in [5] where the assump-
tions except (A1∗i) are satisfied and the conclusions of the above theorem
do not hold. The conclusions of the above theorem, that is, uniform bound-
edness of Πn and the uniform exponential stability of SnK(t), imply uniform
stabilizability of (An, Bn). Although Example 3.8 illustrated that uniform
stabilizability is not necessary for convergence of the approximating systems,
it is necessary to obtain a linear-quadratic controller sequence that provides
uniform exponential stability. The above result has been extended to un-
bounded control operators B for parabolic partial differential equations, such
as diffusion problems [2, 22].

Example 4.4 Damped Beam As in Examples 2.4 and 3.2, consider a sim-
ply supported Euler-Bernoulli beam but now include viscous damping with
parameter cd = .1. We obtain the partial differential equation

∂2w

∂t2
+ cd

∂w

∂t
+
∂4w

∂x4
= br(x)u(t), t ≥ 0, 0 < x < 1,

with the same boundary conditions as before. However, we now consider an
arbitrary location r for the control operator b so that

br(x) =

{
1/δ, |x− r| < δ

2

0, |x− r| ≥ δ
2

.

Recall that the state-space is Z = Hs(0, 1)(0, 1) × L2(0, 1) with state
z(t) = (w(·, t), ∂

∂t
w(·, t)). An obvious choice of weight for the state is C1 = I.

Since there is only one control, choose control weight R = 1. We wish to
choose the actuator location in order to minimize the response to the worst
choice of initial condition. In other words, choose r in order to minimize

max
z0∈Z
‖z0‖=1

min
u∈L2(0,∞;U)

Jr(u, zo) = ‖Π(r)‖.

The performance for a particular r is µ(r) = ‖Π(r)‖ and the optimal perfor-
mance

µ̂ = inf
r∈Ωm

‖Π(r)‖.

This optimal actuator location problem is well-posed and a optimal location
r̂ exists [31, Thm. 2.6].
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(b) Optimal performance µ̂n = ‖Π(r̂n)‖

Figure 10: Optimal actuator location and performance for approximations
of the viscously damped beam with weights C1 = I, R = 1. No convergence
of the optimal location or performance is seen as the approximation order is
increased.

Let φi(x) indicate the eigenfunctions of ∂
4w
∂x4 with simply supported bound-

ary conditions. Defining Xn to be the span of φi, i = 1..n, we choose
Zn = Xn × Xn. This approximation scheme satisfies all the assumptions
of Theorem 4.3 and so the sequence of solutions Πn to the corresponding
finite-dimensional ARE’s converge strongly to the exact solution Π.

However, as shown in Figure 10, this does not imply convergence of the
optimal actuator locations, or of the corresponding actuator locations.

The problem is that strong convergence of the Riccati operators is not suf-
ficient to ensure that as the approximation order increases, the optimal cost
µ̂n and a corresponding sequence of optimal actuator locations r̂n converge.
Since the cost is the norm of the Riccati operator, uniform convergence of
the operators is required. That is,

lim
n→∞

‖ΠnPn − Π‖ = 0,

is needed in order to use approximations in determining optimal actuator
location. The first point to consider is that since Πn has finite rank, Π must
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be a compact operator in order for uniform convergence to occur, regardless
of the choice of approximation method. Since the solution to an ARE is not
always compact, it is not possible to compute the optimal actuator location
for every problem.

Example 4.5 [8] Consider any A,B,C1 such that A∗ = −A and C1 = B∗.
Then Π = I is a solution to the ARE

A∗Π + ΠA− ΠBB∗Π + C∗1C1 = 0.

The identity I is not compact on any infinite-dimensional Hilbert space.

Example 4.6 This example is a generalization of [6, Example 1]. On the
Hilbert space Z = R×H where H is any infinite-dimensional Hilbert space,
define

A =

[
−1 0
0 −I

]
, B =

[
1
0

]
, C1 =

[ √
3 0

0
√

2M

]
where M is a bounded operator on H. The solution to the ARE

A∗Π + ΠA−ΠBB∗Π + C∗1C1 = 0

is

Π =

[
1 0
0 M2

]
.

This operator is not compact if M is not a compact operator; for instance
if M = I. This example is particularly interesting because A is a bounded
operator and also generates an exponentially stable semigroup.

Theorem 4.7 [31, Thm. 2.9,3.3] If B and C1 are both compact operators,
then the Riccati operator Π is compact. Furthermore, if a sequence of approx-
imations satisfy (A1), (A1∗) and are uniformly stabilizable and detectable,
then the minimal non-negative solution Πn to (17) converges uniformly to
the non-negative solution Π to (15): limn→∞ ‖Πn − Π‖ = 0.
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Thus, if B and C1 are compact operators, guaranteeing compactness of
the Riccati operator, then any approximation method satisfying the assump-
tions of Theorem 4.3 will lead to a convergent sequence of optimal actuator
locations. A finite-dimensional input space guarantees that B is a compact
operator; and similarly a finite-dimensional output space will guarantee that
C1 is compact, although these assumptions are not necessary.

For an important class of problems the Riccati operator is compact, even
if the observation operator C1 is not compact.

Definition 4.8 A semigroup S(t) is analytic if t→ S(t) is analytic in some
sector |arg t| < θ .

Analytic semigroups have a number of nice properties [34, 37]. Recall that
the solution S(t)z ∈ D(A), t ≥ 0, if z ∈ D(A). If S is an analytic semgroup,
S(t)z ∈ D(A) for all z ∈ Z. Also, the eigenvalues of the generator A of
an analytic semigroup lie in a sector |argλ| < π − ε where ε > 0. The heat
equation and other parabolic partial differential equations lead to an analytic
semigroup. Weakly damped wave and beam equations are not associated
with analytic semigroups.

If A generates an analytic semigroup, uniform convergence can be ob-
tained without compactness of the state weight C1. The result [22, Thm.
4.1], applies to operators B and C1 that may be unbounded. It is stated
below for bounded B and C1.

Theorem 4.9 Let A generate an analytic semigroup S(t) with ‖S(t)‖ ≤
Meω0t and define Â = (ωI − A) for ω > ω0. Assume that the system
(A,B,C1) has the following properties:

1. (A,B) is stabilizable and (A,C1) is detectable;

2. either C∗1C1 ≥ rI, r > 0, or for some F ∈ L(Y ,Z) such that A− FC1

generates an exponentially stable semigroup, Â−1FC1 is compact;

3. either B∗Â−1 is compact or there exists a compact operator K ∈ L(Z,U)
such that A−BK generates an exponentially stable semigroup;

Assume the following list of properties for the approximation scheme, where
γ is any number 0 ≤ γ < 1:

1. For all z ∈ Z, ‖Pnz − z‖ → 0;
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2. The approximations are uniformly analytic. That is, for some ε > 0

‖AθneAnt‖ ≤ Mθe
(ω0+ε)t

tθ
, t > 0, 0 ≤ θ ≤ 1;

3. For some s and γ independent of n, 0 ≤ γ < 1,

(a) ‖Â−1 − Â−1
n Pn‖ ≤ M

ns ;

(b) ‖B∗z −B∗nPnz‖ ≤Mns(γ−1)‖z‖[D(A∗)], z ∈ D(A∗).

Then limn→∞ ‖ΠnPn − Π‖ = 0.

The above conditions on the approximation scheme imply assumptions (A1)
and (A1∗) as well as uniform stabilizability and detectability.

Provided that Πn converges to Π in operator norm at each actuator lo-
cation, the sequence of optimal actuator locations for the approximations
converges to the correct optimal location.

Theorem 4.10 [31, Thm. 3.5] Let Ω be a closed and bounded set in RN .
Assume that B(r), r ∈ Ω, is compact and such that for any r0 ∈ Ω,

lim
r→r0
‖B(r)−B(r0)‖ = 0.

Assume also that (An, Bn(r), C1n) is a family of uniformly stabilizable and
detectable approximations satisfying (A1) and (A1∗) such that for each r,

lim
n→∞

‖Πn(r)− Π(r)‖ = 0.

Letting r̂ be the optimal actuator location for (A,B(r), C1) with optimal cost
µ̂ and defining similarly r̂n, µ̂n, it follows that

µn → µ,

r̂n → r̂.

Example 4.11 Viscously Damped Beam, cont. Consider the same vis-
cously damped bean system and control problem as in Example 4.4, except
that now instead of trying to minimize the norm of the entire state, C1 = I,
we consider only the position. Choose the weight C1 = [I 0] where I here
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Figure 11: Optimal actuator location and performance for different approx-
imations of the viscously damped beam with weights C1 = [I 0], R = 1.
Although the output space is infinite-dimensional, C1 is a compact oper-
ator. This implies uniform convergence of the Riccati operators and thus
convergence of both the optimal actuator locations r̂n and optimal costs µ̂n.
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indicates the mapping from H2
0(0, 1) into L2(0, 1). Although the semigroup

is not analytic, both B and C1 are compact operators on Z. Using the same
modal approximations as before, we obtain convergence of the approximating
optimal performance and the actuator locations. This is illustrated in Figure
11.

Example 4.12 Diffusion. (Eg. 2.3 cont.)

∂z

∂t
=
∂2z

∂x2
+ br(x)u(t) 0 < x < 1,

br(x) =

{
1/δ, |x− r| < δ

2

0, |x− r| ≥ δ
2

.

∂z

∂x
(0, t) = 0,

∂z

∂x
(1, t) = 0.

We wish to determine the best location r of the actuator to minimize

Jr(u, z0) =

∫ ∞
0

1000

∫ 1

0

|z(x, t)|2dx+ |u(t)|2dt

with respect to the worst possible initial condition. This means that we want
to minimize ‖Π(r)‖ where Π solves the ARE with C1 =

√
1000I and R = 1.

Note that C1 is not a compact operator. However, A = ∂2

dx2 with domain
D(A) = {z ∈ H2(0, 1)|z′(0) = z′(1) = 0} generates an analytic semigroup
on L(0, 1). Defining Zn to be the span of the first n eigenfunctions and
defining the corresponding Galerkin approximation as in Example 3.6 leads
to an approximation that satisfies the assumptions of Theorem 4.9 [22] and so
limn→∞ ‖Πn(r)−Π(r)‖ = 0 for each location r. Convergence of the optimal
performance and of a corresponding sequence of actuator locations is shown
in Figure 12.

Figure 13 illustrates that this optimal actuator location problem is non-
convex. We are only guaranteed to have convergence of a sequence of optimal
actuator locations, not every sequence.

The discussion in this section has so far been concerned only with state
feedback. However, in general the full state z is not available and a measure-
ment

y(t) = C2z(t), (18)
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Figure 12: Optimal actuator location and performance for approximations
of the of the diffusion equation, C1 =

√
1000I, R = 1. Since the semigroup is

analytic, uniform convergence of Πn to Π is obtained, even for a non-compact
C1 such as used here. This leads to convergence of the optimal performance
and of a corresponding sequence of actuator locations.
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Figure 13: The cost ‖Π(r)‖ as a function of r for the heat equation, C =√
1000I, is not a convex function.
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where C2 ∈ L(Z,W) and W is a finite-dimensional Hilbert space, is used to
estimate the state.

As for finite-dimensional systems, we construct an estimate of the state.
Choose some F ∈ L(W ,Z) so that A−FC2 generates an exponentially stable
semigroup. This can be done, for instance, by solving a Riccati equation dual
to that for control: F = ΣC∗2R

−1
e where for some B1 ∈ L(Z,V), V a Hilbert

space and Re ∈ L(W ,W) with Re > 0,(
ΣA∗ + AΣ +B1B

∗
1 − ΣC∗2R

−1
e C2Σ

)
z = 0, ∀z ∈ D(A∗). (19)

The estimator is

że(t) = Aze(t) +Bu(t) + F
(
y(t)− C2ze(t)

)
.

Stability of A− FC2 guarantees that limt→∞ ‖ze(t)− z(t)‖ = 0.
The controller is formed by using the state estimate as input to a state

feedback controller. As explained in section 3, this leads to the controller

żc(t) = (A− FC2)zc(t)−
[
F B

]
e(t)

yc(t) = −Kzc(t)
(20)

where e(t) = r(t)− ỹ(t) and

ỹ(t) =

[
y(t)
u(t)

]
=

[
C2

0

]
z(t) +

[
0
I

]
u(t).

As for finite-dimensional systems, if A − FC2 and A − BK each generate
an exponentially stable semigroup the above controller stabilizes the infinite-
dimensional system (2),(18) [8, sect. 5.3].

The controller (20) is infinite-dimensional. A finite-dimensional approx-
imation to this controller can be calculated using a finite-dimensional ap-
proximation (An, Bn, C2n) to the original system (A,B,C2). Consider Fn =
ΣnC

∗
2nR

−1
e , where Σn solves the ARE

ΣnA
∗
n + AnΣn +B1nB

∗
1n − ΣnC

∗
2nR

−1
e C2nΣ = 0. (21)

Results for convergence of solutions Σn and the operators Fn follow from
arguments dual to those for convergence of solutions to the control Riccati
equation (17).
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Theorem 4.13 Assume that assumptions (A1) and (A1∗) hold for approxi-

mations of (A,
[
B B1

]
,

[
C1

C2

]
) and that the approximations are also uni-

formly stabilizable and uniformly detectable. Then the operators Kn , Fn
obtained by solving the Riccati equations (17) and (21) respectively converge
to the operators K and F obtained by solving (15) and (19). Furthermore, the
sequence Kn uniformly stabilizes (An, Bn) and the sequence Fn is uniformly
detectable for (An, C2n).

Defining

ỹ(t) =

[
y(t)
u(t)

]
=

[
C2

0

]
z(t) +

[
0
I

]
u(t)

and letting e(t) = r − ỹ, the finite-dimensional controller is

żc(t) = (An − FnC2n)zc(t)−
[
Fn Bn

]
e(t)

yc(t) = −Knzc(t).
(22)

It follows from Theorem 3.10 that the sequence of controllers (22) converge in
the gap topology to (20), and that they stabilize the original system for large
enough n. Furthermore, the corresponding closed loop systems converge.

5 H∞ Control

Many applications involve a unknown and uncontrolled disturbance d(t). An
important objective of controller design in these situations is to reduce the
system’s response to the disturbance. The system equations (2,5) become

dz

dt
= Az(t) +Bu(t) +Dd(t), z(0) = 0 (23)

with cost
y1(t) = C1z(t) + E1u(t). (24)

Since we are interested in reducing the response to the disturbance, the initial
condition z(0) is set to zero. We assume that d(t) ∈ L2(0,∞;V) where V
is a Hilbert space and that D ∈ L(V ,Z) is a compact operator. (This last
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assumption follows automatically if V is finite-dimensional.) The measured
signal, or input to the controller is

y2(t) = C2z(t) + E2d(t) (25)

The operator C2 ∈ L(Z,W) for some finite-dimensional Hilbert space W
and E2 ∈ L(V ,W).

Let G denote the transfer function from d to y1 and let H denote the
controller transfer function:

û(s) = H(s)ŷ2(s).

The map from the disturbance d to the cost y1 is

ŷ1 = C1(sI − A)−1(Dd̂+Bû)

= C1(sI − A)−1(Dd̂+BHŷ2).

Using (23) and (25) to eliminate y2, and defining

G11(s) = C1(sI − A)−1D, G12(s) = C1(sI − A)−1B + E1,
G21(s) = C2(sI − A)−1D + E2, G22(s) = C2(sI − A)−1B,

we obtain the transfer function

F(G,H) = G11(s) +G12(s)H(s)(I −G22(s)H(s))−1G21(s)

from the disturbance d to the cost y1.
The controller design problem is to find, for given γ > 0, a stabilizing

controller H so that ∫ ∞
0

‖y1(t)‖2 <

∫ ∞
0

γ2‖d(t)‖2dt.

If such a controller is found, the controlled system will then have L2-gain less
than γ.

Definition 5.1 The system (23,24,25) is stabilizable with attenuation γ if
there is a stabilizing controller H so that

‖F(G,H)‖∞ < γ.
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To simplify the formulae, we make the assumptions that

E∗1
[
C1 E1

]
=
[

0 I
]
,

[
D
E2

]
E∗2 =

[
0
I

]
. (26)

With these simplifying assumptions, the cost y1 has norm∫ ∞
0

‖y1(t)‖2dt =

∫ ∞
0

‖C1z(t)‖2 + ‖u(t)‖2dt

which is the linear quadratic cost (14) with normalized control weight R = I.
The difference is that here we are considering the effect of the disturbance d
on the cost, instead of the initial condition z(0). Also, the problem formu-
lation (23,24,25) can include robustness and other performance constraints.
For details, see, for example, [30, 41].

We will assume throughout that (A,D) and (A,B) are stabilizable and
that (A,C1) and (A,C2) are detectable. These assumptions ensure that an
internally stabilizing controller exists; and that internal and external stability
are equivalent for the closed loop if the controller realization is stabilizable
and detectable.

Consider first the full information case:

y2(t) =

[
x(t)
d(t)

]
=

[
I
0

]
x(t) +

[
0
I

]
d(t). (27)

An important characteristic of H∞-disturbance attenuation is that, in
general, a system is not stabilizable with attenuation γ for every γ. However,
if it is stabilizable with attenuation γ, the attenuation (in the full-information
case ) can be achieved with constant state-feedback.

Definition 5.2 The state feedback K ∈ L(Z,U) is γ-admissible if A− BK
generates an exponentially stable semigroup and the feedback u(t) = −Kz(t)
is such that γ-attenuation is achieved.

Theorem 5.3 [4, 20] Assume that (A,B) is stabilizable and (A,C1) is de-
tectable. For γ > 0 the following are equivalent:

– the full-information system (23,24,27) is stabilizable with disturbance
attenuation γ,
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– there exists a nonnegative, self-adjoint operator Σ on Z such that for
all z ∈ D(A),

(
A∗Π + ΠA+ Π

(
1

γ2
DD∗ −BB∗

)
Π + C∗1C1

)
z = 0 (28)

and A − BB∗Π + 1
γ2DD

∗Π 1
γ2DD

∗Π generates an exponentially stable
semigroup on Z.

In this case K = B∗Π is a γ-admissible state-feedback.

Notice that as γ →∞, the Riccati equation for the linear quadratic prob-
lem is obtained. Since the operator Riccati equation (28) can’t be solved, a
finite-dimensional approximation to the original infinite-dimensional system
is used to approximate the exact control K = B∗Π. As in previous sec-
tions, let Zn be a finite-dimensional subspace of Z and Pn the orthogonal
projection of Z onto Zn. Consider a sequence of operators An ∈ L(Zn,Zn),
Bn = PnB, Dn = PnD, C1n = C1|Zn . Assumptions similar to those used for
linear quadratic control are required.

Theorem 5.4 [16, Theorem 2.5, Cor. 2.6] Assume a sequence of approxi-
mations satisfy (A1),(A1∗), (An, Bn) are uniformly stabilizable and (An, C1n)
are uniformly detectable. Assume that the original problem is stabilizable with
attenuation γ. For sufficiently large n the Riccati equation

A∗nΠn + ΠnAn + Πn

(
1

γ2
DnD

∗
n −BnB

∗
n

)
Πn + C∗1nC1n = 0, (29)

has a nonnegative, self-adjoint solution Πn. For such n

– There exist positive constants M1 and ω1 such that the semigroup Sn2(t)
generated by An + 1

γ2DnD
∗
nΠn−BnB

∗
nΠn satisfies ‖Sn2(t)‖ ≤M1e

−ω1 t.

– Kn = (Bn)∗Πn is a γ-admissible state feedback for the approximating
system and there exists M2, ω2 > 0 such that the semigroup SnK(t)
generated by An +BnKn satisfies ‖SnK(t)‖ ≤M2e

−ω2t.

Moreover, for all z ∈ Z, ΠnPnz → Πz as n → ∞ and Kn = (Bn)∗Πn

converges to K = B∗2Π in norm. For n sufficiently large, KnPn is a γ-
admissible state feedback for the infinite-dimensional system.
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The optimal disturbance attenuation problem is to find

γ̂ = inf γ

over all γ such that (23,24,27) is stabilizable with attenuation γ. Let γ̂n
indicate the corresponding optimal disturbance attenuation for the approx-
imating problems. Theorem 5.4 implies that lim supn→∞ γ̂n ≤ γ̂ but in fact
convergence of the optimal disturbance attenuation can be shown.

Corollary 5.5 [16, Thm. 2.8] With the same assumptions as Theorem 5.4,
it follows that

lim
n→∞

γ̂n = γ̂.

Example 5.6 Flexible Slewing Beam. Consider an Euler-Bernoulli beam
clamped at one end and free at other end. Let w(x, t) denote the deflection
of the beam from its rigid body motion at time t and position x. The de-
flection can be controlled by applying a torque at the clamped end (x = 0).
We assume that the hub inertia Ih is much larger than the beam inertia, so
that, letting θ(t) indicate the rotation angle, u(t) = Ihθ̈(t) is a reasonable
approximation to the applied torque. The disturbance d(t) induces a uni-
formly distributed load ρdd(t). The values of the physical parameters used
in the simulations are listed in Table 1. Use of the Kelvin-Voigt model for
damping leads to the following description of the beam vibrations:

ρ
∂2w

∂t2
+cv

∂w

∂t
+
∂2

∂r2

[
EI

∂2w

∂x2
+ cdI

∂3w

∂x2∂t

]
=
ρx

Ih
u(t)+ρd d(t), 0 < x < L.

The boundary conditions are

w(0, t) = 0,
∂w

∂x
(0, t) = 0,[

EI
∂2w

∂r2
+ cdI

∂3w

∂x2∂t

]
x=L

= 0,

[
EI

∂3w

∂x3
+ cdI

∂4w

∂x3∂t

]
x=L

= 0.

Let z(t) = (w(·, t), ∂
∂t
w(·, t)), Hf (0, L) be the closed linear subspace of

H2(0, L) defined by

Hf (0, L) =

{
w ∈ H2(0, L) : w(0) =

dw

dx
(0) = 0

}
.
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E 2.1× 1011N/m2

I 1.2× 10−10m4

ρ 3.0 kg/m
cv .0010Ns/m2

cd .010Ns/m2

L 7.0m
Ih 39.kgm2

ρd .12 1/m

Table 1: Physical Constants

With the state space Z = Hf (0, L) × L2(0, L), a state-space formulation of
the above partial differential equation problem is

d
dt
z(t) = Az(t) +Bu(t) +Dd(t),

where

B =

 0

x
Ih

 , D =

 0

ρd

ρ

 , A =

 0 I

−EI
ρ
d4

dr4
− cdI

ρ
d4

dr4
− cv

ρ

 ,
with, defining M = EI d2

dr2
φ+ cdI

d2

dr2
ψ, A has domain

dom (A) = {(φ, ψ) ∈ X : ψ ∈ Hf (0, L); M ∈ H2(0, L) with M(L) = d
dr
M(L) = 0} .

The operators B and D are clearly bounded operators from R to Z.
Suppose the objective of the controller design is to reduce the effect of

disturbances on the tip position:

y(t) = C1z(t) = w(L, t).

Sobolev’s Inequality implies that evaluation at a point is bounded onHf (0, L)
and so C1 is bounded from Z to R.

Define the bilinear form on Hf (0, L)×Hf (0, L)

σ(φ, ψ) =

∫ L

0

EI

ρ

d2

dr2
φ(r)

d2

dx2
ψ(r) dx .
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Define V = Hf (0, L)×Hf (0, L) and define a(·, ·) on V × V by

a((φ1, ψ1), (φ2, ψ2)) = −σ(ψ1, φ2) + σ(φ1 +
cd
E
ψ1, ψ2) + 〈cv

ρ
ψ1, ψ2〉

for (φi, ψi) ∈ V, i = 1, 2. Then A can be defined by

〈Ay, z〉V∗×V = −a(y, z), for y, z ∈ V .

The form a(·, ·) satisfies the inequality (7) and also (8) with k < 0 and so
the operator A generates an exponentially stable semigroup on Z .

Let Hn ⊂ Hf (0, L) be a sequence of finite-dimensional subspaces formed
by the span of n standard finite-element cubic B−spline approximations [33].
The approximating generator An on Zn = Hn×Hn is defined by the Galerkin
approximation

〈−Anyn, zn〉 = a(yn, zn), ∀zn, yn ∈ Zn.

For all φ ∈ Hf (0, L) there exists a sequence φn ∈ Hn with limn→∞ ‖φn −
φ‖Hf (0,L) = 0 [33]. It follows then from Theorem 3.7 and exponential stability
of the original system that (A1) is satisfied and that the approximations are
uniformly exponentially stabilizable (trivially, by the zero operator). The ad-
joint of A can be defined through a(z, y) and (A1∗) and uniform detectability
also follow. Thus, Theorem 5.4 applies and convergence of the approximating
feedback operators is obtained.

The corresponding series of finite-dimensional Riccati equations (29) were
solved with γ = 2.3. Figure 14 compares the open and closed loop responses
w(L, t) to a disturbance consisting of a 100 second pulse, for the approxima-
tion with 10 elements. The feedback controller leads to a closed loop system
which is able to almost entirely reject this disturbance. Figure 15 compares
the open and closed loop responses to the periodic disturbance sin(ωt) where
ω is the first resonant frequency: ω = mini |Im(λi(A10)|. The resonance in
the open loop is not present in the closed loop.

Figure 16 displays the convergence of the feedback gains predicted by
Theorem 2.3. Since Zn is a product space, the first and second components
of the gains are displayed separately as displacement and velocity gains re-
spectively.

In general, of course, the full state is not measured and the measured
output is described by (25).
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Figure 14: H∞-state feedback for flexible slewing beam. Open (..) and closed
loop (–) responses to a disturbance d(t) = 1, t ≤ 100s: 10 elements.
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Figure 15: H∞-state feedback for flexible slewing beam. Open (..) and closed
loop (–) responses to a disturbance d(t) = sin(ωt) : 10 elements .
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Figure 16: H∞-state feedback for flexible slewing beam. Feedback gains for:
2 elements *, 4 elements ..., 6 elements . ., 8 elements , 10 elements, are
plotted. As predicted by the theory, the feedback operators are converging.

Theorem 5.7 [4, 20] The system (23,24,25) is stabilizable with attenuation
γ > 0 if and only if the following two conditions are satisfied:

1. There exists a nonnegative self-adjoint operator Π on Z satisfying the
Riccati equation

(
A∗Π + ΠA+ Π

(
1

γ2
DD∗ −BB∗

)
Π + C∗1C1

)
z = 0, ∀z ∈ D(A),

(30)
such that A+( 1

γ2DD
∗−BB∗)Π generates an exponentially stable semi-

group on Z;

2. Define Ã = A + 1
γ2DD

∗Π and K = B∗Π. There exists a nonnegative

self-adjoint operator Σ̃ on X satisfying the Riccati equation

(
ÃΣ̃ + Σ̃Ã∗ + Σ̃

(
1

γ2
K∗K − C∗2C2

)
Σ̃ +DD∗

)
z = 0, ∀z ∈ D(A∗),

(31)
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such that Ã + Σ̃
(

1
γ2K

∗K − C∗2C2

)
generates an exponentially stable

semigroup on X.

Moreover, if both conditions are satisfied, define F = Σ̃C∗2 and Ac =
A+ 1

γ2DD
∗Σ−BK − FC2. The controller with state-space description

żc(t) = Aczc(t) + Fy2(t) (32)

u(t) = −Kzc(t)

stabilizes the system (23,24,25) with attenuation γ.

Condition (1) is simply the Riccati equation to be solved for the full-
information state feedback controller. Condition (2) leads to an estimate of
the state of the system controlled by Kz(t). Unlike linear quadratic control,
the design of the state-feedback and the estimator is coupled. Condition (2)
above is more often written as the following two equivalent conditions:

a) There exists a nonnegative, self-adjoint operator Σ on Z satisfying the
Riccati equation(
AΣ + ΣA∗ + Σ

(
1

γ2
C∗1C1 − C∗2C2

)
Π +DD∗

)
z = 0, ∀z ∈ D(A∗)

(33)
such that A + Π( 1

γ2C
∗
1C1 − C∗2C2) generates an exponentially stable

semigroup on Z, and

b) r(ΣΠ) < γ2 where r indicates the spectral radius.

In the presence of condition (1) in Theorem 5.7, condition (2) is equivalent
to conditions (a) and (b). Also Σ̃ = (I − 1

γ2 ΣΠ)−1Σ = Σ(I − 1
γ2 ΠΣ)−1. The

advantage of replacing condition (2) by conditions (a) and (b) is numerical.
The Riccati equation in (2) is coupled to the solution of (1) while the Riccati
equation in (a) is independent of the solution of (1). This theoretical result
has been extended to a class of control systems with unbounded control and
observation operators [20].

For bounded control and observation operators, a complete approxima-
tion theory exists. Define a sequence of approximations on finite-dimensional
spaces ZN , as for the full information case, with the addition of C2n = C2|Zn .

Strong convergence of solutions Σn to Riccati equations approximating
(33) will follow from Theorem 5.4 and a straightforward duality argument
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if (A1) and (A1∗) hold, along with assumptions on uniform stabilizability of
(A,D) and uniform detectability of (A,C2). However, strong convergence of
Πn → Π and of Σn → Σ does not imply convergence (or even existence) of the
inverse operator (I − 1

γ2 ΣnΠn)−1 so we cannot show controller convergence.

Convergence of the solution Σ̃n to the estimation Riccati equation (31) can
be proven.

Theorem 5.8 [27, Thm. 3.5] Assume that (A1) and (A1∗) hold, that (An, Dn)
are uniformly stabilizable, and that (An, C2n) are uniformly detectable. Let
γ > 0 be such that the infinite-dimensional problem is stabilizable. Let N be
large enough that approximations to the full-information problem are stabi-
lizable with attenuation γ, and let Πn indicate the solution to the ARE (29)
for n > N . Define Kn = B∗nΠn and Ãn = An + 1

γ2DnD
∗
nΠn .

For sufficiently large n the Riccati equation

ÃnΣ̃n + Σ̃nÃ
∗
n + Σ̃n

(
1

γ2
K∗nKn − C∗2nC2n

)
Σ̃n +DnD

∗
n = 0 (34)

has a nonnegative, self-adjoint solution Σ̃n. For such n there exist posi-
tive constants M3 and ω3 such that the semigroup S̃n2(t) generated by Ãn +
1
γ2 Σ̃nK

∗
nKn − Σ̃nC

∗
2nC2n satisfies ‖S̃n2(t)‖ ≤ M3e

−ω3 t. Moreover, for each

z ∈ Z, Σ̃nPn z → Σ̃ z as n → ∞ and Fn = Σ̃nC
∗
2nconverges to F = Σ̃C∗2 in

norm.

Defining Acn = An + 1
γ2DnD

∗
nΣ − BnKn − FnC2n, Theorems 5.4 and 5.8

imply convergence of the controllers

żc(t) = Acnzc(t) + Fny2(t) (35)

u(t) = −Knzc(t)

to the infinite-dimensional controller (32) in the gap topology. The same
assumptions imply convergence of the plants which leads to the following
result.

Theorem 5.9 [27, Thm. 3.6] Let γ be such that the infinite-dimensional
system is stabilizable with attenuation γ. Assume that (A1) and (A1∗) hold,
that (A,B) and (A,D) are uniformly stabilizable, and that (A,C1) and (A,C2)
are uniformly detectable. Then the finite-dimensional controllers (35) con-
verge in the gap topology to the infinite-dimensional controller (32). For suf-
ficiently large N , the finite-dimensional controllers (35) stabilize the infinite-
dimensional system and provide γ-attenuation.
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Convergence of the optimal attenuation also holds for the output feedback
problem.

Corollary 5.10 [27, Thm. 3.7] Let γ̂ indicate the optimal disturbance at-
tenuation for the output feedback problem (23,24,25), and similarly indicate
the optimal attenuation for the approximating problems by γ̂n. With the same
assumptions as for Theorem 5.9,

lim
n→∞

γ̂n = γ̂.

6 Summary

For most practical systems, an approximation to the partial differential equa-
tion must be used in controller design. Similarly, control for delay-differential
equations often proceeds by using an approximation, although delay-differential
equations were not discussed directly in this paper. This has the advan-
tage of making available the vast array of tools available for design of con-
trollers for finite-dimensional systems. Since the underlying model is infinite-
dimensional, this process is not entirely straightforward. However, there are
a number of tools and techniques available for satisfactory controller design.
This article has presented an overview of the main issues surrounding con-
troller design for these systems. The key point is that the controller must con-
trol the original system. Sufficient conditions for satisfactory linear-quadratic
controller design and H∞-controller design were presented. Uniform stabiliz-
ability and detectability, along with convergence of the adjoint systems, are
assumptions not required in simulation but key to obtaining satisfactory per-
formance of a controller designed using a finite-dimensional approximation.
There are results guaranteeing these assumptions for many problems. How-
ever, for problems where these assumptions are not known and proof is not
feasible, the approximating systems should be checked numerically for uni-
form stabilizability and detectability. One test is to verify that the sequence
of controlled systems is uniformly exponentially stable.

This paper only discussed systems with bounded control and observation
operators B and C. Introducing a better model for an actuator sometimes
converts a control system with an unbounded control operator to a more
complex model with a bounded operator, and similarly for sensor models. For
some systems, though, the most natural model leads to unbounded operators.
There are considerably fewer results for controller design for these systems.
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However, results do exist for linear-quadratic control of parabolic problems,
such as diffusion [2, 22].

Once a suitable approximation scheme, and controller synthesis tech-
nique, has been chosen, the problem of computation remains. The primary
difficulty is solving the large Riccati equations that arise in linear-quadratic
and H∞-controller design. For problems where an approximation of suitable
accuracy is of relatively low order (less than about a hundred) direct methods
can be used to solve the Riccati equations. However, for larger problems, an
iterative method is required. Probably the most popular method for the Ric-
cati equations that arise in linear-quadratic control is the Newton-Kleinman
method [21] and its variants - see for example, [10, 32]. This method is guar-
anteed to converge, and has quadratic convergence. However, calculation of
an H∞-controller corresponds to calculation of a saddle point, not a mini-
mum as in the case of linear-quadratic control. Suitable methods for design
of H∞-controllers for large-scale systems is an open problem at the present
time.
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