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PREFACE

These notes are designed for a rigorous two semester course in calculus based on
the completeness of the real numbers. Students are assumed to have had a high
school level calculus course already. While we do not assume that students know
about proofs, we only provide a rather brief introduction to the notion of proofs in
the first chapter before diving in to the business of doing real analysis.

The real numbers are defined as the set of infinite decimals with the identifi-
cation of a number ending in an infinite string of 9s with another decimal number
ending in an infinite string of Os. This definition has its problems when it comes
to defining addition and multiplication. However it is familiar, and is the quickest
way to get going. A better method of defining the real numbers is provided in an
appendix. Chapter 2 is the meat of the course, and is also the most difficult. We
explore what is meant by the completeness of the real numbers in several guises.
All of the deeper theorems of calculus, including the Extreme Value Theorem and
the Intermediate Value Theorem, rely in an essential way on this material.

Curve sketching is stressed from the beginning. Students can use their knowl-
edge of calculus from their earlier course to help them. To a great extent, the early
examples require only a little differentiation. Trigonometric functions, and the log-
arithm and exponential functions are used throughout, as these provide a wealth
of interesting functions. We assume that students are already familiar with trig
functions and the basic trig identities such as the addition formula. The natural
logarithm is introduced as an area and its properties are derived without the use of
integration. The exponential function is the inverse function of the logarithm.

Chapter 4 introduces the key concept of continuity and establishes the Extreme
Value Theorem and the Intermediate Value Theorem.

Finally in Chapter 5, we define the derivative formally. We discuss maxima and
minima with an emphasis on the Mean Value Theorem. We do not spend much time
on the useful topic of max-min problems. We assume that this was well covered
in the high school course. We do include some exercises with such problems. We
discuss convexity of functions in some detail, relating it to the second derivative
and deriving Jensen’s inequality.

It is my experience that students have learned L"Hopital’s Rule in high school,
of course without the rather tricky proof. I make a big deal about this being unac-
ceptable until it is proven. In particular, if the famous limit lim,_, Sig:” = 1is ever
‘proven’ using L’Hopital’s Rule, there will be a severe penalty. This limit is needed
to determine the derivative of the sin function, and so using L'Hopital’s Rule is cir-
cular. Moreover, I make the point soon after that many limits that can be computed
by two or three applications of L’Hopital’s Rule can be established quickly using
low order Taylor polynomial approximations.

At the University of Waterloo, all of integration is left for the second semes-
ter. To accomodate this, we cover some of the material in Chapter 10 in the first
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1l Preface

semester. Specifically we discuss Taylor polynomials and a few examples of when
the infinite series converges. The general discussion of series, both of numbers and
functions, is done in the second semester.

In the second semester, we begin with the theory of integration culminating in
the Fundamental Theorem of Calculus which ties the integral (a computation of
area) with the derivative. Chapter 7 deals with a variety of computational methods
and tricks for calculating integrals. Then in Chapter 8, there is a variety of topics
on integration: improper integrals, volumes and arc length, polar coordinates and
parameterizations.

Chapter 9 deals with infinite series. In a certain sense, a series is just another
way of describing a sequence. However it is a common method, and there are a
number of new methods for handling them. Then we turn to sequences and series of
functions. As mentioned above, we cover Taylor polynomials in the first semester.
We make a systematic study of uniform convergence. Then we look at power series,
which have some especially nice properties. We conclude the chapter with a proof
of Abel’s theorem about convergence at the radius of convergence.

The last chapter is an introduction to differential equations. We only look at
first order DEs and second order linear DEs. This will give students a sense of the
ideas involved. It is really only a taste.

Finally, the appendix contains a number of interesting enrichment topics.

Kenneth R. Davidson
August, 2021
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CHAPTER 1

The Logic of Proofs

1.1. The Language of Mathematics

In this section, we provide a quick overview of some of the language behind
mathematical and logical statements. This is not a thorough treatment, but should
suffice to get us going.

Mathematics deals with statements, which assert some relationship between
certain items or classes of items. Examples are

e z belongs to the set X.
Y is a subset of X.

e r=yorz <yorx >y.

o r<y.

f:[0,1] — R is a monotone increasing function.

All horses are white.

Every cat has one tail.
Examples of non-statements are
e T+ Y.
e Don’t divide by 0.

Statements must have the property that they are either True or False. Often a con-
text is specified that limits the variables (if any) in the statements. Certain self-
referential statements are not allowed, such as

e This statement is false.

Statements can be manipulated or combined with others to make new state-
ments. There are three key words that have precise meanings that may differ from
popular usage in everyday speech. These are not, and and or.

If A is a statement, then “not A” or — A is the negation of A. If A is true, then
—A is false and vice versa.

If A and B are statements, then “A and B” or A A B is true if and only if both
A and B are true. If either is false, then A A B is false.

If A and B are statements, then “A or B” or A v B is true if and only if at least
one of A or B is true. If both are false, then A v B is false.
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2 The Logic of Proofs

We also define implication, “A implies B” or A = B, means that if A is true,
then B is true. The statement A = B is true if A and B are both true, but also if
A is false regardless of the truth of B. This is because such a statement means “If
A is true, then B is also true.” For this reason, you also see this written “if A, then
B”.

Since a statement can be either true or false, one can make truth tables which
start with the various possibilities for the original statements and calculates the truth
or falsity of other statements obtained by combining them. Here is an example. To
save space, let M P be the statement (A A (A = B)) = B.

A|B|—-A|AAB|AvB|A=B|B=A|—-B=—-A|Ar(A=B)| MP
T|\T| F T T T T T T T
T|F| F F T F T F F T
T T F T T F T F T
FV\F| T F F T T T F T

We don’t use truth tables to prove theorems, but they can be used to investigate
general relationships. The converse of the statement A = B is the statement B =
A. You can see from the truth table that these statements are not equivalent. If A =
B is true, the converse may or may not be true depending on the circumstances.

The contrapositive of the statement A = B is the statement —B = —A. The
truth table shows that these statements are equivalent. You can think this through as
follows: Assume that A = B. This means that if A is true, then B is true. So if B
is false, then A cannot be true, so A is also false. That is the statement =B = —A.

We use the expression “A if and only if B” and write A < B to mean that
(A= B) A (B = A). It means that either both A and B are true or both are false.

A statement is a tautology if it is always true. The statement M P is a tautology.
This particular statement is known as modus ponens.

A formula is a statement usually involving some variables. The truth or falsity
of the statement may depend on the values assigned to the variables.

For example, consider the statement P(z, y) that 22> —2xy+y*+2x—4y > 20.
Here we are told that x and y are real numbers. You can check that P(4,2) is true,
but P(3,3) is false.

1.1.1. Quantifiers. There are two important quantifiers that we use in math-
ematics. The first is the universal quantifier “for all” or V. This has the form
Vo € X, P(z). It states that for every variable = in some specified range X, the
statement P(x) is true. If the statement fails for a single value of a variable, then
the whole statement is false. Consider

(A) Vn e N, n? — 2 is even.
(B) Vn e N, n? + n + 41 is prime.

In both statements, the range is specified to be positive integers. Statement (A) is
true because n2 —n = n(n — 1), and either n is even, and thus so is the product or
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n is odd, in which case n — 1 is even, and so is the product. Thus n? — n is even
for all choices of n.

For (B), we look at the value of n> + n + 41 for n > 1. It starts out well:
43,47,53,61,71,83,97,113,131, 151. So far, all are prime. However when you
getto n = 40, we get (40)> +40+41 = (41)? which is not prime. So the statement
is false. The number n = 40 is called a counterexample to statement (B).

The second is the existential quantifier “there exists” or 3. A statement has the
form “Jz € X such that P(x)”. It is true if there is a single = for which P(z) is
true. Consider

(C) 3z € R such that = sin(%) = 1.
(D) 3n e N such that 1141n? + 1 is a perfect square.

The function f(z) = xsin(l) is even, ie., f(—z) = f(z), so we can consider

£>0.When0 <z < 1, |zsin(d)| < |z| < 1. Ifz > 1,then 2 < 1€ (0,3).
In this range, we will show in the course that 0 < sin% < %, s00 < f(x) < 1.
Therefore there is not a single value of x which makes the statement true—so (A)
is false.

To properly analyze (D), we would need to know some more number theory.
You could check on a computer, say the first trillion numbers, and you would not
succeed. It turns out that there are infinitely many integers which make this a
perfect square, but the smallest has 26 digits:

30,693, 385, 322, 765, 657, 197, 397, 208

Therefore (D) is true, even though you would never find it by crude methods.

When you negate a statement using V, it becomes an 3. The reason is that a
“for all” statement is contradicted by a single counterexample. For instance —(B)
is the statement: 3n € N such that n> +n +41 is not prime. This is a true statement,
since n = 40 does the job.

Similarly, when you negate 3, it becomes a V statement. This is again because
to contradict 3z € X such that P(x), you must show that P(x) is false for all
x € X. So the negation is Vo € X, —P(x). For instance, —(C) is the statement
VreR, z sin(%) # 1. We showed that this is a true statement by proving some-
thing a bit stronger, that |z sin(1)| < 1 forall z € R.

Things start to get more complicated when we have more quantifiers. This
comes up in calculus because the definitions of limit and continuity require multiple

quantifiers. Here we just give a couple of elementary examples. Consider
(E) Vn € Ny 3m € Ny such that 13 divides m? + n>.
(F) 3m e Ny such that ¥n € Ny, 13 divides m? + n2.

For statement (E), we are asked if for each n € Ny, we can select some m € Ny so
that m? + n? is a multiple of 13. We are allowed to choose m any way we wish.
So let’s choose m = 5n. Then m? + n? = 25n% + n? = 13(2n?) is divisible by
13. Therefore (E) is true.



4 The Logic of Proofs

Look at the difference when we reverse the order of the quantifiers. This is
asking for a single m so that m? 4 n? is always a multiple of 13. Thus both m? 4 0?
and m? + 1% would need to be divisible by 13. But then (m? + 1) — (m? +0) = 1
would be divisible by 13. This is absurd. So the statement (F) is false.

1.2. Proofs

1.2.1. Direct proofs. Start with the hypothesis and work through straight to
the answer. Here is an example.

1.2.1. DEFINITION. If z = ag.z1z2253 ... is an infinite decimal (here ag is an
integer and x; € {0, 1,...,9}), we say that the expansion is eventually periodic if
there are positive integers /N and d so that x,, . gy = x,, foralln > N.

1.2.2. THEOREM. If x € R has a decimal expansion which is eventually peri-
odic, then x is rational.

PROOF. Multiply x by 10" and by 10N+¢, There are integers b and ¢ so that

N+d
10 T = CIN+d+ITN+d+2TN+d+3 - -+

N
10" = b.x N 1TNI2T N3 - ..

Hence by subtracting,
10N+ —10Mz = ¢ — b.
c—b

Therefore x = ToN+d — [oN is rational. [ |

1.2.2. Pigeonhole Principle. If » + 1 or more objects are divided into n cate-
gories, then there are at least two objects in the same category. The name refers to
an office mailroom in which each person gets a pigeonhole in which to receive let-
ters. There are variants, such as putting mn + 1 objects into n categories. You can
deduce that some category contains at least m + 1 objects. Usually two is enough.

1.2.3. THEOREM. If © € Q, then the decimal expansion of x is eventually
periodic.

PROOF. Since x is rational, we can write x = P where p, ¢ are integers and
q

g > 0. For each k > 0, there is a unique integer 7, € {0,1,...,q — 1} so that
q divides 10 — rj. That is, r}, is the remainder left when dividing ¢ into 10%.
Then {rg,r1,...,7r4} are ¢ + 1 remainders taking only ¢ possible values. By the
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pigeonhole principle, there are two values 0 < ¢ < j < ¢ so that r; = r;. Since ¢
divides 10°—r; and 10’ —r;, it also divides the difference 107 —10%, say 10/ — 10" =
qa. Then

e=L_L_ o

qg aq 107 —1°
Let d = j — i and divide the denominator 10 — 1 into ap to get an integer b with a
remainder s with 0 < s < 10¢ — 1. So s has a most d digits, and thus we can write
s = 8182...8q with s; € {0,1,...,9} and we put O’s at the beginning if required
to make this a d digit number. Then

- 109 s
—dk
y=0.5152...5d8152...sd'~=k_2110 s = T = T0d —1

because a periodic decimal is a geometric series. Hence
10'2 = b.5182...845152...584" - = b.5183 ... 53¢

and the decimal expansion of x is just the same with the decimal place shifted ¢
places to the left. So it is eventually periodic. |

1.2.3. Proof by Contradiction. We saw that the contrapositive of a statement
A = Bis =B = —A, and has the same truth. So we assume that B is false,
and deduce that A is false. This proves the contrapositive, so we are done. We
usually think of this as reaching a contradiction to the hypothesis that A is true,
which explains the name.

1.2.4. THEOREM. Ifd € N is a positive integer which is not a perfect square,
then \/d is irrational.

PROOF. Assume that v/d is rational. Then A = {n € N : n\/d € N} is not
empty. A non-empty subset of N has a smallest element, so let a be the smallest
element of A. So av/d € N but b+/d is not an integer for 1 < b < a.

Choose the integer m € N so that m? < d < (m + 1)2. Notice that

0<Vd—m<y/(m+1)2—m=1.

Therefore 0 < b := a(\/a —m) < a. However b = av/d — am is an integer, so
1 <b<a— 1. Finally bv/d = ad — (av/d)m is an integer. This means that b € A
and b < a. This contradicts the assumption that a was the smallest element, which
in turn was a consequence of the fact that A was non-empty. Hence A is empty,
and so v/d is irrational. [ |
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1.2.4. Proof by Induction. The Principle of Induction: let P(n) be a se-
quence of statements for n > ng. Suppose that

(1) P(ng) is true, and
(2) If n > ng and P(k) is true for ny < k < n, then P(n) is true.

Then P(n) is true for each n > ny.

You can think of the statements P(n) as dominoes which are lined up in such
a way that if the earlier dominoes are knocked over, then one of them will knock
over the nth domino. Then you knock over the first one and watch them all fall in
succession.

Simple induction works by showing that statement P(n — 1) implies P(n). But
there is no reason that it cannot be some other earlier statement or more than one
earlier statement which are required to establish P(n). We will see two examples.
The first is a bit trickier than simple induction in that it depends on two previous
statements.

1.2.5. THEOREM. The Fibonacci sequence is defined recursively by

F0)=F(1)=1 and F(n+2)=F(n)+ F(n+1)forn=0.

\/5_‘_ 1 7_n+1 _ (_I/T)nJrl

Let T = . Then F(n) =
V5

PROOF. First observe that

12 WV5-1 2(5-1) +5-1
TS +1V5-1 4 '
ntl (_1/7_)TL+1
V5
Tl—(—1/7)1_1<\/§+1+\6—1> 5

=Y -1
2 2 5

[\

Let P(n) be the statement F'(n) =

forn > 0. Whenn = 0,

V5 V5
Hence P(0) is true. Next consider n = 1.
- (=17 1 (V5+1)?2 (V5-1)2\ 45
5 ﬁ( 4 4 ) 45
Thus P(1) is true. This is step one.
We need the identities

1.

V541 _ V543,

1 =1
+ 7 + 5 5

and
1—1/T=1—\6_1=3_\6=i.
2 2 T2
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Now for the induction step. Suppose n > 2 and that P(n — 2) and P(n — 1)
are true. Then

Fn)=F(n—-2)+F(n—1)
_ =l (=1/r)"! N ™ —(=1/7)"
V5 V5
1 n—1 -1
= —=\7 1+7)—(=1/7)" 1—17')
7 )= (=1/7)" (1= 1/7)
L/ 12 -1 2
= — ("' = (=1/7)" " (1/T )
NeL (=1/7)" = (1/)
Tn+1 _ (—1/7’)”+1
- V5
This shows that P(n) follows from the previous two statements, P(n — 2) and
P(n — 1). By induction, the statements P(n) are true for all n > 0. [

Here is a second example.

1.2.6. THEOREM. Every natural number n = 2 is a product of prime numbers.

PROOEF. Let P(n) be the statement that n factors as a product of primes. Start
atn = 2. Then P(2) holds because 2 is prime (so is the product of one prime). For
the induction step, we need to assume P(k) for all 2 < k < n. Consider P(n).
There are two cases.

Case 1: n is prime. Then P(n) is true,

Case 2: n is not prime, so n = ab where 2 < a,b < n. By P(a) and P(b), we
can write @ = pj ... pm, as a product of primes and b = q . . . ¢, as another product
of primes. Therefore n = ab = p;...pm4q1 - - - ¢ is a product of primes, so P(n)
is true. By induction, every n > 2 is a product of primes. |

In principle, this proof is more complex than the first. For example, for P(48),
we might factor 48 = 6 - 8. Then the statement P(48) is deduced from P(6) and
P(8). In each case, we don’t need to know the explicit factorization, only that a
and b are strictly smaller so that we are assured that P(a) and P(b) have already
been verified.



The Logic of Proofs

Exercises for Chapter 1

1.

In Xanadu, people are either Knights, Normals or Villains. Knights always tell
the truth, Villains always lie, and Normals can do both. Knights outrank Nor-
mals, who outrank Villains.

(a) Three people are known to consist of exactly one Knight, one Normal and
one Villain. They say:
Alice: I'm normal.
Bob: That is true.
Charlie: I’'m not normal.
Determine which type each person is. Explain.

(b) Two people from Xanadu, Dick and Jane, say:
Dick: I rank below Jane.
Jane: That is not true.
Determine the types of both and decide who is telling the truth. Explain.

Three young men accused of stealing cellphones make the following state-
ments:

(1) Ed: “Fred did it, and Ted is innocent.”

(2) Fred: “If Ed is guilty, then so is Ted.”

(3) Ted: “I’m innocent, but at least one of the others is guilty.”

(a) If they are all innocent, who is lying? Explain.
(b) If all these statements are true, who is guilty? Explain.
(c) If the innocent told the truth and the guilty lied, who is guilty? Explain.

(a) Show that [15sin§ + 8cosf| < 17.

Use trig identities, not calculus, to do this exercise.

HINT: show that there is an angle o with sina = % and cosa = %5
(b) When does equality hold in this inequality?

=

Let a, b, c be positive real numbers greater than 1. Show that
log,, (bc) log,(ac) log,(ab) = log,(bc) + log,(ac) + log,.(ab) + 2.

HINT: : express everything in terms of A = loga, B = logb and C = logc.

(a) Find an expression for
f(l”):’2$—|2I+1||—|x—|x—2|| for zeR

which avoids the use of absolute value signs or square roots. You may split
the real line into disjoint intervals and have a different algebraic expression
on each one.

(b) Graph f(z). In particular, indicate all solutions of f(z) = 0.
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(a) Show that if x is a positive real number, then

—1 1 —1
— <z(Vaz+1-— ) — < .
812 x( rrimr)T) 8(a2 + 1)

212 . . R . ..
HINT: Usea — b = aa;lg to ‘rationalize the numerator’ twice! This is

superior to working backwards from the answer and bashing it out using
algebra.
(b) Use (a) to show that for x > 0,
1 1 1 1 1
x+ﬂ—$<\/x2+l<x+%—@+@.
The Fibonacci sequence is defined by F'(0) = F(1) = 1 and F(n + 2) =
F(n+1)+ F(n) foralln > 0. Fix an integer D > 2. Consider the remainders
q(n) obtained by dividing F'(n) by D, with 0 < ¢(n) < D. Prove that this
sequence is periodic with some period d < D? as follows:
(a) Show there are integers 0 < i < j < D? such that ¢(i) = ¢(j) and
ali+1) = q(j+ 1),
HINT: pigeonhole.
(b) Letd = j—i. Use induction to show that ¢(n+d) = ¢(n) and g(n+1+d) =
g(n+1) forall n > 1.
(c) Show that g(n + d) = g(n) for all n > 0. HINT: work backwards from
n =i.




CHAPTER 2

The Real Numbers and Limits

2.1. The real numbers

What are the real numbers? You may think that you know the answer, but it
turns out that you need to be very careful about this. It took mathematicians a long
time to realize that this was even necessary. There are some sophisticated ways to
accomplish this, but we will get by with a more mundane approach. We will have
to slough over some fine points in order to get on with doing calculus.

We will define a real number to be an infinite decimal. For convenience, we
will (temporarily) write our real numbers in the form

x = ap.ayaza3 ... whereag€ Zanda; €{0,1,...,9} fori > 1.

This is a bit peculiar in the sense that we think of x as a (possibly negative) integer
ao plus a positive infinite decimal number 0.ajazas3 . ... This will be convenient
for us, in that it treats all intervals [n,n + 1] the same. Once we start doing our
real business, we make the fairly trivial change back to the common usage where
negative real numbers are written as the negative of a positive real number.

We immediately run into difficulty with this definition. Are 1.000... and
0.999... different real numbers? They are definitely different infinite decimals.
However, when we try to distinguish them, we find that they are infinitely close to
one another. Indeed, if we have any infinite decimal that ends in an infinite string
of 9’s, we use the formula for summing a geometric series to get

T =ap.a...a,999...

=a0.a1...an+10_”2 %

k=1

=ap.ay...a, + 107"

The rational number on the right hand side has a finite decimal expansion. If I
start at the point where a,, # 9, this is y = agp.aj...ap—1(a, +1)000... So it
make sense to identify x and y as the same real number. We can think of the
infinite decimal as a name for the real number, and certain numbers, those ending
in an infinite string of 0’s or 9’s, have two names. We call this an equivalence
relation where certain names are identified and considered as a single object. (See
Appendix A.1.)

10



2.1 The real numbers 11

The set R of real numbers is an ordered field. It has a total order: a relation <
on R such that

(1) For z,y € R, exactly one of x < y, x = y or y < x holds.
(2) Forz,y,ze R,ifx <yandy < z,thenx < z.

And R is a field: there are operations of addition (x + y) and multiplication (zy)
and special elements 0, 1 such that for z,y, z € R,

(3) = +y = y + x (addition is commutative).

4) z + (y+ 2) = (2 + y) + z (addition is associative).

5) x + 0 = x (0 is the additive identity).

6) For xz € R, dy € R called “—z” so that x + y = 0 (additive inverse).

(4)
(5)
(6)
(7) xy = yx (multiplication is commutative).
(8) z(yz) = (xy)z (multiplication is associative).
(9) 1 = x (1 is the multiplicative identity).

0)

If z # 0,3y € R called “z~!” so that zyy = 1 (multiplicative inverse).

(1

(11) (x + y)z = xz + yz (distributive law).

Finally there are some axioms that relate the order with the algebraic relations.
(12) fx <y, thenz + 2z < y + 2.
(13) If 0 < z and 0 < y, then 0 < xy.

It is a lot of work to check all of these properties, and we are not going to do it.
We will just discuss a few issues that arise.

Firstly, the order is easy to describe. If  # y, then choose a decimal expansion
for each:

r = ap.a1azas . .. and Yy = bo.b1b2b3 e

Since they differ, there is a first n = 0 such that a; = b; for 0 < ¢ < n and a,, # b,,.
Ifa, < b,,wesaythatz < y, andif a,, > b,,, we say y < x. The rational numbers,
and even the numbers with a finite decimal expansion (you can check that these are
rational numbers of the form = = 57%7) are order dense in R, i.e., if x < y, there is
a finite decimal number z such that x < z < y. Indeed, z = bg.b1byb3...5,000. ..
works unless y = z. If a,, < b, — 2, 2 = bg.bibabs ... by—1(b,—1)000. .. works.
Lastly, if a,, = b, — 1 and x = ag.a1a2a3 . ..a,999999999aq,,, ... with a,, < 9,
then

z = a9.a1G2a3 . . . @,999999999(a,, +1)000. . .
works. Note that in this case, x cannot end in infinitely many 9’s because then

T =ap.a10203 . ..0,999 - = ag.ajaza3 . .. (a, +1)000- - - =
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Adding and multiplying infinite decimals is delicate. Considering computing
™+ €.

T = 3.141592653589. ..
e =12.718281828459...
T+ e = 5.859874482047
We have to add from the left, but it is necessary to look ahead for carries from the
right. The red digits are the result of carries. The blue ? indicates that we need

more information to decide if the next digit is 8 or 9. You may have to look a long
way to be sure of the next digit. However we can say for sure that

5.859874482048 < m + e < 5.859874482050.

So we know the answer is 5.859874482049 + 10~ '2. In calculus, this information
is just as useful as knowing the digit for sure.

Multiplication is even more challenging to define than addition. Again we can
bound the product to any desired accuracy by using finite decimal approximations.
In Appendix A.2, we will explain a better way to approach this problem.

We will need to use the absolute value frequently. This is defined as
z ifz>=0
x| = : :
—z ifx<0
An easy but important fact is the triangle inequality
[z +yl < |z|+ |yl

This is an equality if  and y have the same sign, but is strict when zy < 0. It can
be rearranged to provide the inequalies

z| = |z +y|— |yl and |z +y|=|lz]— |yl

A frequent use of the absolute value is in describing an interval by {z : |z —a| < r}.
This means that —r < x — a < r, which can be rewrittenasa —r < x < a + r.

2.2. Limits

What does it mean to say that a sequence a,, converges to L? Here are some
attempts:

(A) The larger n gets, the closer a,, gets to L.

(B) The larger n gets, the closer a,, gets to L; and it gets arbitrarily close.
(C) Eventually a,, = L.

(D) Eventually a,, is close but not equal to L.

(E) Eventually every a,, is as close as we want to L.
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One problem with (A) is that it doesn’t say how close. So a sequence like

1 1, %, 1, i, 1, g', ... gets closer and closer to m, but also closer and closer to e.

Statement (B) tries to fix that by specifying that it has to get very, very close. How-
132539417

ever it seems to suggest a monotone approach. Whatabout 5,5, 5,7, 7,535 16 - - -
This sequence approaches 1 from both sides, and the even terms are getting there a
lot faster than the odd terms. This sequence should be considered as convergent—
so the sequence can get close, back off a little bit, and get even closer. A sequence
can approach the limit from both sides, and doesn’t have to get closer at each step.
Statement (C) is way too strong. And (D) excludes a sequence like 1,1,1,1,... or
51,3, 1,21,

What about the sequence %, %, %, %, %, %, %, ... 7 Does this converge to both 0
and 1, or to neither? What about 0,1,0,1,0,1,...? We say that these sequences
do not converge because they do not get close to any number L. The odd terms
are far from 1, and the even terms are far from 0. All are eventually bounded away
from anything else.

Statement (E) seems to paraphrase what we want. The trouble with it is just
that the meaning is not precisely articulated. In mathematics, we need to be able
to nail it down is quantitative terms. By “arbitrarily close’, we use a small (but
unspecified) positive number € > 0. By ‘eventually’, we mean that there should be
some number NV so that we are close within € for all n > N. Putting this altogether

we get the following formulation.

2.2.1. DEFINITION. lim a, = L means: for any € > 0, there is an N so that
n—0o0

for all n > N, we have |a, — L| < e. In symbols: V.~oInenVnsnlan — L| < €.
A sequence which has a limit is said to converge.

We will refer to this as the e~V definition of limit. To verify this definition in
examples, you should think of € being given to you, and your job is to find the N
which makes the definition work.

L if n is odd.
2.2.2. EXAMPLE. Leta, = { ! 1 ntso Let’s show that L = 1
1+27"™ ifniseven.

is the limit. We are given ¢ > 0, and we can find some IV large enough so that
+<elfn> Nisodd then |a, — 1| = L < & < & whileif n > N is even, then
la, — 1| =27" N < . So this choice of N does the job. There is no advantage
to choosing IV in an optimal way. Thus nh_r}go an = 1.

2n3 +n? — 137
2.2.3. EXAMPLE. Letz, = —T; ;l—n 1 for n > 1. We rewrite this as
nd—n—
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Z = — F
ITL 5 1 1
TL2 n3

This makes it clear that the numerator tends to 2 while the denominator tends to 5.
We need a quantitative estimate for the difference that is tractable and goes to 0.

5, 20 +n?—137 2
o =51 = S5 —-n—1 5
|(10n3 + 5n% — 685) — (100 — 2n — 2)|
(53 —n—1)5
|7n? — 687| Tn? 1
T2 —sn—5  24n3 " 3n
The second last inequality is valid provided that n > 10. Now given € > 0, choose
an N > max{10,7}. Then N > 10, so that the inequality is valid, and also
s < & Nowifn > N, we have |z, — 2| < 5 < . This verifies the definition
of limit. Thus lim x, = £.

2.2.4. EXAMPLE. Leta, = (—1)"forn = 1;ie, —1,1,—-1,1,—1,1,....
This sequence does not appear to converge. To establish this, we first need to
understand the negation of the limit definition. In order for the definition to fail for
a specific value of L, we only need to find a single € > 0 for which it fails, but we
then need to show that no choice of N will work. To that end, given any N, we
need to find some n > N so that |a,, — L| > . But we also need to consider all
values of L.
So take an arbitrary L € R. Consider two cases.
Case 1 L > 0. Take € = 1. Given any IV, choose an odd n > N. Then

lap, —L|=L+1>¢.

So no N works, and thus L is not the limit.
Case 2 L < 0. Take ¢ = 1. Given any IV, choose an even n > N. Then

lan, — L| = |L| + 1 > «.

So no N works, and thus L is not the limit. Therefore this sequence has no limit.

2.2.5. EXAMPLE. If the limit exists, then it is unique. That is, if lim a, = L
n—00
and lim a, = M, then L = M. Indeed, if M # L,lete = |L — M|/2. If
n—ao0

lingO an = L, use this ¢ and find N so that |a,, — L| < ¢ forall n = N. Then
n—

lan — M| = |L — M| —|L —ap| > |L — M| — |L — M|/2 = e.

Hence the sequence does not converge to M.
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2.2 Limits
1, and that

cp forn =

2.2.6. SQUEEZE THEOREM. Suppose that a,, < b, <
lim a, = L = lim ¢,. Then lim b,, = L.
n—0o0 n—00 n—00

PROOF. Let ¢ > 0. Since lim a, = L, there is an N; € N so that for all
—L|<e. Slmllarly, s1nce hm ¢, = L, there is an N, € N so that for

N, then

= Ny, |a

alln >

n— L] <e. Let N = max{N1 Ny} . Ifn >
L—cs<ap<b,<c,<L+¢

Nz,

Therefore |b, — L| < e. So lim b, = L
n—0o0
) for n > 1. By the binomial

Here are some more examples
2.2.7. EXAMPLE. Consider b (1+ 5"
theorem,
u - —1)...(n+1—-k) 1
Z<>n2’“:1+zn(n ) n’gn )k:'nk
k=0 k=1 )
Therefore forn = 2,
00 1
1 = 1
<bn < Z v T
: n
= land ¢, = 1+ﬁfor

This is crude but sufficient for our purpose. Take b
n = 2. They both converge to 1. So by the Squeeze Theorem, lim b, = 1
1

1 1 1
2.2.8. EXAMPLE. L = z = = =
8 et a; = 5, a2 rra R Rl v e v
245 24-2—1
1 1 1 "
as = ag = a7 =
5 2+ 11 s 6 24 11 5 7 24 11 )
2+ I 2+ I 2t ———
2+ —1 2+ I 2t ——
24+ — 2+ T
2+5 2+ T
2+ —1
2+5

245
The limit is called a continued fraction. What we need is a formula for a,,. The
forn > 1.

natural way to do this is to find a recursion formula which defines a,, 4 in terms of

an. Here we have a; = % and ap4+1 = 5
Qan

First suppose that the limit L exists. Then we can compute

1

1
n—w 2 + a, T2+ L
= 0, so we get

—1 + +/2. However L

Therefore L? + 2L — 1 = 0. Thus L
L = /2 — 1. To check that this really is the limit, we must verify the definition

L= hm p+1 = lim
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Note that L = 2J+L
1 o L—ay,

T 24a, 2+L (2+4an)2+L)
This shows that a,, — L alternates in sign, and we can estimate

|an, — L] |an, — L]

ant1 — L

—L|= <
[ans1 = L] 2+ an)(2+1L) 4
Now
1 3 1
lay — L| = |§—(\6—1)| Zi—ﬁ<ﬁ-
Therefore
lan, — L|  |ap—1 —L|  |ay — L] 1
|an+1 - L’ < 4 < 42 < 4n < E4 ",

We can now show that lirlrolo an =2 —1.
n—

Suppose that € = %10*100 because we want 100 decimals accuracy. We would
require 1 so that 154" < 210719, or 10% < 22"~!. Use the simple fact that
210 = 1024 > 10°. Then 10% < 233, 50 that n = 166 works.

5n1% 4+ 3.27 4+ 7n!
2.2.9. EXAMPLE. Consider lim 10;_ * . The question here is
n—oo  3niV 27 + 5pl

which term dominates as n — 00, n'%, 2" or n!? First, polynomials grow more
100

slowly than exponentials. The way to see this is to consider the ratio b,, =
Observe that

2

b1 (n+1)100 1 1
by, n 2 2’
So eventually this ratio is decreasing almost by a factor of 2 each time, and thus

b, — 0. This shows that 2" grows faster than n'%. Let’s deal with n! in a similar
!

. mn.
fashion. Set ¢,, = o Then

cnt1 (m+ 1) 27 n+1

cn n!  2ntl 2
This shows that ¢,, — o0, and hence n! grows more quickly that 2". Therefore
50 3.on 7t 5!t 320l 47 T
lim = lim = -

n—oo  3pl00 4 27 4 5p) n—oo  3p!00/nl 4+ 27 /nl +5 5

We have already been using some rules of manipulation of limits which appear
to be true. We record these basic operations.

2.2.10. PROPOSITION. Suppose that lin;O an = L and lingo b, = M, and let
n— n—
r e R. Then



2.3 Limits
(1) lim ap +b, = L+ M.
n—00
(2) lim ra, =rL
n—0o0
(3) hm anb, = LM
(4) If M # O, then there is an Ny so that b, # 0 for n = Ny, and
I an L
im — = —.
n—wb, M

17

PROOF. Iwill prove (4) and leave the others as exercises. First take ¢ = |M|/2.

Find an Nj so that for n > Ny, |b, — M| < |M|/2. Then
|bn| = |M] = [M]/2 = [M]/2.
In particular, b,, # 0. Calculate
L a, Lb,—Ma, Lb,—LM+LM— Ma,,

L(b, — M) + M(L — a,)
Mb, '

Therefore for n = Ny,
|L| [bn — M| + [M]|L — an|
|M||M]/2

~

i

2L 2
| ’|b lan, — L.

- M|+ ——
| M|

Now let € > 0 be given. Use the two limits to find N; so that if n >

M
lan, — L| < €|4 ’; and choose N, so that if n > N, then |b, — M| <

Define N = max{Ny, Nj, N>}. If n > N, then

L a, 2|L 2
M—a | |]b M|+|M|\an—L|
2yL| eM? N 2 5|My<§+§_€
M2 4|L|+1  |M| 4 2 2 7
ap, L

Therefore nlgrgo b— = A

2.2.11. PROPOSITION. Every convergent sequence is bounded.

N, then
eM?
4L+ 1°

PROOF. Suppose that lim a,, = L. Take ¢ = 1 and find N so thatif n > N,
n—ao0

then |a,, — L| < 1. Then
M = max{|a1\, ‘az, ceey ’CLN_]|, ’L‘ + 1}

is a bound for {a,, : n > 1}.
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2.3. Least upper bound Principle

2.3.1. DEFINITION. If @ # S < R, say S is bounded above if it has an upper
bound R € R, meaning that s < R for all s € S. A number M is the least upper
bound or supremum of S if M is an upper bound for S and whenever R is an upper
bound, then M < R. We write M = sup S.

Similarly S'is bounded below if there is some R € R so that R < s for all
s € S. The greatest lower bound or infimum of S is the lower bound L which is
largest among all lower bounds. We write L = inf S.

If S has no upper bound, we write sup .S = +00; and if it has no lower bound,
we write inf S = —oo.

2.3.2. EXAMPLES.

(1) If our universe is Q, the set of rational numbers, then some sets do not have
a supremum. Consider A = {z € Q : 22 < 2}. It is not hard to show that
sup A = /2. However since v/2 is not rational, the upper bounds in Q are all
strictly bigger than v/2. Then because Q is order dense in R, if 7 € Q is an upper
bound, we can find another s € Q such that v/2 < s < r. Hence there is no best
choice. This is an important difference between Q and R.

(2) A={1,—e,6,4/91,—3.5,7}. Then sup A = 4/91 and inf A = —3.5.
(3) B =1{2,4,6,8,...} =2N. Then sup B = +o0 and inf B = 2.

@ C—{(-1)";7 :n > 1}. ThensupC = 1 and infC = —1. Neither £1
belongs to C.

2.3.3. EXAMPLE.

D = {sinn : n € N}. Then 1 is an upper bound and —1 is a lower bound. To figure
out the sup and inf, we use the pigeonhole principle. Let € > 0.

The angle n (always in radians because this is calculus!!) only matters modulo
integer multiples of 27. So for each n, let 6(n) = n — |4 |27 € [0,2). No two
are the same because if 27 divides m — n, say m — n = 2wk, then m = "5 is
rational. But 7 is irrational, so this doesn’t happen. (See Appendix A.5.)

Divide [0,27) into N intervals of length less than . We have to take N >
2m/e. Now {#(n) : n > 1} is an infinite sequence. There are infinitely many
6(n)’s in N intervals. Hence there are two in one interval, say |#(n) — 0(m)| < e
for 1 < n < m. then

(m —n) = {G(m—n) e (0,¢) if O(m) > 0(n)
21 +0(m —n) e 2 —e,2m)  ifO(m) <O(n)’
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Now sin§ = 1. Suppose that §(m — n) = a € (0,¢). Let k = | 5= | and look at
0(km — kn). This belongs to the interval (3 — £, %), say 8(km — kn) = 5 — 3
for 0 < 8 < e. If, on the other hand, if f(m —n) = 27 — a € (27 — ¢,27), let
k = [3Z] and look at O(km — kn). Again, O(km — kn) = T — B for0 < 8 < e.
Therefore

sin(km — kn) =sin(3 — 8) =cos3 > 1— > >1—¢&>.

(We will prove this estimate for cos z later in the course.) Since € > 0 was arbitrary,
we obtain that sup D = 1. Similarly, inf D = —1.

Now we will establish a very important property of the real numbers.

2.3.4. LEAST UPPER BOUND PRINCIPLE. Every non-empty set S < R
which is bounded above has a least upper bound. Every non-empty set S < R
which is bounded below has a greatest lower bound.

PROOF. We prove the second statement.

Assume that S has a lower bound M, and we can take M to be an integer.
Let s € S, and let k = [s — M. Consider M, M + 1,M +2,..., M + k. Since
M+Fk > s, there is a largest integer in this list, say ag so that a is a lower bound for
S and ag+ 1 is not. Choose sg € S so that sg < ag+ 1. This is a ‘witness’ to the fact
that ag + 1 is not a lower bound. Now consider the numbers a¢.0, ag.1, ..., ag.9.
Pick the largest value a; € {0, 1,...,9} so that ag.a; is a lower bound. Select a
witness s; € S so that 51 < ag.a; + 11—0.

Repeat this procedure recursively. Suppose that ag.ajas . . . a, is a lower bound
for S, and there is an s,, € S so that s,, < ag.ajay...a, + 107", Consider
ap.ajay . ..ap0, ..., ap.a1ay .. .a,9 and pick the largest a,+; € {0,1,...,9} so
that ag.a1ay . .. ana,+1 is a lower bound. Then select a witness s, € .S so that
Sp+l < aQ.a1G7 . . . Gplpt] + 10~"~! to show that this is not a lower bound.

Let L = ag.ajaraz.... If s € S, then s > ag.ajay...a, for all n = 0.
Therefore s > L. If L < b, then there is a finite decimal so that

L<c=cyciep...cp <b.
Thus
ao.a1a2 ...an < L < s, <ap.aian...an+107" < c < b.
The witness s,, shows that b is not a lower bound. Therefore L is the greatest lower

bound.
For the first part, we observe that sup S = — sup(—.5). |
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2.4. Monotone Sequences

2.4.1. DEFINITION. Say that (a,,),> is a increasing sequence if a,, < an
for all n > 1; and say that it is a strictly increasing sequence if a,, < an4 for all
n > 1. Sometimes we say that (a,,) is monotone increasing for emphasis. Similarly
we define decreasing sequence and strictly decreasing sequence.

2.4.2. MONOTONE CONVERGENCE THEOREM. If (ay,) is an increasing
sequence which is bounded above, then (a,) converges, i.e., linrolO an = L exists. If
n—

(an) is a decreasing sequence which is bounded below, then (a,,) converges.

PROOF. Suppose M is an upper bound for S = {a,, : n > 1}. Let L = sup S,
which exists by the Least Upper Bound Principle. We claim that lingC an = L.
n—

Let e > 0. Then L — ¢ is not a lower bound for S. Hence there is an NV so that
L—e<ayn.Forn>N,L—¢ <ay < ay, < L. Therefore |L — a,| < e. Thus

lim a, = L.
n—aoo

If (ay) is decreasing, then (—ay,,) is increasing with limit sup{—a,, : n > 1}.
Therefore (ay,) has limit L = inf{a,, : n > 1}. |

2.4.3. EXAMPLE. Leta; = 1 and a,4+1 = /2 + /a, forn > 1.

Claim: a, is increasing. Indeed, ay = V3 > a;. Proceed by induction. If
an > ap—1, then

apt1 = \/24- Vay > \/2—1— A Ap—1 = ap,.

Hence by induction, a,4+1 > a, foralln > 1.
Claim: a, < 2 for all n > 1. Again this is true for a; = 1. If a,, < 2, then

ant1 = /2 +/ap < <A2+V2<2.
Therefore (a,,) is monotone increasing and bounded above. By the Monotone
Convergence Theorem (MCT), L = lim a, exists. Hence
n—oo

L= hm nt1 == lim /2 + \/a, = 2++L
n—0o0

So L? = 2 ++/L; whence (L?> — 2)?> = L, or
0=L*—4L>—L+4=(L—1)(L*+L*-3L—4).

Now L > ap = +/3,50 L # 1. Thus L is a root of the cubic p(z) = 2° +2> -3z —4.

Now p/(z) = 32% + 22 — 3 = 3(22 — 1) + 22 > O on [1,2]. Thus p is strictly
increasing and p(1) = —5 and p(2) = 2. The curve must cross the axis, and it has
exactly one root between 1 and 2. There is a formula for cubics, though it is not
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very enlightening:

. 1<</79+\2/2241 +\3/79—\2/2241 - 1) L3117

3

1 + a2 .
" for n > 1. First we show

2.4.4. EXAMPLE. Leta; = 2and a1 =
that (ay,) is increasing. Now a = % >2=a;. Ifa,—1 < a,, then

l+a2 , 1+d
Ay = < = Qn+1-

2 2
Thus the sequence is increasing by induction.
Suppose that L = lim a,. Then

n—oo

l+a2 1+L?
L= lim apyy = lim ——n - 25570
n—00 n—00 2 2
Therefore 0 = L?> — 2L + 1 = (L — 1)?; so that L = 1. But this is absurd, because
an = 2. What went wrong?
The problem is that this sequence isn’t bounded, and thus does not converge.

In fact, a,, > n forn > 1. We have seen this for n = 1,2; and a3 = % > 3.
1+a2 1+n?
Suppose that n > 3 and a,, > n. Then a, 4+ = 3 > 5 ; and

1 +n?

1 1
f(nJrl)=§(n272n71)>§n(n—3)>0.

By induction, a,, > n for all n, and the sequence is unbounded.
It is convenient to be able to describe the divergence to infinity precisely.

2.4.5. DEFINITION. If (a,),> is a sequence, then lingo an = +00 means that
n—
for all R > 0, there is an integer NV so that forn > N, a,, > R. And lingO ay, = —0
n—
is defined analogously.

The notion of being close to a limit value L is replaced by eventually being
greater than any large number R. In our example above, given R, we just choose
N sothat N > Randforn > N, a, > n > R.

2.5. Subsequences

2.5.1. DEFINITION. A subsequence of (a,)n>1 is a sequence (ay,);>1 Where
n<n<ny<....
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The following proposition is elementary.

2.5.2. PROPOSITION. Suppose that lirglO an = L and that (ay,)i>1 is a subse-
n—

quence of (an)n>1. Then lim a,, = L.
1—00

PROOF. Let ¢ > 0 and select an N so that |a, — L| < ¢ forn > N. Then if
i > N,thenn; >1i> N,so |a,, — L| <e. Thus lim a,, = L. |
1—00

We showed in Proposition 2.2.11 the elementary fact that convergent sequences
are bounded. The following result is deep, and deals with a partial converse. It has
a very interesting proof.

2.5.3. BOLZANO-WEIERSTRASS THEOREM. Every bounded sequence
has a convergent subsequence.

PROOF. Suppose that |a,| < B forn > 1. Let Iy = [—B, B], and split this
interval into two halves, Ip— = [—B,0] and Ip, = [0, B]. One (and possibly
both) of these two intervals must contain infinitely many terms of the sequence.
Let I} = [b1,c1] be such an interval, and pick n; so that a,, € I. Split I; into
two halves I = [by, b'erC'] and I, = [b‘;”:‘ ,c1]. Again, at least one of these
intervals, say I, = [by, ¢2], contains infinitely many terms of the sequence. Pick an
ny > nq so that Qn, € .

We repeat this procedure recursively. Suppose that we have a nested sequence
of intervals I} > Iy D -+ D I, = [bm,cm] so that the length || = 27%|Iy| for
1 < k < m so that I, contains infinitely many terms of the sequence, and that
we have selected n; < np < --- < n,, so that a,, € I} for1 < k < m. Split
I,,, into two halves I,,— = [by, 22t%m] and I,y = [b=dem ¢, ]. Pick one, say
In+1 = [bm+1, ¢m+1], which contains infinitely many elements of the sequence.
Then select 1,11 > Ny s0 that ay,, | € Iyt

Our subsequence is (ay,)i>1. Observe that because of the construction of the
nested intervals I,,,, we have that

by <by < - <bp<ay

and ¢, — by, = 27| Iy| = 2' =™ B. The sequence (b,,) is increasing and bounded
above by ¢;. By the MCT, lim b, = L exists. Also (¢,,) is a decreasing sequence
m—0Q0
bounded below by by, and thus by MCT, lim c¢,, = M exists. Moreover
m—00

M —L = lim ¢, — by =0.
m—00

so M = L. Finally lim a,, = L follows from the Squeeze Theorem. |
1—00
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2.5.4. EXAMPLE. In Example 2.3.3, we considered the sequence (sinn). What
are the possible limits of subsequences of this? The way the argument worked is
that we found terms in this sequence approaching 1 by approximating the angle 5
by 6(n;) for various integers n;. There was nothing special about 7 except that it
was where sin x takes the value 1. We can do the same thing for any angle. Thus
given L € [—1, 1], we can find positive integers m; (not necessarily increasing) so
that sin m; converges to L.

To select an increasing sequence, look back at the construction. The number

s s
hm = kn =k = [ZaJ ~ [25J'

This is large when ¢ is very small. So what we do is to choose the sequence recur-
sively, and if n; < - -- < ny are defined, we select € so small that the lower bound
is greater than ng. Then the terms that we choose will be increasing. Thus every
value in [—1, 1] is a limit of a subsequence of (sinn).

2.6. Completeness

Given a sequence (ay,), is it possible to decide if it will converge without iden-
tifying a limit? The answer is crucial to explaining why the real line has no “holes”
in it, while the rational numbers has many. A sequence like Example 2.2.9 is a
sequence of rational numbers with an irrational limit, v/2 — 1. How do we know
that there aren’t sequences of real numbers converging to something in a larger uni-
verse? The answer is the notion of completeness, which relies on a good answer to
the question just posed.

2.6.1. PROPOSITION. [f lim a, = L and € > 0, there is an integer N so that

n—00
forall N <m <, |a, — an| < e

PROOF. Use % is the definition of limit, and find NV so that for n > N, we have
lan, — L] < 5. Thenif N <m < n,
€

3
|an_am|<‘an—L|+|L—am’<§+§:€. n

2.6.2. DEFINITION. A sequence (ay,) is a Cauchy sequence if for every € > 0,
there is an integer IV so that for all N < m < n, |a, — ap| < €.

We can use essentially the same proof as for Proposition 2.2.11 to show that
Cauchy sequences are bounded.

2.6.3. PROPOSITION. Every Cauchy sequence is bounded.
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PROOF. Suppose that (a,) is a Cauchy sequence. Take ¢ = 1 and find N so
that for all N < m < n, |a, — an,| < e. Let
M = max{|a1|, ‘ag, ce, |CLN,1|, |CLN| + l}.
If n > N, then |a,| < |an| + |an — an| < |an| + 1. [ |

Like convergent sequences, Cauchy sequences don’t have multiple limit points.

2.6.4. LEMMA. Let (a,) be a Cauchy sequence. If there is a convergent subse-
quence lim a,, = L, then lin;o a, = L.
1—00 n—

PROOF. Let € > 0 be given. Using 5, select N so that |a, — a,,| < 5 for all
N < m < n. Using the limit, find an integer I so that if ¢ > I, then |a,, — L| < 5.
Select some ig > I so that n;, > N. Thenifn > N,
lan — L| < |an — an, | + |an, —L| < =+ =-¢.
’LO ’LO 2 2
Therefore lim a, = L. |

n—o0

2.6.5. DEFINITION. A set S < R is complete if every Cauchy sequence in S
converges to a point in .S.

2.6.6. COMPLETENESS THEOREM. R is complete.

PROOF. Let (a,) be a Cauchy sequence. By Proposition 2.6.3, it is bounded.
By the Bolzano-Weierstrass Theorem, there is a convergent subsequence (ay, ).
Then by Lemma 2.6.4, the whole sequence converges. Therefore R is complete. Bl

2.6.7. EXAMPLE. Letay = Oand a,, = for n > 0. The first few terms

3a, + 5
2 10 62 370 b :
are 0, £, 375 785> 1111> - - - Which is approximately

0,0.4,0.32258,0.335135,0.3330333, . ..
We will show that (a,,),> is a Cauchy sequence. First
2 2 B 6(an—1 — an)
3a, +5 3an_1+5 (Ban+5)(Ban_1 +5)

Since it is clear that a,, = O for all n,

an+1 — An

6|an - an—l‘ < |an - an—1|

25 4

|an+1 - an‘ <

Therefore,

lan—1 —an2| lan—2—an3| |ar —aol
B R ST

|an+1 - an| <
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Now, since a; — ag = %,ifN <m<n,
am’ = ‘ 2 Qi1 — Q4 2 ’az+1 - az‘

Z L _84m < 84
= 1—% 15

UIH\J

Given € > 0, we choose NV so large that 8 154" N < ¢, and we see that (a,) is
Cauchy. By the Completeness Theorem, L = lim a, exists. Therefore,
n—00

2
L= lin _ i .
et = e 3a, +5  3L+5

Thus 0 = 3L* + 5L —2 = (3L — 1)(L +2). So L € {3, —2} and we know that

L > 0. Therefore lim a, = %
n—0o0

We have established a number of results which all say something rather similar.
In particular, we started by establishing the Least Upper Bound Principle. This was
used to derive the Monotone Convergence Theorem. Then, we used MCT to prove
the Bolzano-Weierstrass Theorem. And finally we used the Bolzano-Weierstrass
Theorem to prove Completeness of R. Let’s go full circle, and use the Complete-
ness Theorem to prove the Least Upper Bound Principle. This will show that each
of these results is an equivalent formulation of completeness.

Suppose that S < R is non-empty and bounded above. To get started suppose
that so € Sand s < M forall s € S. Let L = (so + M)/2. If L is not an upper
bound for 5, pick s; € S with s; > L and set M| = M. Otherwise, if L is an upper
bound, set M| = L and s; = s¢. Either way, M| — s < %(M — 50). Repeat this
procedure recursively to construct an increasing sequence Sp in S and a decreasing
sequence M,, of upper bounds for .S so that hm M, = 0. The sequence (sy,)

is Cauchy because if ¢ > 0, select N so that MN —sy <e. Thenif N <m < n,
then
SN<3m<5n<MN<5N+5-

Therefore |s,, — s;,| < e. By the Completeness Theorem, L = lim s, exists.
n—0o0

Moreover lim M, = 11m Sn + (M, — sp) = L. Thus no number smaller than L
n—aoo

is an upper bound, but L 1s an upper bound; and so it is the supremum of S.

2.7. Some Topology

It is convenient to introduce some notation that is used to describe two special
classes of sets of real numbers.
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2.7.1. DEFINITION. A subset U of R is open if for each = € U, there is an
r > 0sothat (z —r,x +r) < U. In particular, (a,b) = {re R:a <x < b}isan
open interval.

A subset A of R is closed if it contains all of its limit points; i.e., if a,, € A and

lim a, = b, then b € A. In particular, [a,b] = {x € R: a < x < b} is a closed
n—aoo0

interval.

2.7.2. EXAMPLES.
(1) An open interval (a, b) is open. If z € (a,b), then r = min{x — a,b — z} > 0
and (z —r,xz + 1) < (a,b).

(2) A closed interval [a, b] is closed. For if z,, € [a,b] and lim x,, = y, then since
n—o0
a<x, <bwegeta<y<b

(3) A union of open sets if open: if U, are open, then U = | -, U, is open. For
if x € U, there is some n so that x € U,. Hence there is some » > 0 so that
(r—r,z+r)cU,cU.

(4) The intersection of two open sets is open: if U and V are open, andz e U NV,
then there are r1,7, > O so that (z — i, + 1) < U and (x —rp,z + 1) < V.
Take r = min{r;,r,} and note that (x —r,z +7r) c U N V.

2.7.3. PROPOSITION. A set U is open if and only if U¢ = R\U is closed.

PROOF. Suppose that U is open, and a,, € U¢ and lingC a, = b. If b € U, then
n—00

for some r > 0, (b — r,b + r) < U. But then there is an N so that |a,, — b| < r
for all n > N, and they all belong to U, which is false. Thus b € U¢; whence U° is
closed.

Conversely, suppose that A is a closed set. Letx € A. If An(z—r,z+7r) # &
for all r > 0, then taking 7 = 1, we can pick a,, € A so that [z — a,| < 1. Then
nhl& an, = x. Since A is closed, z € A, a contradiction. Thus for some r > 0,

(x — 7,z +1r) < A° So A°is open. [
2.7.4. PROPOSITION. A subset S < R is complete if and only if it is closed.

PROOF. Suppose that S is complete, and s,, € S so that the sequence (S, )n>1
converges in R, say lingC Sp = b. Then (s,,) is a Cauchy sequence in S. Therefore
n—0o0

the limit b belongs to S. Thus S is closed.
Conversely, suppose that S is closed. Let (s,) be a Cauchy sequence in S.
Since R is complete, lim s, = b exists in R. Then because S is closed, b € S.
n—aoo

Thus S is complete. |
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Exercises for Chapter 2

1.

For the following sequences, determine the limit if it exists, or prove that it
does not converge using the definition of limit

@ (—1)”\/ﬁcosn.

n?+1
(b) sin (%)
100+5n
(©) W’ n>=1.
@) (—)"EEEeE s

(a) Let a,, = Vn? 4+ 3n — 3 — n for n > 1. Find the limit.
(b) Using ¢ = %10*20, find an IV that works in the limit definition.

ay+ay+ -+ ap
n

= L.

Suppose that lim a,, = L. Show that lim
n—o0 n—0o0

Letzg =3 and x4 = (z,, + %)/2 forn = 0.

(a) Assume a limit exists and figure out what L must be.
(b) Set &, = ¥, — L. Show that 0 < &, < €2 /5.

(c) Hence show that the limit exists.

Let xg = 0and 5,41 = +/15 — 22, forn = 0.

(a) Figure out what the limit L should be.

(b) Show by induction that 2 < x,, < 4 forn > 1.

(¢) Define ¢, = x,, — L. Find a formula for €,,4 in terms of &,,. Show that this
alternates in sign. Hence prove that nlglgo Tn = L.

Let ag and a; be positive numbers, and set a,+2 = \/an+1 + 4/an forn = 0.
(a) Show that here is some N so that a,, > 1 foralln > N.

(b) Let e, = |ay, — 4|. Show that e, 17 < (ep4+1 +p)/3 forn = N.

(c) Hence prove that this sequence converges.

Give a careful e—~N proof that: if (a,) and (by,) are sequences of real numbers
so that lim a,, = L and lim b,, = M, then lim a,b, = LM.
n—aoo n—0oo n—oo
Leta, = ¥/3" + 5" forn > 1.
(a) Prove that this sequence is monotone decreasing and bounded below. What
can you conclude?
(b) Evaluate nh_r)rgo Q.

©¢] n

A series Y a, is said to converge if the sequence s, = Y, ag, forn > 1,
n=1 k=1

converges. Suppose that a,, = 0 for all n > 1. Prove that the following are all
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10.

11.

12.

13.

14.

15.

The Real Numbers and Limits

equivalent:

() >, a,, converges.
(ii) the sequence s, = Y, _, aj is bounded above.
(ii1) for all £ > 0, there is an N so that ZZL:NH ap < eforallm > N.

Suppose that (z,,)%_; is a sequence such that Y, |Tn41 — | converges.
Prove that (z,,) is a Cauchy sequence.

Let S ={zeR:z+#0,0<sin(1) < 3}. Find sup S and inf S.

1
€T
Suppose that (a,);_, is a sequence such that
an—1 < ont1 < Qopt2 < G, forall no>1
Prove that the sequence converges if and only if lim a,, — ap+; = 0.
n—aoo

JI+h—1

a) Find lim —————— . HINT: rationalize the numerator.
h—0 h

(b) (i) Show thatif h > —land h # 0, then v/1 + h < 1 + %
(i) Forany 0 < € < %, show that if 0 < h < 4¢, then
1
(iii) For any 0 < € < g, show that if —4¢ < h < 0, then

1
1+(§+s)h<€/1+h.

(c) Use (b) to provide a different proof of (a).

Let xg = 0and 1 = +/5 — 22, forn = 0.

(a) Compute xy, ..., x1o on your calculator or computer.

(b) Prove that the even terms are increasing and bounded above by all the odd
terms, which are decreasing. HINT: f(x) = 1/5 — 2 is decreasing.

(c) Get a bound for |z, — ] in terms of |x,, — z,,—;| for n > 4.

(d) Prove that 7}1_)rr010 T, exists, and evaluate this limit.

Find a sequence of rational numbers (a,,) so that a real number L is a limit of
a subsequence of (a,,) if and only if e < |L| < 7.



CHAPTER 3

Functions

We briefly review some the of terminology regarding functions. A function is a
map f: X — Y fromaset X into a set Y that assigns exactly one value y = f(z)
for each x € X. The domain of f is the set on which it is defined, and the target
space Y’ is the codomain. The range of f is the set {y = f(z) : x € X }.

A function is one-to-one or injective if x| # x, € X implies f(z1) # f(z2).
A function is onto or surjective if for each y € Y, there is some x € X so that
f(z) = y. A function is one-to-one and onto or bijective if it is both injective and
surjective.

When the range is a field like R, say f,g : X — R, we can add, subtract and
multiply functions: (f + g)(z) = f(z) £ g(z) and (fg)(x) = f(z)g(x). We can
also multiply them by a real scalar, say t € R: (tf)(x) = tf(x). If g(z) # 0 for all
x € X, we can divide: (f/g)(x) = ;((i))

Iff: X —->Yandg:Y — Z, the composition go f : X — Z is defined by

go f(x) = g(f(x)). If f: X — Y is a bijection, then there is a unique function
g:Y — X sothatgo f(x) = idx(z) = x for all z € X, namely, for each y € Y/,
there is a unique x € X so that f(z) = y; and we set g(y) = x. This is called the
inverse function of f, and is denoted f~!. We also have f o f~! = idy, so that f
is also the inverse of f~!. We will discuss inverse functions in more detail later.

3.1. Limits of functions

We want to extend our definition of limits of sequences to limits of functions.

3.1.1. DEFINITION. Suppose that a real valued function f is defined on an
interval (a — d,a + d)\{a} for some d > 0. The limit of a function f as x — a
is L, written lim f(x) = L, means that for all ¢ > 0, there is a 6 > 0 so that if
r—a
0<|z—a|l <d,then|f(z)—L| <e.
In symbols, Ve 035>0Vo<|g—a|<s |f(7) — L| <e.

3.1.2. REMARKS. (1) f does not need to be defined at 2 = a, and in any case,
the value f(a) has no bearing on the value of the limit.

29
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(2) When f is defined on (a,a + d), we can talk about the limit from the right.
We write lim+ f(z) = L to mean: for all ¢ > 0, there is a § > 0 so that if

r—a

a <z < a+d,then |f(x) — L| < e. Similarly, we define limit from the left,
lim f(x) = L, ifforalle > 0, thereisad > O sothatif a —J < = < a, then

Tr—a

[f(z) — L] <e.
3.1.3. EXAMPLE. lirn3 \/z = /3. To prove this, estimate the difference
T—

(z —/3)(x +/3) _ |z -3
+4/3 VT + V3

Make an initial choice to control the denominator: if [z — 3| < 1,then2 < z < 4
and so

Va3l =

1 1 1
< < —.
VT+3 V2443 3

Therefore |/ — /3| < |azg3|

0 < |z—3] <6 weget|or—+3| <
0 < 1 and the second requires 6 < 3¢. Hence lim3 vz = /3.
r—

. Given ¢ > 0, pick § = min{3¢, 1}. Then if

|z — 3]

< €. The first inequality requires

1 ifreQ
0 ifr¢Q

. Then lirrb f(z) does not exist.
€Tr—>

3.1.4. EXAMPLE. Let f(z) = {

Take any value L, and let ¢ = %
Case 1. Suppose that L <
Then [f(1) — L| = [1 ~ L] >
Case 2. Suppose that L >
Then [f(%) ~ L| = |L] > }

exist.
if
Let g(x) = of(x) = {fj oo

lim z. Therefore lirr%) g(x) = 0 by the function version of the Squeeze Theorem.
Tr—>

€Tr—>

< 4.

S|

. For any § > 0, pick n € N so that 0 <
= £. So L is not the limit.

. Given 0 > 0, choose n € Nsothat 0 < T < .
€. Thus L is not the limit. So the limit does not

313

Il D= D= po | —

Then 0 < g(z) < z. Then 1ir%0 =0=
xr—>

3.1.5. SQUEEZE THEOREM FOR FUNCTIONS. Suppose that f,g,h are
functions on [a — d,a + d]\{a} such that f(z) < g(z) < h(z) and lim f(z) =
L = lim h(x). Then lim g(z) = L.

The following analogue of Proposition 2.2.10 is established in the same way as
for sequences. We leave the proofs as an exercise.
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3.1.6. PROPOSITION. Suppose that f and g are functions on (a — d,a + d)
such that lim f(z) = L and lim g(z) = M, and let r € R. Then
r—a r—a

(1) lim f(z) + g(a) = L+ M.

@) tim rf(x) = rL.

(3) lim f(2)g(x) = LIM.

(4) If M # O, then there is a g > 0 so that g(z) # 0 for 0 < |x — a| < do;

2

and Fa) I
. x
P gy M

. . sinf . .
3.1.7. EXAMPLE. Consider gm(l) W Remember that we are using radians.

in 6 in |0
Note that if —7 < 6 < 0, then % = Sl?0|| |
it is enough to work with 0 < 6 < g Draw a circle of radius 1, centre O, and mark
the points A and B on rays separated by angle 6. Draw the lines perpendicular to

OA through A and B, and mark points C' and D as in the figure. Note that segments

because this is an even function. So

(e} D A

FIGURE 3.1. Limit of 812

OA and OB have length 1, while BD has length sin 6, and AC has length tan 6.
Observe that

ANOAB c sector OAB < AOAD.
Thus their areas compare:
1

1 1 sin 0
—sinf < =012 < —tanf = .
VS5 A YN

Rearranging we get

cosf < —Slge <1
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In particular, 0 < sinf < #if0 < 0 < % Therefore if 0 < 0 < 1,

cosG:\/l—sin20>\/1—02>1—92.

in 6 in 6
Thus 1 — 6? < SmY < 1. By the Squeeze Theorem, gin}) % =1.
Another important limit that is a consequence of this is
. 1—cosz . 1—(1-2sin*%) . 2sin?% 1
lim ———— = lim = -0 2 -
z—0 x? z—0 z2 x—0 4(%)2 2

We can use these two limits to compute the derivative of the sinz and cos x
functions. We will not study the derivative formally until Chapter 5. However most
students in this course have seen the derivative in their high school calculus course.
So we will make use of that knowledge until we get to the theory later on.

d( inc)| sin(a + h) — sina
—(sinzx = lim
dx r=a h—0 h
. sinacosh + cosasinh — sina
= lim
h—0 h
.. (cosh—1) sinh
= lim sina——= + cosa———
h—0 h h
= sina(0) + cosa(l) = cosa.
and
. cos(a+ h) —cosa
%(cos m)|m:a = %1_1)% N
cosacosh —sinasinh — cosa
= lim
h—0 h
I (cosh—1) . sinh
= lim cosa~——% —sina——
h—0 h h
= cosa(0) —sina(l) = —sina.
Thus
d
%(Sin x) =cosx and %(cos x) = —sinzx.

Now I want to graph the function f(z) = S for & # 0. Before we draw any-
x
thing, I will collect some information. First we know that sin = oscillates between
+1 with period 27. Therefore f(x) oscillates between the graphs of y = i—%. Since
sinz has zeros at all integer multiples of 7, 7Z, f(z) = 0 at {n7 : n € Z\{0}};
but as we appraoch x = 0, we have lir% f(z) = 1. Also f(x) touches the curves
xr—>

Yy = ii at alternate odd multiples of 5. The function f is even, meaning that
sin(—x sin
fma) = 2D

L f)
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It won’t help much to solve for f/(x) = 0 because we know that when the
curve touches y = i%, it will be tangent there, but won’t have derivative zero.
Thinking of > 0, the zeroes of f’(z) will happen a bit before touching the curve
Yy = i%, reaching an extremal point and turning slightly to line up with the other
curve. We can’t actually solve explicitly for these points, and the information only
helps a little bit. For example, the minimum of the function occurs at points +x
where x is a bit smaller than 37” The exception is the behaviour near x = 0. Here
it helps.

rcosT — sinx cos x — &

fl(z) = —"—"" and lim f'(z) = lim

$2 z—0 z—0 xT

sin x l—cosxz __ 0

But we just showed that 0 > cosx — > cosx — 1, and lim; o ~—,
Thus by the Squeeze Theorem, lirr%) f'(x) = 0. This means that the curve flattens
T—

out as it approached z = 0 at (0, 1).

| oo

FIGURE 3.2. Graph of 2%

3.1.8. EXAMPLE. Graph g(z) = xsin1 on R\{0}. This is also an even func-
tion. As x approaches 0, % approaches +00. So sini oscillates faster and faster
between +1. So g(x) oscillates between the two functions y = +x. In particular,

ii_)mog(:c) = 0. The zeroes occur at {-- : n € Z\{0}}. At the points m for

n >0, g(z) = (—1)"z. So the largest point where the curve touches the bounding
linesisatxz = % Use the even property to reflect this over to the negative real axis.
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FIGURE 3.3. Graph of x sin %

This explains the behaviour as we approach x = 0. What happens as x — o0?
In this limit, substitute u = % Asx — oo, u — 0T,

) . . sinu
lim zsind = lim — = 1.
T—00 z u—0t+ U

Thus this curve has a horizontal asymptote y = 1 as x — oo and by symmetry, as
xr — —o0 as well.

3.2. The natural logarithm

between

A1, a).

For 0 < a < b, define A(a,b) to be the area under the graph y =
x =aand z = b. Set A(b,a) = —A(a,b) when b > a and L(a)
Observe that A(a,a) = 0 and A(a,b) + A(b,c) = A(a,c).

We are not going to do any integral calculus here. Rather I am going to argue
geometrically to obtain the properties that we need. For s > 0, consider the linear
transformation

g

Ti(x.y) = (s2,%) for (z,y) € B

This takes a square S with corners (z,y), (x + h,y), (z,y + h) and (x + h,y + h)
to the rectangle R = T, with corners (sz, %), (sz + sh,¥), (sz,% + Z), and
(sz + sh, ¥ + ). Now S has area h? while R has area (sh)(2) = h%. Any nice
planar region can be approximated by a union of small squares. Since T preserves
area on each square, it preserves area for any nice region.

Next observe that the points on the curve y = % for x > 0, say (z, %), are
mapped by T to (sz, é) So T maps the curve onto itself. It similarly maps the
x-axis onto itself. The line z = a, which consists of points (a, y), is mapped onto
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A“D)C.)

FIGURE 3.4. Areaundery = 1

x

the line x = sa. It is now easy to see that the region under the curve y = % between
x = a and x = b is mapped by T onto the region under y = % between x = sa
and x = sb. Therefore, since T preserves area,

A(a,b) = A(sa,sb) for 0<a<bands > 0.
3.2.1. PROPOSITION. Fora,b >0, L(ab) = L(a) + L(b).

PROOF. L(ab) = A(1,ab) = A(1,a) + A(a, ab)
= A(1,a) + A(1,b) = L(a) + L(b). m

3.2.2. COROLLARY. Fora > 0andn € Z, L(a") = nL(a).

PROOF. First consider n > 0. Clearly L(a®) = L(1) = A(1,1) = 0 and
L(a') = L(a). Proceed by induction. Assume that the formula is true for n. Then
L(a"™") = L(aa™) = L(a) + L(a™) = L(a) + nL(a) = (n + 1)L(a).

Thus by induction, the formula is valid for all n € Nj.
Next consider n = —1.

Lby = A(L Yy = —A(L, 1) = —A(1,0) = —L(a).

a

Finally,ifn € N, L(a™") = —L(a") = —nL(a). So the formula is valid for n € Z.
[ |

3.2.3. COROLLARY. L(z) is a strictly increasing function on (0, o), and
lim L(z) =+ and lim L(z) = —oo.

T—00 z—0t
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PROOF. Strictly increasing is clear because A(a, b) > 0 for a < b. Therefore
. o ny 1 B
wlergo L(z) = nlgrgo L(2") = nlgrgo nL(2) = 4+
because L(2) > 0. Similarly,
lim L(z) = lim L(2") = lim nL(2) = —o. [

r—01 n— —oo n——ao

1 A(a,b 1
3.2.4. PROPOSITION. For a,b > 0, - < (a,b) < —. Thus for v > 1,

b b—a a
T z—1

PROOF. Notice that the region with area A(a, b) contains the rectangle on [a, b]
with height % and is contained in the rectangle on [a, b] with height é Therefore

R

1 b
FIGURE 3.5. Bounds for A(a,b)
b—a b—a
< A(a,b) < :
b (a,5) a
Divide by b — a. Take a = 1 and b = z to get the second formula. |

3.2.5. COROLLARY. iL(:n) = lfor:v > 0.
dx x

PROOF. For 2 > 0 and h > 0, we have

1 <A(x,x+h) _ L(z+h)— L(x) <l
x+h h a h x’

Let h — 07" and use the Squeeze Theorem to get

lim L(x+ h) — L(x) _ l
h—0+ h x
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Similarly if 0 < h < =,

1<A(:L'—h,x) :L(ac—h)—L(:n) - 1

T h —h z—h
Thus
lim L(x+ h) — L(x) _ 1
h—0— h X
1
Therefore L' (z) = —. [ |
x

3.2.6. DEFINITION. The natural logarithm, written In z or log x, is defined as
Inz = L(z) for x > 0. The number e is the unique real number such that Ine = 1.

The main property of any logarithm function is given in Proposition 3.2.1:
In(ab) = Ina + Inb. The base of the logarithm is the number, in this case e,
such that Ine = 1. This specific number is chosen so that the derivative is %, not
some multiple. Corollary 3.2.2 shows that Ine™ = n, but in fact it says much more.

Consider a rational number 7. Then
m =Ine™ = In((e™™)") = nlne™™.
Therefore In e™/™ = o,
If we have a log function such that a number a > 1 had log equal to 1, we call
this function log, x. Because of the product property, it follows that log,, an =m

n
m 1 d 1
and Ina» = 7> Ina. Therefore log, z = 1?1—2. Therefore e log, z = Tna

We want to get a rough estimate for the value of e. We will find more precise
methods later. First estimate In2 = A(1,2) is bounded above by the trapezoid with
vertices (1,0), (1,1), (2, 3), (2,0) which has base 1 and average height 5 (1 + 1) =

%. SoIn2 < 0.75. Next look at In2.5. From 2 to 2.5, we bound the curve by

O )?) (3/17153
q 1

CA')O) (2,0) (%,D) (\;07 ('%)0 2,8 Y
FIGURE 3.6. Estimating e

another trapezoid including vertices (2.5,0.4) and (2.5, 0). Its area is greater than
A(2,2.5). This trapezoid has base % and average height %(% + %) = 29—0, so it adds

an additional %. Therefore In2.5 < % + 49—0 = % < 1. Hence 2.5 < e.
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On the other hand, the area A(1,3) under % from 1 to 3 is bounded below by
a trapezoid on [1,2] with upper edge tangent to % at (%, %) plus the rectangle on
[2.3] of height 1. This provides a lower bound In3 = A(1,3) > 1(3) + 1 = 1.

See the figures. Thus 2.5 < e < 3.

3.3. The exponential function

Since Inx is strictly increasing on (0,00) and maps onto the whole line, R,
there is an inverse function £ : R — (0, o) satisfying

E(lnz) =zforz >0 and In(E(z))=xforzeR.

In particular, E is strictly increasing, and F(0) = 1 and E(1) = e. Each point
(z,y) on the graph of In z converts to the point (y, z) on the graph of E.

Since In(ab) = Ina + Inb, apply E to get ab = E(Ina + Inb). Substitute x =
Ina and y = Inb, which are arbitrary real numbers, to get F(z)E(y) = E(x + y).
Thus E(x)" = E(nz)andso E(%)" = E(x). Thus E(%2) = E(£)™ = E(x)w.
Now take z = 1to get E(7") = en . As E is monotone increasing, we obtain that

E(x) = e” for all real numbers. This is known as the exponential function.

1

(A) Graph of Inx (B) Graph of e”

3.3.1. EXAMPLES. Let’s try to understand the growth rates of these functions
more precisely.

. Inzx
1) lim —. Ife” < x < e"t!, wehave n < Inz < n + 1, and hence
Tr—0 I
n Inx - n+1
ent+l = 4 = en

. ..n n
Claim: lim — = 0. Set a,, = — and compute
n—oo e en

npt _ntl 2 ¢

an ne e
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Therefore by repeated application, we get a,+; < (.8)"a; — 0. Thus by the

In
Squeeze Theorem, lim nr_ 0.
Tr—0 I

(2) Let a > 0 (think of @ as small). Then in the next limit, substitute y = x® and
note that as x — 00, then y — 0.
Inx . Inyl/e

1 |
lim — lim R
z—o0 ¢ y—o Yy a y—wo Yy

0.

This says that In x grows more slowly than any positive power of x, and thus in-
creases very slowly for large x. The curve gets flatter and flatter as = increases.

(3) This converts to a statement about e*. Here we substitute 4y = ¥, and note that
as x — oo, then y — c0.

Then for any b > 0 (think of b as very large), and again substitute y = €7,

e VN
) =+,

lim — = lim ——— = lim <y—
a—wo b y—w (Iny)b  y—o \lny

Hence e” grows faster than any power of x.

(4) Now consider the behaviour of Inz as x — 0". Again let a > 0. So as
xz — 07, we have Inz — —o0 and 2% — 0. We will substitute y = %, so that
Yy — 0.

—1
lim z%Inz = lim y %Iny~! = lim ——2 =0,
z—0+ y—>00 y—oo Yy

Moreover it takes negative values. So while Inz — —oo0, it goes more slowly than
x® goes to 0 for any a > 0.

(5) If I substitute y = —x in the following:

lim |z|%e® = li Y
T——00
This shows that e” goes to zero faster than any polynomial ™ goes to co as x —

—00.

3.3.2. EXAMPLE. Graph f(z) = zlnx for x > 0. Then f(z) = 0 only at
x = 1, where it changes from negative to positive. It increases to infinity a bit
faster than a straight line. The interesting behaviour is between 0 and 1. We have
li%l+ f(z) = 0. Now look at the derivative: f’(z) = Inz + 1. The is monotone
€T —>

increasing, so the curve always curves upwards as a faster rate as x increases. Note

that0 = f'(z) implies thatInz = —1, so that z = 1. Thisis a minimumat (1, —1).
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Notice also that 1im+ f'(x) = —oo. This means that the curve is becoming vertical.
xz—0

There is a vertical tangent at the limit point (0, 0). See the figure.

(0\0)
Vfaﬁ;ﬁg’ )
&=)

FIGURE 3.8. Graph of zInzx.

3.3.3. PROPOSITION. di(eﬂ’) =e” forz e R
i

PROOF. Apply the chain rule to the identity In(e”) = x to get

1
e—x%(em) =1 or %(em) = e”.

3.3.4. PROPOSITION. lim (1 + £)" =¢® forz e R.

n—o0

PROOF. By Proposition 3.2.4 applied to 1 + -, we have
1 In(1+ £ 1
< ( ) < —.

n

Therefore

Exponentiate to get
et < (1+ %)n <e”.

Now let n — c0. By the Squeeze Theorem, lim (1 + %)n =e”.
n—00

In the next result, we need Bernouilli’s inequality.

3.3.5. LEMMA. (14+2)">1+nx forl +z>0andn > 1.
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PROOF. Proceed by induction on n. Forn = 1, 1 + x = 1 + . Assume that it
is true for n — 1. Then

(14+2)" = (142)" '(142) = (1+(n—Dz)(1+z) = 1+nz+(n—1)z* = 1+nz.

Hence it is true for n. By induction, this holds for all n > 1. |

3.3.6. PROPOSITION. Leta, = (1 + 1)" and b, = (1 + 1)""". Then a, is
monotone increasing, b, is monotone decreasing and

lim a, = lim b, = ¢
n—0o0 n—0o0

Similarly ¢,, = (1 — %)n_l and d,,
increasing respectively with limit é

n .
(1 — %) are monotone decreasing and

PROOF. Set x = 1 in the previous Proposition and get lim a, = e'. Also
n—oo

Tim by = Tim a, (1 + Dy=e1) =e.

Compute, using Bernouilli’s inequality at the last step.

ant1 _ (n+2>n+1< n )"+1 _ (M)nﬂ

bn, n+1 n+1 (n+ 1)?

1 n+l n+1 n
P . _n
(n+1)2 (n+1)2 n+l

Thus a1 = ;7bn = ay. Similarly we can invert this to get
bn, 1 n+l n+1 n+2
= <1+'4§4444) = ) > .
Ap+1 n* +2n n°+2n n+1
Thus bn—i—l = %an+] < bn

1
Note that ¢,, = and d,, =

. The monotonicity and limit follows. W
Gp—1 n—1

3.3.7. EXAMPLE. We will graph a more complicated function, g(z) = ze!/*.
We first collect as much information as we can about zeros and limits approaching
+00 and any points where g(x) is undefined. Then we will look for critical points.

e gisundefined at z = 0. Also g has no zeros.

e Check the behaviour as x — 0. Substitute y = % in the limits.

. .eY
lim ze'" = lim — = +oo.
z—0F y—+owo y
This is a vertical asymptote. Notice that the limits from the two sides
differ! y
. . € _
lim ze'/* = lim — =0".

x—0~ Yy——0 Yy
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e Behaviour at +o0. lim ze!/* = +o0. However e!/* — 1, so in some

r—+00

sense ze!/" ~ . To see how good an approximation this is, we compute

another limit. Substitute y = %

lz _ 1
lim ze'/® —z = lim &
T—>+00 x—+0 1/1‘
e¥ —1 d
= lim = —(eY)],co=¢€¢" =1
y—0t dy( )‘yO

This means that g(z) approaches the line y = = + 1 as x — o0. So this
line is an oblique asymptote.

Behaviour at —o0. lim ze'/* = —oo, and again looks like .
T——00
v —1 d
lim we'” —z = lim —— = “—(&¥)|,_0 = 1.
2——00 y=0- Y dy

Thus the line y = = + 1 is an oblique asymptote as x — —co as well.

-1 1
g(z) = e/* + xel/x(?) — el7(1 — E) So ¢'(1) = 0 is the only

critical point. Since g(x) — +00 as z — 07 and as x — +o0, there is a
local minimum at (1, ¢e).

We should also check how g approaches O as x — 0.
lim ¢'(z) = lim (1 - Ll = lim (1 -y)e¥ =0.
Tim g'(e) = lim (1= Del’” = tim (1-y)

So there is a horizontal tangent at the limit point (0, 0).

FIGURE 3.9. Graph of g(x).
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Exercises for Chapter 3

. ) x
1. Give a careful e—§ argument to prove that lim = —.
z—8x + 4 2

2. Compute the following limits:
@ 1i 3 4
a) lim —
a—l 3 —1 24-1
sin(z? — 1)
z—1
tanx — sinz

(b) lim

li
(C) mi% (133

(d) lim~ B2V +2+ -2V + 1)

3. Consider the functions f(z) = zsin*(1) for z # 0

(a) Where does the graph of this function touch the curves y = 0, y = z and

=19

y=3
(b) Graph the function f(x) (by hand!). Include graphs of the the auxillary
curves y = z and y = % on the same graph and show the intersection

points from (a). Pay attention to the behaviour of f(z) as = approaches 0
and +oo and identify any asymptotes.
Do not try to compute local maxima and minima or inflection points.

4. Compute the following limits:

lanOOO
a) lim ——rr
( ) T—+00 1;1/1000

(b) lin}) g4 1/

. n? —(n+1)2
@ lim (1+5)" (14 y) 70"

1 —cosz

5. Graph the function f(z) = 5 for x # 0. Draw the auxillary curve
x

2 .
y = — on the same graph and explain where these two curves touch and where
x

f touches the z-axis. Pay attention to the behaviour of f(x) as x approaches 0
and +oo and identify any asymptotes. Do not try to compute local maxima and
minima or inflection points.

1
6. (a) Graph the function f(z) = L forz > 0. Pay attention to the behaviour
x

of f(x) as x approaches 0" and +o0, asymptotes, maxima and minima,
zeros and points of inflection (i.e. points where f”(z) changes sign).
(b) Which is larger, 3™ or 37



44

Functions

Two of the hyperbolic trig functions are

r _ -z T —x
sinh(x) = % and cosh(z) = %

(a) Sketch the functions e*/2, e~* /2, sinh(x) and cosh(z) on the same graph.
Pay attention to the relationships between the four curves. I am not expect-
ing a detailed graph here.

(b) Show that cosh? () — sinh?(x) = 1 for all z € R.

(c) Show that sinh(x +y) = sinh(x) cosh(y) 4+ cosh(x) sinh(y) forall z,y € R.

(d) Solve sinh(x) = y for x as a function of y.

3z—
z

Consider the function f(z) = ze T for # 0. Graph the function f(x) (by
hand!). Pay attention to the following (show your work):

e asymptotic behaviour at +00 and behaviour at 0.

e compute the derivative and find the critical points, including il_r)% 1 (x).

e compute any points of inflection.
¢ choose a scale that illustrates the key features.

For which values of ¢ > 1 does the expression tttt make sense?

HINT: fix ¢ > 1 and define ap = 1 and a,4+; = t** for n > 0. The question
asks when this sequence has a limit. Try ¢ = 1/2 and ¢ = 2 on the computer to
see what happens.

(a) Show that a4+ > a, for all n > 1. What does this tell you?

(b) When L = nlglgo an, exists, solve for ¢ in terms of L. Use this to find the

optimal upper bound for those values of ¢ for which the limit exists. What
happens for larger ¢?

(c) For these values of ¢, show by induction that a,, is bounded above by e for
all n > 1. What does this tell you?

Note: the behaviour when 0 < ¢ < 1 is very interesting, but much trickier.

Compute a few terms using ¢t = % and see what occurs. Compare with ¢ = %.



CHAPTER 4

Continuity

4.1. Continuous functions

We introduce an extremely important property of functions.

4.1.1. DEFINITION. Suppose that f : [b,¢] > R and b < a < ¢. The function
f is continuous at a if lim f(x) = f(a). Thatis, for ¢ > 0, there is a § > 0 so
r—a

that if |x — a| < 0, then |f(z) — f(a)| < e. If it is not continuous at a, then it is
discontinuous at a.
At endpoints of a closed interval, use one-sided limits. So f is continuous at b
if hrilJr f(z) = f(b); and f is continuous at ¢ if lim f(z) = f(c). We say that
xr— r—Cc

f(x) is a continuous function on a set X if it is continuous at each a € X.

4.1.2. REMARK. In the definition of lim f(z), we specify that 0 < |z —a| < 4.
r—a

But here we said |z —a| < ¢. This is fine because f(a) is defined and is the putative
limit. In particular. |f(a) — f(a)| = 0 < € is always true.

4.1.3. EXAMPLES.
(1) Let f(x) = L for z # 0. Fix a # 0. Then

Tz

@)~ f@] = |3~ 2] = =2

T a

Lete > 0.1f0 < § < 8 = 2, then |z —a| < & implies |z| > |a|—|z—a]| > |a|/2.
— 2la —

Therefore @ — ] < o — =]
lazx| a?

implies that |f(x) — f(a)] <

. Now choose § = min{% M}. Then |z — a| < 0

)
26
a2

< e. Therefore f(z) is continuous on R\{0}.

. .1 . . .
Since hm+ — = 40, there is no way to define f at 0 to make it continuous there.
z—0t T

(2) Consider sin x. Use the addition formula

sin(a+h)—sina=sina cos h+cos a sin h—sina=sina(cos h—1) + cos asin h.

45
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Using the estimates from Example 3.1.7 for |h| < 7/2,
|sin(a 4+ h) — sina| < 1|cosh — 1] + 1]sinh| < h* + |h|.

Therefore illin%) sin(a + h) = sina. Hence sin z is continuous.
—>

(3) A function f : [a,b] — R is Lipschitz with Lipschitz constant L if
|f(x) = fy)| < Llz—y| forall =,y¢€ [a,b].

Given ¢ > 0, we can take § = £/L. Then for any x, y in the domain with |z — y| <
d, we have | f(z) — f(y)| < Ld = e. Therefore Lipschitz functions are continuous.

sinx |
4) Let f(x) = x itz 0. Then f(x) is continuous at x = 0 because
1 ifr=0
of Example 3.1.7. It is continuous everywhere else by general facts that we will
establish in the next section.

1 ifz>0
(5) Let f(z) = 0 ifz =0. Then f(x) is continuous on R\{0}, but is dis-
-1 ifz<0
continuous at 0.
r ifre@Q

Then f(z) is continuous at 0, but discontinuous

(6) Let f(z) = {

atevery a # 0.

0 ifzeR\Q.

(7) Let f(z) = sin % This has a bad discontinuity at 0. There is no way to define
£(0) to make it continuous because every value in [—1, 1] is a limit of f(x) along
some subsequence approaching 0.

FIGURE 4.1. Graph of sin(1/x).

I e _ D —
- ifr=%:eQ, ged(p,q) =1, ¢>0.
(8) Thomae’s function. Let f(x) =<9 | v=,4¢cQe (p. ) a
0 ifzeR\Q.
Claim: f(z) is discontinuous on @ and continuous on R\Q.
Every a € R is a limit of irrational numbers. So if a € Q, then since f(a) # 0,

f is discontinuous at a. Now suppose that a is irrational, and £ > 0. Choose N so
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FIGURE 4.2. Thomae’s function on [—1, 2]
that i+ < e. The set X = {£:1<q¢<N,peZ}nfa—1a+1]isafinite
set of rational numbers. Thus dist(a, X) = min{la —z| : 2 € X} = > 0. If
|z —a| < 0, then either z ¢ Q and f(z) — f(a) = Oorz = £ with ¢ > N and

ged(p,q) = 1. Hence | f(x) — f(a)] < ﬁ < e. Therefore f is continuous at a.

4.2. Properties of Continuous Functions

The standard operations of functions that we use preserve continuity.

4.2.1. PROPOSITION. Suppose that f,g : [b,c] — R are both continuous at a.
Thenrf + sg and fg are continuous at a for any r,s € R. If g(a) # 0, then f/g is
also continuous at a.

PROOF. This is an immediate consequence of Proposition 3.1.6. We will use
the e—¢ definition to show that fg is continuous at a. We need to control

[f(2)g(z) — fla)g(a)| = |f(x)g(x) — f(a)g(z) + fla)g(x) — f(a)g(a)]
< |f(z) = f(@)llg(@)] + [f(a)l, l9(2) — g(a)l-

First bound |g(x)|. Take &9 = 1 and find §p > O so that |z — a| < Jp implies
that |g(z) — g(a)| < 1; and hence |g(z)| < |g(a)| + 1. Now given € > 0, find
91 > 0so that |z — a| < §; implies that |f(x) — f(a)| < W. Also choose
d > 0 so that |x — a| < 0, implies that |g(z) — g(a)| < W Define

§ = min{&y, 81,0 }. If |z — a| < &, then )1
F(@)g() = f(@)gla)] < [F(z) = f(@)llg(@)] + |f(@)],lg(x) = g(a)]

< 3@ @+ D+ s @l <

2(f(@)]+ 1)

Therefore f(x)g(z) is continuous at a. [

Next we show that composition preserves continuity.
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4.2.2. THEOREM. Suppose that f : [r,s] — [u,v] and g : [u,v] — R.
Suppose that a € (r,s) and f(a) = b. If lim f(x) = f(a) and lin})g(y) = g(b),
r—a y—
then lim go f(z) = go f(a); i.e., if f is continuous at a and g is continuous at
r—a

f(a), then g o f is continuous at a. If f and g are both continuous, then so is g o f.

PROOF. Let ¢ > 0 be given. Find 6; > 0 so that |y — b| < ¢§; implies that
lg(y) —g(b)| < e. Use this d; as an epsilon in the limit of f to obtain §, > 0 so that
|x —a| < 6, implies that |f(z) — f(a)| < d1. And hence |g(f(x)) —g(f(a))| <e.
Therefore g o f is continuous at a. |

4.2.3. EXAMPLES.
(1) Trig functions. We saw that sin z is continuous everywhere. Hence cosz =

sin(z + %) is continuous. The function tanx = is then continuous except

0s T
at the points where cosz = 0, namely odd multiples of 7. However tanx is not

defined at these points. Similarly, cotz, sec x and csc x are continuous where they
are defined.

(2) If @ > 0, we define a® = e*™®_ This is continuous on R.

p(x)

(3) Rational functions, which are functions of the form f(z) = ﬁ where p and
q(x
q are polynomials are continuous except at the roots of q.

@) f(z) = cos(z? + %) sin(e? ") is continuous except at {0, w :n €}

4.3. Extreme Value Theorem

This fundamental result describing general conditions which guarantee that a
function attains its maximum and minimum values depends both on continuity and
on the completeness of the real line.

4.3.1. EXTREME VALUE THEOREM. Let f(x) be a continuous function on
a closed, bounded interval [a,b]. Then f is bounded and there is a point ¢ € [a, b]
so that f(c) = sup,,< f(x), and a point d € [a, b] so that f(d) = inf,<,<p f(2).

PROOF. Let L = sup,_, <, f(x). This could possibly be +-00. Pick real num-
bers L1 < Ly < Ly < Lpyy < ... sothat L = lim, .o L,. (E.g., if L < o0,
take L, = L — L and if L = oo, take L,, = n.) Since sup,, <, f(2) > Ly, there
is an z,, € [a,b] so that f(z,,) > L,. Now (z,)n>1 is a bounded sequence. By
the Bolzano-Weierstrass Theorem, there is a convergent subsequence (x,,,) with
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lim z,, = c. Since [a, b] is closed, ¢ € [a, b]. By continuity of f,
1—00

L> f(c) = lim f(zn,) > lim Ly, = L.
1—0

7—00

Therefore L = f(c) < oo and the supremum is attained.
Similarly, there is a point d € [a, b] so that f(d) = inf,<,<p f(x). [

4.3.2. EXAMPLES.
(1) Examples where the maximum is attained are familiar. Like f(z) = 1 — |z| on
[—2,2]. Then max f(z) = f(0) = 1.

(2) The real line, R, is closed but not bounded. The function f(x) = ﬁ is
continuous and bounded, but does not attain sup f(x) = 0.

(3) The continuous function f(z) = x is not even bounded on R.

(4) Let f(x) = z on (0,1). The interval (0, 1) is bounded, but not closed. The
continuous function f does not attain its supremum or infimum.

(5) Let f(z) = 1 on (0, 1]. This is continuous, but unbounded. Again the domain
(0, 1] is not closed.

0 ifz=0

1 ifo<z<1’

bounded interval, but is unbounded. The problem is that f is not continuous at
0.

(6) Define f(z) = This function is defined on a closed

3 ifze{0,1}
r if0<zx<l.

bounded, and here f is bounded, but does not attain its supremum or infimum. The
problem is that f is not continuous at 0 or 1.

(7) A similar example is f(z) = Again [0, 1] is closed and

4.4. Intermediate Value Theorem

There is a second important theorem about continuous functions that relies in
an essential way on the completeness of R.

4.4.1. INTERMEDIATE VALUE THEOREM. Let f : [a,b] — R be a contin-
uous function such that f(a) < L < f(b). Then there is a point ¢ € (a,b) so that

f(e) = L.
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4.4.2. REMARK. Intuitively this says that if the curve y = f(z) starts below the
line y = L at a and arrives above the line at b, then it must cross the line somewhere.
However if we define f : Q — Qby f(z) = 2°, then f(0) =0 <3 < 8 = f(2),
but there is no rational number z so that f(z) = 3. There is a gap in Q at v/3. It is
the incompleteness of (Q which allows the result to fail.

PROOF. Let X = {z € [a,b] : f(z) < L}. Thena € X and X < [a,b), so
it is a non-empty bounded set. Hence ¢ = sup X exists by the Least Upper Bound
Principle, and clearly ¢ < b.

Claim: ¢ < b. Lete = f(b) — L > 0. By continuity of f at b, thereisa d > 0
so that if |z — b| < 4, then |f(z) — f(b)| < €. Hence f(x) > f(b) —e = L. so on
(b—0,b], f(x) > L. Thus X n (b—0,b] = F,andsoc < b— 0 < b.

Claim: f(¢) = L. Any x > cisnotin X and so f(z) > L. Choose a sequence
(an) in (c, b] and decreasing to c. Then by continuity,

f(e) = lim f(ap)> lim L =1L.
n—o0 n—o0

On the other hand, there is a sequence of points z,, € X such that lim z, = c.
n—aoo
Thus,

f(c) = lim f(zn) < lim L = L.

n—0o0 n—0o0

Therefore, f(c) = L. [

4.4.3. EXAMPLE. Every polynomial of odd degree has a real root. Write the
polynomial as p(x) = anz" + ap_12"~' + --- 4+ a1x + ag, where n is odd and
an # 0. Observe that

. . An— a a +o0  ifa, >0

lim p(z) = lim a,z"(1 + = Ly 2 +70): o
z—+00 T—+00 x =l gn —oo  ifa, <O.
Similarly,

. ) Qp— a a —oo  ifa, >0

lim p(z) = lim a,z"(1 + = Lt 11 70): o
T——00 T——00 T " ™ 400 ifa, <O.

Therefore p(x) changes sign. By the Intermediate Value Theorem (IVT), there
must be a point ¢ so that p(zy) = 0.

4.4.4. EXAMPLE. Every monic polynomial of even degree attains its minimum
value. Write p(x) = 2" a2 N+t ajz+ag, Arguing as in the previous
example, we see that

lim p(x) = zEerp(i) = +00.

Tr—+400
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Therefore there is some large number N so that if |x| > N, then p(z) > p(0)+1. It
follows that the infimum of p occurs in [—N, N]. By the Extreme Value Theorem,
p attains its minimum value.

163
2

_ . 1422 +sin“x _
119 has a solution. Note that f is continuous since the denominator is always non-

zero. Now f(0) = 163 > 119and f(1) =1 + et 1 < 1+81.5<119. By
sin
IVT, there is a point ¢ € (0, 1) so that f(c) = 119.

4.4.5. EXAMPLE. Let f(z) = 2! + . The equation f(x) =

4.4.6. COROLLARY. If f : [a,b] — R is continuous, then Ran(f) is a closed
bounded interval.

PROOF. By the Extreme Value Theorem, the range of f is bounded, and there
are points xg, x| € [a, b] so that

f(xo) =inf{f(x):a <z <b} and f(x))=sup{f(z):a<x <b}.

By the Intermediate Value Theorem, every value y with f(xo) < y < f(x;) isin
the range of f. Thus Ran(f) = [f(xo), f(z1)] is a closed bounded interval. [

When f is defined on an interval I which is not closed or not bounded, then by
restricting f to an increasing sequence of closed bounded subintervals with union
I, you can conclude that the range is an interval, but it may be open, closed or half
open independent of I, and it may be unbounded.

4.4.7. COROLLARY. If I is an interval (open, closed or half closed) and [ :
I — R is continuous and one-to-one, then f is strictly monotone.

PROOF. We prove this by contradiction. Notice that f is monotone increasing
and one-to-one if and only if a < b < cimplies f(a) < f(b) < f(c); and likewise
f is monotone decreasing if a < b < ¢ implies f(a) > f(b) > f(c). Thus failure
to be monotone means that there are points a < b < ¢ so that f(a) < f(b) > f(c)
or the inequalities are reversed, since an equality contradicts injectivity. Either
way, there is a value L in (f(a), f(b)) n (f(c), f(b)). By the IVT, there are points
x1 € (a,b) and , € (b, c) so that f(z1) = L = f(x,), contradicting the fact that f
is one to one. Therefore f is monotone. |
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4.5. Monotone Functions

4.5.1. PROPOSITION. Let f : [a,b] — R be a monotone increasing function,
and let a < ¢ < b. Then lim f(z) = L and lim+ f(x) = M both exist, and
xr—cC

L < f(c) < M.

PROOF. Let A = {f(z) : a < x < ¢}. This is a non-empty set bounded above
by f(c). Hence L = sup A exists by the LUBP, and L < f(c). Fore >0, L — ¢ is
not an upper bound for A, and hence there is some zp < ¢ so that f(xg) > L — e.
Setd =c—xp. fc—6 <z <c thenL —e < f(xo) < f(x) < L. Therefore

lim f(x) = L. Similarly lim+ flz)=inf{f(z):c<az<b}=M= f(c). N
xr—C

Tr—Cc

4.5.2. DEFINITION. If lim f(z) = L and lirn+ f(x) = M both exist, but L,
Tr—C

r—Cc
M and f(c) are not all equal, then f is said to have a jump discontinuity.

4.5.3. REMARK. At the endpoint a, a similar analysis shows that lim+ fx) =

r—a

M exists, and f(a) < M. If f(a) < M, we call this a jump discontinuity as well.
Similarly, lim f(z) = L < f(b); and it is a jump discontinuity if L < f(b).
T—b~

The Proposition shows that the only type of discontinuity that a monotone func-
tion can have is a jump discontinuity. This leads to the following useful conclusion.

4.5.4. COROLLARY. IfI is an interval (closed, open or half open) and [ : I —
R is a monotone function, then f is continuous if and only if Ran( f) is an interval.

PROOF. If f is discontinuous at an interior point ¢ € I, then

lim f(z) =L <M = lim f(z).
T—c~ z—ct

Thus Ran(f) < [f(a), L]u{f(c)}u[M, f(b)]. The range omits all except possibly
one point of (L, M), and hence the range is not an interval. A similar analysis
works at an endpoint.

Conversely, if Ran(f) is an interval, then we see that f has no jump disconti-
nuities. Thus for a < ¢ < b, we have lim f(z) = f(c) = lim+ f(z). Therefore

Tr—c r—C

f is continuous at ¢. The argument works similarly at any endpoints. |

Recall that when a function f is one-to-one, it is a bijection from its domain
onto its range. Thus it has an inverse function f~!. We have seen that when f
is continuous and one-to-one on an interval, then it is monotone and the range in
an interval. We can now show that the inverse function is also continuous and
monotone.
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4.5.5. PROPOSITION. If I is an interval and f is continuous and strictly in-
creasing, then the inverse function f~' is continuous and strictly increasing. Sim-
ilarly, if f is continuous and strictly decreasing, then the inverse function = is
continuous and strictly decreasing.

PROOF. We will deal with the increasing case. Since f is continuous, the range
is an interval J. The inverse function f~! : J — I is a bijection. If y; < 1, € J,
then there are unique points z,z, € I with f(z;) = y;. Since f is increasing,
r1 < 2. Thus f~'(yy) = 21 < 20 = f~'(y2). Thus f~! is strictly increasing.
The range is an interval, and thus has no gaps. Therefore f~! is continuous. |

A countable set X is either finite or can be written as a list X = {x,, : n € N}.
See the Appendix section A.3.

4.5.6. PROPOSITION. A monotone function f : (a,b) — R is continuous
except on a countable set.

PROOF. We may suppose that f is increasing. Since the only discontinuities
are jump discontinuities, we count the jumps based on their size. Since the range
of f may be unbounded, we also need to carefully approach the endpoints.

Between a + % and b — %, count the jumps J,, of height at least % There can’t
be more than n(f(b— 1) — f(a+ 1)), which is finite. Therefore all discontinuities
belong to .JJ = | J,,~ J/n, Which is countable. [

4.5.7. EXAMPLE. Inverse trig functions. The trig functions are all periodic,
either 2m-periodic like sin x and cos x or w-periodic like tan x and cot x. So they are
not one-to-one. We get around that by restricting the domain so that it is injective,
maps onto the whole range, and the domain is as connected as possible and includes
the first quadrant (0, 7).

Take sin . It is monotone increasing on [—7, 5| and maps onto [—1, 1]. Thus
sin”!(y) is the unique = € [—%, 3] with sinz = y. For cosz, we use [0,7], on
which cos z is monotone decreasing and maps onto [—1, 1].

The tangent tan z is defined on (—7, ), is strictly increasing, and maps onto
R. Sotan™! : R — (=%, %) is a bounded function on the whole line. Similarly
cotz maps (0, 7) onto R and is strictly decreasing.

The secant is a problem, because the range of secz is (—o0, —1] U [1, ),
which is the union of two disjoint intervals. Normal practice is to restrict the do-
main to [0, 7) u (3, m]. On [0, ), secant is monotone increasing and maps onto
[1,c0); while on (7, ], secant is also increasing with range (—oo, —1]. Hence

;5 )» and maps (—o0, —1] onto (7, 7].

sec”! is increasing, and maps [1, o0) onto [0
Similarly, csc™! is strictly decreasing, and maps [—7,0) onto (—c0, —1] and (0, 5]
onto [1, 0).
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4.5.8. EXAMPLE. Enumerate Q n (0,1) = {1, 1 2 13/ 172/3°4 1" %4
{rn :n > 1}. Define f : [0,1] — [0, 1] by

flay=">; 2™
{nirp<x}
Then if 0 < « < y < 1, there is some r, so that z < r, < y, and therefore
f(x) < f(y). So f is strictly monotone increasing. Clearly f has a jump discon-
tinuity at every r,. However it is continuous at each irrational number as well
as 0 and 1. Say c is irrational in (0,1) and ¢ > 0. Pick N so that 27V < e,
Set 6 = dist(z,{r, : 1 < n < N} fc—0d <y <z <2z <c+9d, then
{n:y<r,<z}c{n:n> N}, and hence

fR—fy)= > 2m< Y 2m=2V<e
{niy<rn<z} n>N

Defining L and M as in Proposition 4.5.1, we see that M — L < f(z) — f(y) <e.
But € > 0 was arbitrary, and thus L = M and f is continuous at c.

4.5.9. EXAMPLE. The Cantor function. Define a function f : [0,1] — [0, 1]
as follows: set f(0) = O and f(1) = 1. On the middle third, [1, 2], set f(z) = 1.

323
Then take the middle third from each of the remainder, and set f(z) = } on [§, Z]
and f(z) = % on [4, %]. At the nth stage, there are 2" — 1 intervals on which f is

defined to take the values % in order, for 1 < k < 2™ — 1. What remains are 2"
intervals of length 37" on which f has not yet been defined. In each one, take the
middle third and define f to take the average of the values at the two ends of the
interval, which will be a number of the form % for 1 < k < 2". In the end, we
have defined a monotone increasing, locally constant function on the union S of all

of these intervals, taking all of the values 2% forn > 1and 0 < k < 2"™. These
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are the diadic rationals numbers in [0, 1]. The set S does not include the whole
interval, so now we define f on the rest by

f(x) =sup{f(t) :t <z, teS}.

This defines a monotone increasing function on [0, 1] known as the Cantor function.

Notice that the range of f has no gaps because the range includes all diadic
rationals,. Therefore f is continuous. On each open interval in S, namely (%, %),
(%, ), (3, %) etc., the function f is constant, and thus has derivative 0. The total
length of all of these intervals is

1 o 2kl 1/3
Z42(hy gL :E = =
3 +20) +4z) + “o3n o 1-2/3

1.

So this is “most” of the interval in some sense. What remains after these open
intervals are removed is a closed set C' known as the Cantor set. It includes the
endpoints of the removed intervals, and their limits, which is actually quite a lot
more.

FIGURE 4.4. The Cantor function

To understand this function better, write z in base 3 as z = (0.212223 . . . )base 3,
where z; € {0,1,2}. The interval [%, %] = {z : x; = 1}. The endpoints are
% = (0.1000. . . )pase 3 and % = (0.1222... )pase 3- Like in base 10, numbers with a
finite expansion in base 3 also have another ending in an infinite string of 2’s. Then

[é, %] = {fL‘ = (0.011‘3$4 . )base 3} and [%, g] = {:E = (0.211‘3$4 . )base 3}.

At the nth stage the intervals are determined by an initial sequence of Os and/or 2’s
of length n — 1 followed by a 1. The endpoints actually have another expression
using only Os and 2s, § = (0.0222... )pase 3, 3 = (0.2000. . . )pase 3,

§ = (0.00222. .. Jpase 3, 5 = (0.02000. .. Jpase 3, 5 = (0.20222. . . Jpase 3, etc.
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The Cantor set consists of all numbers in [0, 1] which have a ternary expansion
with no 1Is. Let (g1, €2, ... ) be a sequence of Os and 1s. Then

f((O.(251)(252)(253) NN )base3 = (0, E1E2€3 ... )baseZ-

The Cantor set is mapped onto [0, 1] by f. This shows that the Cantor set has the
same cardinality as [0, 1] and R, (See Appendix A.3.)

4.6. Uniform Continuity

Recall that f : J — R is continuous if for each € J and € > 0, there is a
d > 0 so that |z — y| < ¢ implies |f(y) — f(x)| < . However in checking this
in many examples, we find a § which works for many, sometimes all, values of x
simultaneously. This is an important distinction which is captured in this definition.
Note that the quantifiers for = and é come in the reversed order.

4.6.1. DEFINITION. A function f : J — R is uniformly continuous if for each
e > 0,thereisad > Osothatx,y € J and |z — y| < J implies |f(y) — f(x)| <e.

4.6.2. EXAMPLES.

(1) Let f € C'[a,b] and set M = max,<z<p |f'(x)|, which is finite by the Ex-
treme Value Theorem. Then by the Mean Value Theorem, there is some x( so that
W = |f"(z0)| < M. Hence |f(y) — f(z)| < M|y — z|. So f is Lips-

y—2x
chitz with constant M. As in Example 4.1.3(3), Lipschitz functions are uniformly
continuous using § = /M. Thus C' functions on a closed bounded interval are
uniformly continuous.

1
(2) Let f(z) = — on (0, 1]. Then f is continuous. However if 0 < € < 1 is given
x
and ¢ > 0, choose = min{e, 0}. Then |z — 5| < || < 4, but
z
10
So this (arbitrary) choice of § does not work! Therefore this function is not uni-
formly continuous. This is a C'' function, but the derivative blows up as = — 0.

F) ~ f@] =2 > 9> <.

3) f(z) = x2. On any bounded interval, the derivative is bounded. So by (1), f is
uniformly continuous. However on the whole line R, it is not uniformly continuous.
For0 <z < v,

fy) = fx) =y* —2* = (y + 2)(y — ).
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Let 0 < ¢ < 1, and suppose that § > 0. Take x = % and y = = + 0/2. Then
ly — x| =6/2 < 4, but

\f(y)—f(m)\=(y+x)(y—:c)>2:cg=1>e.

Hence this (arbitrary) choice of § does not work! So this function is not uniformly
continuous. In this example, the derivative f’(x) = 2x blows up as x — 0.

4) f(x) = y/z on [0,00). This function is continuous, but it fails to be differen-

tiable at z = 0. Moreover f'(z) = 7 \F is unbounded as x — 0. Nevertheless,

we will show that f is uniformly continuous.

Let ¢ > 0. Define § = £2/2. Suppose that 0 < = < y and |y — x| < §. There
are two cases. If z < 4, then y < 26 = &%, Then |\/y — /7| < /y <e.

In the second case, § < x. Then

There is an important general result which implies uniform continuity.

4.6.3. THEOREM. Suppose that f : [a,b] — R is continuous on a closed,
bounded interval. Then f is uniformly continuous.

PROOF. If f is not uniformly continuous, then the definition fails for some
€0 > O That means that no value of § makes the definition work. So we take
dn = —. Since the definition fails, there are x,,, y,, € [a, b] so that |z,, — y,| < %
and | f (xn — f(yn)| = £o0. By the Bolzano-Weierstrass Theorem, the sequence
(xy,) has a convergent subsequence (Z,, )g>1, say ¢ = kli_)rrolo Zn, . Therefore

kILHOIO Yny = kli_)rrgo(ynk —Tp, )+ Tn, =0+c=c.
By continuity of f(z) at ¢, we have
=1 = 1i .
Hence
0= kll_{IgO |f(xnk) - f(ynk)’ = £0-

This is a contradiction. Thus f must be uniformly continuous. |
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Exercises for Chapter 4

1. Let f(x) and g(x) be continuous functions on [a, b]. Define

frg(x) =min{f(z),g(x)} and f v g(x) = max{f(z),g(x)}.

Prove that f A g and f v g are continuous on [a, b].

2. (a)Let f(z) = 277 for x> 0,z # 1. Can f be defined at x = 1 in order to

make the functi?n continuous there?
X

(b) Let g(x) = 1_7_71/90 for x # 0. Can g be defined at z = 0 in order to make
e

the function continuous there?

(c) Let f(x) = (sin® ) *. Where is this function defined? Can f be defined
at the missing points in order to make the function continuous there?
HINT: 2% = e®!"%_ Look for a derivative in the exponent.

3. Fix anumber d > 0. A function f(x) on R is called d—periodic if f(x + d) =
f(z) for all x € R. Let f be a continuous d-periodic function on R. Show that
f attains its maximum and minimum values.

4. Suppose that f : R — (0, 00) is a continuous function such that f(0) > 0 and
lim f(x) =0= lim f(z). Prove that f attains its supremum.
T—+00 r——00
5. Let f: (a,b) — R be a monotone increasing function.
(a) Show that if f is bounded above, then lim f(z) exists.
T—b~

HINT: use MCT for a sequence approaching b™.
(b) Hence show that for alla < ¢ < bthat lim f(x)and lim+ f(x) both exist.

r—Cc r—C
When is f(x) continuous at ¢?

(c) Construct a function which is monotone increasing and bounded on R and
is discontinuous at every rational number.
HINT: list all of the rational numbers as Q = {r,r, 3, ...} and introduce
a small jump discontinuity at each r.

6. Show that f(z) = |z|'/? is continuous but not Lipschitz.

7. Suppose that there is a constant C' such that
|f(x) = f(y)| < Clz —y[* forall a<uz,y<b.

Prove that f is constant.

8. Show that tanz — 4sinx = e” has at least 3 solutions in (-7, 7).

9. Show that there are two antipodal points on the equator with exactly the same
temperature. HINT: parametrize points on the equator by [0,27] using the
angle 0 from the centre of the earth. Assume that the temperature function
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T'(0) is continuous. (Is this reasonable?) You are asked to prove the existence
of some 6 so that T'(0) = T'(0 + 7).

10. Suppose that f : R — (0,00) is a positive continuous function such that
lim f(x) =0= lim f(z). Prove that f attains its supremum.
r—+00 r——00
11. (a) Show that a continuous function on (—c0, +00) cannot take every real value
exactly twice.
(b) Find a continuous function on (—o0, +00) which takes every real value ex-
actly three times. A sketch of the curve will suffice. An exact formula is not
required.

12. Let 1

f(x) =< 1+ (Inz)?
0 if z=0.
Prove that f(z) is uniformly continuous on [0, c0).
HINT: first prove it separately on [0, 3] and on [2, c0).

if >0



CHAPTER 5

Differentiation

5.1. The derivative

As you have seen in high school calculus, the derivative of a function f(z) at
xo, if it exists, is the slope of the tangent line to the curve y = f(x) at a point
(2o, f(x0)). We compute this by computing the slope of a secant, the line segment
from (zo, f(x0)) to (xo + h, f(zo + h)), and taking the limit as » — 0O through
both positive and negative values.

9‘;—;():‘)

SCCo.\\‘l'

Yo Xoth

FIGURE 5.1. Tangent line

5.1.1. DEFINITION. Let f : (a,b) — R and let z9 € (a,b). Then f is differen-
tiable at x if

lim f(x) = flxo) _ lim f(zo+ h) — f(x0)
r—x) xr — X h—0 h

exists and is finite. The limit is called f’(z() or (%f) (o).

We say f(x) is differentiable on (a,b) if it is differentiable at every point
xo € (a,b). When f is defined on a closed interval [a, b], we will say that f is
differentiable on [a, b] if it is differentiable on (a, b) and the one-sided derivatives

i fa W —f@) L b+ h) = f()
h—0+ h h—0— h
60
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both exists and are finite. The tangent line to f(x) at x is

T(x) = f(wo) + f'(20)(x — wo).
This is the line through (xo, f (o)) with slope f’(x).

5.1.2. THEOREM. If f(x) is differentiable at x, then f is continuous at x.

PROOF. This is an easy computation

lim f(z) — f(zo) = lim L&) = J(@0)

T—>T0 T—X0 T — X

(x —x0) = f'(209) -0 =0. [
Now we provide two useful variants which are equivalent to differentiability.

5.1.3. THEOREM. Let f : (a,b) — R and let xy € (a,b). The following are
equivalent:

(1) f is differentiable at xo and f'(xo) = m.
(2) there is a linear function T (x) = f(xo) + m(z — x0) such that
) - T()

T—oIT) X — X0

=0.

(3) there is a function p(x) which is continuous at xq such that p(xg) = m
and f(z) = f(xo) + ¢(z)(z — z0).

PROOF. (1)=(3). Define p(x) = W if ¢ # x0 and p(x9) = m.
Then f(z) = f(x0) + ¢(x)(z — x0) and ’
i ) = Jig S50 = ) = =t

Therefore ¢ is continuous at xg, and (3) holds.
(3)=(2). Let T'(x) = f(xo) + m(x — o). Then

p S = T@) | fw) + (@)@~ a0) — f(a0) ~m(z — a0)
) z—y xr — o
= wll,n; o(x) —m =0.

(2)=(1). If (2) holds, then
0= fim 1B =T@ _ p, f@) = flzo)

T—>T0 r — X0 T—=T0 T — X0

Therefore f'(z9) = lim @) = flwo) _ m exists. [ |
T—>X0 T — X0
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5.1.4. EXAMPLES.

(1) Let f(z) = sinz. we have shown that f’(x) = cosz. Our proof used the
addition formula:

sin(zg + h) = sinxzgcos h + cos xg sin h
= sinzg + cos xg h + sinxg(cos h — 1) + coszo(h — sinh).

The tangent line is T'(z + h) = sinzg + cos zg h. Define

. cosh—1 h —sinh
o(zo + h) = coszp + smmoT + cos moT.
Then sin(xg + h) = sinxg + p(zo + h)h and
. . . cosh—1 . h—sinh
lim ¢(zp + h) = cosxg + sinzy lim ———— + cosxp lim ———— = cos z.
h—0 h—0 h h—0 h

(2) Let f(x) = 2™. Then using the binomial theorem,

B ) A ¥ 0 (1 et

/ — 1. — 1.
f(a) h1—>0 h hl_r)r}) h
Coat—at n\ ,_1h 5 (n n—kyk—1
= +<1>“ Rt 2 )
k=2
" /n
_ n—1 . n—kypk—2 n—1
na —l—}lll_r)rth(k)a h = na
k=2
So f'(z) = na™!
(3) f(x) = a® = e*™? Then
zo+h a®o ehlna -1
! =1 ) lim ——1
o) = fim = =™ i = na
=a"Inag lim =a"Ina.
u—0 u

vosing i . For « # 0, we have

5.1.5. EXAMPLE. Let f(z) = { .
0 ifx=0

L —COSl.
T T

f(z) =2xsinl + xz(;—;) cos L = 2zsin

However at x = 0, we have
MVIOEYIC)
h—0 h

by the Squeeze Theorem (since —|h| < hsin4 < |h|). Thus f/(0) = 0. Notice
however that f’(x) is discontinuous at O:

= lim hsin% =0
h—0

lim f/(z) = lim 2z sin+ — cos 1
mHOf ($) x—0 t & B
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does not exist!
To graph f(z), we notice that as © — 0, the curve oscillates rapidly between
y = 2% and y = —2%. The function is odd. It has zeroes at - for n € Z\{0}.

It touches the bounding curves in between, and at i?z As x — =00, we can
approximate 22 sin 1 ~ 221 = z. Thus we compute (by substituting u = 1)
. 1 . 1/sinu
lim 2°sin— —z = lim —(— - 1)
T—00 X u—0t U u

sinu
We showed that for 0 < u < g that cosu < —— < 1, and hence

U
cosu — 1 1 /sinu
< 7( - 1) <o0.
U u\ u
) cosu — 1 . .
As lim,,_,g — = 0, the Squeeze Theorem shows that lim z2 sin % —xz =0.
u r—00

Thus y = z is an oblique asymptote. A similar analysis shows that as x — —oo0, it
is also an asymptote.

1

x

FIGURE 5.2. Graph of 22 sin

5.2. Differentiation Rules

We first derive the rules for derivatives of sums, products and quotients of func-
tions. The addition rule is routine. The proofs of the product rule and the quotient
rule are similar, but the latter is a bit more complicated. We will prove the quotient
iule and leave the others as an exercise.
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5.2.1. PROPOSITION. Let f, g be differentiable at x, and let r, s € R. Then
(1) (rf +s9)(x) = rf'(z) + sg'(x).
(2) (f9)'(x) = f'(x)g(x) + f(x)g'(x).
(3) Ifg(a) %0, (£/9) (@) _ f(2)g(2) - f(z)g'(z)

g(x)?
PROOF.
flzt+h)  f(@)
lim 2@t 9@ _ f(z+h)g(z) — f(z)g(z + h)
h—0 h h—0 hg(z + h)g(z)
' 1 flz+h)—f(z) g(z)—g(x + h)
=1 g(x)—g(z +h)
B0 g(x+h)g(zx) ( h 9(z)+f(x) A )
1 , ,
= ——(f(z)g(x) — f(x)d' ()).
oL (f'(@)g(x) — f(2)g' ()
We used the fact that differentiability of g implies continuity of g at x. [ |

The chain rule for the derivative of a composition will be proven using Theo-
rem 5.1.3.

5.2.2. CHAIN RULE. Let f : (a,b) — (¢,d) and g : (¢,d) — R. Suppose
that f is differentiable at xy and that g is differentiable at f(xy). Then g o f is
differentiable at xy and

(90 f)(z0) = g'(f(z0)) [ (20)-

PROOF. Since f is differentiable at x(, applying Theorem 5.1.3, we can write
f(z) = f(xo) + @(@)(z — o) where p(z0) = [f'(wo) = lim (z). Similarly,
set yo = f(xo) and write g(y) = g(yo) + ¥ (y)(y — yo) where ¥ (yo) = ¢'(y0) =
Jim 4(y). Set h(z) = (g f)(2) = g(f(x)). Then

h(z) = h(zo) + ¥ (f(2))(f(x) = f(z0)) = h(xo) + »(f(2))p(z)(z — z0).
Let X(z) = ¥ (f(x))e(x). Then X(zo) = ¥ (yo)e(20) = ¢'(f(20))f'(20). Since
re

f is continuous at ¢, and ¢ and 1) are continuous at zo and f(x¢) respectively,
lim X(z) = lim ¢(f(x))e(x) = »(f(z0))p(w0) = X(20)-
T—x) xr—x)

By Theorem 5.1.3, h is differentiable at g and 1/ (o) = ¢'(f(x0)) [ (o). |

Suppose that f(z) has an inverse function f~'(z). If we knew that f and
f~! were differentiable, we could apply the chain rule to y = f o f~!(y) to get

L= f"(f7' () (f ") (y)- Solving yields
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For this to make sense, we also need f/(f~!(y)) # 0. To avoid assuming differen-
tiability, we use Theorem 5.1.3 again.

5.2.3. THEOREM (Inverse functions). Suppose that f is strictly monotone
and maps (a,b) onto (c,d). Let f~' : (¢,d) — (a,b) be the inverse function. Let
yo € (c,d) and xo = f~(yo). If f is differentiable at x¢ and f'(xo) # O, then f~!
is differentiable at yo and

1

Ff~ o))

PROOF. Since f is differentiable at ¢, applying Theorem 5.1.3, we can write
F(@) = F(z0) + () (z —z0) where w(z0) = f'(x0) = lim (). Fory e (c,d),
let z = f~!(y). Therefore

y = f(@) = f(xo) + ¢(x)(z — x0)
= g0+ (/T WD W) = F ().
Note that if i # o, then ¢(f~!(y)) # 0. Solve for f~!(y):

(f~) () =

FN) = £ o) + —— 2 = £ (o) + ¥(y) (v — wo),

e(f~1 ()
where ¥ (y) = % for y # yo. Set ¥ (yo) = ; Then
o(f~'(Y) f' (o)
fim (y) = lim ———— — fim ——— L a0,
Y= v=uw o(f7HY) 2w p(z)  @(wo)  f(20)
Thus v is continuous at 7o, so by Theorem 5.1.3, f~! is differentiable at z:o and
1 1

—1\/ _ _
U0) = 5ty = PO Tw0))

5.2.4. EXAMPLE. Trig functions. We have seen that % sinz = cosx and
d

J-CosT = —sinz.
d _ /sinz\’  (cosz)(cosz) — (sinz)(—sinz)  ,
—tanx = = ) = sec” x.
dx cos T Ccos? x
d cosxz\/ —sin’x —cos’x 2
—Ccotx = " = ) = —cCcsc .
dx sin x sin” &
d 1 \/ —sinz sinz 1
—secr = = — — = = tan r sec .
dzx cos T COS*Z  COSZX COSZ
d 1\ cos T
—cscx = | — =———5 = —cotresca.
dx sinx sin” x
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5.2.5. EXAMPLE. Inverse trig functions. We restrict tanx to (—7, 5), which
is an increasing function with range R. Hence tan™' : R — (—%,%). More-
over, lim tan~!(z) = 7 shows that there is a horizontal asymptote, and similarly
Tr—00
: —1 _ _m
1711)13100 tan~' (x) = —7. We compute

1 1
= tan’(tan_l(x)) = secz(tan—l(m)) = Cosz<tan_1(x)).

(tan™")'(x)

. . . - —1 - 1 ~
Take a right triangle with angle § = tan™ " (z) and compute cos ) = i There

Yy="o

o

(0,0

dc
n

)
&

FIGURE 5.3. Graph of tan~!(z)

1
d po—1() _

fore dz tan (ﬁ) = m

Next we restrict cotz to (0,7). It has range R, is decreasing, and vertical
asymptotes z = 0 and = 7. Thus cot™! : R — (0, 7) is decreasing, and has
horizontal asymptotes y = 0 and y = 7. The formula cotz = tan(5 — x) implies
that cot™! z = 5 — tan—! z. Thus
—cot l(z) = ——tan"lz = i

dx dx 1+ 22

For sin™ ", we restrict sinz to [—75, 7] on which sin  is increasing with range

[—1,1]. Thus the inverse sin™' : [—1,1] — [—3, 3] is increasing. The derivative

1

1 1
is —sin"!(z) = = 1 *

dx cos(sin"'z) /1 —2a2

[]
Y=
Again we compute the cosine by drawing a right triangle with angle § = sin™' z.
Notice that the derivative is undefined at z = 1. This corresponds to the points
+7 at which sin’z = cosz = 0. The function sin~! 2 has vertical tangents at
(£1,£7%) corresponding to the horizontal tangents of sinx at (75, +1).



5.2 Differentiation Rules 67

Now cos x maps [0, 7] onto [—1

, 1] and is decreasing. We will use the relation
cosz = sin(§ — z). Therefore cos™' z =

Z— sin~! . Differentiating shows that

4
—1 _
dz > T o2
For sec™! x, recall from Example 4.5.7 that sec ™! has two branches defined on

(—o0, —1] and [1, ), respectively. We can compute the derivative by noting that

sec”! 2 = cos™! % Therefore by the chain rule,

sec 'z = icosfl(i) = 7_1 _—1 = 71
v 1 L z? \:c\\/xz—]'

dx dx
‘Z.Z

There is a subtlety here. Since 2> > 0, we factor it as |z|v/z? in order to
clear the denominator in 4/1 — ﬁ This keeps the derivative positive, instead of

changing the sign if V\ie forget the absolute value. Similarly, csc™! 2 = sin™! % and
—1 B

—CSCT T = .

dx |z|vV2? — 1

5.2.6. EXAMPLES.

(1) Leta # O and let f(x) = 2° for z > 0, which is a non-integer power of z. We
write f(x) = e*™"*. Thus

a az®

/ _ ,alnx™ _ _ a—1
fiz)=e . . az
(2) Let f(z) = In|z| forz # 0. Whenz > 0, f(z) = Inz and so f'(z) = 1.
When z < 0, f(z) = In(—2), and so by the chain rule, f'(z) = L(-1) = L.

Therefore f/(z) = L.

(3) Implicit differentiation. Consider the curve
2420y + a3 - 22—y —yP +a+Ty—9=0.
By inspection, (0, 1) lies on the curve. However there is no easy way to solve for y
as a function of z. We differentiate the whole expression:
322 4+ 2ay 4+ 22y + y? + 2xyy’ + 9Py —dx —y —xy' —2yy' + 1+ Ty = 0.
Solve for 3/:
, —(Bxr 4 2xy+yF —4r+ 1)
4 224+ 2zy+ 9y —ax—2y+7
Plugginginz = 0 and y = 1 yields y/ = —1/7 at (0, 1).

(4) Logarithmic differentiation. Consider f(z) = (tan? 2)°%e? (1 + 1)*. Then
since f(xz) =0

In f(z) = 2coszIn|tanz| + 2% + 2In|z + 1|



68 Differentiation

which is valid unless f(z) = 0. Differentiate both sides:

!
f'(z) = —2sinx In | tan z| +2COS
7@ t

Solve for f’(x). At points where f(z) = 0, a separate argument is needed.

xseczx+2x+ .
an x |z + 1

5.3. Maxima and Minima

Recognizing the maximum and minimum points on a graph, even locally, has
many applications.

5.3.1. DEFINITION. If f : [a,b] — R is a function, a point ¢ is a maximum
for fif f(xo) = sup{f(z) : @ < x < b}. A point x¢ is a minimum for f if
f(zo) = inf{f(z) : a <z < b}.

We say that xg is a local maximum for f if there is § > 0 so that it is a maximum
on the smaller interval [z9 — 0, z¢ + &]. A point x is a local minimum for f if there
is & > 0 so that it is a minimum on [zg — J, zo + J].

5.3.2. FERMAT’S THEOREM. Suppose that [ : [a,b] — R is a continuous
function which attains its maximum or minimum value at xqy. Then either

(1) =g € {a, b} is an endpoint of [a, b],
(2) f'(xo) is undefined,

or

(3) f'(zo) = 0.

PROOF. Suppose that xq is a maximum for f and (1) is false, so a < x¢ < b;
and that (2) is also false, so that f/(xo) is defined. Then

& ;B >{" b'

FIGURE 5.4. Fermat’s Theorem
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f(@o +h) — f(x0)

(o) = li <0
fi(xo) = lim N
~ lim S+ hf)b EEACORY

The first inequality is because the numerator is negative and the denominator is
positive, while the second inequality is because the numerator is negative and the
denominator is negative. Therefore f’(x¢) = 0. Minima are treated similarly. W

We get the following important corollary.

5.3.3. ROLLE’S THEOREM. Suppose that f : [a,b] — R is continuous, is
differentiable on (a,b) and f(a) = f(b). Then there is a point xy € (a,b) so that
(o) = 0.

PROOF. If f is constant, any point xy € (a,b) will do. Otherwise there is
some x with f(z) # f(a). without loss of generality, f(z) > f(a). By the
Extreme Value Theorem, f attains its maximum value at some point x¢; and clearly
xo ¢ {a,b}. By Fermat’s Theorem, since f is differentiable at x¢, f'(z9) =0. W

5.3.4. EXAMPLE. Snell’s Law. A beam of light travels from point A to point
B. It starts in one medium in which the speed of light is ¢, but when it crosses
the line C'D into the second medium, the speed is c,. (Typical media are air, water,
glass, vacuum, etc.) The light will travel in a straight line from A to some point X
on CD, but then will change the angle (refraction) and follow a straight line to B.
The point X is determined by Fermat’s Principle: the light will travel along the
path requiring the least time.

d( X D
C Ao

Ol

FIGURE 5.5. Snell’s law

Drop perpendicular lines from A to a point C' on the line, and from B to a point
D. Let the distances be CD = L, AC = h; and BD = h,. We will treat X as
a variable position along the line, and compute the time it would take the light to
travel through X. Then we will minimize the time to find a relationship between
the angle of incidence, oy = ZC AX, and the angle of refraction, ap, = ZDXB.
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Once we fix the angle o, the point X and the angle a; are determined as functions
of o 1.
The distances travelled in each medium are

AX = hysecay and X B = hjsec ao.

Thus the time taken is

1 2
T(a;) = — secay + — sec ay.
cl @)}

We also need to work L into this by observing that
L=CX+ XD = hytano + hytan os.

This works for —7 < a; < 7, so even if the light should travel away from B or be-
yond B at first (actually impossible), the formula is still valid. We will differentiate
it with respect to «;:

dL d
0=—="h sec’ ay + hy sec? azﬂ.
dag do
d —hy sec?
Therefore 02 = “"15C M Gpserve that  lim T(cv1) = o0, and thus 7" will
o hy sec? o a—+%

attain its minimum value in between. Differentiate 7'

dT’ 1 hz dOzz
— = —secajtana) + —Ssecap tan vy ——
dal C1 ) dal
h] hz h] SCC2 (073

= — sec o tana) — — sec ap tan QT —————

cq 1) hy sec” o

sincy  sinap
= hy sec® o ( )

C1 (&)

sin av sin «v
Therefore 7"(«;) = 0 if and only if L = 2. and this must be the mini-
C1 (55)
mum. The relationship between the two angles is known as Snell’s law.

5.4. Mean Value Theorem

There is a routine but powerful extension of Rolle’s Theorem.

5.4.1. MEAN VALUE THEOREM. Suppose that f : [a,b] — R is continuous,
and is differentiable on (a,b). Then there is a point xy € (a,b) so that

Fb) = f(a)

f'(xo) = —
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o Xo b

FIGURE 5.6. Mean Value Theorem

PROOF. Let g(z) = f(x) — (f(bl)):c‘]:(a))x. Then
o) ~ g(a) = £0) — (1O, pay o (LU 21D,
- 1) - f@ - (LUZ1D) gy =0
So g(a) = g(b). By Rolle’s Theorem, thee is a point z¢ € (a, b) so that
0= g/(a0) = f'an) - LU

Thus f/(xo) — f(bl)):i(a).

The following immediate consequence is used all the time.

5.4.2. COROLLARY. Suppose that f : [a,b] — R is continuous, and is differ-
entiable on (a,b).

o If f'(x) > 0 on (a,b), then f is strictly increasing.
o If f'(x) = 0on (a,b), then f is increasing.
o If f'(x) < O0on(a,b), then f is strictly decreasing.
o If f'(x) < 0on(a,b), then f is decreasing.

PROOF. We only prove the first statement. Suppose that a < z < y < b. Then
by the Mean Value Theorem applied to [z, y], there is a point gy € (x,y) so that

T =T — prag) = 0.
Hence f(x) < f(y). [

5.4.3. PROPOSITION. If f : [a,b] has a continuous derivative f'(x) and
f(x0) > 0, then there is a & > 0 so that [ is strictly increasing on (xg — &, xo + ).
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PROOF. Take ¢ = f’(xp). By continuity of f’, there is a 6 > 0 so that if
x € (xg — 0, + 9), then | f'(x) — f'(x0)| < €. Hence

f(x) = f(zo) — |(f(z) — f(zo)| > —e =0.

Thus f is strictly increasing on (xg — d, zg + 9). [

5.4.4. EXAMPLE. This proposition can fail if f is not continuous. Let

1
f(x) = ax + x*sin —
x

for 0 < a < 1. By Example 5.1.4(4), this function is differentiable everywhere,
and f’(x) is continuous except at = 0. Moreover f’(0) = a > 0. However

f(z) = a—|—2xsin1 + xzcosl<_—21> = a—|—2$sin1 —cosl.
X r\T x X
For 2, = 5, f(zn) = a — 1 < 0. By Proposition 5.4.3, f is decreasing on
a small interval around x,. Since x,, — 0, f is not increasing on any interval
containing 0.
If @ > 1, then for any |z| < (a — 1)/2 = &, we have f'(z) >a—2e—1=0.
l1-a a

Thus f is strictly increasing on (%, —)

When a = 1, we see that f’(xz,,) = 0. However

f"(z) =2sinl + 2z cos1(=}) +sin L (= )=(2—#)siné—2cosl.

ﬁ x x
This is continuous except at x = 0 and f”(z,,) = ;—: < 0. By Proposition 5.4.3,
f/(x) is strictly decreasing on a small interval (x,, — d, 2, + ) around x,,. Hence

f'(x) < O0on (z,,x, + d). Again f is not increasing on any interval containing 0.
Now we demonstrate another application of the Mean Value Theorem.

5.4.5. EXAMPLE. Let f(x) = sinz. For 0 < z < 7, apply MVT on [0, z].
There is a point xy € (0, x) so that
sinx  sinz — sin0

— =0 = f'(z0) = cosxp € (0,1).

Hence 0 < sinz < 3:, an inequality established in Example 3.1.7.
Now let g(z) = ja? +cosx Then ¢'(x) = 2 —sinz > 0 on (0, 5 ). Thus g is
strictly increasing, so that sx% 4 cosz > g(0) = 1 on (0, 5]. That is,

—§x2<cosx<1 for 0<xz<7.

Now let h( ) = sinz —  + ;2. This is chosen so that 2(0) = 0 and //(z) =

cosz — 1 + 327 > 0. Thus A is strictly increasing on [0, 5]. Hence h(z) > h(0) =

0. Therefore

1.3

T — <sinz <z for O<ao<Z

[3%)
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Once more! Let k(z) = cosz — (1 — 32% + 5;2*). Then k(0) = 0 and
K(z) = —sinz + 2 — 23 = —h(z) < 0. Thus k is strictly decreasing, and so
k(xz) < 0. Therefore

l—%x2<cosx<l—%x2+ﬁx4 for 0<x<7.
tan x x
5.4.6. EXAMPLE. Is > ——on(0,%)?
T sin x

This is true if and only if f(x) = sinx tanx — 2> > 0. Note that f(0) = 0 and
f'(z) = cosztanz + sinz sec’ x — 22 = sinz(1 + sec’ ) — 2.
Thus f/(0) = 0 and
f"(x) = cosz(1 + sec® z) + sin z(2 sec z(sec ztan x)) — 2

sin? z

= (cosz —2 +secx) +2 —
cos3 x
1 2 sin® z
= (\eosz — 2
( cos® «/cosx) T
Thus f”(x) > 0 on (0,%), and therefore f’(x) is strictly increasing on (0, J).
Since f/(z) = 0 we have f'(z) > 0, and thus f(x) is strictly increasing. Finally,
since f(0) = 0, we have f(z) > 0 on (0, 7). So the answer is yes.

> 0.

5.4.7. EXAMPLE. We introduce the hyperbolic trig functions.

. e —e % et 4+ e T sinh x et —e T
sinlhr = ———— coshz = ——— and tanhx = = .
2 2 coshx et +e %
Note that tanhz has lim tanhx = 1 and lim tanhxz = —1. Thus tanh z has
xr—00 xr——00
horizontal asymptotes y = +1. Note that
d et +e " d et —e T
—sinhx = ———— =coshx and —coshzx = ———— = sinhz.
dx 2 dx 2
Hence
d cosh? z — sinh® x
—tanhz = 5
dzx cosh” x
_ (6295 + 2+ 6_2‘”) — (625"’ -2+ 6_2””)
4 cosh? x
1
= 5 = sech’ z
cosh” x

Claim: tan~ ' z < 5 tanh x. Note that 7 tanh 2 has the same horizontal asymp-

totes, y = =7, as ‘[an_1 x. Also tan~! 0 = 0 tanh 0. However

_ 4 tan~1(0).

T tanh’ (0
anh’(0) = T

2

w\a
-
_|_
(e}
0o
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So 7 tanh z increases faster near x = 0. However that means that tan~! 2 will
have to increase faster for larger = to make up the difference. Subtracting them and
differentiating will not help us here.

tan~ !z tan~ !z

= > i
Let f(x) — for x = 0. Then len;O ha

jus

. Differentiate

[\

1
/ 142
fle) = tanh?
sinhz coshz — (1 + 22)tan~! 2
(1 + 22) sinh®
sinh2z — (1 +2?)tan~ ' &
- (1 + 22) sinh? z

tanhz — tan~! z sech® x

The denominator is positive and f'(0) = 0. Let g(z) = 1 sinh2z—(1+2?) tan~! 2.
Then

¢ (z) = cosh2z — 2ztan~ 'z — 1

2
g"(x) = 2sinh2z — 2tan~ 'z — Txxz
and
2 24227 —2z(22) 1
3 = p—
g (z) = 4cosh2z— P R (I —4(cosh2m—m) -0
because cosh2z > 1 > m Now 0 = g(0) = ¢/(0) = ¢”(0). Since FORY

g” is strictly increasing and hence positive. Thus ¢’ is strictly increasing, and hence
positive; and thus g is strictly increasing. Finally, this means that g > 0, and thus
f' > 0. Thus f(z) is strictly increasing. In particular, f(x) < 7 forall z > 0.

5.5. Convexity and the second derivative

5.5.1. DEFINITION. Higher order derivatives. If f/(z) is differentiable, then
we write f”(z) = - f/(z) for the second derivative of f. Similarly, for k > 3,

we write f(*)(z) = %f(k_l)(a:) =: %f(:c) for the kth derivative. If f has k
derivatives and f*) is continuous, we call f a C* function.

5.5.2. DEFINITION. A function f : (a,b) — R is convex if

fu+ (1 —t)w) <tf(u)+ (1 —1t)f(v) for a<u<v<band0<t<I.

And f is strictly convex if this is a strict inequality. A function g is concave if
f(z) = —g(z) is convex.
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5.5.3. REMARK. The straight line through (u, f(u)) and (v, f(v)) is
Ltu+ (1 —t)w)=tf(u)+(1—1t)f(v

(x —u) for teR.

v—u
The values 0 < ¢ < 1 yield all points x = tu + (1 — ¢)v between u and v.
So convexity means that the function always lies below the chord connecting two
points on the graph of f.

ul x= o (FOV V

FIGURE 5.7. A convex function

5.5.4. PROPOSITION. f”(z) = 0 on (a,b) implies that f'(x) is increasing on
(a, b), which implies that f(x) is convex on (a,b). Similarly, f"(x) < 0 on (a,b)
implies that f'(x) is decreasing on (a,b), which implies that f(x) is concave on
(a,b). Strict inequalities yield strict convexity/concavity.

PROOF. The first step follows from the Mean Value Theorem. Now suppose
that f’(x) is increasing (even if f”(z) is not defined). Define

v—u
Then g(u) = g(v) = 0 and ¢'(x) is increasing. By Rolle’s Theorem, there is a
point zp € (u,v) so that ¢’(x¢) = 0. hen g'(z) < 0on [u,xo], so that g(x) is
decreasing and thus g(z) < g(u) = 0. Likewise ¢’(z) = 0 on [xg,v], so that
g(x) is increasing, and thus g(z) < ( ) = 0. Thus g(x) < 0 on [u, v]; whence
f(x) < L(x).

The other cases are similar. [ |

This next corollary is known as the second derivative test for extreme points.
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5.5.5. COROLLARY. Suppose that f is C* on (a,b). If xo € (a,b), f'(zo) =0
and f"(xo) < 0, then xq is a local maximum. If xoy € (a,b), f'(x9) = 0 and
f"(x0) > 0, then x¢ is a local minimum.

PROOF. Since f”(z9) < 0 and f” is continuous, there is a § > 0 so that
f"(xz) < 0on (zg—d,x0+0). Thus f'(z) is strictly decreasing on (zo — &, xo + ).
Since f'(zg) = 0, f'(z) > 0 on (zg — 0,x¢); and thus f(z) < f(zo) there.
Similarly, f'(z) < 0 on (zo,zo + d); and thus f(x) < f(z0) there too. Hence xg
is a local maximum, [ |

The second derivative f”(x) measures the curvature of the curve y = f(z).
When f”(z) > 0, the slope f’(x) is increasing, and thus the graph is curving
upwards. Similarly if f”(x) < 0, the slope is decreasing, and the graph is curving
downwards. When f”(z) changes sign, the curve switches from curving down to
curving up or vice versa. The transition point is called a point of inflection. This
can happen when f”(z) = 0, but also when there is a vertical tangent

/ S

FIGURE 5.8. Inflection points

What does the third derivative, f©) (x) represent physically? For a moving
vehicle, it measures the change in acceleration. For example, when a subway car
starts up, there is a jerk as it takes off. For this reason, the third derivative is
sometimes called the jerk, especially in physics.

1/3
5.5.6. EXAMPLE. Graph f(z) = ° T
x —_—
e f(z) =0onlyatz =0.
e fisundefined at x = 1. lin?, f(z) = —oo and lir?+ f(z) = +00.Sox =1isa

vertical asymptote.
o lirJrrl f(z) = 0%. Soy = 0is a horizontal asymptote as x — +00.
T— T 00

) L™ B@—-1) -2 (z—-1)-32 -1 -2z
° Tr) = = = = .
(x —1)2 3223 (x — 1)2 3223(x —1)2
3
So f/(—%) = 0. Thus (-3, %) is a critical point. The denominator is positive,

and the numerator changes sign from positive to negative at x = —%. Hence this is
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a local maximum.

Also f'(x) is undefined at z = 0 and 1. At the point (0, 0), lin}) f/(x) = —oo. This
xTr—>

is a vertical tangent. It is also an inflection point.

We already know what is happening near x = 1.

e For f”(x), use the product rule rather than the quotient rule.

" -2 (_1 - 21.)(_2) (_1 - 2x)(—2)
f (x> = 3x2/3(x — 1)2 + 3:1:5/3(3? _ 1):; 3.’1}'2/3(x _ 1)3
—2z(z—1)+ (1 + 2x)(%)(m — 1)+ (1 +22)(2z)
N 3253 (x — 1)3

2(52% + 5z — 1)
9253 (x —1)3

-5+ 345
Now f”(z) = 0 at the roots of 52> + 5z — 1 = 0, namely = = IO\F
are about 0.17 and —1.17. These are inflection points.
Also f” is undefined at 0, 1, but this doesn’t add new information.

\

which

|
3z i |
(’“}i/ J’;: ) | 1
f .
) / rn#’-ﬁ \\‘{ \
<z \ —
Y=o Gy mplvke }(010) . 5%; o \\ » I
03 ‘; ‘
'l/(/s/\r-hwyvir 1 1
ik l‘, N |
ot | il | %=l
; . | (wj W\Y!W
\\\ |
= I
1
|
x> |
= |
) =5 |

FIGURE 5.9. Graph of f(x)
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5.6. Convexity and Jensen’s Inequality

We first look at how close convex functions are to being differentiable.

5.6.1. SECANT LEMMA. Let f : (a,b) — R be convex and let a < x < y <
z < b. Then

fy) = f@) _ f) = fl@) _ f(z) = fly=)
y—x z-x  y-y
y=F
a o Y Z b

FIGURE 5.10. Secant Lemma

PROOF. Let t = =¥ and observe that y = tx + (1 — t)z. By convexity,
fly) <tf(x)+ (1 —t)f(z). Therefore
fy) = f@) < (1 =6)(f(2) = f(=)).
Since y — x = (1 — t)(z — x), we can divide and obtain
F) ~ @) _ 1G) ~ @)

~
y—x z—x

The second inequality is proven in the same manner. |

5.6.2. COROLLARY. If f : (a,b) — R is convex, then it is continuous.

PROOF. It is enough to show that f is continuous on [¢,d] ifa < ¢ < d < b.
Pick ¢ and d’ sothata < ¢ <c<d < d < b. If c < x <y < d, then by the
Secant Lemma,

o 1O 10— 1@ _fd) -1 _
c—c y—x d —d

Hence |f(y) — f(z)| < max{|C|, |D|}|y — x|. Therefore f is Lipschitz on [c, d],
and so is continuous. u




5.6 Convexity and Jensen’s Inequality 79

5.6.3. REMARK. A convex function can fail to be continuous at an endpoint.

0 if0<z<l
For example, f(z) = {1 fre{01)”

Also a convex function does not need to be differentiable everywhere. The
function f(x) = |x| on (—1, 1) is typical.

5.6.4. DEFINITION. A function f : (a,b) — R has a right derivative at x if
. fle+h) - f(x)
D =1
+/(@) h_lg)l+ h
D)= tim LEEN = @)
h—0~ h

exists. Similarly there is a left derivative at =

exists.

5.6.5. THEOREM. Let f : (a,b) — R be convex. Then f has left and right
derivatives at every point. If a < x <y < b, then

D_f(z) < Dy f(x) < D_f(y) < D1 [(y).

PROOF. Let 0 < h < k < min{z — a, 3(y — z),b — y} =: 6. By the Secant
Lemma,
f)=flx—k) _ flo)=fle—h) _ flet+h) = flz) _ flz+k) - f(z)
k h h N h h k '
flz+h) = f(z)
h

Therefore g(h) =
Proposition 4.5.1,

. fle+h) - f(x) flz+h) - f(x)
e

is an increasing function on (-4, §)\{0}. By

exists, and similarly

r+h)— flx z+h)— f(x
iy 1) =S ):zg%f( S

exists and D_ f(z) < D, f(x).

fle+h) - flx) _ flx) = flz—Fk)

The Secant Lemma also shows that 5 <
and therefore D f(x) < D_ f(y). [

5.6.6. COROLLARY. A convex function is differentiable except on a countable
set.

PROOF. By Proposition 4.5.6, the monotone function D_ f(x) is continuous
except on a countable set. However if D_ f(z) is continuous at x, then for ¢ > 0,
there is a & > 0 so that |y — x| < ¢ implies that D_ f(y) — D_ f(x)| < e. Now if
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y > x, choose x < y < ¢y < z + 6 and note that
D_f(z) < Dy f(z) < D+ f(y) < D-f(y) < D_f(x) +e.

Since ¢ is arbitrarily small, we have that D f(x) = D_ f(x), and it is also con-
tinuous at x. Hence f is differentiable at each = except for the countable set of
discontinuities of D_ f. |

In a certain sense, the following is just a repeated application of the defintion
of convex function. However it has some surprising applications.

5.6.7. JENSEN’S INEQUALITY. Let f : (a,b) — R be convex. Suppose that
n
T ...,xn € (a,b), t1,...,t, =0and >, t; = 1. Then

7 =1

If f is strictly convex, and t; > 0 for all i, then equality only holds if x| = - -+ = x,,.

PROOF. Proceed by induction on n > 2. The case n = 2 is the definition of

convexity. Now assume that the result is true for n, and let z ..., zn41 € (a,b),

n+1
tiy...,tpy1 =0and >, t; = 1. Define

=1

n
t.
t=2tz~=1—tn+1 and yzz?lxi.

i=1 1=1

Then y € (a,b) and >, t; = 1, so the n case yields
< ), S fx).
@) ; < F (i)

Observe that 0 < ¢t < 1 and
n+1
Yy + tnt1Tny1 = Z tix;.

i=1
By convexity of f,

n+l1
f( Z tizi) = f(ty + tns12ns1) <EF(Y) + tor f(2ni)
i=1

n n+1

<630 f @) + b fonen) = 3 S (0)

i=1 i=1
Now if f is strictly convex, then the n = 2 case is a strict inequality if x| # x;
and 0 < t; < 1. Soif every ¢; > 0, then in the argument above, equality in the first
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line forces y = x,,41; and equality in the inequality for f(y), by the n case, forces
Ty ==Xy =1. |

5.6.8. EXAMPLE. Let f(z) = €®. Since f”(z) = €* > 0, this is a strictly
convex function on R. Suppose that a; > Oand ¢; > 0 for 1 < ¢ < n and

n
> t; = 1. Let x; = Ina; and apply Jensen’s inequality. It says

=1
n n
t ot o yna .
a'ay ... af{l = eXi—ttilnai o Z tiehei = Ztiai.
i=1 i=1

This is known as the generalized geometric mean—arithmetic mean inequality.
The usual GM-AM inequality takes t; = t, = -+ = ¢, = % It says that

ay+ay+---+a
Yaray ... a4y < iy

n

5.6.9. EXAMPLE. Let0 < s < tanda; > 0for1 < ¢ < n. We will show that

n n
1 1/t
(5 e < (5 2 ah)""
i=1 i=1
Let f(z) = x*/* forz > 0. Then f"(z) = L(L — l)xg_z > 0if z > 0. Hence f is

S\S
strictly convex. Let x; = aj and t; = . Then by Jensen’s inequality,

which becomes

Take the tth root to obtain the inequality.

5.6.10. EXAMPLE. For n > 3, find the n-gon inscribed in a circle which has
the greatest area.

Choose points Ay, ..., A, in order around the circumference of a circle of
radius r. Then the chord A;A; subtends an angle o; € (0,7 and > | o = 2.
(Here we mean A; when we write A, and O is the centre of the circle.) The

triangle O A; A;+1 is isosceles with base 2r sin % and height r cos % Thus it has

o . 2 . .
area r? sin 5t cos 5t = 5 sin oy;. Therefore the area of the polygon is

n
Z sin (78
1

=
) = —sinz < 0 on (0, 7), this is
is strictly convex. This reverses

2

<

A=Aar,...,an) =

Consider f(z) = sinz on [0, 7]. Since f”
a strictly concave function. Equivalently, — f(

Eg ow®
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FIGURE 5.11. Maximize area of the inscribed polygon

the inequality in Jensen’s formula. This becomes

A r2n1if()<r2nf(li ) r’n . 2n
=— — o) < — f(= ) o) = ——sin—.
2 n“ ! 2 n &~ 2 n
i=1 1=1
Moreover the inequality is strict unless oy = - -+ = o, = %” The maximum area
2

: 2
occurs only at the regular n-gon which has area %-n sin 7.

5.7. L’Hopital’s Rule

We begin with an intermediate value theorem for derivatives, which need not
be continuous.

5.7.1. DARBOUX’S THEOREM. Suppose that f, g are differentiable on [a, b]
and f'(a) < L < f'(b). Then there is an o € (a,b) so that f'(xo) = L.

PROOF. Let g(z) = f(x) — Lz. This is differentiable on [a, b] with ¢’(z) =
f'(x) — L; so g'(a) < 0 < ¢'(b). Since g is differentiable, it is continuous. By
the Extreme Value Theorem, ¢ attains its minimum value at some point x¢ € [a, b].
Near z = a,

0>g'(a) = lim glath) = g(a).
h—0+
Therefore there is a 6 > 0 so that for 0 < h < 6, g(a + h) < g(a), and thus
the minimum does not occur at a. Similarly the minimum cannot occur at b. By

Fermat’s Theorem, since g is differentiable, ¢’'(xzo) = 0. Therefore f'(z9) = L. B

5.7.2. CAUCHY’S MVT. Suppose that f, g are continuous on [a,b] and dif-
ferentiable on (a,b). If ¢'(z) # 0 on (a,b), then there is a xo € (a,b) so that
£~ f(a) _ f(xo)
9(b) —g(a)  g'(x0)
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PROOF. Let h(z) = (f(b) — f(a))g(x) — f(z)(g(b) — g(a)). Then
h(a) = f(b)g(a) — f(a)g(b) = h(b).

By Rolle’s Theorem, there is an g € (a, b) so that

0 = h'(z0) = (f(b) — f(a)) g (z0) — f'(x0) (9(b) — 9(a)).

Since ¢'(x) # 0, sign(¢’(z)) is contant by Darboux’s Theorem. Thus g(z) is
strictly monotone, and thus g(b) — g(a) # 0. Now divide by ¢'(z0)) (9(b) — g(a))
to get the result. |

The main result of this section is very popular with student’s, but in practice,

there are usually superior methods. The author warns the reader to never ever

sin
apply L’Hopital’s rule to lin}) —— = 1. This limit must be known before one can
xr—> X

differentiate sin x, and thus the argument is circular! The hypotheses of this result
are crucial, and need to be verified in any application.

5.7.3. L’HOPITAL’S RULE. Suppose that f, g are differentiable on an open
interval J with c as an endpoint (00 are allowed). Suppose that

(1) g(x) # 0 and ¢'(x) # 0 for x € J.
(2) lim f(z) = lim g(a) = 0 or lim | (z)]| = lim [g()] = +.
/(=)

(3) ime 7 = L exists.
Then tim 2%) _ 1.
z—c g(x)

PROOF. Case 1. Suppose that ¢ € R and lim f(z) = lim g(z) = 0. (This may
xr—cC xr—c

be a one-sided limit, in which case x — ¢ or x — c_ as appropriate.) Since

/
lim f/gxg = L, givene > 0, thereisa > 0 so that 0 < |z — ¢| < ¢ implies that
z—c g'(x
/
L—¢e< f/(x) <L+e.
g'(2)

If we define f(c¢) = g(c) = 0, then both f and ¢ are continuous at c¢. Then we
can apply the Cauchy Mean Value Theorem on the interval [c, z] (or [z, c]) with
|x — ¢| < to get

f@) J@ 1@ P,
@)~ g@) —glo) _ glay < LT TE)
Since € > 0 was arbitrary, lim M L.

e g(z)
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Case 2. Suppose that ¢ € R and lim |f(z)| = lim |g(z)| = +00. Fore > 0,
Tr—cC r—C

/
find 6 > 0 for lim L)
z—e g'(x)
¢— 9 <y <z < c)and apply the Cauchy Mean Value Theorem to [z, y] to get a
point o € (x,y) so that

= L as before. Consider points ¢ < x < y < ¢ + J (or

Let x — ¢ while holding y fixed. Then 1) — 0 and 9(v) — 0. Therefore
9(x) 9(x)
for x sufficiently close to c, this quantity will be within ¢ of fgati and hence
gz
f( L’ < 2¢. This means that lim m =L.
g(x) z—c g(x)

Case 3. When ¢ = +00, make the substitution ©v = é Make J smaller to
exclude 0 if necessary. Set F'(u) = f(+) and G(u) = (i) dI={l:2eJ}.
Then

(1) G(u) = g(1) # 0and G'(u) = ¢'(L)(57) # Oforu e I.
1 )

(2) lim F(u) = lim;—,.|f(z)| € {0, 0} and similarly
1in}) G(u) = lim,_,. |g(x)| € {0, o0}.

P FhEH )
(3> }LHO G'(’U,) - 1{4)0 g’(%)(_—l) = %_}C g,(x) L.

w2
So the hypotheses for either Case 1 or 2 is satisfied. Therefore
F
L= tim 20 _ iy ) -

5.7.4. EXAMPLE. Leta > 0. Find lim Y2 V2 —a-va
r—at 2 — g2
Both numerator f(z) and denominator g(z) tend to 0 as z — a™, and g(z) =

2
Va? —a? # 0. Compute ¢'(z) = 227962 # 0 as well. So we compute
e —a

/
@) _ gy B 25“" “ — lim

1m
az—at §'(x) z—at N x%a"’ 2\/r/x —a x
Vot —a2 +/z(z+a) 2a 1

rz—at Zxﬁ 20/\/6 m
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Vityi—a-a_

2 2

Thus lim

r—a™t T

s
S

—a

. (tanzy1/2? . ..
5.7.5. EXAMPLE. Compute llr% ( ) . This function is even, so con-
r— T
Int —1
sider z > 0. Then take the logarithm ptaiy = e _. f(x) We now have a
a? 9(x)
tan x

“0/0” situation because lim In = In1 = 0; and the denominator 2 and its

x—0 x
derivative 2x never vanish on (0, 1). Compute

i L) S E oy, oo sinzcoss
e—0t ¢'(x)  a—0t 2x 2—0+ 222 sin x cos x
. 2x —sin2x . 2x—sin2x 2x
= S sinze . 43 sin2a

Now lim — = 1 is a known limit. Consider lim 2£=$"2% Thjs is another
z—0+ sin 2z o0t AT

“0/0” situation, and we have (setting y = 2x)

lim =— "™ — |im — "7 _ _,
root 1222 g0t 332 3

2z — sin2x

by Example 3.1.7. Therefore L'Hopital’s rule applies, and lim+ a3 %
z—0 T
/
Thus lim (@) = % So by L’Hopital’s rule again, lim @ = % Finally we
20+ ¢'(x) a—0+ g(z)

have

lim (tangc')l/ﬂﬂ2 _ A

z—0 X

) . x—sinz L
5.7.6. EXAMPLE. Consider lim ————. Here we have an “c0/c0” situation,
T—00 r + SINX ]

and the denominator is never O for z > 1. However, lim ~ T does not exist,

z—w 1 + cosx
in part because the denominator vanishes periodically. So L’Hopital’s rule does not

apply. In fact,

lim ———— = lim —2% =~ = [,
z—0 T + sinxr  z—co | 4 ST 1
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5.8. Newton’s Method

This is an algorithm for approximately solving as equation f(x) = 0 using
calculus. The idea is to repeatedly solve for where the tangent line crosses the axis.
The power of the method lies in its rapid convergence.

Yo % Xo %
Y, G %2 ¥3 X\

FIGURE 5.12. Newton’s method

Given an approximation x,, find the tangent line
Tz = f(x,) + f'(2n)(x — z0).

f'(@n)

Solve for the root of T', x = x,, —
Hypotheses
e f(z) has azero z,,ie., f(z.) = 0.

e fis C? near x,.

o [(xs) #0.
Algorithm.
e Start with an initial guess z “sufficiently close” to =, with f(x) ‘small’.
: f(xn)
G , set =Ty — .
e Given z,,set x,41 = Ty F(wn)

Error estimates.
Fix a small interval [a, b] containing z, and ¢ with x, near the middle on which
f'(xz) # 0. This is necessary to ensure that the iterates stay in the interval. Let

m = min |f'(z)] and C = max |f"(x)|.

a<z<b a<z<b
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o |x, — x| < M This follows from the MVT
m

Tp — Tx Tpn — Tk

= f'(c)
for some point ¢ between z;, and x, so ¢ € [a, b]. Thus

@)l _ f()

e Tl S
e Consider the map Sx = = — J{,((?) Then
PP - f@ @) f@f @)
Sla) =1 F(a)? Fae

Then S(x,) = x4 and S’(x,) = 0. So there is an interval around x, on which
|S’(z)| < %. Then the MVT shows that
- S - S
‘I’n+1 $*| _ | (:U'fl) (x*)‘ _ |S,(C)| < .

| T — 24| |Tn — 4]

Therefore,

Tl — Ty| < %]:):n — Z4|. In particular, this shows that nh_)ngo Ty = T

This is decent convergence, but in fact it improves as we get closer because the
estimate on S’ improves.

C : .
 |Zni1 — 4| < —|zn — 24> In the first estimate, we found a point ¢ so that
m

_ flan) _ f(@n)
(e f'(an)
Tptl — Ty = (Tn — Tx) + (Tps1 — Tp)
_ f(@n) _ f(@n)
o) fza)
f(@n)(f'(@n) — 1))
f'(e)f' (@)
We apply MVT to f/(z,,) — f'(c) to find a point d between x,, and ¢, and hence
between x,, and ., so that f'(z,) — f'(¢) = f”(d)(x,, — ¢). Plugging this back in
yields

. Thus

and the algorithm says x,,+1 — &, =

Tp — T

TIp4+1 — Tx =




88 Differentiation

Therefore, since |z, — ¢| < |x,, — x|,

C

|Tngt — | < = — @]
m

This is known as quadratic convergence, and says that the number of decimals of
accuracy roughly doubles with each iteration. Very quickly on a computer, the issue
becomes the ability to do high precision calculation.

5.8.1. EXAMPLE. Compute +/149.

Let f(z) = x> — 149 and restrict the domain to [12,13]. Then f/(z) = 2z and
f"(x) = 2. Thus m = minge[pp13) 22 = 24 and C' = max,e[i2,132 = 2. Hence
C

¢ _ 1
m 12"

Start with g = 12 and x,. = +/149. The first estimate shows that
|f(zo)| S
— T4] < = — <0.21.
|z — 24| < - 24<O21
The algorithm is
B flan) 7, — 149 a7 +149 1 149
Tntl = In fxn) n 2z,  2x, 2 (:cn Tn )
The map S has derivative S’(z) = f (]f,)(]; l)gx) | < (1692_4?9)2 < 5. S0
|Tn41 — T4| < §|xn — T4l
but the quadratic estimate actually is better immediately.
1
r; = 12.2083 |1 — 4| < E(0.21)2 <3.7107°
1
Ty = 12.2065557 w2 — | < 537 10732 < 1.16107°
1
r3 = 12.2065556157337036 w3 — | < 5 (116 10792 <3.6107"1
1
74 = 12.20655561573370295189 ... |24 — 74| < (3.6 - 107132 <1.21072¢

So in four steps, I have surpassed the accuracy of my computer’s significant digits.

5.8.2. EXAMPLE. Solve 2* = 4z.

Let f(x) = 2% — 4x. By inspection, = = 4 is a solution, but the graph shows a
second smaller solution. Compute f’(z) = 2*In2 —4 and f”(x) = 2%(In2)? > 0.
Since f” > 0, the curve is convex, and hence there are only two solutions. Now
f(0) =1>0> =2 = f(1), so the second solution is in (0, 1) by IVT. We will
work in [0, 1]. Then

m = min |f'(z)|=4—-2In2~26 and C = mex | (x)] = 2(In2)* < 1.

z€[0,1] z€[0,1
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“@,1e

FIGURE 5.13. Graph of 2% and 4x

Thus € < 0.37. Start with 9 = 0.25. Then
_ ()| _ 0.1892

|z — 20 X < 0.073.
Applying the algorithm we get
z1 = 0.309579 |21 — 24| < 0.37(.073)? < .002
x5 = 0.30990692 |2y — 4] < 0.37(.002)> < 1.5107°
3 = 0.3099069323806 |23 — 24| <0.37(1.5-107%)? < 8.310713
x4 = 0.3099069323806905654546 |14 — x| < 0.37(8.3-1071%)? < 2.5107%

Exercises for Chapter 5

1. Let f(z) = e /%" for z # 0 and f(0) = 0.
(a) Compute the derivative of f at z = 0 from the definition.
(b) Compute the derivative of f for 2z # 0. Is f’(x) continuous?

2. (a) Simplify the expression f(x) = sec(tan~!(sin(tan"! x))) for x € R.
(b) Graph f(z) including identification of inflection points.
HINT: work with the simplified formula.

3. Two corridors meet at right angles. They have widths a meters and b meters,
respectively. Find the length of the longest ladder that can be moved around
the corner (while keeping the ladder horizontal). HINT: use an angle as your
variable.

4. (a) A movie screen 10m high is mounted on the wall 5Sm above the floor. At
what distance from the screen does a point on the floor subtend the greatest
angle and find the angle.
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HINT: consider A = (0,5), B = (0,15) and X = (z,0) for x > 0. Find
an expression for the angle Z AX B as a function of x.

(b) Bonus. Show that the solution to (a) may be obtained by finding the circle
through A and B which is tangent to the x-axis. Explain why this is the
solution using Euclidean geometry.

(a) Find the trapezoid that fits inside a semicircle of radius r with the two sides
parallel to the diameter which has the largest area.

(b) Bonus. Find the quadrilateral of largest area that fits inside a semicircle of
radius r.

(a) Sketch csc(z) for —m/2 < = < 7/2, * # 0 and its inverse function
cse(x).
(b) Compute the derivative of csc~!(x). Warning: be careful with signs.

3 2 5
(a) Show that tan x > x+x—+if0r0<x < E.

N : :
(b) Show that tan x <x+?+?f0r0<x< 1. HINT: cosz > 1 —%on

0,72)-

(a) Let f(z) = ?sin(1/z) for  # 0 and f(0) = 0. Show that 0 is a critical
point of f thatis not a local maximum nor a local minimum nor an inflection
point.

(b) Let f : (a,b) — R be a continuous function which is differentiable except
possibly at x¢, and xlirg f'(x) = L exists. Prove that f’(xo) = L. HINT:

—I0

use MVT on [xg, o + h].
(c) Let g(x) = 22 + f(x). Show that g does have a global minimum at 0, but
¢’ () changes sign infinitely often on both (0, ¢) and (—¢, 0) for any ¢ > 0.

Let f : (a,b) — R be a continuous function which is differentiable except
possibly at zg, and lim f/(z) = L exists. Prove that f’(x¢) = L. HINT: use
T

MVT on [xg, zg + h].

Let f be a differentiable function on [a, b], but the derivative may be discon-

tinuous.

(a) Suppose that f'(a) < 0 < f’(b). Show that the minimum of f does not
occur at an endpoint. What can you conclude?

(b) Suppose that f'(a) < L < f’(b). Prove that there is an ¢ € (a, b) such that
f'(c) = L.

(c) Prove that if f’(x) is monotone, then f’(z) is continuous.

Graph f(z) = exp (;”Z:;) You can use a computer program to find the ap-

proximate roots of the degree 5 polynomial that occurs in the second derivative.



12.

13.

14.

15.

16.

17.

18.

5.8 Exercises for Chapter 5 91

Letn > 1, and let f and g have nth order derivatives on (a, b).

Show that (fg)(”) (x) = élo (Z)f(nfk) (x)g(k) (z).

(a) Show that In(1 + e*) is convex. Sketch it.

n
(b) Show that for any a; > 0, (1 + v/ataz . an an> <TI0, (1 + ay).
(c) Suppose that 0 < a = 9 < 1 < --- < x, = b. Show that the maximum

of LT - - T occurs when 2+ are all equal for
(xo +x1)(x1 +22) .. (Tt + xp) Z;
0<i<n.
(a) Suppose that f”(a) exists. Show that
h —h)—2
i 0 ) £ fa= 1) =27(@) _

h—0 h?
(b) Show by example that this limit may exist even when f”(a) does not.

Compute the following limits.
1 1z _
(a) lim (—l—x)—e
z—0+t x

1
li L —
(b) ml_f)l}) cot“x )
Let f(x) = e **(cosz + 2sinz) and g(x) = e~%(cos x + sinx).
Find all of the errors (if any) in the following L’Hopital’s rule argument:
/
5
tim L9~ gim L@ i Se g
e gla) e gln) a2
Suppose that f is differentiable on [a, b], f(a) = 0 and |f'(x)| < A|f(x)]| for
all z € [a, b], where A is a positive real number. Prove that f is constant.

Show that p(z) = x> + = + 1 has exactly one real root. Find this root of p(z)
to 6 decimal places using Newton’s method. Provide the algorithm and show
your error estimates.

You can use a computer to do the calculations, but an analysis of the error
should be done by hand. Try using Maple: (punctuation is critical!)

with (Student [Calculusl]) :
NewtonsMethod (x"5+x+1,x=-0.5,
view=[-1.5 .. 0.0, DEFAULT], output=sequence) ;

This only yield 5 terms, so substitute the last result back in and repeat.



CHAPTER 6

The Riemann Integral

6.1. Archimedes

Archimedes of Syracuse (287 BC to 212 BC) developed many ideas in mathe-
matics, physics and astronomy which have greatly influenced modern thinking. He
is famous for showing that the area of a circle of radius 7 is 77> and computing 7
to some accuracy. For example, he showed that % <7< % He also computed
the area of a section of a parabola. He always used geometric ideas from Euclidean
geometry. We will derive his formula is a more analytic/algebraic manner.

Consider the following figure: the parabola is given by y = axz? + bx + ¢ and
x1 < mp are given. Here a > 0. Let P| = (x1,y;) and P, = (x2,y,) be the
corresponding points on the curve. We wish to compute the area of the sector of
the parabola determined by the curve and the line between P and P>.

FIGURE 6.1. Area of a sector of a parabola
The line P P, from P; to P, has slope
2 2
- — + b(z2 — +c—
-y _aley —xp) +b(a—x) +e—c _ams +31) + b,

T2 — X1 T2 — X1

There is a line parallel to P, P, which is tangent to the parabola. Archimedes
showed (without calculus) that it intersects the curve at the midpoint, Py = (3, y3)

92
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where z3 = 222, We can see this by differentiating f(z) = ax? + bz + c to get
f'(x) = 2ax + b and observing that f'(x3) = a(x; + x3) + b, which is the same
slope. Since f’(x) is a non-constant line, there is only one point with this slope.
The triangle /A P P, P; has base z, — x and average height w — y3. Thus
its area is
Ty — X1

T = 1 (y1 + 12 — 2y3)
= 2 (o} - 2050 b + 22— 2543) 4 (e + 0 - 20)
o m—malr —x) a, g
= ) > —8(332 331)'

Archimedes method is to repeat the process with the two parabolic sectors re-
maining; and then with four sectors, etc., which will tile the sector with an infinite
family of triangles of the same nature. Summing all of the areas of these triangles
will yield a formula for the area. That is, in the sector of the parabola from P to
P3, we obtain a triangle P, P3Py, where Py = (x4, y4) and x4 = % has area

T2,1 = %(.%3 — 1‘1)2 = %(l’z — xl)z.
Similarly setting Ps = (x5, ys) with s = # yields a triangle P P; Ps with area
a a T
To=—(r2—23)2 = =(r2—2)) > =Th = Th = —.
2,2 3 (72 — x3) 32 (2 — 1) 2,1 2 1

This produces two triangles of % the original size. At the next stage, there are four
triangles with a base half again as big, so they will have area T3 = % = 4727y
Thus at the nth stage, we obtain 2"~ ! triangles of area 7T, = 4!~"T}. Summing,
we get

area of sector = Z n—lgl=np = Z 2l=n — 27y = g(:Uz — a:l)3.

n=1 n=1 4
This is a rather complicated and ingenious procedure. Such an approach re-
quires a new idea for each geometric region. Moreover the applicability is rather
limited. Before the Fundamental Theorem of Calculus, providing an excellent gen-
eral method for computing areas, mathematicians developed a variety of more so-
phisticated methods for computing areas. The main take-away from this should be
that the methods of calculus are powerful.

6.2. The Riemann Integral

Riemann’s method of integration is to approximate the area under a curve from
both above and below by a collection of rectangles. This yields an upper and lower
bound for the area under the curve. See figure. If these two estimates converge
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to the same value as the width of the rectangles decreases to 0, we say that the
function is Riemann integrable, and assign this limit to be the value of the integral.
We will make this precise in the following definitions.

f¢x)
My 2 ",

Lo by L’z‘b} te b=t

FIGURE 6.2. A Riemann sum

6.2.1. DEFINITION. A partition of an interval [a, b] is a finite sequence P =
{a =ty <ty <--- <t, =0b}. Apartition Q refines P if P < Q. Given two
partitions P; and P,, the common refinement Py v P, is the ordered list using the
points of P; U P, is order without repetition. The mesh of P is

mesh’P = max t; —t;_1.
1<i<n

SetAt; =t; —t;

6.2.2. DEFINITION. Let f(x) be a bounded function defined on [a, b] and let
P be a partition of [a, b]. Set

m; = m;(f,P) =inf{f(x) 1 t;_) <z <t;}

M; = M;(f,P) =sup{f(x) : ti-1 <z < t;}.
The lower sum L(f,P) and upper sum U(f, P) are given by

n

L(f,'P) = m by —t;— 1 ZmzAtz
1

1=

3

U(f.P) = 3 Mi(t; — ti1) ZMAtZ

i=1
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Given a collection of points {x;} with t,_; < z; < t; for 1 < ¢ < n, the Riemann

sum is
n

R(f, P, {x:}) = Z ti—ti1) = > f(@i)Ats.

i=1

We make the following routine observations which will be useful.

(2) If P < Q, then

L(f,P) < L(f,Q) <U(f,Q) < U(f,P).

To see this, consider an interval [¢;_;,¢;] of the partition P. In the refinement
O, this interval is divided into smaller intervals. Thus the lower bounds on these
smaller intervals will be at least as large as m;, but possible larger; and the upper
bounds will be no greater than M;, and possibly smaller.

(3) Given P; and P, since P; v P; refines both, we obtain

L(f,P1) < L(f,Pi v P2) <U(f,P1 v P2) <U(f, Pr).

(4) It follows that {L(f,P) : P a partition} is bounded above by any element
of {U(f,P) : P apartition}; and likewise this latter set is bounded below.

(5) This procedure doesn’t make sense if f is unbounded.

Based on these observations, we are led to the following definition.

6.2.3. DEFINITION. If f is a bounded function on [a, b], define

L(f) = sup{L(f,P) : P apartition}
U(f) =inf {U(f,P) : P apartition}.

Say that f( ) is Riemann integrable if L(f) = U(f). Denote this common value
byf fla

Note that L(f) < U(f). Moreover if we can find a sequence of partitions P,
so that

lim L(f,Pn) = L = lim U(f,Pn),

n—ao0
then necessarily f is integrable with integral L. We will spell this out in more detail
after a couple of examples.

6.2.4. EXAMPLE. Let ¢ > 1 and set f(x) = ¢”; and fix a < b. Consider
the partition P,, with evenly spaced points ¢; = a + z'b*T“ for 0 < i < n. Then
At; = I’_T“ Since f is monotone increasing, we have m; = c'-1 and M; = c'i for
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1 <7 < n. Compute

_ @ :Cb_ca
no ot ( )chn—l

In the last line, we sum a geometric series and set h,, = I’_T“ Observe that

chm —1
lim = f(0) =c"lnc| =Inc.
n—0o0 n =0
Therefore
b__ a
lim L, = ¢
n—o Inc

Similarly we compute

b—a

U,=U(f,Pn) = th"Ati =cn L.

i=1

Hence
. . b-a . b —co
lim U, = lim ¢ » lim L, =
n—0o0 n—0o0 n—00 Inc
b Cb —
Hence f is integrable, and | ¢*dx =
o Inc

6.2.5. EXAMPLE. Let f(z) = 2P for p > 0 and let 0 < a < b. In this example,
we will use a different partition. Let h,, = (2) I/n and set t; = ah% for1 <i<n.
Then At; = t;—1(hy, — 1). Since f is monotone increasing, we have m; = tffl and
M; = ¢ = m;h},. Calculate

Ln = L(f, Pn) = miAtZ- = Z tf_]ti—l(hn — 1)
=1

=

)

= (hy — 1) Z (ahf;l)pH _ ap“(hn —1) Z hgfl)(pﬂ)

i=1 i=1

n(p+1)
h —1 hy, — 1
_ . p+l . n — ptl(cb\p+1 _ n
=a (hn 1) hZ—H _1 =a ((a) 1) hZ—H _1
_ (bp—H _ ap—i—l) hn — 1

AR
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Now we compute the limit

1 4q
lim ——— = —(2P"! =p+1
n1—>rr010 hy,—1 dx (JJ ) =1 P+
Therefore
bp-i—l _ p+l
lim L, = — &
n— 00 p+ 1
Similarly,

Un = U(f,Pp) = > MiAt; = > mihbAt; = Lyh¥.
=1 i=1

Since lim h,, = 1, we have

n—0o0
) ) bp+1 _ ap-i—l
limU,=1lmJL,=—"8—4—¥¥——
n—00 n—00 p+1
b bp+l _ aerl
Hence f is integrable, and f der = ————
a p+1

6.2.6. RIEMANN’S CONDITION. Let f(x) be a bounded function on [a, b).
Then f is Riemann integrable if and only if Riemann’s condition holds:
(k) forall e > 0, there is a partition P so that U(f,P) — L(f,P) < e.

PROOF. If f is Riemann integrable, we have L(f) = U(f). We can choose
partitions P; and P, so that

L(f.P) > L(f) =5 and U(£.P) <U(f) + 5.
Set P = P; v P>. Then

L(H)=5 < LU, P) < LA P) SU(LP) S UL P2) < U +5 = LI+5.

Hence U(f,P) — L(f,P) < . So (k) holds.
Conversely if (k) holds, take ¢ > 0 and find the appropriate partition . Then
U(f) = L(f) <U(f,P) = L(f,P) <e.
This is valid for all ¢ > 0; hence U(f) = L(f) and f is Riemann integrable. =~ W

This allows us to provide a number of conditions equivalent to integrability.

6.2.7. THEOREM. Let f(x) be a bounded function on [a, b]. Then the following
are equivalent:

(1) f is Riemann integrable.
(2) Forall e > 0, there is a partition P so that U(f, P) — L(f, P) < e.



98 The Riemann Integral

(3) Foralle > 0, there is a § > 0 so that mesh’P < § implies

(4) Forall e > 0, there is a § > 0 so that if mesh P < ¢ and x; € [t;—1,1;],
then R(f7737 {-xz}) - L(f) <&

(5) There are partitions P, so that lincl>o L(f, Pn) = lincl>o U(f, Pn).

PROOF. We just established the equivalence of (1) and (2). Clearly (3) implies
(2). Conversely, suppose that U(f,P) — L(f,P) < 5. Let n be the size of P

2
and let M = sup{|f(z)| : @ < = < b}. Define § =
mesh Q@ < §. Set R = P v Q. Then

L(£.R) = L(f. R) < U(f,P) = L(f.P) < .

g
£ s that
An(M + 1) DUpPOse A

The idea is to compare the upper and lower sums for R and Q. Since P has n — 1
points ¢; in (a, b), at most n — 1 intervals of Q are subdivided by some ¢; in R. Say
Q={a=s <8 < < 8y, =b}and for some (or all) 1 <i < n — 1, there
are j; so that Sj—1 < t; < 8j,. On [Sjiflysji], we have —M < mj, < sz’ < M.
In the calculation of U(f, Q) — L(f, Q), this interval contributes
€
— mji)Asji <2M6 < %
For the same interval, the contribution to U(f,R) — L(f, R) is positive. On the
remaining intervals, the contribution to U(f, Q) — L(f, Q) and U(f,R) — L(f, R)
are equal. Thus,
<-+-==¢

U(f,Q) = L(£,Q) < U(f,R) = L. R) + (= 1) < 5 + 5

Assuming (3), we know that (1) holds so that L(f) = U(f). Given ¢ > 0, use
(3) to get 9. Then

R(f, P {zi}) = L(f) <U(f,P) = L(f,P) <e.
Conversely, if (4) holds and € > 0, take the § corresponding to /2. Given P with

mesh P < ¢ and size n, choose x; € [t;_1,t;] with f(x;) > M; — ﬁ Then

(M;

7

e e 9

U(f,P) = L(f,P) = D (M; —mi)At; < ) (f(@i) + ﬁ —m;) At
=1 =1

= B Poh) = LULP) + g s P M < 5+ 5 =2
1=1

So (3) and (4) are equivalent.
If (2) holds, we can choose P,, so that U(f,P,) — L(f,Pn) < 1. Then

lim L(f,P,) < lim U(f,P,) < lim L(f,P,) + 1 = lim L(f,Py).
n—o0 n—o0 n—0o0 n—o0
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So (5) holds. Conversely, if (5) holds, then

Hence for any € > 0, there is an n so that U(f, P,) — L(f, Pn) < €. Therefore (2)
and (5) are equivalent. |

6.3. Basic Properties of the Integral

In this section, we verify some elementary properties which will simplify our
calculations.

6.3.1. PROPOSITION. Let f(z), g(x) be Riemann integrable functions on |a, b).

b b
(1) Ifc € R, then cf(x) is Riemann integrable andf cf(x)dr=c f f(z)dx.

a

(2) f + g is Riemann integrable, and

Lbf(x) + g(x) do = Lbf(m) dz + Jbg(:c) da.

a

b b
(3) If f(x) < g(x) on [a, ], thenf f@)dz < f o(z) da.

a

(4) Ifa < ¢ < b, then f is Riemann integrable on |a, c| and [c,b|, and

Lb o) da — ch(ac) iz + Lbf(ac) da.

PROOF. (1) If ¢ = 0, we have m;(cf) = em;(f) and M;(cf) = ¢M;(f). So
the result is straightforward. If ¢ < 0, we have m;(cf) = ¢M;(f) and M;(cf) =
cm;(f); and the argument is similar.

(2) If P is any partition of [a, b],

mi(f +g) =, inf_ f(z)+g(x)

ti—1<T<t;

> inf_f(y)+ inf g(y) = mi(f) +mi(g).

t; 1<zt ti—1<y<t;

M;i(f+g)= sup f(x)+g(x)

ti—1<T<t

< sup f(y)+ sup g(y) = Mi(f) + Mi(g).

ti—1<T<t ti—1<y<t;
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Hence

L(£,P)+L(g, P) = 3. (milf)+milg))Ats < 3 malf+9)At; = L(f+9,P).
i=1

—_—

1=
n

U(f+9,P) = >. Mi(f+9)At; < > (M;(f)+M;(g))At; = U(f,P)+Ul(g, P).

i=1 i=1
Thus if P and Q are partitions,
L(f,P)+ L(g,Q) < L(f,Pv Q)+ L(g,Pv Q)< L(f + 9. P Vv Q)
and consequently, L(f) + L(g) < L(f + ¢g). Similarly, U(f +¢) < U(f) + U(g).
Therefore if f and ¢ are integrable, then

b b
j f(x)da + f g(x)dx = L(f) + L(g) < L(f + 9)
U(f +9) < ff da:+f o(z) dx.

Hence L(f + g) = U(f + 9) f f(z)dz + f g(x) dzx. It follows that f + g is

Riemann integrable and

Lb f(z) +g(x)dx = Lb f(z)dx + ng(a:) dx.

(3) is left as an exercise.
(4) follows by using a partition containing the point c. In this case, we see that

L(fvp) = L(f|[a,c])7) [a, ]) + L(f|[c,b]77)’[c,b])
U(f,P) = U(f|[a,c]7p‘[a,c]) + U(f|[c,b]77>|[c,b])‘

Details are left to the reader. [ |

The following is an immediate consequence of (3).

6.3.2. COROLLARY. Let f(x) be a Riemann integrable function on [a,b]. If
m < f(x) < M, then

b
m(b—a)<J f(x)de < M(b—a).

In particular, if | f(z)| < M, then x) dx’ < M(b—a).
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6.4. Riemann integrable functions

In this section, we prove that two large classes of functions are Riemann inte-
grable.

6.4.1. THEOREM. Every monotone function f on [a,b] is Riemann integrable.

PROOF. We may suppose that f(x) is monotone increasing. Consider the par-
tition P,, with evenly spaced points ¢; = a + ilFTa for 0 < ¢ < n. Then At; = bfTa.

Since f is monotone increasing, we have m; = f(t;—1) and M; = f(t;) for
1 <7 < n. Compute

I
1=
E
g
I
1=
g
*
L
v@“
|
IS

L(f,Pn)

=1 =1

n n b _
U(f,Pa) = > Midti = Y f(t:)"—

@
Il
—_
<.
Il
—_

Subtracting, we obtain

U(f77)n) —L(fj?n) _ (f(tn) _f(to))b:la _ (f(b) _f(a))(b—a).

Hence for & > 0, pick n so large that U(f,P,) — L(f,Pn) < &. Therefore f
satisfies Riemann’s condition, and hence is Riemann integrable. |

We can extend this to cover most functions in our everyday experience.

6.4.2. DEFINITION. A function f(z) is piecewise monotone if there is a parti-
tionP = {a =ty <t <--- <t, = b}of[a,b]sothat f is monotone on [t;_1, ;]
forl <¢<n.

6.4.3. COROLLARY. Every piecewise monotone function is Riemann integrable.

PROOF. Begin with a partition P so that f is monotone on each segment. Then
apply Theorem 6.4.1 on each segment. |

6.4.4. EXAMPLE. Here is an example of a non-integrable function. Let

f@):{o ifz¢Q

_ for z € [a,b].
1 ifzeQ
Then for any partition P, we have m; = 0 and M; = 1. Therefore L(f,P) = 0
and U(f,P) =b—a. So L(f) =0 # b—a = U(f); and thus f is not Riemann
integrable.
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6.4.5. EXAMPLE. Here is a discontinuous example of an integrable function.
Let

0 ifz¢Q
= f 0,1].
f) {}1 ife=2eQqeNgdpg =1 relol

This is known as Thomae’s function. It is easy to see that f is discontinuous at
every rational point.

Let € > 0. Choose an integer N > 4 so that % < g/2. Let P be a partition
with meshP < ﬁ sothatt; ¢ Qif 1 < ¢ < m — 1. Since every interval

contains irrational points, m; = 0 for all 7; so L(f,P) = 0. The function f
takes values > % only on 0,1, %, %, %,...,%, ceey Njgl. This consists at most

24142+---+(N-1)=2+ w < N? points. So on n — N? intervals,
M,; < ﬁ and on the remaining NV 2 intervals, M; < 1. Therefore

U(f,P) < i(l) FINY) S < S

N2 Nz <o "

£,
.

1
Since ¢ is arbitrary, f satisfies Riemann’s condition. Hence f f(z)dx = 0.
0

We have seen that there are continuous functions which oscillate rapidly and
are not piecewise monotone. However they are still integrable.

6.4.6. THEOREM. Every continuous function f on [a,b] is Riemann integrable.

PROOF. Recall Theorem 4.6.3 that shows that every continuous function on
a closed bounded interval [a,b] is uniformly continuous. This means that given
e > 0, there is a § > 0 so that |x — y| < J implies that | f(z) — f(y)| < e. Given
e > 0, take a § > 0 which works for ;=-.

Let P be any partition with mesh P < §. Then

Mi—m; = sup f(&)— inf_f(y)= swp fa)=fly) < —

ti—1<x<t; ti—1SYst; ti1<z,y<t; b—a

Therefore

S 3
U(f,P) = L(f,P) = D (M; = mi)Ati < 53—

i=1 7

n
Ati = E.
=1

This verifies Riemann’s condition, and thus f(z) is Riemann integrable. |

For continuous functions, we have an integral version of the Mean Value The-
orem.
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6.4.7. THEOREM. Suppose that f(x) is continuous on [a,b]. Then there is a

point c € |a, b] so that
b
i | @ = p(o),

PROOF. Let m = inf,<,<p f(x) and M = sup, ., f(z). By the Extreme
Value Theorem, the minimum and maximum values are attained, say f(c;) = m
and f(cp) = M. Corollary 6.3.2 shows that

b
= blaf f(x)de < M

By the Intermediate Value Theorem, there is a point ¢ between c; and c¢; so that
f(e) = L. |

m < L

6.5. More integrable functions

Here are some constructions that preserve integrability.

6.5.1. PROPOSITION. Let f(z), g(x) be Riemann integrable functions on [a, b).
(1) (f v 9)(x) = max{f(z),g(x)} and (f A g)(x) = min{f(z),g(x)}

are Riemann integrable. In particular, |f|(x) = |f(x)| is Riemann in-
tegrable.

(2) (fg)(z) = f(x)g(x) is Riemann integrable.
(3) ifinfu<i<p |g(x)| = 6 > O, then f/g is Riemann integrable.

PROOF. (1) First consider f v 0. Let € > 0 and let P be a partition so that
U(f,P)— L(f,P) <e.Letm; and M; have the usual definition. Then
=inf{(f vO)(z): ti1 <z <t} =m;vO0

and
N; = sup{(f \% 0)($) i < < tz’} = M; v 0.
Therefore, N; — n; < M; — m; with equality only if m; > 0 or m; = M;. Hence

U(f v 0,P) = L(f v 0,P) = > (Ni — n;)At;
i=1

z": M; — m;)At;
=1
=U(f,P)—L(fP) <e.

.
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Therefore f v 0 is Riemann integrable by Riemann’s condition. Since

fvg=f+Wg—=f)v0) and frg=f—((f-g) vO0),
they are also Riemann integrable. In particular, = f v —f is Riemann inte-
grable.
(2)Let F' = 1+sup{|f(z)] :a <z < b}and G = 1+sup{|g(x)| : a < = < b}.
Given € > 0, choose a partition P so that

€
— L — d - L —.
Let m;, M; come from f, and let n; and N; come from g. Similarly let
=inf{f(z)g(z) : ti-1 <z <t;} and L; =sup{f(x)g(z):tio1 <z <t}

Now

f@)g(@) = Fg(y) = (f(2) = f®)g(y) + f(2)(9(z) — 9(v))
< G(M; —mi) + F(N; — ).

Thus
Li—l;= sup f(z)g9(z) — f(y)g9(y) < G(M; —m;) + F(N; —n;).
ti—1<z,Y<t;
Therefore

U(fg,P) = L(fg,P) = > (Li — li)At;

i=1

Zn:M m;)At; +F2 i — i) At

i=1 i=1

(U(f7 )_ (f?P)) + F(U(Q,P) - L(g,P))
<ifae

Thus fg satisfies Riemann’s condition, and therefore is integrable.
(3) First consider 1/g. Note that

1 1 9(@) —9W)| _ <
— = <4 T
s~ sl =ty <7710
For £ > 0, choose a partition P so that U(f, P) — L(f,P) < 6%. Let

k; = inf{ﬁ i <1 < ti} and K; = sup{ﬁ g <z < ti}.

-9l

Then K; — k; < 6~2(M; — m;). Therefore

UL, P) - = 2 — ki)At; < 072 (M; — my)At
=1
=0%(U(g,P) — L(g,P)) <& 2% =e.
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1
Thus — satisfies Riemann’s condition, and therefore is integrable. Finally the quo-
g

1
tient g =f (5) is integrable by (2). [ |

6.6. Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is called fundamental because it pro-
vides a deep link between integration and differentiation. This link allows for a
variety of useful computational methods for computing integrals.

Recall that a function g(x) on [a, b] is Lipschitz if there is a constant C' so that
lg(x) — g(y)| < Clz — y| for z,y € [a,b]. In Example 4.1.3(3), we showed that
Lipschitz functions are uniformly continuous. And Example 4.6.2(1) showed that
if g is differentiable and ¢’ is bounded by M, then g is Lipschitz with constant M.

6.6.1. FUNDAMENTAL THEOREM OF CALCULUS. Let f(x) be a Riemann
X

integrable function on [a,b|, and define F(x) = J f(t)dt. Then F is Lipschitz,
a

and hence continuous. If f is continuous at a point x( € [a,b), then F is differen-

tiable at xo and F'(xo) = f(xo).

PROOF. Riemann integrable functions are bounded. Let
M = |[flo = sup{|[f(z)| s a < = < b}.

Then if a < x < y < b, we have

[F(y) — F(x)| =

Y Y
f £() dt’ < f Mdt = Mly — z|.

Hence F' is Lipschitz with constant M, and thus is continuous.
Suppose that f is continuous at 2. Given & > 0, pick 6 > 0 so that |y —x¢| < §
implies that | f(y) — f(xo)| < €. Then for 0 < h < 6, we have

F(xo + h) — F(x0) |1 [reth 1 [woth

h — f(l’o)‘ = ’h w0 f(t) dt — E » f(:L'()) dt

zo+h xo+h
glf +|f(t)—f(x0)|dt<lllf Cedt e

h o o

Similarly one shows that

Fleo) =Pt _ g,

Therefore F'(xg) = }llirr}) Flao + hf)z = Flao) _ f (o). [ |
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The most important consequence of this theorem is the following method for
computing integrals.

6.6.2. COROLLARY. Suppose that f(x) is continuous on [a,b] and G is a
differentiable function such that G'(x) = f(x) for x € [a,b]. Then

b
J (@) dz = Gb) — Gla).

PROOF. Let F(x) = J f(t)dt. By the Fundamental Theorem of Calculus,
a
F'(z) = f(z) = G'(z) for z € [a, b]. Therefore (G — F) = G’ — F’ = 0. By the
T
Mean Value Theorem, G — F is constant, say c. Therefore G(z) = ¢ + f f(t)dt.
a

b
Hence G(b) — G(a) = J f(t)dt. [

6.6.3. DEFINITION. If f(z) is a continuous function on [a, b], an antiderivative
of f is a continuous function F'(x) on [a, b] which is differentiable on (a,b) with

Fl(z) = f(z).

Note that if F' and G are two antiderivatives of f, then (F — G)’ = 0 on (a, b)
and thus F' — G is constant. Thus the set of all antiderivatives of f have the form
F(z) + c for some constant c. We will indicate the antiderivative of f by

ff(m) do = Flz) +c.

6.6.4. EXAMPLE. Let

Then one can see geometrically that

F<w>=f1f<t>dt={‘1‘”” et

<
z—1 if 0<

Then F is differentiable on [—1,0) U (0, 1], but fails to be differentiable at = = 0,
which is a point of discontinuity for f.

The Fundamental Theorem of Calculus can be pushed a bit further, dropping
continuity of f provided that f is a derivative and also Riemann integrable.



6.6 Fundamental Theorem of Calculus 107

6.6.5. FUNDAMENTAL THEOREM OF CALCULUS I1. Suppose that f(z)
is a Riemann integrable function on [a, b] and that F'(x) is a differentiable function
such that F'(z) = f(z) for x € [a,b]. Then

b
f (@) dz = P(b) — Fla).

PROOF. Let € > 0. Choose a partition P = {a =ty <t < -+ < t,, = b} of
[a,b] sothat U(f,P) — L(f,P) < e. By the Mean Value Theorem, there is a point
x; € (tifl,ti) so that

F(t;) — F(ti—1)

L = ) = f().

Therefore
n

R(f,P{xi}) = ), flai)(ti — tim1) = D, F(ti) = Ftim1) = F(b) - F(a).

i=1 i=1

b
Now both R(f,P,{x;}) and f f(z)dz lie in the interval [L(f,P),U(f,P)].

Therefore

b b
J J(z)de — (F(b) —F(a))‘ _ f F@)dz — R(f, P, {zi})| < 2.

b
Since € > 0 is arbitrary, we have f f(x)dx = F(b) — F(a). [
a

The hypothesis that f is Riemann integrable does not follow just because f is
the derivative of a function F'(z), even if it is bounded. That is the point of the
following rather difficult example.

6.6.6. EXAMPLE. We start with a variant of the Cantor set constructed as fol-
lows. Start with [0, 1]. Remove the middle open interval of length 1, i.e. (3,3).
Then from the middle of the remaining intervals, remove an interval of length 472,
namely (5, 5) and (33, 33). At the nth stage, remove an open interval of length
4~" from the middle of each of the remaining 2"~ ! closed intervals. Then the total
length of the pieces removed is

izn—l :lizfnzl.
n=1 an 2n:1 2

Let {1 = (ay,bx) : k = 1} be alist of the removed intervals. Define U = | >, Ix
and C' = [0, 1]\U. Inside each interval I, let Ji = (cx, di) be an interval of length
|I;:|* with the same centre; and let V' = | ;> Ji. Notice that after the nth stage,
the 2" intervals that remain all have the same length, and so it tends to 0. That
means that C' does not contain any interval. Thus if z € C, then (z — &,z + ¢)
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intersects U. This means that there is a sequence of points in U converging to z.
While z could be an endpoint of some [, it can be approached from the other side
as well. So we can assume that the points belong to distinct intervals I, so that the
lengths of the I, will tend to 0. Now we can alter such a sequence by replacing a
point of I}, with any point we choose in Ji, and keep the same limit.

Define functions

0 ifxé¢J
fr(x) = {Sil’l (ZW(:chk)> ifz c Jz and f(z) = Z fu(z).

di—cg k=1

Note that the functions f(x) are continuous and have disjoint supports. Thus f(z)
is bounded by 1, and in particular f(ex) = 1 where e = w. However it is not
continuous because each x € C'is a limit of points e in Jg, and f takes the value
1 at these points and is 0 on C'. We will show that f(z) is not Riemann integrable,
but is a derivative.

Let P be any partition of [0, 1]. The collection

A= {i:(ti—1,t;) < Iy for some k}

has total length

Diti—ticg < . L] = %

€A k>1
Let B = {1,...,n}\A. Then

Zti—ti_l =1—Zt,-—t,-_1 > iy

i€B €A

N |

If ¢ € B, then there is a point x; € (t;—1,t;) n C. As observed above, there
is a sequence of points e in certain I’s converging to . Thus there is a point
y; € (ti—1,t;) which is one of these e;. Hence f(yx) = 1 and f(z) = 0. That is
m; = 0and M; = 1if ¢ € B. Therefore
1
U(f,P) = L(f,P) = D (M; —mi)Aty = Yty —tig = 3
1€B 1€B
Hence the Riemann condition is not satisfied, so f is not Riemann integrable.
Next we define

Fi(x) = j: fr(t)dt fork>1 and F(z)= Z Fy(x).
k=1

Since fj, is continuous, F}, is differentiable with F} () = fi(x). Also each F}, = 0
for x ¢ Ji, and || Fy| oo = Fk(%) = L11J4| = L|Ix|*. The sum of these values

n
converges, and hence the series G, = Y, Fj,(x) converges uniformly to F'. Indeed,
k=1

for any x, there is at most one f so that Fy(z) # 0.
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Finally we show that F' is differentiable. On each interval I,, = (ay, by), we
have F'(x) = Fi(x). This is differentiable and

F'(z) = Fj(z) = fr(z) = f(x) for z€Ij.
Now consider = € C. Then F(x) = 0. For y # x, there are two cases. If y ¢ V,
F(y) — F
then F(y) = 0 and so Fly) = Flz)

y—z
x ¢ I, the interval (x,y) intersects I, in either (ax,y) or (y,dx). In either case,
this has length at least

= 0. Otherwise y € Jj for some k. Since

1 1 3
cp— ag = E(uk‘ — |Jk]) = §|fk|(1 — |[Ix]) = §|Ik|-

Therefore
Ply) - F@)| _ hl/x _ 8
y—x T 3|1|/8 3«
As y tends to z, the length of J;, must tend to O (since 3 |/x| < |y — z|). Therefore,
Fy) — F
y—r Yy —x

| Ty |.

=0= f(z).

Hence F' is differentiable with bounded derivative f, but f is not Riemann inte-
grable.

Exercises for Chapter 6

1. Let f(x) = L on [a,b] where 0 < a < b. Let

Pn = {t; =a(b/a)/":0<i<n} for n>1.

(a) Find L(f,Py,) and U(f, Pp).
(b) Show that f is Riemann integrable, and evaluate lim U(f, P,).

n—a0

2. Evaluate the area of a sector of a parabola using Riemann sums.

for 0<z<1
for 1<z<e
for e<z<T
4 for m™<z <4
(a) Verify Riemann’s condition.
(b) Given € > 0, find an explicit value for 6 > 0 so that every partition P with
mesh(P) < ¢ satisfies Riemann’s condition for .

W N =

3. Let f(z) =

4. Prove Proposition 6.3.1(3): if f(x) < g(x) are integrable on [a, b], then

Lb fz)de < f g(@) dz.
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5. Prove Proposition 6.3.1(43): if f(x) is Riemann integrable on [a, b] and a <
¢ < b, then f is Riemann integrable on [a, c].

6. Let f(z) = sin(1) forz + 0 and f(0) = 0. Prove that f is Riemann integrable
on [0, 1]. HINT: verify Riemann’s condition by using a partition with a small
t; and using the continuity of f on [¢1, 1].

7. Suppose that f(z) and g(x) are continuous, monotone increasing functions on
[a, b]. Prove that
I I I
d dr < dx.
i | e [Cawrae < o= | st i

HINT: integrate (f(z) — f(c))(g(z) — g(c)) for a certain value of c.

nd + 4kn* + 9k2n3 + 16k3n? + 25k*n + 36k°
- )
n

8. Evaluate lim Dot
HINT: why is this in this chapter?

9. Let f(z) be a continuous strictly increasing function from [a, b] onto [¢, d].
(@LetP ={a =1ty < -+ <t, = b} be a partition of [a,b], and define a
partition P’ of [c, d] by t; = f(¢;) for 0 < ¢ < n. Show that

L(f,P)+U(f~",P') = bd — ac.
HINT: see figure.
(b) Hence show that for any continuous strictly monotone function f(x)

()

d
f f_l(x)d:c=df_1(d)—cf_1(c)—f f(x)da.
C f*l(c)

(c) For any positive real numbers p, g, show that

1 1
f (1 —2P)/9da = f (1 —29)"/? dz.
0

0
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A by katz | ka b

FIGURE 6.3. Exercise (9)



CHAPTER 7

Techniques of Integration

7.1. Simple observations

Here are a few simple techniques to get us started.

7.1.1 Recognizing a derivative. Sometimes you can see an antiderivative by rec-
ognizing the integrand as a derivative. For example

Jlexzxdx=16x21= e—l‘
0 2 o 2
fl dz tan~!( )‘1 T, T_T
— = x =—4+—=_.
1+ a? -1 4 4 2
/
T :\/5_1

/4
f secrtanz dr = secx
0 0

7.1.2 Recognizing symmetry. If the integrand is even or odd or periodic, there
may be a simplification which is helpful. For example,

1
4. . . .
f e’ sinxdx =0 because the integrand is an odd function.
-1

U dx b dx
J — 3 = J —— Dbecause the integrand is an even function.
—1 1 +x 0 1

The following function is 27 periodic, which explains the first two equalities,
and it is odd, which explains the last.

27 T

107
J sin%cd:csz sin3xdm=5f sidzdr =0
0 0

—T

112
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23

7.1.3 The chain rule and FTC. To differentiate f(z) = J e!” dt, let us define

2

xT

F(z) = J e’ dt. By FTC, F'(z) = . Notice that f(z) = F(a3) — F(2?).
0
Therefore by the Chain Rule,

4

fl(x) = F'(z¥)32° — F'(2*)2x = 322" — 2ze™

7.2. Integration by Parts

We start with the product rule for derivatives:

(f9)'(x) = fl(x)g(x) + f(2)g'(x).

Therefore

[ 7w = [ vorwas - [ s@oea

a

b
~ j@gta)] - [ Fa)g @ e

Using this method involves recognizing a derivative as a factor of the integrand.

7.2.1. EXAMPLE. In the following, f'(z) = x and g(z) = tan~!(x). Then
2
fla) =% and¢'(z) = 1.

Ll ztan~!(z) dz = x;tan_l(:v) (l) - fol 332214_1#
:;tan l(ac);—;foll l—i—lwzdm
zx;tan l(x)(l)_az—ta;_l(x) ,
- -3 -3

7.2.2. EXAMPLE. This works for indefinite integrals as well.

fﬂ:ezx dx = x(%ezx) — J 1(%6293) dz

2x — 1
:%$62x_%62x+62 62x+c'

4
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7.2.3. EXAMPLE. Ifa # —1, we integrate ® and differentiate In x.

a+1 a+1 1 a+1 1
Jx“lna}dw: x lnx—Jw —dz = m Inz — Jx“dm
a+1 a+1lx a+1 a+1

xa+1 xa+1

Z  Ilnp— —/—
ar1 (a+1)2

+ c.

When ¢ = —1, we observe that % is the derivative of In x. Therefore we observe

d 2
that %(ln r)? = - Inz. Hence

Jx_llnxd:v =Il(nz)? +ec

This is best handled by the substitution method.

7.2.4. EXAMPLE. What is wrong with the following argument?

1 1 1 -1 1
Jdl’—fl‘dx—a?—fx(z)dw—l—i-fdx.
x x x x x

Therefore 0 = 1.

7.3. Integration by Substitution

This is a fundamental method which will get a great deal of use. It can be a bit
tricky to use because the limits of integration change. In a sense, this is the integral
version of the chain rule.

7.3.1. PROPOSITION. Let f(x) be continuous on [a,b]. Suppose u : [p,q] —
[a,b] is a C! function. Then
u(q)

fp )@ de = [ pw

u(p)
PROOF. Let F(y) = fy f(t) dt. Since u maps [p, q] into [a, b], we can define
G(x) = F(u(z)) forz € [a, q]. By the chain rule and FTC,
G'(x) = F'(u(x)v'(z) = f(u(z))v(z).

Therefore
q

p

Jq Flu(@) (2) dz — J " @) do = G()
= F(u(q)) —

F(u(p))
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[ - [ " ity d. -

ulp)  Ju(p)

=F(y

7.3.2. REMARKS.

(1) If u is monotone, which is frequently the case in practice, then it suffices to
check that a < u(p),u(q) < bto ensure that u([p, q]) < [a, b].

(2) If we sety = u(x), then y' = u'(x). So formally we get

d
dy = ﬁdm = u/(x) dx.

Thus we substitute y for u(x) and replace v’ (x) dz by dy to get

Lq flu() (z) de = Lq f@)y (z)de = F(Q) f(y) dy.

u(p)
The limits of integration change becasue we are now integrating with respect to y.
As z runs from p to ¢, y = u(z) runs from u(p) to u(q).

(3) If u is monotone decreasing, then u(p) > u(q), so that

L )l x)da |

u(p)

u(p)

fly)dy = — f f() dy.

u(q)

u(q)

(4) Often substitution works in the other direction. That is, we are considering
b

f(t) dt and we substitute t = u(z). To do this, we need u to be monotone, C',

a
and contain [a, b] in its range. We set t = u(z) and hence dt = u/(z) dzx. The new
limits will be u=!(a) =: p and u=!(b) =: q. That is,

b u~1(b)
| rwae= | fu@d(a) da.

u'(a)

/4 /4 sinz
7.3.3. EXAMPLE. Consider tan z dx = f dzx.
0 0 COS T
We recognize — sinx as the derivative of cosz. So we substitute © = cosx and
du = v/(x) dx = — sinz dx. Thus the integral becomes
/4 sin /4 1
J ! xdxzf (—sinz) dz
0o Ccosx o Cosx
cos(m/4) —du 1/v2
= J —— = —In|u|
cos(0) u
1 In2
il = 2,
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\/§T/2 1
7.3.4. EXAMPLE. Considerf ——dt.

r2 Vr?—t?
Substitute £ = rsinz. This will greatly simplify the quantity under the square
root. Then dt = rcosz dz. Then u(z) = rsinz, so thatp = uw~'(r/2) = Z and

g =u"'(+v3r/2) = 5. Thus

rcosx dx

Jw@r/Z 1

/3 1
2 Nrr—t? /6 /12 — r2sin’x

7'(‘/3 1
= f rcosx dx

x/6 TCOST

/3
= J dr =z
/6

For an indefinite integral, one must convert back to the original variable

7r/3_z
7r/6_ 6

t
dt = x = sin”! <7> + c.

T

1
J Vr? —t?
This can be verified by differentiation.

dx

a?sin® z + b2 cos?

7.3.5. EXAMPLE. Considerj
2

: . : . . sec”
First we manipulate this to put it into a more useful form. Multiply by ——— to get
sec’

sec? 1 sec?
2 a2 5 dr = 5 2 dx
a“tan“z + b b (¢tanw)” + 1

Substitute u = % tan z. Then du = % sec? x dx. We obtain

le %seczxdfc _IJ du
b a (%tanx)2+1 ab ) u? +1

Il
ot
o
=]

—~
:
~—
+
o

Il
ot
o
=

|
~—
SIS
-t
o
=]
8
~—
_|._
o

7.3.6. EXAMPLE. Consider f sec x dx.
This requires a clever trick using the fact that % tanz = sec’z and % secx =

secx tan x.

secT + tanx sec? z + sec ztan
secrdr = | secx—— dx = dzx
secx + tanx secr + tanx
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So the numerator is the derivative of u = sec z + tan z. Making this substitution,
we get

sec? r + sec z tan x
seczdr = dx
secx + tanx

:Ju’(x)d [ du

=In|ul + ¢ =In|secz + tanz| + c.

Similarly, J cscxdr = In ‘ cscx —cot x’ + c. It might be worthwhile remembering

these two integrals.

7.3.7. EXAMPLE. What can go wrong if we ignore the range of u? Let f(z) =
1
m forx # —1. Setu(x) = %2 —2x. Then u(0) = 0 and u(4) = 8. Compare

ff dxandjf

The integral on the right is

ngd _ b
o w12 Ty

Since u/(z) = 2x — 2, the integral on the left is

42w —2 42
J, s Vb= | s | e

This is not integrable because the integrand blows up at x = 1. The problem is that

u([0,4]) = [—1, 8], not [0, 8].

7.3.8. EXAMPLE. Sometimes we combine our two new techniques. Consider

J "' (%) dz. The substitution z = sinu jumps out. So sin~!(sinu) = u. Then
0

dr = cosudu. Note that u runs from 0 to 5. We substitute and then integrate by
parts twice, integrating e* each time.

o /2
f s (@) gy =J e" cosu du
0 0
/2 /2
- J e“(—sinu) du

0 0
/2 /2
— f e cos u du.

0 0

=e"cosu

=e"cosu + e“sinu
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Therefore

/2 /2 9
ZJ e cosudu = e"(cosu + sinu)| = e™? —1.
0

0
J] esmil(x) dr = e~ 1
0 2

If we solve cosu = /1 —sin® v = /1 — 22, we get
N — 22
Jesm_'(@ dx = h :%u) e

This can be verified by differentiation.

Thus

e'(cosu + sinu) + ¢ = €™

I\J\'—‘

7.4. Integral Recursion Formulae

Sometimes a method can be repeated by induction to get a whole family of
integral formulas. These formulas are called recursion formulae. (There are two
acceptable plurals for formula, formulas and formulae, which comes from latin. As
time goes on, formulas is becoming much more common.)

7.4.1. EXAMPLE. Let I,, = | 2"e" dx for integers n > 0. We know that
Iy = e* + c. Using integration by parts, we get

Inzjmnexdxzx”em—jnx” Le? dx = 2™e® — nl,_.

Hence

I =(x—1)e" +c
L =a2%e" —2((x — 1)e” + ¢) = (2> =22 +2)e" + ¢
L= =30 = (2% —32° + 62 — 6)e® + ¢

Note that since c is an arbitrary constant, it does not change when added or multi-
plied. By observation, we detect the pattern as

I, = (2" —na" '+ n(n—1)2"" + (=1)"nl)e” + ¢

0(—1)jn(n—1) (n+1—j)z" =j§o n_j)!x”_j.

I
.M:

J



7.4 Integral Recursion Formulae 119

The last formula an be verified by induction. It is true for n = 0, 1,2, 3 as shown.
Suppose that it holds for n. Then

n
_ ! A
Ingi = 2"Me® — (n+ 1), = 2" e® — (n+ 1) Z(—l)] 0 ﬁ'j)‘x"ﬁ
i=0 ‘
n
= phtlgr Z(_l)] (n + 1)'xn7]
= (=)

setk =j5+1,

n+1
n+l_x j (n+1)! n+1—k
- — BV LY
v ];( TR

+1
e (D

g e Tk

So the formula holds for all n > 0.

7.4.2. EXAMPLE. Let [,, = {sin" z dx for integers n > 0. Then [y = z + ¢
and I} = —cosx + c. Again we integrate by parts

I, = fsin":cdx = Jsin”_1 rsinz dz
= —sin" ' zcosz + J(n — 1) sin" "% cos® z dx

= —sin" 'zcosz + (n—1) Jsin"_z(l —sin® z) dzx

1

= —sin"" " zcosz + (n— 1)(I—2 — Ip).

Solving, we get

1 n—1

| -
I,=——sin"""xcosr + —I, 5.
n

n
Now let a,, = Sg /2 sin™ z dzx Then ap = 5 and a; = 1. The recursion formula
shows that for n > 2,

n—1

anp = Ap—2.

n
We iterate this formula:
2n—1 2n—12n—3
T Top UTET T op T
2n—12n-—3 31
T 2 42®
(2n)! T (2n)! =«

(2n)2(2n —2)2---4222 2 22n(p!)2 2’

Q2n
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Similarly

2n 2n 2n—2
—a ] =
4+ 1 2 Ty 1oan—1

2n 2n—2 42
= .. - Q
n+12n—1" ""53""
(2n)?(2n — 2)%---4222  227(n!)?

an+1 =

arp—3 = ...

(2n + 1)! (2n+ 1)1
These formulas lead to a famous formula for 7.

7.4.3. WALLIS PRODUCT FORMULA.

T . 2244.-- (2n) (2n) . 24 (n )
— = lim ——= =lm —— .
2 no®1-335--2n—1)2n+1) oo (2n)!(2n + 1)!

PROOF. Observe that

asxp 1-3-3:5---2n—1) 2n + 1)

T
ams1  2:2-44-- (2n)  (2n) 2

2-4-4-.. (2n) (2n) am 24”(71!)4 azn,

T
2 1:335---2n—1)2n+1) agny1 20)'2n+ 1)! aznyr

Thus Wallis’s product formula holds if we can show that lim 2n
n—0 A2p+1

Observe that on [0,%], 0 < sin®™'2 < sin®z < sin® ' z. Therefore
2n—1
aon+1 < A2p < Aop—1. AlSO azpy1 = 5 —az,—1. Hence

=1.

a 2n a 2n
2n < 2n < .
Aon+1 2n — 1 app—1 2n — 1

1<

1.

By the Squeeze Theorem, we obtain lim 2n

n=%0 a2p+1

= 1. |

dx
(2% + a®)"

I, _Ide’f/azltan—l () +e
( a

a £)2+1 a

a

7.4.4. EXAMPLE. Let [, = f .So Iy = x + cand
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Integrating by parts,
1
I, = J(I)M dz
x —2nx
eyl Kl
T 22+ a? — a?
_ m +2n(I, — a*ls).
Therefore
Iy = > Nty
T a2 + a?)r | 2na "
For example,
dx x 5
f 247 2 rap b
x 5 T 3
T a4y ﬂ(m(mz Tae 17512)
T Sz 15 x 1
T 24(214) T 2a(16) (2 +4)” T 24(16) <8(x2+4) - §Il>
T Sz 15x 15 T
T 24214y T38a(2 42 30722 +4) 6144 " (5)+e
Hence
' de 1 5 15 15 .,
fo @Ay~ 245 3sac) T30m0) Teiad ™ )
=1+1+1+5tan*1(1)
3000 1920 1024 2048 2
7.5. Partial Fractions
A rational function is a function of the form 283 for two polynomials p and

q. There is a systematic method to integrate any rational function. You can always
divide ¢ into p to get a polynomial plus a remainder. Thus we can always assume
that deg p < deggq.

Since ¢ () is a real polynomial, it factors into a product of linear and irreducible
quadratic terms. Say

q(z) = (x —a))™ ... (x —ag)™ ((x — 61)2 + c%)n1 .. ((w — be)2 + cﬁ)”i

Of course, this factorization is not always readily available.
First we will deal with some important special cases.



122 Techniques of Integration

Case 1. Suppose that ¢(z) = (z —a1)(z —az) ... (x — aq) has d simple real roots.

Then p(z) = p(a;) (mod z — a;) for 1 < i < d. Let g;(z) = xq(_x; and define

Plo) = 3, 20 )
= gi(a;) ™

Then deg P < max{degq; : 1 <i<n}=d—1<d = degq. Moreover
P(z) = P(a;) = p(a;) (mod x —a;) for 1<i<d.
(

That means = — a; divides P(z) — p(z) for I < i < d. Hence ¢ divides P — p.
Since deg P — p < d — 1 < degq, we have P = p. Therefore

Thus

7.5.1. EXAMPLE.
Jx3—:c2+m—|—2 J 2?2+ 20 +2
dr = |1
(x4 Dx(x—1)

—1/2 2 3/2
J1+ / + / dx

dzx
-z

T+ 1 r x-—1

1 3
=x—§1n|x+1|—21n|:c|+§1n|:c—1|+c

= _ -1

1
Here p(z) = —a® + 20 + 2, and 25 = 1) = ~ 2> @) = 101)
p(l) 3 3

and o) = @m ~ 2

Case 2. Suppose that ¢(z) = (z — a)?, and suppose that degp < d. Write
p(x) = ‘,ﬁ;(l) bip(z — a)*. Ttis easy to see that {(z —a)* : 0 < k < d}isa
basis for the space of polynomials of degree at most d — 1. Thus the coefficients by,

are uniquely determined. In fact, if we compute the derivatives

d—1
P a) = D bpk(k—1) - (k+1—i)(w—a)* | = byl
k=i

Tr=a

p(a)

Hence b; = =,
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7.5.2. EXAMPLE. Consider f r —2;2__2)‘2_ ! dz. Then
p(x) =2 +2° —x— 1(z —2)? bozp(()?)=9
p(z) =322+ 22 — 1 by = pll('z) ~ 15
p'(z) =62 +2 62:]),/2('2)27
pOa) =6 !
Therefore |

wBrr?—r—1 9 15 7 1
T2 e = ( + + + dx
X

(x—2)% -2 (=23 (z—2)?* z-2
=—3(30—2)_3—g(x—Z)_2—7(:r—2)_l+ln |z —2|+c.

Case 3. Suppose that ¢(z) = ((z —a)* + cz)k, and that degp < d = 2k. Then we
k—1 .

can write p(z) = Y. bi(z)((z—a)?+c?)", where each b;(z) = d; + e;z are linear,
i=0

in a unique way. It isn’t quite as easy as Case 2, but we achieve this by repeated

division of p(z) by r(z) = (x — a)? + ¢ and getting the remainders. For example,

consider ¢(z) = (22 + 22 + 5)3 and p(x) = 32° — 22* + 72 + 2% — 1. Division

by 22 + 22 + 5 yields

30° =22t 472 + 22 —1 = (327 — 82 + 82 +25) (2* + 22 +5)— 102126
323 — 8% 4 82 + 25 = 3z — 14)(2? + 2z + 5) 4 21z + 45

Hence

30° 20 4703 42?1 = Br—14) (2*+22+5)* 4+ (212+45) (2> +22+5) —102—26.

Therefore
J3x5—2x4+7x3+x2—1 j 3r—14 N 21x+45 10z + 126
- — xT.
(22 42z +5)3 2242x+5 (22422 +5)? (22 + 22+ 5)3

rT + S

(z —a)? +32)
substitute cu = ¢ — a and cdu = dx to get

Now we discuss how to integrate J 7 da for ¢ > 0. We can

du

cdu =y f ﬁ du + "7 (ar + s) f ——— du.

fcru+a7"+s
(u2 + 1)k

(czu2 + 02) k
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Now
s (w4 D) R e ifk>2

J U du — 2(k—1)
(u? + 1) (2 + 1) + ¢ ik =1

1

Finally for I}, = j = du, use recursion. We know I = tan™ " u + c.

1
(u> +1)

1
I = J(uerl)k(l)du

B u —2ku2 d

T @@ f ) e
U w411

T @ E Zkf (w+ e
U

T + 2k(I), — Iiy1)

U 2k—1

Therefore I, = 2 L 1) + S5 k-

7.5.3. EXAMPLE. Here is example of Case 3 where we use our knowledge of
the answer to find unknown coefficients. The analysis of case 3 shows that there
are constants a, b, ¢, d so that
J2$3—7x2+5 azx +b f cx+d
x = x.
(222 + 32 + 2)2 202 4+ 3z + 2 202 4+ 3z + 2

Differentiate to get

20° = 72> +5  a(22® + 32 +2) — (ax + b)(4z + 3) cx+d
(222 + 3z +2)2 (222 + 3z + 2)2 222 + 3z +2
Therefore
20 —72% 45

= 2ax® +3ax+2a—4ax® —3ax —4bx —3b+2cx’ +3ca’ + 2cx +2da? +3dx+2d
= 2¢x’ 4+ (a+3c+2d)z* + (—4b+2c+3d)x + (2a—3b+2d).
Thus
2c= 2
—2a +3c+2d=-7
—4b+2c+3d= 0
2a —3b+2d= 5.

The coefficient of 23 shows that ¢ = 1. Setting 2 = 1 (or adding the four equations)
yields =76+ 7 +7d = 0,s0b = d+ 1. Settingx = —1 yieldsb— 1 +d = —4, so



7.5 Partial Fractions 125

d= —2and b = —1. Hence a = 3. Therefore

J2ﬂf Tz~ +5 3z -1 +J x—2 d
T = T
(222 + 32 + 2)2 202 + 32 +2 202 4+ 3z + 2

3z —1 +1J 4z + 3 11 1 p
==+ —Faxr— 5 | —5—=dz
202 +3x+2 4 ) 222+ 3z +2 8 ) (z+2)2+ %

3z —1 1 22 1
—22_T_H+4ln]2x2+3:c+2\+7f 1 R dx
3z — 1

1 2 11 -1/ 4 3
+Zln|2zv + 32 42|+ —=tan (W$+W)+c

2V7

We now show how to reduce the general case to cases 2 and 3. This method
is known as partial fractions. The proof uses some polynomial algebra from Math
145.

T 22 43x 42

7.5.4. THEOREM. Let

q(z) = (x —a))™ ... (x —ag)™ ((x — b1)2 + c%)nl ... ((x — be)2 + ci)ne,
where c; > 0, and let p(x) be a polynomial with degp < deggq. Then there are

unique polynomials p;(x) with degp; < m; for 1 <1i < d and degpq,; < 2n; for
1 < j <esothat

d ( s i(@
b - Z (.’L'}i(az))ml +j; ((x —plc)l;r)z(—k)c?)"j'

PROOF. Letg;(x) = (z—a;)™ for 1 <i < dand qay () = ((x—bj)*+c3)"™
for 1 < j < s. Then ¢; and ¢; have no common factor for ¢ # j, and thus
ged(gs, gj) = 1. There are unique polynomials 7;(x) so that

p(x) =ri(x) (mod g;(x)) and degr; <degq; for 1<i<d+e.

Let Q;(x) = (i((a;)), so that ¢(z) = ¢;(2)Q;(x).

Suppose that there are polynomials p; with deg p; < deg ¢; so that
d+e d+e

ey S S

,qulx

Then p(z) = Zfﬂe pi(x)Qi(x). Since Q); is a multiple of ¢; when j # i, we have
ri =p=p;Q; (mod g).

Now r; and ; are known, and since gcd(Q;, ¢;) = 1, this congruence equation has
a unique solution p; (mod ¢;). In particular, there is a unique polynomial p; with
deg p; < deg g; in this congruence class.
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Define P(z) = Y%¢ p;(¢)Q;(x). Then
deg P < max{degp; + deg@Q;} < deggq.
Observe that by construction,
Px)=piQ;=ri=p(r) (modgq) for 1<i<d+e.

Hence ¢; divides P — p. Since the factors g; are relatively prime, their product g
divides P — p. However deg(P — p) < deg ¢, which forces P = p. Therefore p(z)
has the desired decomposition. |

Surprisingly one does not need to solve the congruences to find the decomposi-
tion. Instead, one can replace the coefficients by variables and simplify, or plug in
some values of z, to get enough linear equations to determine them. Solving linear
equations is easily done on a computer, and for small systems, easily done by hand.

7.5.5. EXAMPLE. Consider Jxl The tricky part is factoring 2* + 1 into

4
xt +

two quadratics. It has no real roots because it is strictly positive. It isn’t obvious,
but it is the difference of two perfect squares.

a4+ 1 = (@ + 207+ 1) =227 = (2 +V2x + 1) (2? —V2z + 1),

Thus has a partial fraction decomposition of the form

4t 41

1 _ ar +b N cx +d
s+ 1 2242z +1 22— 2zx+1
_ (at0)2’ + (—v2a+b++2c+d)a? + (a—V2b+c++2d)z+ (b+d)
B 4+ 1

So

a+c=0
—V2a+b+V2c+d=0

a—V2b+c+V2d=0
b+d=1

Thus ¢ = —a and the third equation yields b = d, s0o b = d = % by the fourth.
Finally the second shows that 2v/2a = 1,50 @ = 2\1—5 = —c.
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Therefore
1 1 1 1
J dx ‘J VA B o
z4+1 2242 +1 22—+ 22+1

fl 20+V2 1 L 2z—4/2 1 1 g
= | > - 5 T
W22 0 \2a+1 P (WV2e+1)241 W22 \2241 2 (V2z—1)2+1
1 22 4+2z+1 1
= ln’ ‘—F ta
42 122 —32z+11 242

n ' (V2z+1) (V2z—1)+c

1 -1
+ ——=1tan
22

7.6. Rationalization Tricks

One of the reason integrating rational functions by partial fractions is important
is that there are methods to reduce other more complicated integrals to the rational
situation. We will look at two such techniques.

7.6.1 | R(sinz,cosz)dx where R is rational.

Making the substitution ¢ = tan 5 always converts this to the integral of a rational
function. We have the following identities, all of which are rational functions of ¢:

2
r=2tan 't thus do=———dt
1+¢2
2t ¥
tanx = ?‘[;2 '\xXI Z-t
) 2t

SINY = ——=

1 +¢? x

1 —¢2 -t
COSTY = ———=.

1 +t2

7.6.2. EXAMPLE. Make this substitution in the following integral.

J dz - J I 2
i —2si o 2t (242824124t 2
sin z(2+cos x —2sin x) W(T) 1+t

1+ 1/3 5/3 1
= ——dt=| L+ L —dt
Jt(t2—4t+3) J t +t—3 t—1

=Ihnft[+ 3t —3|—In[t— 1| +¢

= %ln|tan§|+%ln|tan%—3|—ln|tan§ —1|+c.
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7.6.3 JR(Q&, vV az? + bz + ¢) dz where R is rational.

There are two tricks that might work here.

Case 1. ax? + bz + c has real roots 71,72, 50 ax® + bz + ¢ = a(x — r1)(x — 72).

Vax? + bx +
Substitute ¢t = M. Then
T — 7
2 az’ +bx +c _ a(:c—rz)'
(x —r1)? T — T
t?x — rltz = axr — ar.
Thus
rltz —ary
r=——".
t2—a
Notice that
o a(ry — )
! 2 —a
Hence
d — -2 — 1)t
d — 7(@(7’1 Tz))dt _ a(ry — ) dt
dt\ t*—a (t? — a)?
and

m: \/a(x—rl)(az—rz) =(z—r) M

r—Tn"r
a(ry — )t
=(z—nr)t=——7"2
( J t2—a
These are all rational substitutions.

x
(7o — 10 — 22)3/2°

7.6.4. EXAMPLE. J
V7r — 10 — 22

Then —2% + 72 — 10 = —(x — 2)(z — 5). Set t = — The formulae
T —
above show that

22 —
T = 245 T — 10 — 22 = 3 and dzx = 6 dt.
2 +1

241 (2 +1)?
f T _f2t2+5 (2 +1)7 -6t "
(7Tx —10—22)32 ] 2+1 (3t (2 +1)2
(2t? +5)(—6) j—4t2—10 4 10

— | it = | ———dt = ——t + —
f 2712 972 CRRE TR
472z —10—22 10 x—2

=+ —F———+c

9 r—2 9 V7x —10 — 22
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—4(Tx — 10 — 2%)/(z — 2) + 10(z — 2) +c

OVTx — 10 — 22
—4(5—z) + 10(z — 2) 14z — 40
= +c= +c
T — 10 — 22 OTx — 10 — 22

Case2.c> 0. Sett = . Then

Vax? 4+ bx 4+ ¢ —4/c
x

(xt + /) = ax® + b +c¢ or z*t* 4+ 2y/cat = ax® + ba.

Divide by x and solve

by,

x
2 —a

(t).
Therefore
dr = h'(t)dt and +az?+bx +c=xt++/c=h(t)t+/c

These are all rational functions of ¢.

1

7.6.5. EXAMPLE. de.

vVl +x+1

Va2 1-1 1 -2t
Sett = Y2 T . The formulae above show that x = h(t) = R
1: —
Thus
ot —2t? t—1>—1
and
22 —t+ 1)
doe = N (t)dt = = ————=dt.
e = 0)dt = 2

J 1 _jtz—l -1 2*—t+1)
eValta+1  J1=2tt—2-1 (1)
2

:fﬁ:mm—u+c

dt

2t — 1
V2 +ax+1-2
=1In —1|+c
X

=In2vVa?+z+1-2—z|—In|z|+ ¢
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Exercises for Chapter 7

1. Compute the following integrals: (a) J \s/l%
(b) f 2% sin~ ! (z?) da (©) dt
0o VI+t+v1+t

2
(d) J (log x)z dx (e) fem cos(3x) dx.

1

! —13
®) f1x36x4 cos 2z dx ( )J z? 3xf:49d

-2 .2

z-+8x+ 10 1

h d d
( )J (22 + 6z + 10)? v @ _ﬂ/25+sinx+7cosx v

2. Compute a recursion formula for I,,, = Jxa(log z)"dr,m>0,a # —1.

Hence obtain an explicit formula for 3.

T xsinzx

3. Compute | ————dx
P JO 1 + cos?x
HINT: Substitute w = m — = and combine the two integrals.

4. Suppose that f(z) is a C? function on R such that | f(x)| < Aand |f"(x)| < C
for x € R. Prove that | f'(x)| < v2AC.

HINT: fix zo with f’(z9) = b = 0. Get a lower bound for f’(zo + h).
ro+H

Use this to estimate j f(x) dx for a good choice of H.
xo—H

5. Suppose that f(0) = 0and 0 < f/(x) < 1 for all > 0. Show that

f f(t) (Jo f(lt)clt)2 forall z > 0.

When does equality hold? HINT: differentiate, factor and differentiate again.

6. Compute J\/ tan x dr. HINT: try setting u®> = tanz.



CHAPTER 8

Other Aspects of Integration

8.1. Improper integrals

Sometimes it is not enough to integrate bounded functions on bounded inter-
vals, which is what the Riemann integral accomplishes. When the domain is un-
bounded or the function is unbounded, there is a way to extend the definition of
integral. These are called improper integrals to stress the point that they are not
Riemann integrable.

8.1.1. DEFINITION. Let f(x) be Riemann integrable on [a,b] for all b > a.
We define

LOC f(2)de = lim Lb f (@) da

b
when the limit exists. Similarly we can define f f(z)dz. If f is Riemann
—0o0

integrable on [a, b] foralla < b € R, we let

o b
j f(x)dx = lim limf f(x)dax.

a——00 b—00

1
— - Then

8.1.2. EXAMPLE. Let f(z) = o
X

0 1 b 1 . b |
J 5 dz = lim 5 dr = lim tan™ (a:)‘ = lim tan™ " (b) =
o 1+ b0 Jg 1+ 2 b—o0 0 b

Similarly,

0
1
f dr = lim lim tan~'(b) —tan"'(a) = 7.

— o 1+ $2 a——00 h—0o0

8
=
EX

8.1.3. EXAMPLE. Let f(z) = {

8 [—

b 0
f f(x)dx=1+lnb and f f(w)d:cz—l—lnm]
0 2 a 2
131
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forb > 1and a < —1. Thus

a——00 b—0

0
J f(z)dx = lim lim Inb — In|al.

This limit is undefined, and the function does not have an integral. Notice that

b
LYRCEE

However

lim f f(z)dz = hm In(rb) —Inb =1Inr
b—00
for any » > (. Thus this integral might be assigned any real value if we specify

how we approach the two limits in a synchronized fashion. So this function is not
b
integrable. There are some instances where the limit blim f(x) dx is used, and
—00 J__ b
in this case it is called the principal value of the integral.

8.1.4. EXAMPLE. Let f(z) = 2P forp < 0 and p # —1. Then

0 b p+1 p
2Pdzr = lim | 2Pdz = lim
1 b—o0 0 b—0 p + 1 0

ol {+w if —1<p<0
= lim — =

bow p+ 1 ifp<—1

1
Ip+1]

Thus f is integrable only when p < —1.

The following is a useful check that will guarantee that an improper integral
exists. Later on in our study of series, this can be compared to absolute conver-
gence.

8.1.5. PROPOSITION. Let f(x) be Riemann integrable on [a,b] for all b > a.
0 Q0
Iff |f(z)| dx < o0, then J f(x) dx exists.

PROOF. Proposition 6.5.1 shows that |f(x)| is also Riemann integrable on
[a, b] for b > a. So we can define

Jf t)dt and G(x j|f )| dt for x> a.

Note that G(x) is monotone increasing, and by hypothesis, it is bounded above.
Thus lim G(z) = sup,.,G(x) = M < o0.

Tr—00
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Given ¢ > 0, choose by so that G(by) > M — e. Then if by < b; < by, then

£ - #ol = | [ s < [l

= G B2) G(bl) M — G(bo) < E.

Since € > 0 is arbitrary, the values F'(b) satisfy the Cauchy condition, and therefore
o0

blim F(b) = J f(x) dzx exists. [
— 00 a
sinx
8.1.6. EXAMPLE. Let f(x) = —— for 2 > 7. Then
x?
f ]f(a:)|dx:f |Sz12$|dng — dx . F—;<oo.

.. “ sinx ,
Therefore Proposition 8.1.5 shows that —5— dx exists.
x

™

8.1.7. EXAMPLE. Here is a more subtle example where Proposition 8.1.5 does

o0
sin dx. Since f(x) has

not apply. Let f(z) = sinz for x = 0, and consider
x

0
limit 1 as  — 0, setting f(0) = 1 makes f(z) continuous. Therefore it is Riemann
integrable on [0, b] for every b > 0. Now sin x changes sign at each multiple of 7.
Define

km :
asz smde for k>1.
(k—Dmw L

Then a; = (—1)*~!|ay| alternates sign. Observe that for (k — )7 < < kn,
|sinz|  |sinz] | sin z|
< <

kr oz (k—Dm

Therefore
km . km : km .
f |smx|dxgj | sin | dwéj | sin x| i
(k=) kT (k—)x & (k—1yr (k= D)7
Thus
2 <yl <
o (k—1)m

It follows that

This is called the harmonic series. The reason it dlverges is that

1111
1+ + G+ + G+ )+ G+ )+ R R
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) 2n—1 1
T n =§foreachn>l.
On the other hand, we have |a,,| > - > |a,, decreases
monotonely to 0. The Alternating Series Test 9.3.2, which we prove later, shows

that the series
sinx
J dx

o0

sin
converges. From this it follows that J MY 12 is defined.
0 X

because +--~+2%>

2

It takes some sophisticated methods to find the actual limit, which is g We

provide one proof in Appendix A.7.

Now we deal with functions which are unbounded as they approach a single
point.

8.1.8. DEFINITION. Suppose that f(z) is Riemann integrable on [a + £, D]
for all ¢ > 0 but f is unbounded on [a,b]. We say that the improper integral

b
J f(x) dx exists if there is a limit
a

J, eia:= iy [ s

Similarly we define an improper integral if f(z) becomes unbounded as it ap-
proaches b. If f(x) becomes unbounded as x approaches an interior point ¢ but
is Riemann integrable on [a,c — €] and [c¢ + §,b] for €,6 > 0, then the improper
integral exists if there are two limits

c—¢ b
lim f f(z)dz and lim f f(z)dx

e—0t Jq -0 Jeots

b b

and then f f(z)dx :== lim f f(z)dx + 5l_i)r(§1+ f(z)dx

a e—0* c+4§
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1

8.1.9. EXAMPLE. Fora < 0, considerf 2% dzx. First consider ¢ # —1.
0

1 1
f z%dx = lim z%dx

0 =0t Je
. xa-ﬁ-l 1 . 1 — 5a-‘:—l
= lim = lim
e—0t+ a + 1 5 e—0+t a -+ 1

a+1

) if—-l<a<0
) - ifa< -1

1

Similarly the integral f 2~ " dz does not exist. Note that for this reason,
0

1
J 2~ ! dz also does not exist. However as in Example 8.1.3,
—1

Edx Udx -2 dx Udx
lim — 4+ — =0 and lim — 4+ — =1n2.
e—=0t J_1 T e I e—=0t J_1 T e

8.2. Volumes

8.2.1 Disk method. Consider a volume obtained by rotating a function f(z)

about the z-axis from z = a to x = b.
The idea is to consider a slice perpendicular

to the x-axis at a point x. The cross section representative
is a solid disc of radius f(x). We imagine S
that it has an infinitesimal thickness dz and
integrate. The disc has area 7 f(x)%. Thus
the volume is

V:J%ﬂmwm

a

If we are integrating a solid figure bounded
above by f(z) and below by g(x), then we
can think of this as the volume of the rota-
tion of f(x) minus the volume obtained by
rotating g(x).

thickness/

equals dx

FIGURE 8.1. disc method

8.2.2. EXAMPLE. Compute the volume of a doughnut obtained by taking a disc
of radius r and rotating it about an axis which is distance R from the centre of the
disc. For convenience, let the disc have centre (0, R). Then the upper and lower

arcs of the boundary circle are f(z) = R+ vr? — 2% and g(z) = R — V/r? — 22
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for —r < x < r. Thus the volume is

V=m ' f(x)z—g(x)zdx:ﬂfr (R+\/7’2—x2)2—(R—\/rz—x2)2dx

=7 J AR/ r? — 22 dx substitute z = rsin 6 and dz = r cos 6 df
/2 /2
=471R V12 —r2sin? 0 rcos O df = 4n Rr? J cos? 6 do
—7t/2 —7t/2
/2 /2
= 277Rr2f cos20 + 1df = 2w Rr* (1 sin 26 + 0) i
—n/2 -7

= 2n°Rr? = (2w R)(7r?).

8.2.3. EXAMPLE. There is no reason to restrict this technique to circular cross
sections. Let’s compute the volume of a regular tetrahedron with side length s.
The base of the tetrahedron is an equilateral triangle. We need a formula for
the height. When you drop a perpendicular line from the apex to the base, it hits the
centroid of the base triangle. Now AB = 5. Also AABC' is similar to ADBA.

so that BC = JAC. Lett = DC = AC = t. Then DB = t + 4 = ¥,

t

S/ ®

FIGURE 8.2. height of a regular tetrahedron

Thus ¢t = % Let Z be the apex of the tetrahedron, and observe that AACZ is a

right triangle. Therefore the height is h = /52 — {2 = \/gs. The cross section at
height x is an equilateral triangle with side length proportional to h — x changing
linearly from s when z = 0 to 0 when = = h, so that the side length is 7 (h — z) =

\/g (h—x). The area of an equilateral triangle of side y is 3y sin = ?yz. Thus

the volume is
h 3

3 3 h 3
v — f \f ) dy — _\/> V3 s

“Z(h—z)}| = 2R = :
g (=) = 6v/2
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8.2.4 Cylinder method. Consider a volume obtained by rotating a function f(z)
from z = a to x = b about the y-axis. The vertical line segment from (x,0)

43y

llx

3 > -1 ] 2 X 3
FIGURE 8.3. cylinder method

to (x, f(z)) is swept around the y axis to form a cylinder of radius = and height
f(x). We introduce an infinitesimal thickness dx and integrate. The volume of
this thin cyclinder is the surface area of the cylinder times dx. The surface area is
the circumference of the circle times the height, so 27z f (x) dx is the infinitesimal
volume. Hence the volume is

b
V= J 2rxf(x) de.

If the region swept around the y-axis is bounded above by f(x) and below by g(z),
then the volume is

b
V= J 27rm(f(a:) — g(fL’)) dx.

8.2.5. EXAMPLE. Compute the volume of a sphere of radius r by sweeping a
semicircle with diameter along the y axis around. Put the centre at (0,0) so that

f(z) = v/r2 — 22 and g(x) = —/r2 — 22 Thus the volume is
V= f 27Tm(f(x) fg(x)) dx = 471'J xﬂd:n
0 0
1

T 23/2’":ﬂ 3
471'3(7" x) s =3

8.2.6. EXAMPLE. The centroid or centre of mass of a planar object is the point
at which it will balance on a pin. The physical information that we need is that mass
at distance h from the midpoint will exert a force proportional to h. We assume that
the planar object is of uniform density; and that it is bounded above and below by
f(z) and g(z) for a < = < b. We compute the = and y coordinates separately. To
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compute the = coordinate &, we imaging the figure balancing on the line z = Z.
Let the cross section at x be I(z) = f(x) — g(x). If the figure when sitting on
x = T, the force exerted by a rectangle of length /(x) and infinitesimal width dx is
[(x)(x — ) dz. The total force should be 0, whence

0— Jb(x B da — be(f(x) ~g(w)) do — :sz (@) — glx) da.

a

b
Since the area of the figure is A = J f(z) — g(x) dz, we obtain

b
z= llf z(f(z) — g(z)) dz.

A similar formula will hold for §. The centroid is then (Z, 7).
Now if we assume that this body lies in the right half plane, and we rotate this
body around the y axis, the formula for the volume is known as Pappus’s Theorem.

b
V= J 2rz(f(x) — g(x)) do = 2w AL

a

8.2.7. EXAMPLE. Compute the volume of the intersection of two solid cylin-
ders of the same diameter which meet at right angles. If we align the cylinders
along the x and y axes, respectively, then we have

Ci={(z,y,2) > + 22 <7} and O = {(x,y,2): 2% + 2> <r?}.

Fix a value zp with |z9| < r. The intersection of the plane z = zy is

{(x7y720) : 'TZ < Tz - Z(%? y2 < 7’2 - Z(%}

This is a square of area 4(r> — z}). Thus the volume is

" 4 8 16
V= f 4(r? — 22 dz = dr?z — =2° [V U S
, 3712, 3 3

8.2.8. EXAMPLE. Now compute the volume of the intersection of three solid
cylinders of the same diameter which meet at right angles. If we align the cylinders
along the z, y, z axes, respectively, then we have a third cylinder

03 = {(m,y,z) : ‘rz + y2 < ’rz}'

Notice that the intersection C' = C'| n C, n C5 contains the cube
T r T
—= —= 2l < —=}
V2 V2 V2

In addition, it contains a ‘cap’ on each of the six faces of the cube. Let us intersect
the plane z = zg for 29 > % with C. As in the previous example, we obtain a

D:{(x,y,z):\:r\g ‘y|<
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square {(7,y, 20) : 2> < 7% — 23, y* < r? — 23} which has area 4(r? — 23). Thus
the volume is

V = V(D) + 6V (cap) = 8(\%)3 + 6J:ﬁ4(r2 ) ds

T
/72

=2v2r° +247° — 122 — 8 + 2v20°

— 16r° — 8v2r3 = 8(2 — v/2)r.
The set C' is interesting geometrically. The six caps each consist of 4 curvilin-

ear triangles. For example, on the cap computed above with z > r/+/2, the four
curves defined by

= 2v2r3 + 24(r°x — %23)‘

2 2 2

x =44/ =25 and y=+4/r2—2z5 for <z<r

Sk

lie on C| n (; and together with the four sides of the square face of the cube
o
\/57

determine the four triangular regions. The ‘triangle’

Di = {(w,y,2) 2 = —=, &* <172, y <17/2)

T ={(z,y,2): 2> <r*—2% y=/r2—22 \%Sz<r}
lies on the surface of C'j. This triangle fits together with another triangle on the
adjacent cap and form one connected rhombus on the surface of .

So instead of 24 triangles, there are actually 12 congruent rhombuses that fit
together to make the surface of C. There are 14 vertices, 8 corners of the cube
and 6 vertices at the top of each cap. Four rhombuses meet at each cap vertex
and three meet at each corner of the cube. There is a semiregular solid called a
rhombic dodecahedron with twelve congruent rhombic faces. The intersection C'
is a curvy version of it. We can check the Euler characteristic. We have 12 faces, 14
vertices, and since each rhombus has 4 sides, but each side lies on two faces, there
are 12(4)/2 = 24 edges. The Euler characteristicis F—E+V = 12—24+14 = 2,
which is the same for any convex solid polyhedron in 3-space.

8.3. Arc length

In this section, we explain how to compute the length of a curve. Suppose that
the curve is y = f(x) from z = a to x = b. Let s(x) be the length of the curve
from a to x. As in computation of areas, we compute the infinitesimal change in s
from x to x + Az.
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C,(+A)<, too+ -g(/” 25)
C¥% £e0)
tongent
\\'2?/—’
Y4 x + DX

FIGURE 8.4. computing arc length

On the infinitesimal interval from z to x + Az, the curve f = f(z) is well
approximated by the tangent line y(t) = f(x) + f'(z)(t — x). So the segment of
the curve has length

As = \/sz + Af(z)? = \/sz + (f'(x)Azx)? = \/1 + f'(z)? Ax.

This leads us to the formula

= qu/l + f!(z)?dz.

8.3.1. EXAMPLE. Compute the circumference of a circle of radius r. It is
enough to compute the length of a semicircle and double it. So let f(z) = v/r? — x2

—x
for —r <z < r. Thus f/'(z) = ————
V2 —

fﬁdjr et

™

Substitute z = r sin § for — -5 < <0< 2, so dx = rcos 6 df. Hence

. Therefore its length is

/2 rcos@

/2 A/72 — r2 sin?

Therefore a circle of radius r has a circumference of 27r.

8.3.2. EXAMPLE. Consider a uniform cable suspended between two points
(x1,y1) and (x2,y2). What is the shape and length of this curve?

The shape of a hanging cable is called a catenary. Say y = f(x). There will be
a point z € (x1,x7) at which the cable attains its minimum height, so f’(z¢) = 0.
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It always has the form y = f(z) = a + bcosh 5™, The length of the cable is

) x2

L= f A1+ f(z)2de = f /1 + sinh? 252 dg
x] X
T2

. — Iz
= f Coshm%f"da: = bsmhrfbm0
e

x1

= bsinh 2252 — hsinh #0,
In particular, if y; = 3, we have 2o = ©3%2 by symmetry, and L = 2bsinh 25"

To derive the shape of the curve, let p be the density of the cable. Consider the
segment of cable between (¢, o) and another point (x, y) on the curve. The length
€T

of the cable from x¢ to z is s(z) = | 4/1+ f/(¢)>dt; and thus this section of

o
cable has mass ps(z). There are three forces acting on this segment of chain. There

is a force Tj at xg tangent to the curve, and thus parallel to the ground provided by
the tension on the cable. Likewise there is a tension 77 at the point x with slope
f'(z). Finally there is the force of gravity, pgs(z), where g is the force of gravity.
Since the cable is in equilibrium, these forces must sum to 0. See figure.

T
X

I \PS G (x)
Ko

FIGURE 8.5. hanging cable at equilibrium
Let the tangent at (x, f(z)) be at an angle 6 to the horizontal. Then f/(z) =

tan 0. We get
To=Ticos® and pgs(x) = T;siné.

, Ty sin 6 pgj’”
= = 1 1(#)2 dt.
() Ticost Ty Jy, + [ dt

Let b = —2, which is a constant. For simplicity of notation, write p(z) =

f/(x). Then
p(z) ;Lom - p(t2 dt.

Therefore
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Differentiate this using the FTC to get
1 P (x) 1
/ xT) = — 1 + t 2 or = 7.
P(@) = /14 p() T
Now integrate this. We recall that sinh®>u + 1 = cosh? u. Hence we substitute
p = sinhu. Then p/(t) dt = cosh u du. Thus
J‘ P (x) gt = fcoshu
V1+pt)?  J coshu

Therefore since sinh~!(0) = 0,

du = u = sinh~!(p(t)).

“1 — xﬂ —Sin_l I:Sin_1 x
7= L L i s 0] = st

That is,

T — X

T — To

f'(@) = plx) = sinh

Integrating again, we get

T

f(x) = f(xo) + f sinh #5720 dt = yo + bcosh 5™ ‘

o Lo

= (yo — b) + bcosh ™.

So the shape of a catenary is a hyperbolic cosine as claimed.
This still does not explicitly determine b in terms of known quantities. We can
make the following computation.

L*—(ypp—uy1)? = (b sinh 20 —p sinh #1520 )2 - (b cosh #2520 —b cosh(H 522 )2

=0 ( sinh’ R — cosh? 2R 4 sinh? at — cosh? %
+ 2 cosh( %252 cosh T2 — 2 sinh #2520 sinh £120)
= b?(2cosh 257 — 2) = 2b%(1 + 2sinh? 22521 — 1)

_ 2 s 1.2 xa—x
= 4b” sinh T

2bsinh L2220 — \ [12 — (y, — y)2.

The quantities L, y; and y, are known, and the LHS, as a function of b, is monotone
decreasing on (0,00). (Check that g(t) = tsinh § has ¢”(t) > 0 on (0, 0), and
1tlim g'(t) = 0.) Thus there is a unique solution to this equation. In general, this
—00

Therefore

computation requires numerical techniques such as Newton’s Method.
In the special case in which y, = y;, we can compute b explicitly as a function
of the length L = 2bsinh *25;*! and the sag of the cable,

h = f(z1) — f(zo) = b(cosh &25= —1).
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Indeed,
L* — 4h* = 4b?(sinh? 22221 — (cosh?® 22221 — 2 cosh 2252 + 1))
= 4b*(2 cosh 2271 — 2) = 8bh.

L? — 4h?

Thus b =
us <h

8.4. Polar coordinates

Polar coordinates is an alternative method of specifying a point in the plane. It
starts with the positive real axis including the special point of the origin O.

P

- o .

O O

FIGURE 8.6. polar coordinates

A point P in the plane is specified by the distance r from O, which places it
on the circle of radius r centred at O, together with the angle 6 from the positive
real axis in the anticlockwise direction. Of course, 6 is in radians because this is
calculus!

The angle is only determined up to a multiple of 27 because an angle of 27 is a
complete rotation. The point (r, #) and (r, 6 4+ 67) and (r, @ — 4m) all represent the
same point. Normally we use r > 0. However should a formula yield a negative
value for r, we can interpret this as the opposite direction; i.e., (—r,0) = (r,0+ ).

It is not difficult to convert between Cartesian coordinates and polar coordi-
nates. The point (7, 6) corresponds to (x,y) where z = rcosf and y = rsin6.
Conversely, (z,y) converts to 7 = y/22 + y? and 6 = cos™!(£) N sin™ ! (). The
point of the intersection is that cos = cos(+6 + 2nm) while sin(6 + 2nm) =
sin(m — 6 + 2mm).

Certain figures are more easily described using polar coordinates. We will
see first how to compute area. The small sector of a circle of radius r(#) and
infinitesimal angle df is %rZ(e) df. You can see this from its share of the full circle
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A9 ri

e

FIGURE 8.7. area in polar coordinates

because the sector of a circle of radius r and angle « is %rza. Thus the area swept
out by a curve specified ar = () for 0; < 0 < 6, is

9

2 17‘2
6, 2

A= (6) do.

8.4.1. EXAMPLE. Consider the figure r = 4 /| sin 6. This figure has two lobes,
one in the upper half plane, and its reflection in the x-axis. The area of both lobes

L2
2

3
2

FIGURE 8.8. r = 4/|sin{|

is double the one on top. So

A=2f lrz(e)d9=f sin9d9=—c059’7r=2
0o 2 0 0
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2
. zc(1+ 2
8.4.2. EXAMPLE. Consider the figure 3> = 1()
-z
probably easier to understand this curve in Cartesian coordinates. But for practice,
we will convert this to polar coordinates by setting x = rcos and y = rsin. We
get

for -1 <z <1 Itis

72 cos? O(1 + rcos6)

2.2
r“sin“ 0 =
1 —17rcosf
or
sin® 0 — rsin® 0 cosf = cos> 0 + rcos> 6.
Thus
a2 29 _ 2
rcosf =sin“0 —cos“0 =1—2cos” 0
so that

r=secH —2cosb.

When 6 = 0, we have r = —1, indicating the point (1,7) = (— 1 ,0) which is
(—1,0) in Cartesian coordinates. We have r = 0 when cos?6 = 1, or 6 = +7.
In the range [—7, ], 7(#) < 0 and the loop of the strophoid is swept out. In the
range [7, 7), the radius () tends to +-00. It is much easier to see what happens
in Cartesian coordinates. As x — 17, y? tends to infinity. So there is a vertical
asymptote at z = 1. The range [7, ) corresponds to the upper part of the curve,
while the range (-5, — %] corresponds to the lower part of the curve.
Let’s compute the area of the loop in two ways. Using polar coordinates,

/4 1 1 /4
A= (se06—2cos¢9)2d9=J sec’§ — 4 + 4 cos> 0 df

—7/4 —7/4

1 (™4 1 /4
=J sec’ —2 +2cos20df = ~ tanf — 9+251n29

2 —r/4 2 —7/4

1

T T
=) —Z4+1=2—~.
P 2

Using Cartesian coordinates, we see that the area is double the area above the z-
axis in the range [—1, 0]. The best substitution after some manipulation is z = sin 0

I

dfc
22(1 — /29
:J x( x) :J sin @ — 2 sin? 90089(19
0o V1—a2 0 cosf
71'/2 71'/2 e
=f 2sinf + cos20 — 1d6 :—20059+%sin29—00 :2—5.
0
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3
2

FIGURE 8.9. strophoid

8.5. Parametric equations

A curve in the plane can sometimes be conveniently described as v(t) =
(z(t),y(t)) for a < t < b where x and y are functions of a parameter t. Generally
x and y will be continuous, and frequently differentiable functions, of ¢. This can
be convenient when a curve is nice, but has singularities as a function of x, or there
are two or more y values for some (many) choices of x.

8.5.1. EXAMPLE. A simple example is a circle of radius r and centre (¢, yo)
given by

v(t) = (o + rcost,yo + rsint) for 0 <t <2m.
For xg — r < & < xg + r, there are two values of y for each x on the circle.
Moreover the function y = yo + 4/72 — (x — x0)? fails to be differentiable when

x = xo = r. However o (—rsint,rcost) is defined for all ¢ € [0, 27].
dt

: . d .
Let’s look at various techniques to find d—y The Cartesian formula for the curve
T

is (z — x0)? + (y — yo)* = r*. Thus
Fl@—xz0) _ x—x
r2 — (z — x9)? Y=y

y—yo=t4/r2— (z —10)? thus ¢ =

By implicit differentiation of (z — x0)? + (y — v0)*> = r?, we get
Xr — X
y—vo

2(x —x0) +2(y — o)y =0 thus ¢ =
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Finally with the parametric form z(t) = xo + rcost and y(t) = yo + rsint,
2'(t) = —rsint = yo —y(t) and y'(t) =rcost = z(t) — zo,
and thus
dy  y'(t) T — g

= = —cott = — .
de  2'(t) Y—Y0

8.5.2. EXAMPLE. Other conics can be expressed nicely using parameters.
The ellipse

can be expressed as
x(t) =acost and y(t) =bsint for 0<t<2m.

The hyperbola

xZ y2

a2 B
can be expressed using the hyberbolic trig functions as

=1

x(t) = acosht and y(t) =bsinht for — oo <t < 0.

We say that v is a closed curve if y(a) = ~y(b). The curve y does not intersect
itself if y(s) = ~(t) implies that s = ¢ or {s,t} = {a,b}. The curve = is called
C'if z(t) are y(t) are C! functions and we write 7/(¢) = (2'(t),/(t)), provided
that if «y is a closed curve, then 7/(a) = +'(b). We say that vy is piecewise C' is
the derivative is piecewise continuous, meaning that there are at most finitely many
jump discontinuities in 2’ (¢) and 3/ ().

To compute the area enclosed in a closed curve 7y, we use a special case of a
result from multivariable calculus.

8.5.3. GREEN’S THEOREM. Let v(t) = (x(t),y(t)) fora < t < b be a
closed, piecewise C', curve that does not intersect itself. Assume that z'(t) = 0 for
only finitely many values of x(t). Then the area enclosed by 7 is

b
f g2’ (t) di.

a

A=

If the direction of v is counterclockwise, the integral is positive.

PROOEF. For convenience, we will assume that the curve is traversed in the
counterclockwise direction, keeping the enclosed area on the left at all times. It
is easy to see that if the integral is computed for the contrary direction, this just
changes the sign.

The main idea is contained in the following special case. Suppose that xz(t)
is strictly monotone increasing on [a, c], constant on [c, d], and strictly monotone
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decreasing on [d, e] and constant on [e, b]. Then there are functions f(z) and g(z)
on [z(a),z(c)] = [z(e),z(d)] so that y(t) = (x(t), f(z(t)) fora < ¢t < ¢ and
v(t) = (z(t), g(x(t)) for d < t < e, and two vertical segments of the curve on the
left and right sides. Since the curve is traversed counterclockwise, the first section

j;jcxﬂ

MW

FIGURE 8.10. Special case

of the curve lies below the second section, so that f(z) < g(x). Hence the area is

x(c)

A= | glw) - fa)da.
z(a)

Now compute the other integral, making the substitution z(t) and dx = 2/(¢) dt.

Note that 2/(t) = 0 for t € [¢,d] U [e, b].

Lb —y(t)z L y(t)z' (t) dt — 0 — J:y(t);c’(t) dt—0

= f f(x)dx — Jx(e) g(x) dx

z(d)

x(c)
:J o(z) — f(x)dz = A.
(@)

Let D be the finite points at which /() is discontinuous. Let
={c:z(t)=c and 2/(t)=0o0rt e D}.

By hypothesis, this is a finite set, so we may write itas cg < ¢y < --- < ¢,. Draw
vertical lines = ¢; for 0 < 7 < n. When ¢;—; < z(t) < ¢;, we have that 2/ (¢)
is continuous and non-zero. Thus z’(¢) does not change sign on any interval (u, v)
with z(t) in one of these intervals. So any maximal interval of this type maps onto
an arc of the curve « for which x(t) is strictly monotone, and necessarily runs from
c;—1 to ¢; or vice versa. Thus the vertical strips cut v into a finite number of arcs.
It is now possible to obtain a finite number of closed curves «y; which follow an arc
from c¢;_; to ¢;, then taking a vertical line segment up to the next segment of the
curve, which must run from from c¢; to ¢;—1, and then a vertical segment down to
the beginning of the first arc. Altogether, the sum of these curves consists of the
original curve « together with a number of vertical segments. However any vertical
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SN\

FIGURE 8.11. Cutting the curve

segment that is not part of y occurs twice with opposite orientations in two of the
smaller curves. Thus any integral over one is cancelled by the integral over the
other. However in our situation, the integrals are always 0 because z’(t) = 0 on
these segments.

The integral over y; of —y(t)’(t) dt is the area enclosed by ~y; by the first part
of our proof. The total area enclosed by -y is the sum of these areas. As noted, the
sum of the integrals over each ~y; yields the integral over 7. Thus the formula is
verified. |

8.5.4. EXAMPLE. The ellipse
x(t) =acost and y(t) =bsint for 0 <t <27

has area
27 2
A= j —bsint(—asint) dt = abf sin?t dt = mab.
0 0

I’ll mention a simple trick here. When integrating sin® ¢ over an interval which is a
multiple of 7, a simple symmetry argument shows that

a+nm/2 a+nm/2 1 a+nm/2 n
f sinztdtzf cosztdtzzf sin2t+cosztdt=%.

a a a
a+2m
A related and useful argument is that J sintdt = 0.

a

8.5.5. EXAMPLE. An epicycloid is the curve swept out by a point on the cir-
cumference of a small circle of radius r as it rolls around the circumference of a
large circle of radius R. Let’s set the centre of the large circle as the origin, so

y(t) = (z1(t),y(t)) = (Rcost, Rsint) for t=0.
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Let’s start the small circle tangent to the point v(0) = (R, 0) with the special point
at (R + 2r,0) corresponding to angle O to the positive axis. Roll the small circle
counterclockwise around the large circle without slipping. At time ¢, the small
circle is tangent to y(t). The arc of the large circle has length Rt. The small circle
has traversed the same distance Rt. So it has rotated through an angle Rt/r relative
to the tangent point y; (¢). Thus the angle from the horizontal is the sum of the angle
t from the fact that the circle is now tangent at +; (¢) plus Rt/r for a total of @t.
The centre of the small circle lies on the circle v, (t) = ((R+r) cost, (R+7)sint)
or radius R + r. Thus the new curve 7 is given by

Y(t) = Y2(t) + (rcos £t rsin 27 ¢)
= ((R+r)cost +rcos £t (R + r)sint + rsin £¢).

T s

In general, this curve is not periodic because R is not a rational multiple of 7.
Let’s take R = 5 and r = 1. Then 5 rotations of the small circle will exactly make

FIGURE 8.12. An epicycloid

a single turn around the larger one. So the curve should consist of 5 lobes. The
formula is

~v(t) = (6cost + cos6t,6sint + sin6t) for 0 <t < 27.

The area of this figure is

21 27
14=«—J gxnx%wdtz-—f (6sint + sin6t) ( — 6sint — 6sin6t) dt
0 0

27
—J 36 sin® t + 42 sin ¢ sin 6¢ + 6 sin® 6t dt
0
27
= 36m + 67 + 42J cos S5t — cos 7t dt = 427.
0
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The formula for the perimeter of the epicycloid follows from the natural analogue
arc length formula

pP= sz A& ()% +y(t)* dt

27
= J \/(_6 sint — 6sin 6t)% + (6 cost + 6 cos 6t)% dt
0

27
= \/36 sin? £+ 72 sin t sin 6t + 36 sin® 6¢ +36 cos? ¢ +72 cos t cos 6t + 36 cos? 6tdt
0

27 27
=J \/72+720055tdt=6\6J V1 +cosStdt
0 0

27 27
=6\/§J \/1+200s252t1dt:6ﬁf V2 |cos 3 at
0 0

st 2 st
=120 . cos 5 dt = (120)5 siny| = 48.

8.5.6. EXAMPLE. Folium of Descartes. Consider the curve

x4 y3 = 3axy
where a > 0 is a constant. There is no obvious way to solve this equation. It is
symmetric about the line = y because if (z, y) is a solution, so is (y, x).

Note thatif x = 0 or y = 0, then x = y = 0. So we may look for solutions of
the form y = t. This yields 2>(1 4 ¢3) = 3at2?. Thus

3at 3at?
:m and y:m for t?é—l
This must be a complete solution since y/x = t # 0 is defined whenever z # 0.
Also y = —z would yields 3axy = 0 and thus x = y = 0, which corresponds to
t = 0. This yields a parameterization (t) of the solution set.
Notice that
(1) B ( 3a/t 3a/t? ) B ( 3at?  3at )
t/ \B+ 1)/ B+ \B+1UB+1)
This is the reflection of ~y(¢) in the line y = . We will also compute the derivative
3a(1 —2t7) 3at(2 — t3)
"t) = ——ai™ d y(t)= "5
vW="5pp ™ YO=Tmp
To understand this solution, we consider three regions for ¢.

Case 1.t > 0. Then (0) = (0,0) and +'(0) = (3a,0). Thus () is tangent to the
x-axis at the origin. When ¢ > 0, v(¢) remains bounded. The maximum value for
x(t) occurs when 2/(t) = 0 of t = 271/3 which yields y(271/3) = (4!/34,2'34).
Similarly 3/(t) = 0 when t = 213 and (2'3) = (2'/3a,4'3a) is the reflected

X
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point. In between, ~y crosses y = x at y(1) = (37“, 37“) Ast — +00,v(t) — (0,0)

/ _ 43 . . .
again. But % = Z/Eg = tii;) approaches +o00, indicating that the curve has a

vertical tangent. Thus this section sweeps out a closed loop.

FIGURE 8.13. Folium of Descartes, a = 1

Case 2. —1 < t < 0. In this range, z(t) < 0 < y(t), so the points lie in the second
quadrant. As in Case 1, as t — 07, the curve approaches v(0) = (0, 0) tangent to
the x axis. Moreover

lim z(t) = —0 and tliml y(t) = +oo.

t——

Observe that
3at(1+1t) : 3at

li H4yt)= lim =~ — lim ——— = —
m t) +y(t) = lim s = M e

Therefore the curve () is asymptotic to the linex + y +a =0ast — —1%.
Case 3. —o0 < t < —1. This portion of the curve is the reflection of case 2, so
it lies in the fourth quadrant. As ¢ — —17, the curve is asymptotic to the line

x4+ y+a=0.Andast — —o0, the curve approaches (0, 0) tangent to the y axis.
Let’s compute the area of the closed loop. Substitute . = ¢3 and du = 3t dt.

@ *© 3at? 3a(l —2t3)
_— / —_—
A= L y(t)z'(t) dt = L 18 (1407 dt

Lo -2t ®1-2
=—9a2J 3t2dt=—3a2J —— = du

) (1+6) ) (T up
0

= —3a2f 3(14u)2 —2(1 +u) 2 du
0
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A famous problem of the ancient Greeks was to determine the closed curve

of given perimeter which encloses the largest area. The solution, known as the
isoperimetric inequality, is established in Appendix A.8.

Exercises for Chapter 8

1.

Evaluate the following improper integrals when they exist.

0
d
(a) f — ' fora>0.
2 z(logz)?
7 /2
(b) J log sin x dz. HINT: substitute v = 7 — x and combine.
0

Which of the following improper integrals exist? (Do not try to evaluate them
exactly.)

o0 1 1 d 0 o3
(a)f — sinddx (b)f ax (c)j ST
0 VJr o F o Inz - logx

Suppose that f(z) and g(z) are bounded continuous functions on [0, 0). If

f(x) dzx exists as an improper integral, does it follow that f f(x)g(x)dx
also exists? Give a proof or provide a counterexample.

1
Consider a region R bounded by the curve y = ————for2 <z <5

vV7r—10 — 22

together with the lines x = 2, x = 5 and y = 0. Compute the volume of the
solid obtained by rotating R about the y-axis.

Consider the region S bounded by the curve y = logx for 0 < x < 1 together
with the lines z = 0 and y = 0. Compute the volume of the solid obtained by
rotating S about the z-axis.

Consider the parabola P given by y = az? for a > 0. At each point (z¢, %)
on P, construct the normal line through (z¢, yo) perpendicular to the tangent
line, and consider the area of the sector of P cut off by this line.

(a) Find the minimal area of this sector.

(b) What are the slopes of the normal lines that minimize this area?

Compute the arc length of the curve y = z2 from 2 = O to x = 1.

Show that the arc length of the curve y = 2P from x = Otoz = 1 is an
increasing function of p for p > 1. Warning: as far as I know, this cannot be
done using the arc length formula. A geometric argument is needed.
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9.

10.

1
Consider a curve given in polar coordinates by r(f) = ———, where
1+ ecosf
e>=0.
1

(a) Show that the distance of each point on this curve to the line x = - is a
constant multiple of (6).

(b) When e > 1, show that the curve approaches two asymptotes, find them and
sketch the curve. HINT: If the critical angles are +6,, compute the vertical
distance of the point of the curve at angle § = 6 + h to the line 8 = 6y, and
take a limit.

(c) Observe that the curve is bounded if and only if e < 1. Show that the
curve is an ellipse as follows: Let a be the midpoint between the two points
intersecting the x-axis. Show that (1 — e€?)(z — a)? + y? is constant.

(d) What happens when e = 1?

A point on the circumference of a bicycle tire of radius R starts touching the
road. As the bicycle rides along a straight line, the point on the tire sweeps out
copies of a figure called a cycloid. Find the arc length of a single loop, and
compute the area between the loop and the road.



CHAPTER 9

Series

9.1. Convergence of series

[oe}
9.1.1. DEFINITION. A series is an infinite sum Y a,. The series converges

n=1
n

or is summable if the sequence of partial sums s,, = Y a; converges as n — 0.
i=1
Otherwise the series diverges.

o0
9.1.2. EXAMPLE. A geometfric series has the form Z aor™, where ag # 0 and

an = apr”™ forn = 0. (Itis usual to beginat n = 0 here ) Let

-1

£ i 1—7r"
SnzZaorzao .

4 1—7r

=0

This familiar formula comes from

n—I1 n—I1 n—I1 n
(l—r)Zrlz ZT‘Z—TZJrl = ZTZ—ZTZZI—TTL.
=0 =0 =0 =1

a .
If |r| < 1, hm Sn = T 0 , and the series converges. If » = 1, then s,, = nay.
This dlverges L1kew1se 1f r = —1, then sy, 4+1 = ag and sy, = 0; so again the
series diverges. If |r| > 1, then
: |r™ — 1]
lim |sp| = |ao 11m = +00.
i Y 1]

Thus this series diverges.

1
9.1.3. EXAMPLE. The harmonic series >, — diverges. This follows from

n=1

n

som=1+4 = +Z Z %>1+ +22’“1= +5-

k=2j=2k=141

3

In fact this shows that s, > 3 1og2 n. We will improve on this soon.

155
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. 1 1 1/1 1
9-1.4. EXAMPLE. ConSIder ngl m Observe that m = g(ﬁ—m)
Therefore for n > 3,
1S 1" 1 11 1 1 1
= — —_— = —_ = = 1 — - — .
Sn 321 3241 Ut s ot e T s

This is an example of a telesoping sum because most terms cancel. Therefore
1 1 1 1 11
— =1 ==(l4+z+3)=—.
Zn(n+3) Jim sn =3 (13 +3) = 15

n=1

A basic result is the following. The harmonic series shows that the converse is
false.

a0
9.1.5. PROPOSITION. If Y, a, converges, then lim a,, = 0.

n=1 n—w

PROOF. If the series converges to L, then

L= lim s, = lim s,41.
n—0o0

n—00
Therefore
lim a, = lim s,y —s, =L —L=0. n
n—00 n—0oo0

The Cauchy criterion for a convergent sequence readily translates to series.

ee}
9.1.6. CAUCHY CRITERION FOR SERIES. Foraseries Y. ay, the following
n=1
are equivalent:
(1) The series converges.

m

>

i=n+1

(2) Foralle > 0, there is N € N so that <eforall N <n<m.

PROOF. Suppose that the series converges to L. Then given € > 0, there is an
N sothatif n > N, then |s, — L| < ¢/2. Therefore is N < n < m, we have

m
€ €
‘ Z ai‘ =S —sp| <|sm —L|+|L—sp| <=+ =¢.
. 2 2
i=n+1
Conversely, if (2) holds, for any € > 0, we have an N so that |s,, — sp| < ¢ if
N < n < m. This says that the sequence (s,) is Cauchy. By completeness of R,
this sequence has a limit, say L. Therefore the series converges. |

There is also a straightforward translation of the Monotone Convergence The-
orem to series with positive terms.
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o0
9.1.7. PROPOSITION. Ifa, = 0forn > 1, then ). ay converges if and only

n=1
if sup,,> sp < 0.

PROOF. Since a,, = 0, the sequence of partial sums s,, are monotone increas-
ing. Thus by the Monotone Convergence Theorem, the sequence converges only if
it is bounded above, in which case, it converges to the supremum. Otherwise the
series diverges to +c0. |

9.2. Tests for Convergence

Now we come to some new ideas that apply specifically to series.

9.2.1. COMPARISON TEST. Suppose that }, a,, and ) b, are series such

n=1 n=1

that |ay| < by, forn = 1. Then if Y b, converges, then so does Y. an,.

n=1 n=1

PROOEF. Suppose that > b, converges. Let ¢ > 0. By the Cauchy criterion,

n=1
m
there is an N so thatif N <n < m, then >, b; <e. Therefore
t=n+1
m m m
’ Z ai}é Z \ailé Z b <e.
i=n+1 i=n+1 i=n+1
Therefore > a, converges by the Cauchy criterion. |
n=1
0
9.2.2. EXAMPLE. Consider Y (1 — {/n)". Observe that f(x) = In(z'/*) =
n=1

| 1-1
Y 1 as derivative f(x) = 7n < Oforz > e. Therefore {/n—1 < v3—1 <
x x?

1forn > 3. Hence

lan| = (¥Yn—1)" <27 for n = 3.

Set b, = 27" for n > 3. Since Z 27" < oo, it follows that Z (I — Yn)™
n=3
converges by the comparison test. Of course, convergence is unaffected by the first

few terms, so the original series converges.

Next we have a continuous version of the comparison test.
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9.2.3. INTEGRAL TEST. Let f(x) be a positive, monotone decreasing function
o0 o0
n[1,00). Then >, f(n) converges if and only iff f(x)dx < 0. Indeed,
n=1 1

0

f(n) < fl T @y de < S fn).
n=1

n=2

n+1
PROOE. Take the integral f f(z) dz. With partition P ={1,2,3,...,n,n+l},

1
form the upper and lower Riemann sums. Since f is monotone decreasing, on the
interval [k, k + 1], we have f(k + 1) < f(z) < f(k). Therefore

£y

£y

Fes)
feay

fe |
Fe )

FIGURE 9.1. Integral test

n+l n+1 n
L(f,P) = Y F(k) < f fayde < S 1) = U(f,P).

k=1
Now let n — co. If the series converges, then
s} n+1 [o's)
J f(m)dx:supf f(z)dzr < zf(n)<oo.

Thus by the Monotone Convergence Theorem, the integral exists. Similarly if the
integral exists,

0 n+1 0
ST (k) = sup Y f(k) < f f(2) do < .
k=2 n=l =5 1

0
Therefore > f(k) converges. Adding one term at the beginning does not affect
k=2
convergence. Finally the estimates are part of the proof. |
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0

9.2.4. EXAMPLE. Consider Y, % for a > 0. The function f(z) = 2~ is
n=1

monotone decreasing, so we can apply the integral test.

— =40 f0<a<l

0
f x %dr = lnx’?o =40 ifa=1
1
o 1 .
71—Oz|l = a1 ifa > 1.
o0
Thus the series converges when o > 1. For example, Z 5 and Z 5 converge

n=1"N

1
and Z — diverges.
n=1 n

Q0
1 : _ 1
9 2. 5 EXAMPLE Consider 22 m The function f(fl?) = m
is monotone decreasing on [3, c0). We need to start at 3 because In ln e = 0. Hence

dx. Hence

we can apply the integral test. Substitute v = Inlnz. Then du = xlm

ro ! d JOO 2 gy = 1" L.
—— > AT = u U = —— =
3 xlnx(lnln$)2 Inln3 U nln3 Inln3

Thus the series converges.

0
9.2.6. EXAMPLE. Consider the harmonic series again: Y| % The argument in
n=1

the proof of the integral test shows that

n+l1 n+11 nl
- < —dz=Inn+1< ), -
I | pae—masi< 3

n
The difference Z % — Inn+1 can be seen to be the sum of the areas of the regions

Ar={(z,y):k<z<k+1,Inz<y<Ink}

from 1 to n. Imagine translating these regions to regions By, in the column between
x = 0and x = 1. They are disjoint because By < [0, 1] x [k_lH, k] Thus the
total area of | J,»; By is less than 1. Because of the slope of y = 1. it looks to

be approximately half of the area. The limiting area exists by the Comparison test,

. 1 1 . .
since the areas |Ax| = [By| < ¢ — Wl and Z %~ mg7 = | is a telescoping

sum. The limiting value is known as Euler’s constant which has been determined
numerically as

v = 0.57721 56649 01532 86060 65120 90082 40243 10421 5933593992 . ..
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Thus
G| |
Jﬂogk—lnn:r}%ék—lnn—klzm

n
So for large n, >’ % ~ Inn + ~. It is unknown whether -y is irrational.
k=1

o0
9.2.7. RATIO TEST. Suppose that a series . a, of non-zero terms satisfies
n=1
. a . .
lim —* =y exists. If |r| < 1, then the series converges. If |r| > 1, then the
n—0 Ap

series diverges.

PROOF. If |r| < 1, pick |r] < R < 1. There is an N so thatif n > N,

’an+1‘
Gn

< R.

Therefore
layir] < RFlay| or k= 1.

Since the geometric series Y |ax|R" converges, the Comparison test shows that

k=0
o0 0
> ay, converges. Thus > a, converges.

N n=1
If |r| > R > 1, there is an NV so that

n=

’an+1

‘ >R or l|apti| = Rlay).
Qan

In this case, |ay,| is increasing, so does not go to 0. Hence the series diverges. W

9.2.8. REMARK. If lim 2!

n—w  ay
Qan+1

= 1, nothing can be said. For example if a,, =

—Q

, we have lim = 1. The series converges for « > 1 and diverges

n—w Ay

n

otherwise.

The following test is harder to use than the ratio test, but it is more powerful.

Q0
9.2.9. ROOT TEST. Given a series Y. ayn, define r = limsup,,_, .. |an|"/™. If
n=1
r < 1, the series converges; and if r > 1, the series diverges.

PROOF. If r < R < 1, find N so that |a,|"/” < R forall n > N. That
0

is, lap,| < R™and ), R™ is a convergent geometric series. Therefore ) a,
n=N n=1
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converges by the Comparison test. On the other hand, if » > 1, there are infinitely
many terms a,, so that |a,,| = 1. Thus the series diverges. |

Here is one more test that sometimes helps.

9.2.10. CAUCHY’S CONDENSATION TEST. Suppose that a,, is a monotone

0 0
decreasing sequence. Then ). ay, converges if and only if Y, Zkazk converges
n=1 k=0
PROOF. Note that
2k+1_1 2k+1
k k
an < 2% and ap = 2%agk+1.
n=2k n=2k+1
Therefore
0 oo 2k 0
IRTED YD JAED JETN
n=1 k=0 p=2k k=0
and
0 oo 2kt o) 0
— k+1 k
ZZan—2a1+222 an>2a1+22 a2k+|222a2k.
n=1 k=0 n=2k+1 k=0 k=0

Thus one series converges if and only if the other does by the Comparison test. W

0l |
9.2.11. EXAMPLE. Consider )] n—n With a,, = %’ compute
n=1 n n
m @t _ (m+1)! n* . (n+1)n"
) ap,  n—oo (n+ 1)l n! now (n+ 1)n+l
1
— lim ( n )n=7<1.
n—w \n + 1 e

Therefore this series converges by the ratio test.

n

Q0
9.2.12. EXAMPLE. Consider ] x—' Compute
n=1 M-

. Gpyl ) "t nl ) T
lim = lim ———— = lim =0
n—o a, n-on+1)az" n-oon+1

Therefore this series converges by the ratio test for all values of x.
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0O PP
9.2.13. EXAMPLE. Consider )] n—n for p > 1. Use the root test.
p

n=1

P\ 1/n 1 1
lim sup (n—> = f(limsupnl/")p =-<1.
n—oo \pP" P n—ow p
Here we use the fact that lim Inn'/" = lim an = 0 so that lim n'/" = 1.
n—oo n—oo n—o0

Therefore this series converges by the root test

0

9.2.14. EXAMPLE. Consider n; n(nn)

for a > 0. Use Cauchy’s condensa-

tion test.
o J- 1 i 1
Z zkazk = Z 2k = .
k
= = 2%(kIn2)* = (kIn2)®
We have already analyzed this sum, and it converges if and only if @ > 1.
© 1 1
N id — . Set b, = —— . Th
OW conSIger nZ::l ninn(lnlnn)® o n n(lnlnn)® °n
0 0 Q0
1 1 1
kb = ) 2F =— )
,;0 2 ;:0 2*(kIn2)(In(k1n2))*  In2 kZ::Ok:(lnk +1n2)e

By the previous example, this converges if and only of a > 1 as well.

Q0
9.2.15. EXAMPLE. Consider },

n=1

o0 0 1
g = N ok .
kz_lo ok kz_:O (Ink + Inln2)kMn2

Now apply the root test.

.- Use Cauchy’s condensation test.
(Inlnn)nn

lim su (2’“ ! )Uk = limsu 2 =
PP Mk + nm2)pm2) = P g T inm2)n?

Therefore this series converges by Cauchy’s condensation test and the root test.

9.3. Absolute and Conditional Convergence

o0 o0

9.3.1. DEFINITION. A series ), a, converges absolutely if ), |a,| < o0.
n=1 n=1

A series which converges, but does not converge absolutely, is said to converge

conditionally.

By comparing a,, with |a,|, the Comparison test shows that absolutely conver-
gent series converge.
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9.3.2. ALTERNATING SERIES TEST. If a, is monotone decreasing and

0

lim a, =0, then Y (—1)"a, converges, say to L. Moreover
n—0o0 n=1

Sop+1 < L < sy, for n=0.

Thus |L — sp| < |ant1]-

PROOF. Observe that sy, +1 = S2p, — A2p+1 < Son. Moreover

$om+2 = Son — (@on41 — Gony2) < S2p
and
$om—1 < Sop—1 + (a2n — G2n41) = S2nt1
forall n > 1. That is
SIS S83 S5 < Sl S Sop S0 K< 84 < 8.

The sequence {sz,—1} is monotone increasing, and bounded above. Therefore it
converges, say to L, by the Monotone Convergence Theorem. Likewise {s7,} is
monotone decreasing, and bounded below; and thus converges, say to M, also by
the Monotone Convergence Theorem. Finally

M — L = lim Son — S2n+1 = lim —p+1 = 0.
n—00 n—00

©¢]
Therefore ) (—1)"a, converges. Finally, |L — s,| < |sp41 — Sn| = |ant+1]. W
n=1
o0 (_l)n-H
9.3.3. EXAMPLE. The alternating series test shows that », ———— con-
n=1 n

verges. This is known as the alternating harmonic series. However we know that
Q0

1
> — diverges. So this series converges conditionally, but not absolutely.
n=1

0
9.3.4. DEFINITION. A rearrangement of the series Y, a,, is another series with
n=1
the same terms in a different order, so there is a permutation 7 of N (a bijection of

0
N onto itself) so that the new series is > A (n)-
n=1

9.3.5. EXAMPLE. Consider a rearrangement of the alternating harmonic series:

Here we take the positive terms in order, and the negative terms in order, but take
twice as many negative terms as positive terms at each stage. We can group the
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terms as follows
1
1 1 11 1 11 1 _ 1,1 1,1 1
(1= =3+G-a)-s+G—wm)-—m+=50-3+5-3+5-5+)
From this, we can deduce that this rearrangement converges, but to a different limit,
half of the value of the original limit.

e}
9.3.6. THEOREM. [f >, a, is absolutely convergent, then every rearrangement
n=1
converges to the same value.

0 0
PROOF. Let L = }] apand M = ), |ag| < oo. Therefore given € > 0, there
k=1 k=1

isan N so that

N € - €
Z lag| > M — 3 and so Z lag| < 5
k=1 k=N+1
Henceif n > N,

m e 0] c
|L — s, = lim |s;, — sp| < lim 2 lag| < Z lag| < =.
m—00 m—0o0 2

k=n+1 k=N+1

Let 7 be a permutation of N, and let K = max{7—'(1),772(2),..., 7~ (N)}.
Suppose that m > K. Then {r(i) : 1 <i<m} ={1,2,...,N} u S, for some
subset S,, < {i : i > N}. Hence

m
‘Zaﬁ(i)—L’=|SN+ Z a; —L|
i=1

1€Sm

<lsw— LI+ D lail

1€Sm
c 0
<+ D1 awl <e.
k=N+1
Since £ > 0 is arbitrary, Y, | ar(i) = L. |
0 (_ )n+1 o0
9.3.7. EXAMPLE. Consider )] 5—- Now >} — < o by the integral
n=1 n n=1"7

test, and therefore our series converges absolutely. Therefore

O (_1)n+1 1 1 1 1
P D Nl R M Sl S ) i
n=1 n odd n even n>=1 n even

1 1 1wl
Z;—zZWZQZ;-

n=1 n=1 n=1
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1 71.2 0 (_1)n+1 7.[.2
It is known that nél 2= e See Appendix A.9. Therefore nZ:]l =1

Now we see what happens with rearrangements of conditionally convergent
series.

o0
9.3.8. LEMMA. If > a, is a convergent series, let by,b,,... be the non-

n=
negative terms of the series and let cy, ¢y, . .. be the negative terms of the series, in
the order that they appear.

(1) If the series converges absolutely, then Y, b; and ) c¢; converge abso-
i>1 i>1

lutely.
(2) If the series converges conditionally, then > b; and > c¢; both diverge.

i=1 121

o0
PROOEF. If )] a, converges absolutely, let z,, = max{a,,0}. Then 0 < x,, <

n=1
0 0

an, so that > x, converges absolutely. However this series is just the series Y| b;
n=1 i=1
together with some extraneous O terms. Hence )| b; converges absolutely. Sim-
i1
ilarly, > ¢; converges absolutely. Conversely if both >} b; and ). ¢; converge
i>1 i1 il

absolutely, then

Dlan] = Y10+ > el < .

nx=1 =1 1=1

e}
Thus } a, converges absolutely.
n=1
Suppose that > b; = B converges absolutely but ) ¢; diverges to —co. There-

il i1
J
fore for any M > 0, there is an J so that if j > J, then >, ¢; < —M — B. Pick N

i=1
so that c; = an. Then for n > N, there is some j > J so that

n n—j J
snzZak=Zbi+ZCi<B—M—B=—M.
k=1 i=1 i=1

o0
Since M is arbitrary, >, a,, diverges to —oo. Similarly, if Y] b; diverges and ] ¢;

n=1 (=3 =1

o0
converges absolutely, then Y] a, diverges to +c0.
n=1
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Therefore, either both )] b; and )] ¢; converge absolutely or both diverge. By
i>1 i1
the first paragraph, conditionally convergent series are in the second situation. W

o0
9.3.9. REARRANGEMENT THEOREM. If > a, is conditionally convergent
n=1
and L € R, then there is a rearrangement of the series which converges to L.

PROOF. By the lemma, >} b; = +o0 and )] ¢; = —oo. Since the series con-
i>1 i>1
verges,
0= lim a, = lim b; = lim ¢;.
n—00 1—00 17— 00

Choose mg = 1 to be the least positive integer so that Z b; > L. Then choose the
i=1
ni—1
least n so that Z b + Z ¢i < L. Since Z b + Z ¢i = L, we have

i=1 i=1 = 1=

—cp, < Zb +Zcz<L

my ny
Now pick the least m; > mg so that >, b; + >, ¢; > L. As before

i=1 i=1

m ni
L<) bi+ ) ci <L+bp,.
i=1 i=1

Proceed recursively choosing the least integers 71 > n; so that

Tj+1

— Cn; oy S Zb + ZCZ<L

and m;j4 > m; so that

mMj41 nj+1

L< Y bi+ Y i <L+bn,,

Our rearrangement is

b],...,me,Cl,...,Cnl,bm0+1,...,bml,cnl+1,...,cn2,...

By construction, the partial sums in the range [m; + nj,m; + nj;] lie in the
interval [L — ¢y, L + by, ] and partial sums in the range [m; + nj1,m; 1] lie
in [L —cn,pys L+ by ] Because the terms tend to 0, given any € > 0, there is
a K so thatif ¢ > K, then b; < ¢ and |¢;| < €. Once both m; and n; are greater
than K, all of the partial sums beyond m; + n; lie in (L — ¢, L + ¢). That is, this
rearrangement converges to L. |
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9.4. Dirichlet’s Test

We prove one more convergence test.

9.4.1. SUMMATION BY PARTS LEMMA. Let (x;) and (y;) be sequences.
n n
Define X, = >, xiand Y, = >, y;. Then

=1 =1

n
DY + Xiyier = XnYor.

i=1

PROOF. In the second line, there is a telescoping sum.

MY+ Xyipr = ),(Xi — Xi)Yi + Xi(Yigy — Vi)

i=1 i=1
n

= Z XYy — XY
i=1

= XnYn+l - XOYi = XnYn+1- [ ]

o0
9.4.2. DEFINITION. A series ), a; has bounded partial sums if there is a con-

=1

stant M so that < M foralln > 1.

n
2. a
=1

o0

9.4.3. DIRICHLET’S TEST. Let ), a; be a series with bounded partial sums.
i=1

Suppose that (b;) is a monotone decreasing sequence with lim b; = 0. Then

1—00
0]
> a;b; converges.

i=1

n
PROOF. Define X,, = > a;, Yy =0,Y, =b,andy, =Y, — Y,—; = b, for
i=1
n = 1. Then by the Summation by parts Lemma,

n

n n
Z ab; = Z a;Y; = X0 Yni1 — 2 XiYiv1.
i=1 i=1

i=1

By assumption, | X,,| < M and thus

lim [X, Y| < lim Mb,, =0.
n—00 n—00
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o0 o0
The series >, y; = >, b; — b;_1 = by is absolutely convergent. Therefore
i=1 =
oo o0
DUXilyit < MDY iy < o0,
i=1 i=1
oo

and hence >, Xjy;11 converges absolutely. Hence
i=1

oo

Zaibi = lim Za, i
A n—ao0

1=

0 0
= JI_)HC}O XnYni1 — Z XiYit1 = — Z XiYit1-
Thus this series converges. |

o
9.4.4. EXAMPLE. Consider )’ sin nf

n=1 M
sum is 0. Also this series is 2m-periodic and an odd function, so that it suffices to
consider @ € (0, 7). Now we use the fact that ¢’ = cos + isin6.

Sin = m elk = | 1m
’ Z . k@‘ ‘I Z Z 0‘ ‘I (
k=1 k=1

. If 6 is an integer multiple of 7, the

ei(n-‘rl)@ _ ei9> _ 2 1
et — 1 ’\ le? —1|  sin@/2"

0
Thus ), sinn# has bounded partial sums. The series b,, = % decreases monotone-
n=1

0

ly to zero. Therefore by Dirichlet’s test, '
n=1
Since the proof of Dirichlet’s test works by comparing the given series with an

absolutely convergent one, it might be surprising that this series converges condi-
tionally if 6 is not an integer multiple of 7. Suppose first that # € (0, 7]. Notice

that for any k, if dist(k6, 7Z) < 4, then dist(k6, 7Z) > §. Hence
| sin(2k — 1)0] N | sin(2k)0)| . s1n9/2'

converges for all values of 6.

2k —1 2k T 2k
Therefore
0 . . Q0
| sin nd| |sin(2k — 1)0| | sin(2k)0| 1
;1 n kZl T R T U g 2%k

Thus this series is not absolutely convergent.
Similarly if 6 € (Z,7), if dist(k0, 7Z) < "5, then dist(k6, 7Z) > “52. This
also yields a conditionally convergent series.

: . . : T—0 .. .
Using Fourier series, one can show that the series converges to if 0 is

not an integer multiple of 7.
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Exercises for Chapter 9

1. Decide which of the following series converge absolutely, converge condition-
ally or diverge.

w § YL

% (—1)™arctan(n) % n*?
c —_— d -1
© % @ X (1"
0 1 Q0 n n?
(¢) nzzjl nl+i/n ® El <n+ 1)
&, cosnb © (=)
h )
@) Z 5 logn ( )n§3 n(logn)?
NG .
O O 2, i
2. Itisk thtZ ! 7r4U this fact t t i(_l)n
. Itis known tha = —. Use this fact to compute .
\nt 90 PUte 4 g
o0
3. Suppose that a,, < b, < ¢, foralln > 1. If Z ay, and Z converge, does
n=1 n=1
o0
> by, converge? Prove it or provide a counterexample.
n=1

0
4. Suppose that ] a, = A exists and (b,,) is a monotone sequence with limit B.
n=1

0
Prove that ) a,b, converges. HINT: Find a way to apply Dirichlet’s test.

n=1

o0
5. Define an infinite product H 1+ a;as
i=1

JLHC}OHH%_ lim (1 +a;)(1+az)--- (1 + ay)

n—0o0

when this limit exists. e
(a) Let a; = 0. Prove that H 1 + a; converges if and only if Z a; converges.
HINT: take logs. = .
(b) Let 0 < a; < 1. Prove that H 1 —a; > 01if and only if Z a; converges.
i=1



CHAPTER 10

Limits of Functions

10.1. Taylor Polynomials

In this section, we examine whether we can use higher derivatives to get a better
approximation to a function by analogy with the tangent line.

10.1.1. DEFINITION. If f(z) has n derivatives at a, the Taylor polynomial of
degree n for f at a is

f"(a)

() (g
Paols) = fa) + fa)z —a) + 1D (e —ap 44 T gy

n!

First we see that this polynomial has the same derivatives at a as f does up to
the nth order.

10.1.2. LEMMA. Pé@(a) = f®)(a) for 0 < k < n.

PROOF. It is straightforward to check that

o 0 ifl <k
ﬂ(a:—a)lz k! ifl =k
(l=1)--(1+1=k)(x—a)* ifl>k
whence
o 0 ifl<k
@(:E—a)l =k fl=k .
Tl ifl> k.
(k)
Therefore Péka) (a) = / k!(a)k! = f®)(a). [

In order to decide if the Taylor polynomial is a good approximation to f(x)
other than just as one approaches a, we introduce the error function

Ry o(z) = f(z) — Py o).
170
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Taylor’s Theorem is a higher order Mean Value Theorem.

10.1.3. TAYLOR’S THEOREM. Suppose that f(x) has n + 1 derivatives on
[a,b]. Then there is an xg € (a,b) so that

f(n+1)($o)(b _ a)n+1
(n+1)! '

PROOF. For each ¢ € [a,b], let P, (x) = > _, %(m — t)* be the Taylor
polynomial for f about ¢. Set

n_ (k)
R(t) = £(B) — Pug(d) = fB)— S L
k=0

Note that R(a) = R, .(b) and R(b) = 0. The following computation involves a

telescoping sum.

f(k+l) (t)
k!

FP(t) -
(b—t)k — X k(b —t)F!

= ZM k+zn:f (t) )k—l

k=0 k! k:I k '
n+1 n
f t _
kzl
_ f<”+‘><t> n
= ()

Now let G(t) = R(t) — (H)"“R(a). Then G(a) = R(a) — R(a) = 0

and G(b) = R(b) — 0 = 0. By Rolle’s Theorem, there is an x¢ € (a, b) so that

FOH ) (o) (b —x0)™  (n+1)(b— )"
n! (b —a)ntl

0=G'(z0) = — R(a).

Solve for R(a):

f(n+1)(:l/‘o)(b _ a)n-ﬁ-l
Ry q(b) = Ry(a) = (n+ 1)1 . -

10.1.4. COROLLARY. If f € C""![a,b), then |R, ()| < Clz — a|**!. And
if () is a polynomial of degree at most n so that | f(z) — q(z)| < C'|x — a|**!
for some contant C', then q(x) = P, 4(z).
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PROOF. By hypothesis, f (n+1) js continuous on [a, b]. By the Extreme Value
Theorem, max |f(z)] = M < oo. By Taylor’s Theorem (with z in place of b),

SHAS

C = (n+1)! works.

Now if g(x) is another polynomial of degree at most n satisfying a similar
inequality, then

la() = Pra(@)] < la(z) = f(2) + |f(2) = Poa(2)] < (C" + )|z — af"*.
Write q(x) = by + bi(z — a) + ba(x — a)> + --- + by(x — a)”. Let k be the
smallest integer at which the coefficients differ from the coefficients of Pn alx),
namely c; := % f*¥)(a).. Then q(z) — Py o(z) = (x — a)*(by —c) + -+ (by —
cn)(x —a)"F). Thus

|9(x) = Pn,a(@)| |(br — i) + -+ + (bn — en)(z — a)" "]

lim lz—antl lim |z — an+1-F = +00.
This contradicts the estimate above. Hence q(z) = P, o(x). [

10.1.5. EXAMPLE. Let f(z) = €® and a = 0. Then fM(z) = ¢ for all
n = 1. So fM(0) = 1. Therefore P, o(z) = Z . For any = € R, Taylor’s

Theorem provides an zo between 0 and x so that

Z k‘ S (@o) || max{e”, 1]
= (n+1)! h (n+1)!
’m|n+l
Now lim ——— = 0 because for |z| < N andn = 2N + k,
n—co (n + 1)!
S |z 2PV 1

nl  2N)M2N+1 2N +k ~ (2N)I2F
Therefore this sum converges to e* as n — 0, so that

0¢] o0 1

n

x
e”C:Z—' and e = ;-
= n! = n!

If we take n = 13, we get e — 3,7 0 L < & < 4 107", which yields 10
decimals accuracy.
This is a poor way to find e” if x is large, and even for x = 1. Notice that

10

1/16 1 el/16 21
(10 = >~ < jpgm = £ < 161077
k=0
Seta = ,16020 n,lw Then e!/1® — ¢ < a < €!/19, 50 that

e>qal® = (((a2)2)2)2 > (61/16 — 5)16 >e—16e!'91: > ¢ —7.1072,
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This has the same number of computations, but has 19 decimals of accuracy.
10.1.6. EXAMPLE. Let f(z) = sinz, g(x) = cosx and a = 0. The derivatives
are periodic:
f/(x) =cosz and ¢'(z)= —sinz
f(z) = —sinz and ¢®(z) = —cosz
e () = (=1)"sinz and ¢V (z) = (—=1)"cosx
(=

Fe D () = (=D)"cosz and ¢V (z) = (—=1)"*sinz.
So f@(0) = 0 = ¢g"*+1D(0); and fFC*+1(0) = (-1 (27)(0). The Taylor
polynomials for sinx are P, 0(x) = Pay,0(2) where
PO B p2n—1 n—1 p2k+1
Poolt)=a— o+ 2 oy N ek
o) = 2= 3y 4 57— 0 g gy = 2 D gy

k=0

Likewise the Taylor polynomials for cos z are Q2,0(z) = Q2n+1,0(x) where

2 4 2n n 2k
x x x x
Qansr0(z) =1— oy 4 5=+ (= :kZ—O(_
By Taylor’s Theorem, the remainders have the form
L B f(2n+l)(x0)$2n+l B _— p2ntl
R2n70(l‘) =Smx — P2n70($) = (27’L n 1)' = (—1) COSZ‘OW.
Therefore |Rapo(x)| < (|2‘ Ty As in the previous example, we know that this
converges to 0. Therefore
3 5 7 e 2k+1
) x x x R
—r— - L —
sing =z — 7+ g =+ = ) (D) 2k + 1)!

k=0

Convergence is slow for a while if x is large, so you should always use trig identities
to manipulate things so that z is small. For example, if x is 1°, which is g5 in
radians, then

3 5 ﬂ_7 ﬂ_9

sin 755 ~ 155 6(180)° T 120(180)5 _ 71(180)7 T 91(180)°

with an error of at most - < 5-10722. The real issue will be computing

7.‘.ll
T11(180)T
powers of .

Similarly, the error for cos x is given as

(2n+2) 2n+2 2n+2
/ (zo)x _ (_l)n-i-l Cos 20 r _
(2n + 2)! 2n +2)!

CosT — an_,_l’() =
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Thus | cos z — < Lﬂﬂ, Again we conclude that the error tends to O for
(2n+2)!
any value of z. Thus
2 4 6 o 2k
x x x
cosm—l——+m—a+f— ];0
If we take f(z) = sinz and a = 7/6, then
1 V3 T, 11 T, V31

Piags() = 5+ 5= g) =550 =gP =G gl gl

This is a better starting point if you want to estimate sin(31°) = sin (¥ + 155 )-

10.1.7. EXAMPLE. These examples give a false impression about how well
Taylor polynomials work. Consider f(x) = tan~!(z). The derivatives get progres-
sively more complicated. But there is a way around the problem. Note that f is an
odd function, and

l 0
=1—a?+a* —ab+a¥—... = Z(—l)k:c%.

fi(@) = 1+ 22

This is a geometric series, and it converges when |z| < 1, and diverges if |z| > 1
Let

n l)kak _ 1= (_1>n+lx2n+2 _ 1+ (_l)nx2n+2
= 1 — (—2?) 1+ 2?
Therefore
/ ’$|2n+2 2n+2
|f'(z) = Q)] = o2 S |7

By Corollary 10.1.4, Q(x) is the 2n + 1st Taylor polynomial of f’(z) ata = 0.

It follows immediately from the definition that if P, ,(z) is the nth Taylor
polynomial for f(z), then P, ,(z) is the Taylor polynomial for f’(x) of degree
n — 1. Since f(z) = 0, it follows that

P20 i 2k+]=$—1$3+lx5—-..+ﬂx2n+l
n+ = 2k +1 3 5 o+ 1 .

Rather than applying Taylor’s estimate for the error, which we can’t do easily since
we don’t know the higher derivatives, we instead apply the Mean Value Theorem
to f(x) — Papt2,0(x) on [0, x]. There is an g € (0, x) so that

|f(2) = Pany2o(x)]  |(f(®) = Pant20(z)) — (f(0) = Pani20(0))]

|z |z
= |f'(20) = Pipsa0(@0)| = | f'(x0) — Q(ao)| < [a*"*2.
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For example, tan™~! (%) = 1—10 - ﬁ + m — m is within ﬁ. In your
homework, you will be asked to verify that
T 1 1
— =4tan!' - —tan"! —.

4TS T 939

Using this, you can get a formula for 7.

The function tan~—!(z) is defined on the whole real line, but the Taylor polyno-
mials only approximate f(x) when |z| < 1. This is fairly typical behaviour.

10.1.8. DEFINITION Big O and little o Notation.. We say that f(z) is O(g)
as x — a if there is a constant C so that | f(z)| < C|g(x)| for z € (a — §,a + 9).

We write f(z) = O(g(x)). Also f(z)iso(g) asz — a if;i_r,r}l Zéi; = 0. We write
f(z) = olg(x)).

Normally g(z) will go to 0 as * — a, and f = O(g) means that it goes to 0 at
the same rate or faster. And f = o(g) means that f goes to 0 faster than g.

It is not hard to show that if f; = O(g;) near = = a, then f; f, = O(g1g2) and
fi + f» = O(max{gi, g>}. Sometimes division is possible if the denominator is

9] _\n
closely related to the numerator. For example M = O((x — a)"%).
r—a
The Corollary 10.1.4 says that f(z) = P, o(7) + O((x — a)"*1).

10.1.9. EXAMPLE. Let f(z) = tanz and a = 0. This is another function
whose derivatives get complicated quickly. Note that f is odd, so that f?™(0) = 0
forn = 1.

f'(z) =sec*z and f'(0) =1
f"(z) =2sec?ztanz and f"(0) =0
FO(x) = 4sec’ rtan’ z + 2sec*z and  fO)(0) =2
F®(x) = 8sec’ zrtan’ z + 16sec* ztanz and ) (0) =0
FO)(z) = 16sec’ z tan* 2 + 88sec* ztan’ z + 16sec®z and  fO)(0) = 16.

Therefore Ps (o) = Poo(z) = 2 + 327 — {52°.

We will illustrate how to use big O arithmetic to find the Taylor polynomials.

sine @ — 32’ + 52’ — 527 + 0(a?)
tanx = = ) T 7 1' 3 3
cosz 11— 2%+ 5pat — 5528 + O(a?)

In order to invert the expression for cos z, we find the polynomial which multiplies
it to get 1 + O(2®), which can be done by long division. We get

(1 — %xz + 2—14564 — 7—%0566 —|—O(x8)) (1 + %xz—i- 25—4304 + %x6 —i—O(acS)) =1 —1—0(1:8).
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Therefore
tanz = (z — %x3 + l—éOxS — 22’ +0(2%)) (1 + $a? + Za* + 52’ + O(2¥))
=z + 37 + &2 + 3527 + 0(@)).
Note that when doing the multiplication, we only need to keep track of terms of
order at most 7 (since 8 never occurs). By Corollary 10.1.4, we have
17 4

1 2
P = = _
%.0(z) = x+3x —1—153: +315x

10.1.10. EXAMPLE. Compute lir%cotzx - ﬁ
€Tr—>

lim cot®> z — i = lim ; — i
z—0 2 - z—0 tan2 x 22
1 1
= lim -
2—0 (z 4+ 123 + O(29))? =
1 1

= lim
2—0 22 + 224 + O(20) 22

- (14322 + O(2*))
a—0 x2(1 + %a:z + O(a*))
—24+0(a?) 2

= lim =-Z.
z—0 1 4+ m2 + O(z*) 3
1/ _
10.1.11. EXAMPLE. Compute lin}) M—e.
T—> x

In(l+x)

First (1 + )/ = e~ = . We know that e = 1 + u + Su? + O(u?). We ﬁnd the
Taylor polynomial for f(x ) In(142z) ata = 0. Then f(0) =0, f/(x) = 1sz and
f/(0) =1land f"(x) = (l+x)2 and f”(0) = —1. SoIn(1 + z) = 2 — 122 + O(23),

In(1
and thus n(;@ =1 — 1z + O(2?). Therefore
(1+ l‘)l/x = ew = ee_%ﬁo(xz)
1
=e(1 (—f:v+0( ) +O((—§x+0(x2))2))
1 e )
=e(l— 5% z + O(x?)) —e—§x+0(x ).
Consequently.
Iz _ — x4+ O(2?)) —
fim LT e g lemse 0@ —e e +0() = —.
z—0 x z—0 x z—0 2 2

These two limits are much easier with Taylor polynomials than by L’Hopital’s rule.
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. Uit 0
10.1.12. EXAMPLE. Consider f(z) = 0 " . This is a rather
ifz =
strange example. Observe that for n > 1, with the substitution u = —1/22
—l/z
lim Ja) _ = lim = lim e“u" =0.
z—0 12N a—0 N uU——00

Therefore f(z) = o(z*") as * — 0. By Corollary 10.1.4, Ps,_jo(z) = 0. In
particular, we have that f(")(0) = 0 for all n > 0. The function f(z) is extremely
flat at x = 0.

Notice that the Taylor series Z 1t >(O z" Z 0z™ = 0 converges quickly
n=0
for all = € R. However the sum equals f(z) only at the point z = 0.

10.2. Uniform limits

In the section on Taylor polynomials, we were sometimes able to show that
the infinite series of functions converges to our function. Exactly how this happens
can be delicate, and like the previous section, it is better when the estimates for
convergence are uniform over the domain. Note that in the e~/V version, there is an
interchange of when x and ¢ are determined.

10.2.1. DEFINITION. Suppose that f, f,, : [a,b] — R are functions.

We say that f,, converges pointwise to a function f(x) if for each x € [a, b],
linrslO fn(x) = f(x). This means that for any € > 0 and = € [a, b], there is an N so
n—

thatif n > N, then | f,(x) — f(z)] <e.
We say that f,, converges uniformly to a function f(x) if

lim sup |fn(x) — f(z)| = 0.

n=90 <a<b

This means that for any € > 0, there is an NV so that if z € [a,b] and n > N, then

[fulz) — f(2)] <e.

10.2.2. EXAMPLE. Let f,(x) = 2" for € [0, 1]. Then

lim z" = f(x) =

n—0ao0

0 ifo<z<1
1 ifx=1

So f, converge pointwise to f. The convergence is not uniform because

sup [fn(z) — f(2)| = sup 2" =1

0<z<l o<z<l

for every n > 1. Notice that each f,, () is continuous, but the limit function is not.
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10.2.3. EXAMPLE. Let f,(2) = 1 sinnz on [0, 27]. Then
1

Ogggﬂlfn(a:)l =

Therefore f,,(x) — 0 uniformly on [0, 27]. So f = 01is the uniform limit. However
fl(x) = cosnzx, and | f], — f'[|lco = 1 for all n > 1. Hence the derivatives of a
uniformly convergent sequence need not be well-behaved.

n’z if 0
10.2.4. EXAMPLE. Let f,(z) = { n?(2 —

0 if
Then f,, are continuous, and

. fn(a:)={0 ifz =0

n—00 0 ifz >0 becausex > % for large n.

Therefore f,, converges pointwise to f(x) = 0. This limit is continuous. Neverthe-
less,

sup |fu(x) = f(2)| = sup fulz) = fu(5) = n.

O<z<1 O<z<l
Therefore the convergence is not uniform.
1
Now consider lim f fn(x) dx. The integral computes the area of a triangle
n—0o0 0

of height n and base % Thus

: 1
L Fult) dt = S(n) > = 1.

Therefore
1

1
lim | fo(z)de=1+#0 =j f(z)dx
0 0

n—0o0

Thus the limit of the integrals is not equal to the integral of the limit.

n’x ifo<z < %
An easy variation is g, (z) = n3(% —z) ifi<z< % for n > 2. This
0 if2<z<1.

sequence still converges pointwise to f = 0, but now the integrals diverge.
The advantage of uniform convergence is explained in the next result.

10.2.5. THEOREM. Suppose that f, : [a,b] — R are continuous functions
which converge uniformly to a function f(x). Then f is continuous.



10.2 Uniform limits 179

€

PROOF. Let ¢ > 0. Pick N so that sup |f,(z) — f(z)| < 3 Since f,
a<z<b

is continuous on a closed bounded interval, it is uniformly continuous by Theo-

rem 4.6.3. Thus there is some 6 > 0 so that z,y € [a,b] and |z — y| < ¢ implies
|fn(z) — fu(y)| < 5. Compute

[f (@) = FW)l = [f(2) = fu(@) + fu(2) = fo(y) + fuly) = F(y)]
< [f(@) = fu(@)| + | fa(2) = fu(W)] + [f(y) — £ ()]

< = + = + Z = €
33 3 7
Therefore f(x) is (uniformly) continuous. |

o0
10.2.6. EXAMPLE. We shows in Example 10.1.5 that e® = 3} Lz*. This
k=0

NgE

is pointwise convergence of the partial sums f,(z) = %xk But in fact, we
S E

showed more. We had estimates from Taylor’s Theorem

0

n

1 elx
T g, ] S hnd B
‘ l;)k!:”‘\(nﬂ)!'

’n+1

€ = fu(2)] =

The convergence is not uniform on (—c0, 00) because the terms %l‘k are not uni-

formly small if x can be arbitrarily large. However if we restrict the domain to
[— R, R] for any R, we obtain

eRnJrl
sup |e¥ — fr(2)| < ——— — 0

as n — 0. Thus the convergence is uniform on [—R, R]. Frequently this is the
best one can do on an unbounded domain.

10.2.7. EXAMPLE. Let f,(z) = Y}_(—1)*2?* for z € (—1,1). We can sum
this geometric series as in Example 10.1.7 to get

B 1+ (_])nm2n+2

In(2) 1+ 22
1
Thi intwise t = —.
is converges pointwise to f(x) T2
|:L“2n+2 1
sup |fn(x) — f(z)| = sup = —.
—1<$<1| n( ) ( )| —l<z<l 1+ 22 2

This does not go to 0, so the convergence is not uniform. However, if 0 < r < 1,
and we restrict our domain to [—r, ], then

|$|2n+2

sup |fn($) - f($)| = sup < r2n+2 0.

2
—r<T<Tr —Tr<TST I+z
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Therefore the convergence is uniform on [—r,r]|. Frequently this is the best one
can do on an open domain.

10.3. Norm and Completeness

10.3.1. DEFINITION. Define the uniform norm on C|a, b] by

£l = sup [7()] = max [£(x)].

a<x<b a\x\b

Note that the supremum is a maximum by the Extreme Value Theorem, and
thus this is a finite value. The properties that make it a norm are contained in the
following proposition. The proof is left as an exercise for the reader.

10.3.2. PROPOSITION. The uniform norm is a function from C[a,b] into
[0, 00) such that for f, g € C|a,b],

1) [|fllco =0ifand onlyif f =0  (positive definite);
2) |[tflloo = [t| | flloo for all t e R (positive homogeneous);
3)

If + glleo < [flloo + llgllo (triangle inequality).

10.3.3. OBSERVATION. If (f,) is a sequence of functions in C/[a,b], then
fn(z) converges uniformly to f(z) on [a,b] if and only if lim |f, — f| = O.
n—0oo

The quantity |f — g is a distance function that satisfies the triangle inequality
and measures uniform convergence.

10.3.4. DEFINITION. A sequence (f,)n>1 in C[a,b] is a Cauchy sequence if
for all € > 0, there is an N so that if N < n < m, then ||f,, — fim|lcc < €.

10.3.5. THEOREM. C|a,b] is complete. That is, every Cauchy sequence ( fy,)
of functions in Cla, b] converges.

PROOF. Let (fy)n>1 be a Cauchy sequence in C|a,b]. Then for each x €
[a, b], the scalar sequence (f,(x)) is a Cauchy sequence of real numbers since
given € > 0, use the NV provided and observe that

|fr(x) = fn(@)| < ||fo — fin]loo <& for N <n<m.
Therefore

f(z) == lim f,(x)

n—o0
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exists as a pointwise limit. Moreover, from the estimate above,

If = fallo = stb]\f(@—fn(w)\<limsgoprm—anoo se for N<n
x€|a, m—

That means that f,, converges uniformly to f. By Theorem 10.2.5, f is continuous.
Thus f, converges to f in C|a, b]. Therefore C[a, b] is complete. |

10.4. Uniform convergence and integration

Now we explore the relationship between uniform convergence and integration.
Since integration is defined as a limiting procedure using Riemann sums, the inter-
change of limits and integrals is the interchange of two limits. This is something
that always needs careful consideration.

We saw in Example 10.2.4 that if a sequence converges pointwise to f, their

1

integrals may not converge to f ft)dt.
0

10.4.1. INTEGRAL CONVERGENCE THEOREM. Suppose that (f,) is a
sequence of (continuous) functions in C|a,b] which converges uniformly to f(x).
X X

Then F,(z) = J fn(t) dt converges uniformly to F(x) = J f(t)dt.

a

PROOF. We compute

[ Fn ()

~ ] < [ 1500 - F0)]
< ZU _a| an fHoo < (b_a)an - f”OO

Therefore | F,, — F'||oc < (b — a)|fn — |, which goes to 0 as n — co. Thus F,
converges uniformly to F'. |

10.4.2. COROLLARY. Suppose that () is a sequence of continuous functions
on [a, b] which converges uniformly to f(x). Then

lim fn )dx = f flx

n—0o0

We saw in Example 10.2.3 that the derivatives of a uniformly convergent se-
quence need not converge. However if we control the derivatives, we can apply the
Integral Convergence Theorem.
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10.4.3. COROLLARY. Suppose that f, are C' functions on [a,b] such that

1l (x) converges uniformly to a function g(x). If there is a point ¢ € [a, b] so that
X

lim f,(c) = -y exists, then f, converges uniformly to G(x) =~y + J g(t) dt.

n—0oo

[

T
PROOF. By the FTC, f,(z) = fan(c) + f f1.(t) dt. By the Integral Conver-

Cc
X

X
gence Theorem, f f1.(t) dt converges uniformly to f g(t) dt. Therefore f,(z)
(&

c
T

converges uniformly to v + f g(t)dt = G(z). [

C

One useful consequence of this is the following.

10.4.4. COROLLARY. Suppose that f,(x) are C" functions on [a, b] such that
fn(x) converges uniformly to f(x) and f] (x) converges uniformly to g(x). Then f
is differentiable and [’ = g.

10.5. Series of functions

0
10.5.1. DEFINITION. A series of functions Y, f,(x)in C[a,b| converges uni-

n=1

formly on [a, b] if the sequence of partial sums s, (z) = >, fi(x) converges uni-

1

?Mz

formly.
A handy tool for verifying uniform convergence of series is the following test.

10.5.2. WEIERSTRASS M-TEST. Suppose that f,, € C|a,b] and there are
e}
constants My, = | fnllco such that >, M, < oo. Then >, f,(x) converges uni-

n=1 n=1

formly.

PROOF. Foreach z € [a,b], >, |fn(x)| < >, M, < oo. Therefore this series
nz1 n=1
converges absolutely to a function f(x) pointwise. Moreover

If = sulle = sup |f(@) = su(e)| = max > i)

<z<
asa<b b k=n+1

0

o0
< 3 o< Y M



10.5 Series of functions 183

The right hand side converges to 0 as n — 0. Therefore s, (x) converges uni-
formly to f(z). [

10.5.3. EXAMPLE. Let’s take another look at Example 10.1.7. Consider the

o0
series > (—z%)™. This is a geometric series, and it converges if and only if || < 1.
n=0
In this case, the sum is

o . 1 1
Z(_x2> T1— (=) 1422

n=0
Now sup|,; |(—z 2)n| = 1 for each n = 0. Thus this convergence is not uniform
n(—1,1).
We fix some € (0, 1). Then
|(=2?)" o) = max |(—a?)"| = r*".
|z|<r
0
Since Y r? =1 5 < o0, the Weierstrass M-test applies to show that the series
e —r
3 iforml !
- t .
nZ:]O( 22)™ converges uniformly on [—7, 7] to T2
Let
(_1)k$2k+1
= L R S
z) J Z ;:) 2%k + 1

By the Integral Convergence Theorem, this sequence of functions converges uni-
formly on [—r, 7] to

T
F(x) :f 1_i_tzdt—tan Yz).

0
Therefore
© yrg2ntl
tan~ Z_: 2n+ 1 for |z| < 1.
The convergence is uniform on [—r, 7] for each r < 1, so this convergence is valid
pointwise on (—1,1). Atz = +1, we have the series + Z 5 +1 This converges

by the Alternating series test. Indeed, this is an alternatlng serles for every value of
€ [—1, 1]. The error estimate from the Alternating series test shows that

k 2k+1 (_1)n+1x2n+3 1
t < .
’an 2 2k:+1 ‘ ‘ 2k +3 2n+3

This shows that
1

2n +3°

| tan™" (z) = s (2) o117 <
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So the Taylor series for tan~! () converges uniformly on [—1, 1] even though the
series for its derivative does not. However it converges very slowly at z = 1. The
famous conditionally convergent series

is correct, but of limited use.

10.5.4. EXAMPLE. Weierstrass’s Nowhere Differentiable Function. There exist
continuous functions that are not differentiable at any point. It is not easy to write
one down. One of the first examples is due to Weierstrass. Define

Z 27k cos( lokmc Z fr(z) for xzelR.
k=1 k=1

Since | f]l,e = 27, the Weierstrass M-test shows that this series converges uni-
formly to a continuous function on R. Moreover each f is 1-periodic, so f has
period 1. Thus we need only consider z € [0, 1].

0o

T

—

1

FIGURE 10.1. Weierstrass Nowhere differentiable function

Let x = 0.zjzpx3--- € [0,1]. Foreachn > 1, let a,, = 0.x12223 ..., and
b, = an + 107™. Notice that 10"a,, is an integer and 10"b,, = 10"a,, + 1; so

falan) = 27" cos(10"may,) = 27" (—1)10"an
fn(bp) = 27" cos(10™wh,) = 27" (—1)10"an*1,
Therefore | f,(a,) — fn(bn)| = 2!

If k > n, 10%a,, and 10¥b,, are both even integers, so that fi(ay,) = f(b,). If
1 < k < n, the Mean Value Theorem shows that

| fr(an) = fr(®a)l < [ filleo (b — an) = 27510%7) 107" = 2775,



10.6 Power series 185

Therefore

[F(an) = )l = | Y ficlan) = fic(bn)
k=1

n—I1
= | fulan) = fulbn)| = X [ fe(an) = fx(bn)]
k=1
n—1
> 21771 _92ng Z Skfn
k=1

>27"(2 — %) >0,

It follows that choosing the endpoint y,, € {a,,, b, } judiciously, we can arrange
that | f(yn) — f(x)| > 27 1. However |y, — x| < 10~™. Therefore

If(yn) —f@)| 2 s
Y

10" 2
This tends to oo, from which we deduce that f is not differentiable at x.

n — &

10.6. Power series

In this section, we study a special kind of series of functions that plays a central
role in Taylor series.

10.6.1. DEFINITION. A power series about x = x is a series of functions of
©¢]
the form >, ay,(z — x)".

n=0

The first important result about power series is that convergence occurs in an
interval centred at x( that can be explicitly computed. Note that the theorem does
not say what happens at the endpoints of this interval.

0
10.6.2. HADAMARD’S THEOREM. Given a power series, », an(x — x9)",

n=0
define
+o0o  ifa=0
a = limsup |a,|"/" and R=1{1 if0 < a < on.
n—0o0 .
0 if o = 400
Then

(1) The series converges absolutely for each x such that |x — xo| < R.

(2) The series diverges for all x such that |z — x| > R.
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(3) If0 < r < R, the series converges uniformly on [zo — r,xo + 7].

PROOF. We use the root test:
)n | 1/n

lim sup |ay, (z — zo = alzr — xg.

n—oo
Therefore this converges absolutely if |z — x| < 1, or |x — z9| < R; and
it diverges if oz — xo| > 1, or | — zy| > R. Endpoints have to be checked
separately.
If0 < r < R, thensup,_, < |an(z — 20)|" = |an[r". By (1), we have

> |an|r™ < co. Thus by the Weierstrass M-test, the series converges uniformly
n=0
on [zg —r,xo + 7] [ ]

10.6.3. DEFINITION. The value R in Hadamard’s Theorem is called the radius
of convergence of the power series.

n

10.6.4. EXAMPLE. Consider the series ) *_ fora > 0. Then
2nna
n=0
li ‘ 1 |n 11. < 1 )a 1
im su = —limsup (—=) = =.
il Y 2 SR 2

Therefore the radius of converges is R = 2. So the series converges on (—2,2) and
diverges if |z| > 2.

1
We check the endpoints separately. For z = 2, we get the series Y, —. This

n=0 T
converges absolutely if a > 1 and diverges if a < 1. Now consider x = —2.
1)
We get the series Y| ( a) . This converges absolutely if ¢ > 1 and converges
n=0 M

conditionally by the Alternating series test if 0 < a < 1. So we see that the series
can converge at both endpoints, or one endpoint.

10.6.5. EXAMPLE. InExample 10.5.3, we saw that the power series Y| (—z?)"

n=0
1 . . . .
converges on (—1,1) to T2 and diverges for |z| > 1. So this series has radius
x

of convergence 1, and fails to converge at either endpoint. However the series
o0 (_1)n$2n+1

%

n=0 2n + 1
tan~!(z). In fact the convergence is uniform on [—1, 1].

also has radius of convergence 1, and converges on [—1,1] to

10.6.6. EXAMPLE. In Examples 10.1.5 and 10.2.6, we saw that the power se-
n

ries >, — converges absolutely for all z € R. Thus the radius of convergence is
n=0 n!
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o0. We also showed that convergence is uniform on [—r, r| for any r < oo, but does
not converge uniformly on the whole real line.

10.6.7. EXAMPLE. Consider the power series Y, n!z". By the ratio test, we
n=0
have

4+ ifx#0
0 ifx =0.

Thus the series diverges if x # 0. So the radius of convergence is 0.

| -n+1
lm (n+ 1)z

n—00 nlxn

= lim (n + 1)]z| = {

2n
10.6.8. EXAMPLE. Consider the power series )’ 362—” Then
n=0
1121
o = limsu ‘—‘ = — and R=+V2.

You could also use the ratio test here.

10.7. Differentiation and integration of power series

While the derivative of a series is often not the series of derivatives, things work
out well for power series.

10.7.1. THEOREM. Term by term differentiation of power series.
Suppose that f(x) = >, an(x — x0)"™ has a radius of convergence R > 0. Then

n=0
g(z) = Y nan(x — x0)" ! has a radius of convergence R; and f'(x) = g(x) for
n=0
|z — x0| < R.

PROOF. The radius of convergence for the derived series is given by the recip-
rocal of

I 1 _n_ 1
a = limsup |na,|»T = limsup n7—T lim sup (|an|l/”) T =
n—o0 n—0o0 n—0o0 R

N
Thus the radius of convergence is also R. We see that sy () = >, an(z — z0)"
n=0

! converges uni-

N

converges uniformly to f(z) and s’y (z) = >, nap(x — xo)"~
n=1

formly to g(z) on [zg — 7,29 + r] for 0 < r < R. By Corollary 10.4.4 to the Inte-

gral convergence theorem, f is differentiable and f'(z) = g(x) on [z — 7,z + 7]

for 0 < r < R. Therefore f'(x) = g(x) on (x9 — R, x¢ + R). [ |
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The following consequence for integration is immediate.

10.7.2. COROLLARY. Term by term integration of power series.
Suppose that f(x) = >, an(x — x0)"™ has a radius of convergence R > 0. Then

n=0
a
F(z)= Y —=2 . (x — x0)"*! has a radius of convergence R; and
n=0 n +

Xr
F(x) = J ft)dt for |z — x| < R.
Zo
We also obtain the following more powerful consequence.

10.7.3. COROLLARY. Suppose that f(x) = >, an(x — x0)™ has a radius of

n=0
. o F (o)
convergence R > 0. Then f is C* on (vo — R, zo + R). Moreover a,, = ———

n!
forn = 0.

PROOF. This follows from repeated application of term by term differentiation,
so that f has derivatives of all orders. The constant term in the series for £ (x) is
nla, = ) (xo). [

n
10.7.4. EXAMPLE. Let f(z) = ] 3:7‘ We have already shown that f(z) =
TLZO n!

e®, but we establish this here in a different way. By the ratio test,

:17"+]
. n+1)! . Z
lim (x") = lim =
n—oo L n—oon + 1

n!
Therefore this converges for all z € R and so R = o0. The derivative is
-1

nx™ xn—l "
f’(a:)zz ol ZZWZ H:f(x)-

n>1 ’ n=1 n=0

Hence as long as f(x) # 0 (which by continuity includes an interval around 0
where f(0) = 1,

[@) _ d (In f(z)).

T T @

Integrating, we obtain

= fldt - f: %(mf(t)) dt = lnf(t)‘: — In f().

Exponentiating, we have f(z) = e” on an interval around 0.
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Now let g(z) = e * f(x) for z € R. Then
g (@) = —e " fx) + " f'(z) = e (f(2) - f(2)) = 0.

Therefore g(z) is constant and g(0) = 1, so that f(x) = e* everywhere

10.7.5. EXAMPLE. Let f(z) = Y] n2z™. Since limsup,,_,, (n?)"/" = 1, we
have R = 1. EV1dently the series dive;ges at x = *1, but it converges on (—1, 1)
f(x)

Now ——= = Z (n + 1)%2". Integrate:

f U (n+ 1z

n=0
is also valid on (—1,1). Slmllarly Z—— = > (n+ 1)z". Integrating again, we
n=0
can sum a geometric series
x 0
g(t) n+1 x
h(z) = | ==dt= = :
() jo t Z_] v 11—z
n=0
Therefore
x (1 —x)? (1 —x)?
Therefore g(z) = T _:Ux)z and
flx 1 — )%+ 22 1+2x
Q — g/(x) — ( )

(1—2z} — (1—ap
So finally we have f(z) = w on (—1,1).

We can plug in values of x to get interesting sums. Take x =

1.

+1:

£ 13 w0 22 1
n’ 17 (=™ | i_ 2
Z = 2 == 6 and Z S~ f(-hH o -

n=1 8 n=1 8

We need the following observation about the uniqueness of a power series for
a function.

10.7.6. PROPOSITION. If two convergent power series Y, an(x — xo)" and

n=0
> bn(x—x0)™ agree on (xo —r, xo + 1) for some r > 0, then by, = ay, forn = 0
n=0

That is, the power series for a function is unique (if it has one)
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PROOF. Let f(x) = >, ap(z — x0)" and g(z) = > by(x — zo)". If they
n=0 n=0
agree on an interval around z, then all of their derivatives agree on the interval as

well. Hence by Corollary 10.7.3,

F" (xo) _ gt (x0)

o o =b, for n=0.

ap =
Thus the power series for f(z) is unique. |

10.7.7. EXAMPLE. Let a # 0 be any real number. Look for a power series

for f(z) = (1 + 2)* near x = 0. Then f'(z) = a(l + z)*!; and therefore
af(x) = (1 + x)f'(x). Suppose that there is a power series f(z) = > apa”
n=0
valid on (—r,7) for some 7 > 0. Then f’(x) = > na,z"~'. Therefore
nz=1

a Z anx” = (14 ) Z na,e""' = ay + Z(nan + (n+ Dapgr)z"

n=0 n=1 n=1

By Proposition 10.7.6, the coefficients are equal:
aag =a; and «a, =na, + (n+ 1)apy;  forn > 1.

Now ag = f(0) = 1. Thus

ar =« and anpy) = Z;Tan forn > 1.
The next few terms are
ala—1) ala—1)(a—2) ala—1)(a—2)(a—13)
a=———>= a3 = a4 = .
2 D) ) 3 6 ) 4 24

The pattern, which is readily verified by induction, is

oo_ola= D) (atlom) <a)

n! n

We call this a binomial coefficient by analogy with the positive integer case.
Let’s verify that this is correct. Define g(x) = > (%)2™. By the ratio test, we

n=0
have
e’ mn—i—]
lim (”ﬂ‘) _ lim @ =)l |z
e (n) " n—w n+1
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Therefore the series converges for |x| < 1 and diverges for |x| > 1. Term by term
differentiation shows that

-3 (e oo, )

n=1 n=0
_ ala—1)---(ae—n) ,
_g:o(n+1) (n+1)! v

Z(a_n)a(a—l)---(awtl—n)J:n

=0 n!
=a2 ( > —JJZ < > = ag(z) — zg ().
n=0 n=1
Hence (1 + z)¢'(z) = ag(z).
g) o
Now we have g(0) = 1 and = ——. Integrating with |z| < 1,
glz) 1+x
lng(a:)z f mdt—aln|l—|—t| = aln(l + z).

Therefore g(z) = (1 + x) . That s,

(1+2)* = Z <a>x" for |z| <1landa #0.
n

n=0

10.8. Abel’s Theorem

In this section, we show that if the power series converges at an endpoint, then
it takes the right value there.

10.8.1. ABEL’S THEOREM. Suppose that f(z) = > an(x—x0)" has radius
n=0
of convergence 0 < R < oo. If Y, a, R™ converges, then the series converges
n=0
uniformly on [zo, xo + R| and

Z anR" = . lim  f(x).

n>0 33()+R)

Similarly if > an,(—R)™ converges, then the series converges uniformly on the
n=0
interval [xg — R, xo] and

dan(-R)"=  lim_ f(x).

z—(zo—R) T
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PROOF. Let b, = a,R"™. Then ), b, converges. Given ¢ > 0, there is an
n=0

N so that if N < n < m, then

< e. Fix x; € [zg,z0 + R). Then

i=n+1
n
Cn = (LRx"> converges monotonely to 0. Using the Summation by parts lemma,

we have
m
‘Zaz(xl—q:o ' ’Zbclz‘cmvaLZch] C]H’
i=n+1 i=n+1 i=n+1 i=n+1 Jj=t
J
Cm’ Z C]_Cj+1‘ Z b
i=n+1 1=n+1
+ 2 Cj—Cjy1) = Ccpe < €
Therefore
m
sup ’ Z ai(xl—:co)"‘ <e forall N<n<m.

ro<zr<zo+R i=n+1

That is, the series is uniformly Cauchy, so converges uniformly. Therefore the limit
function f(x) is continuous on [zg, xo + R]. Thus

dlanR" = f(wo+ R) =  lim_ f(x).

"0 z—(zo+R)~™

The other case follows by symmetry. |

-1 n+1
10.8.2. EXAMPLE. Consider the alternating harmonic series )

ﬁMS

1 n
TL

This is a limiting case of the power series f(z) = Z —. This series has radius of
n=1 T

convergence 1 because hm = 1. The series fails to converge at x = 1, but

1
opl/n
does converge at © = —1 by the alternating series test. So Abel’s Theorem applies
to say that the limit function is continuous, and is the uniform limit of the partial
sums on [—1,0].

Using term by term differentiation, we have

= Yam =N an =

n=1 n=0

Since f(0) = 0, we have

J 7dt——ln(1—:c)
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By Abel’s Theorem,

i ED"  p)=ma2.

n
n=1

Exercises for Chapter 10

1. Use Taylor polynomials to compute these limits, not L’Hopital’s Rule.
@ li et +e T -2
a) lim ———-.
z—0 x2
ha i
(b lim sinhz : sinz
z—0 X
sinz

1/2?
) . HINT: Use a 3rd order polynomial for sin(z) at z = 0

(c) lim (

z—0 T

and a 2nd order polynomial for In(x) at x = 1.

2. (a) Verify that 4tan~! (é) — tan~! (%) T
(b) Use (a) and Taylor polynomials to calculate 7 to 6 decimals of accuracy

with error estimates.

3. (a) Find the Taylor polynomials P, (x) for f(x) = Inz about a = 1, and give
the error estimates.
(b) Compare the errors for the following methods for computing In 2. Which is
best?

M) Poi(2) ) =Poa(:5) (i) Poi(3) = Pai(3)-
4. Let f(z) = (1+x)7 2
(a) Find a formula for f(*) (). Hence show that

f(’:!(O) _ <—k§) _ G- G-k (D" (2kk>

k! C 4k

(b) Find the Taylor polynomial P, o(z) for f, and give the error estimate.
(c) Show that /2 = 1.4f(—.02). Use this to compute 1/2 to 6 decimal places

with error estimates.

5. Let f(z) = zne ™™ forz > O and n > 1. Find lim f,(z). Is this limit
n—0o0

uniform on [0, 00)?

6. Let fp(z) = 1+xnx2 forx € Rand n > 1. Find nh_l}go fn(z). Is this limit

uniform on R?
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10.

11.

12.

13.

Let f,, and g,, be continuous functions on [a, b] for n > 1. Suppose that f,
converges uniformly to f and g,, converges uniformly to g on [a, b]. Prove that
fngn converges uniformly to fg on [a, b].

2 k
for z € R, and let si(x) = >, fu(z).

x
Let =
N TE P
(a) Find klim sk(x).
—00
(b) For which values a < b does this series converge uniformly on [a, b]?
For n > 1, define functions f,, on [0, c0) by

—T

e for 0<z<n
fo(x) =R e (" +n—x) for n<z<n+e”
0 for z>2n+e".

(a) Find the pointwise limit f of f,,. Show that the convergence is uniform on
[0, 0).
Q0
(b) Computef f(z)dz and hm J fn(x)d.

(c) Why does this not contradlct Integral Convergence Theorem?

(a) Suppose that f : R — R is uniformly continuous. Let f,,(z) = f(z+1/n).
Prove that f,, converges uniformly to f on R.

(b) Does this remain true if f is just continuous? Prove it or provide a coun-
terexample.

For which values of © > 1 does the expression 2% make sense?

To tackle this, define f(z) = z and f,,;1(x) = 2/®) forz > 1and n > 1.

(a) Show that f,11(z) = fn(x) foralln > 1.

(b) When L(z) = nhjc];o fn(z) exists, find an equation for L(z).
Use it to find an upper bound for .

(c) For these values of z, show by induction that f,,(x) is bounded above by e
for all n > 1. What can you conclude?

(d) What happens for larger z?

Find the radius of convergence for the following series, and evaluate the func-
tion.
5, (n2 + mar o) = 3
(@) f(z) = X (n* +n)x 9(@) = 2 - ——
n=0 ( ) n=0 (2Z7‘ +)1)’
(C) h(.ﬁlf) = ngz m (d) Evaluate nz_: n2 — Justlfy‘

o) ] e
Suppose that f(z) = Y a;ja’ and g(z) = Y. byx* have positive radii of con-
j=0 k=0



10.8 Exercises for Chapter 10 195

n

vergence R and R, respectively. Let ¢, = Y, ajb,—; for n > 0; and let
§=0

R = min{Rl, Rz}.
(a) Define h(z) = io] cpx™. Prove that h(x) = f(x)g(x) on (—R, R).

n=0
(b) Give an example where h has radius of convergence strictly greater than R.



CHAPTER 11

Differential Equations

11.1. Examples of DEs

11.1.1. DEFINITION. A first order DE is a relation between the independent
variable z, a function y(z) and its derivative 3’ (z) of the form f(x,y,y’) = 0. Itis
in standard form if y' = g(x,y).

An nth order DE has the form f(z,y,v/, ..., y(”)) = 0. It is in standard form

lfy(n) = g(IE?y)y/a sy y(n—l))

11.1.2. EXAMPLE. Consider x + yy’ = 0. In standard form, we have 3y’ = _z
Yy

provided that ¢/ (x) # 0. By inspection, we can notice that

d 2 2 /

—(z" + =2(zx+ =0.

2@t y) =20z +yy)

Therefore 2> + 4> = c is constant. Clearly we need ¢ > 0. So the solution curves
appear to be circles of radius 4/c and centre (0, 0). However a circle does not yield
a function y(z), but rather there are two values of y for most x. To get a function,
we have two solutions for each ¢ > 0, namely

y(r) =+vec—22 and y(x)=—c—22 for |z]<+/c.

Note that y'(£+/c) is not defined, so that the endpoints are not part of the solution.
This provides two one parameter families of solutions.

The usual way to decide which of these various solutions is applicable is to
provide extra data, known as initial value conditions. A DE of order n requires
n pieces of data, often the values at some point a of y(a),...y" ") (a), but other
choices arise.

Suppose that in this case, we are told that y(0) = r € R. Then we can deter-
mine the solution as

y(@) =2 — a2 ifr >0 and y(z) = —/72 — 22 ifr < 0.

11.1.3. EXAMPLE. Consider ¢’ = f(x) and y(a) = . By the FTC, this has a
unique solution

) =7+ [ s
196
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11.1.4. EXAMPLE. Radioactive decay. A radioactive element will decay (i.e.,
lose an electron to become a more stable isotope) at a rate proportional to the
amount of radioactive material. Suppose that p(¢) is the amount of material at
time ¢ for ¢ > ty and that p(t9) = po is known. We interpret the first sentence as
saying that there is a constant £ > 0 (unknown so far) so that

p(t) = —kp(t).
In this case, we can separate variables, getting all of the p’s on one side and =’s on
the other:

Therefore

k(to — £) :ﬁ —kds=£ plgg) (s)ds = In p(s) ; = tt)

Hence
p(t) = plto)e F(I=1).
This is called exponential decay.

The half life of uranium 235 is 4.5 billion years, and uranium 238 has a half
life of 700 million years. Radio carbon or carbon 14, has a half life of 5730 + 40
years. It is created all of the time in the atmosphere and incorporated into plant
material until the plant dies. Animals eat plants and take in carbon 14 as well. The
percentage of material at the time of death is predictable, so one can date the age
of ancient plants and animals based on measurement of the current percentage of
carbon 14. For carbon 14, the constant &k can be determined from

1 ~5730k In2 —4
~ = k= ~ 1.21-10
2~ ¢ o 5730

if time is measured in years.

11.1.5. EXAMPLE. Consider a DE ¢y = f(x,y) where f is homogeneous of
order 0, meaning that f(tx,ty) = f(x,y) for all t % 0. To solve this, we make a

substitution z = = or y = xz. Then
x

Y =z+ad = f(z,y) = f(1,%) = f(1,2).

Again we can separate variable

f(l,z2)—z
You can now integrate and solve for z.
For a specific example of this type, consider
z+y 14z
y—x T a0

(x+y)+(x—1y)y =0 where f(x,y)=
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Thus
12 (=1
T %—2_ 1422—22

Integrating, we obtain
Injz| +c= —%ln|z2 —2z— 1|
Exponentiating, we obtain
2} (22 —22—1)=C.
Replacing z by % again, we get
C =y? —2xy—a2* = (y—x)? —22°.

The parameter C' yields a family of hyperbolae which are asymptotic to the lines
y = (1 £+/2)z. The blue lines are for positive values of C and the red for negative
values.

B E : I \;

T

_6

FIGURE 11.1. Solution curves

11.1.6. EXAMPLE. Pursuit curves. A rabbit R starts at (a,0) and runs up the
line x = a with speed p m/s. A dog D starts at (0,0) and runs straight at the rabbit
at speed kp, where k > 1. Find the path of the dog. How long does it take him to
catch the rabbit? If £ = 1, how close does the dog get?

Let the dog’s path be v(t) = (x(t),y(t)). So v(0) = (0,0). The rabbit’s
position at time ¢ is (a, pt). Thus at time ¢ the slope of the dog’s trajectory is

dy _pt—vy
de a—x
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Using the arc length formula, we see that at time ¢, the dog has travelled a distance

of
(t) 2
k;ptzf 1+ (%) da
0

Solving the first equation for ¢ and writing p for %, we get pt = (a — z)p + y. So

1 X
k‘f V1+prde =pt = (a—x)p+y.
0

Differentiating with respect to z yields

1
V1 +p*P=(a—2)p —p+p=(a—2a)p.

Attime ¢ = 0, we have y(0) = 0 and p(0) = 3/(0) = 0. The latter is because the
initial direction of the dog is along the z-axis.
Rewrite the DE as

1 /
S and  p(0) = 0.

kla—x)  \/1+p?

Integrating, we find
1
~ In(a — x) + ¢ = sinh ! (p).

Plugging in the initial datum p(0) = 0 = z(0), we get
1 1
0 = sinh~!(0) =—%lna+c or c= %.

Thus

p(x) = sinh (ln Zﬁx>
-5 - ™)

a T

=s(0-nr -9,

Finally we integrate to get y. First we deal with k& > 1.
X
) = y(0) + | pla) da

e R (R

0
. —ka _21,l ka _lerlx
*2(k—1)(1 2 k+2(/<:+1)( 2 o
_ —ka n1—d ka N ka
o w gt T
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While this is complicated, we are interested in when the dog catches the rabbit,

which occurs when x = a. At this point, y( ) = kf“ . The rabbit covers this
distance in (kz 0 seconds. So the dog runs k:2 % metres.

Now consider the case £ = 1. Then

va) =90+ [ prde =5 [ (=27 = (1= ) du

0 0
a u U2 z
=mn(-0 -3+ 4l
.7]2 X
LI

Thus
lim y(z) = +oo.

Tr—a

Finally we compute

dist(D, R)* = (a — )* + (pt — y)* = (a — z)* + (a — x)*p?
1

“a-nP(1+ (0= - 0-9))
= (a7$)2<1<( - %)_1 +(1- %)>2)

Therefore

dist(D,R)zé(a—x)<(l—§)71+(l—§)) %—l—i(a—x)2

Therefore, in the limit, the dog approaches within 5 metres of the rabbit.

11.2. First Order Linear DEs

In the remaining sections, we consider a special class of DEs called linear DEs.

11.2.1. DEFINITION. A linear DE of order n has the form

y™ =a (x)y +p1(@)y + o pat @)y + g(2)
(z
Z pi(x)y? + q(x)
where po, ..., pn—1 and ¢ are in C[a, b]. The DE is called linear because the equa-

tion is linear in y and its derivatives, although it is not linear in . The function
q(z) is called the forcing term. If ¢ = 0, the DE is homogeneous. The initial data
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requires n pieces of information. Normally it is given as

y(a) =
y’(a) =M

y" V(@) = .

11.2.2 First order linear DEs. In this section, we study DEs of the form

y' =p(@)y+q(x) and y(a) =1.
First solve the homogeneous DE with no forcing term: 3’ = p(z)y. Thus
, M )
Iny = jp(a}) dx + ¢ =: P(x) + c.

y = Cel®),

Here C'is an arbitrary constant. It can be a negative number, even though it comes
from the previous line, so that it appears C' = e should be positive. Evaluating this
at z = a yields y = CeP@ 50 C = e~ P(@),

This exhibits one solution. Why is it unique? If y(z) is a solution, compute

(¢ FP@y) = o~ P@ P(x) P() (

y —e "Wpla)y = e "W (y — pla)y) = 0.

Therefore e P (®)y is constant, and so y = Ce’’ ().
Now let y be a solution to the original DE with forcing term. As above, com-

pute

(eip(x)y)/ _ efp(x) (y/ _p(x)y) _ e*P("E)q(w).
Thus
Py — J e P@ () do + c.

Therefore

y = eP(I)(fe_P(x)q(x) dx + c) = @ fe_P(x)q(x) dz + ceP’@),

In other words, the general solution to the original DE is the sum of a particular

P(x)

solution y,(z) = e fe_P @) ¢(x) dz and an arbitrary solution ce'(®) of the

homogeneous solution. If there is also an initial condition y(a) = ~, then we can
determine the constant c as

¢ =e Py —yy(a)).
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Suppose that y; () and y,(x) are solutions to this DE with initial data. Define
y(x) = yi(x) — y2(x). Then
Y = —y5 = p@)y + a(x) — p(x)y2 — q(x) = p(z)y
and
y(a) = yi(a) —y2(a) =y —~=0.

From the analysis of the homogeneous case, we see that y = 0 is the unique solu-
tion. Hence y; = ;. This shows that the inhomogeneous DE with initial data also
has a unique solution.

11.2.3. EXAMPLE. Consider zy’ — 3y = 2% and y(1) = 1. Rewrite this in
standard form as 3/ = %y + 2°. Then

3
P(z) = fdl‘ —3lnz+c or @ =23
z
The forcing term yields a particular solution
yp(z) = eF'@ Je_P(x)q(:z:) dr = z° Jx_%s dx = $3(%:L‘3 +c) = %;U(’ + e’

Now 1 = y(1) = 1 + c. Therefore the solution is y(z) = 1 (z° + 22?).

11.2.4. EXAMPLE. Falling bodies. Near the surface of the earth, gravitation
exerts a force F' = —myg in a vertical direction on a particle of mass m. Newton’s
Law says that F' = ma, where a is the acceleration of the particle. Thus if y(¢)
represents the vertical position of the particle, then v = y/(t) is the velocity and the
acceleration is y” = —g. Suppose the body is dropped from a height H with initial
velocity 0. Then the initial data is y(0) = H and y'(0) = 0. Integrate twice:

v@ = [ s = [ ~gas = g

0

0

t t g

y(t) — H = y'(s)ds——f gsds = —=t2.
0 0 2

Thatis, y(t) = H — %tz. Notice that we can eliminate ¢ to find a direct relationship

the distance fallen, d = H — y(t) = $t%, and velocity, v = y/(t) = —gt, to get the

formula v = 4/2gd.
However if the body is falling through air, the air adds resistance proportional

to the velocity:

/"

y'=—g—cy.
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Substitute v = 3/’ to get a first order linear DE in v: v/ = —g — cv. Therefore

g+ cv
1 —v'(t
——1In|g + cv| zfv()dt fdtzt—i—c.
c g+ cu(t)

g+ cv=cre

Thus v = %(cze™" — 1). Since v(0) = 0, we get v = Z(e~“* — 1). The quantity

. 9 T
tlgglov(t) B tlinolo C(e 1 c

is called the terminal velocity.
A skydiver, when spread out wide, reaches a terminal velocity of about 55 m/s.
Once the parachute is opened, the drag reduces the velocity to about 5 or 6 m/s.

11.3. Second Order Linear DEs

In this section, we consider DEs of the form
y" = po(@)y +pi(x)y +q(x) and y(a) =10, ¥'(a) =
The following lemma and its corollaries explain why these equations are called
linear.
11.3.1. LEMMA. Suppose that y| and vy, are solutions of
y" =po(@)y +pi(x)y +a(x) for j=1.2.
Then ifc; e R, y = c1y1 + c2y» is a solution of

Y =po(z)y + pi1(2)y + c1q1(z) + c2qa(2).

PROOF. This is a straightforward calculation.
y" =yl + ey
=c <po(:z‘)y +pi1(2)y + @ (:v)) +o (po(x)y +pi(2)y + qz(:r))

= po(z)(cry1 + cay2) + pi(@) (ciy1 + 2p2) + (a1 (z) + 2e(z). m

11.3.2. COROLLARY. Suppose that 1y, and v, are solutions of the homoge-
neous DE y" = po(z)y + p1(x)y for a < x < b. Then ciy; + ¢y is also a
solution for ¢; € R. Thus the set of solutions is a subspace of C|a, b].
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PROOF. A subspace of the vector space C|a, b] is a subset containing y = 0
with the property that it is closed under taking linear combinations. Now y = 0 is
always a solution of any homogeneous linear DE. Lemma 11.3.1 shows that if y,
and y, are solutions, then so is cjy; + cay». A simple induction argument shows
that you can take linear combinations of more solutions. |

11.3.3. REMARK. Second order linear homogeneous DEs always have a 2-
dimensional space of solutions. When combined with the initial conditions y(a) =
70 and y'(a) = -, there is a unique solution. We do not establish existence of
solutions here, but we will prove uniqueness in section 11.5. Thus if we manage to
exhibit two linearly independent solutions, then we know that they span the entire
solution space.

11.3.4. COROLLARY. Suppose that yy, is a solution of

"

y" = po(2)y + p1(2)y + q(x).

Then every solution has the form y = y, + yn where yy, is a solution of the homo-
geneous DE y" = po(x)y + p1(2)y'.

PROOF. If'y is another solution of the DE, then Lemma 11.3.1 shows that y—y,,
is a solution of the homogeneous equation. It also shows that if gy, is a solution of
the homogeneous equation, then y = y,, + yy, is a solution of our DE. |

11.3.5 Reduction of order. There is no formula for solving a second order linear
DE. However if one can find a single non-trivial solution of the homogeneous DE,
the situation is quite different.

Suppose that y; is a solution of 4" = po(z)y + p1(x)y’. Look for a solution of
the form y = ¢(z)y ().

Yy = cyr
Y =cy) +
y' =cyi +2dy; + "y
Therefore

"

0=1vy" —p1y —poy = (v —p1yi — poy1) + ¢ 2y — piy1) + "y
=2y —piy1) + 'y

This is a first order separable DE in ¢/. So let 2 = ¢/. We have

! 20/ — /
AN e IV Y| R
< Y1 Y1
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Integrating we obtain
In|z| = —2In|y(z)| + fpl(x) dx.

If we set P(z) + ¢ = {pi(z) dz, we obtain

Thus

This yields a second solution y, = ¢(z)y;.

11.3.6. EXAMPLE. Consider 223" + xy’ — y = 0. In standard form, we have
y" = x72y — z~'y. We observe (by inspection) that y; = z is a solution. Then

pi(x) = —%, so P(z) = —Inz. We get
z! —C

C 1
So ya(z) = ;—x(iyl (x) = EP Thus we can choose C' so that y, = e If you plug
this in, we see

2 —1 1

2.1 / 2

T + Y, — ——$<f>+$(f)—f——0.
Y2 Yo~ 3 ) T

Thus the general homogeneous solution is

6]
=iz + —.
y(z) =z .

11.3.7 Variation of parameters. Once we have two linearly independent solu-
tions y; and gy, for the homogeneous DE, there is a method to solve the DE with
forcing term.

y" = po(x)y + pi(2)y’ + q(z).
We search for a function of the form y = cjy; + c2y» where ¢; are unknown
functions. Then

Y = (ay + caya) + (ciyr + ).
At this stage, we specify ¢jy; + hy» = 0. We will have to satisfy this equation.
Then

y" = (c1yi + c2y3) + (hy1 + hys).
Therefore
y" = pi(x)y — po(x)y
= c1(y —p1(2)y) —po(x)y1) +ca(ys —p1(2)ys —po(x)y2) + (1) +c5y3)
=y + Ay
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Hence we want ¢|y| + ¢,y5 = q(z). This leaves us with a linear system of DEs to
solve:

Ay + hyr =0
Ay + Ay = q(z).

voalla] = L)

Such a 2 x 2 linear system is easy to solve for the unknowns ¢} and ¢}. Let

We rewrite this as

W(x) = det [y} y%} = Y1yy — Y11
Y Y

This is called the Wronskian. The solution is

FIRE = R | A Wt

Therefore a solution of the DE is given by

y1q(x)

()

(2) y2q(x)

y(x) = —yi(z W(2) dr.

dx + ya(x)

11.3.8. EXAMPLE. Consider 3y’ = 22y —x~ 'y + e with boundary conditions
y(1) =2 + e and y/(1) = 2. We saw in Example 11.3.6 that y; = z and 3 = 2!
are solutions to the homogeneous DE. The Wronskian is

Thus

x e 1 xe’
= — —d - | ——d
y(x) xJ—2x_1 x+xf—2x—1 T

E x _i 2 x
zfedx merred:):
1

1we® + ez — 2—(962 — 2z +2)e" + cpx”
x

] X
= (1 — 5)6 + c1y1 + cyr.

1

You can check by hand that this is indeed the solution. Now if we apply the bound-
ary conditions, we have

O+c+cp=2+ce¢

and
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Thus ¢; = 2 and ¢; = e. The solution is

1
y(z) = (1 - 7>e"” + 22+ S
x x

11.4. Linear DEs with constant coefficients

A linear DE has constant coefficients if po(x) = ap and p|(z) = a; are con-
stants.

y" = aoy + a1y’ + q(x).
We first deal with the homogeneous case. Consider the quadratic polynomial

p(t) = t* — at — ag.

11.4.1 Two distinct real roots. Suppose that p(t) = (¢t — r1)(t — r2) where
r1 # ry € R. We define a linear map D : C'[a,b] — Cl[a,b] by Df = f’. Then
define L by

Ly) :=y" — a1/ — apy = (D* — a1 D — apl)y
where I f = f is the identity map. The idea is to factor
D?* —a1D — apl = (D — rI)(D — ra1).

We can solve the homogeneous DE by solving (D—r1I)y = 0 and (D—7r1)y = 0.
Note that y| = r1y; implies that y; (z) = ce™*. Thus

2

" !
Yy — a1yy — aoyr = ce"*(r{ — arry —ag) = 0.

Similarly y5 = 7y, implies that y»(z) = ce™"; and this is also a solution of the
homogeneous DE. Since y; and y, are not linearly dependent, they span the set of
solutions for the homogeneous DE. The most general solution is

y = cre"'" + cpe™”.

11.4.2 Double real root. Suppose that p(t) = (t —r)?> = > — 2rt + r2. Again
we see that y; = e"* is a solution. To find another one, we look for a solution of
the form y = ¢(x)y; (x). Then

0=y" —2ry + 1%y = ("y1 + 2y + cyf) — 2r(dy1 + eyy) + ey
=y + 2 (yy —ryn) + eyl — 2ry; +17y1)
— eT’CEC//'
Therefore ¢ = 0, and thus c(x) = ¢j2 + ¢o. So the general solution is
y(x) = crze™ + coe™

This forms a two dimensional subspace of solutions.
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11.4.3 Complex roots. Suppose that p(t) = > —2rt + (r> + s%) for s > 0. Then
the roots of p(t) are r + is. The first case suggests that y(z) = e("***)* should
eisx + e—isac

be solutions, but these are not real functions. However — 5 = COS ST
eisx o efisx
and — = sin sx are real functions. Compute for y; = €"* sin sz, that
1

Y, = e"®(rsinsz + scossx) and y] = €"*(r?sin sz + 2rscos sz — s*sin sz).
Thus

2

Yl =21y, + (r* +5%)y; = €™ (1% sin sz + 275 cos sz — 57 sin sx)

—2r€e"®(r sin sz + 5 cos sz) + 72" sin sz
=" sin sx(r? — s> =212 +7%) + €™ cos sz (2rs —2rs) =0.
Similarly, y» = €"* cos sz is a solution. Thus the general solution has the form
y = cre’ ¥ sinsx + cpe’” cos sx.

Sometimes it is more useful to write this as

y = ce"* cos(sz — @)

_ 22 iy — €L —a
where ¢ = 4 /c7 + ¢5 and sinp = 7 and cos p = 2.

11.4.4. REMARK. The method for solving a homogeneous DE with constant
coefficients of higher order works in a similar manner.

11.4.5. EXAMPLE. Consider ¢ +y = cscxz and y(5) = 3'(5) = 0O on (0, 7).
The homogeneous DE has linearly independent solutions y; = cosx and 3, =
sinx. We use the variation of parameters method to find the solution with the

forcing term. The Wronskian is W (z) = cos? z — (—sin? ) = 1. Therefore

y(x) = —cosxfsin:ccscxdm + sinxfcos:ccscxd:p
= —xcosx +sinxlnsinx + ¢; cosx + ¢ sinx.
Thus
y' = —cosx + xsinz 4 cosxInsinxz — cosx — ¢y sinz + ¢y cos

zsinx + cosxInsinx — ¢y sinx + ¢ cos x.
Plugging in z = 7, we obtain

6220
—01:0.

SlE}

Therefore the solution is y(z) = (5 — «) cosz + sinz Insinz on (0, 7).
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11.4.6 Undetermined coefficients. When the forcing term for a linear DE with
constant coefficients is an exponential, sine, cosine or polynomial, it is often possi-
ble to ‘guess’ a particular solution using the method of undetermined coefficients.
It works because the derivatives have a similar form. Consider the DE

n" / b
Y — a1y —apy = ™.

Set y(x) = ce’®. Then

Y — a1y — agy = c(b* — a1b — ag)e” = cp(b)e”.

1
Therefore taking y = Webt yields a particular solution. The general solution is
p

obtained by adding the general solution to the homogeneous equation. This fails to
work if b is a root of p(t). But you can still use variation of parameters here.

11.4.7. EXAMPLE. In this example, we consider an extremely common form
of motion, damped harmonic oscillation. We consider a weight such as a trolley
attached to a stiff spring. When the trolley is moved away from the equilibrium
position, Hooke’s law states that the force of the spring acting on the trolley to
return it to equilibrium is proportional to the distance from equilibrium. In addi-
tion, we consider a damping force from friction, which is generally assumed to be
proportional to velocity.

We choose coordinates so that equilibrium occurs at x = 0 and that the position
of the trolley at time ¢ is 2(t). Then Newton’s law F' = ma leads to

ma” = —kx — dx’.

The negative signs are chosen so that we may assume that k£ and d are positive,
and both forces try to restore the trolley to equilibrium. Let’s also suppose that at
time ¢ = 0, the trolley is moved to a position z = z( and 2/(0) = 0. This is a
homogeneous second order linear DE. We set p(t) = mt?> + dt + k. It has roots

—d + V& — dmk

2m

. We split the analysis of the solution into three cases:

Case 1. d> > 4mk. In this case the two roots are real and negative, say r; and r;.
The general solution is

z(t) = cre™t + e
Att = 0, we have 2(0) = ¢; + ¢3 = xg and 2/(0) = rj¢; + rpcp = 0. This system
of two linear equations in the unknowns c¢; and ¢; has solution

2 -1

iy} and Cy) =
T —T1 T —T1

Cc1 = Zg.

Therefore

Lo rit ot
t) = et
x(t) P (rpe rie™")

In this case, the trolley just returns asymptotically to equilibrium. This is known as
an overdamped system.



210 Differential Equations

Case 2. d> = 4mk. Then p has a double real root r = % = —«/% < 0. The
analysis is similar: the general solution is

z(t) = cre’ + cztert.
Att = 0, we have 2(0) = ¢ = xo and 2/(0) = rep + ¢ = 0. This system has

solution ¢y = xgand ¢p = —rerg = — = \/7 xo. Therefore

1+ \/> VEmt

k Iy
7' (t) = IO =VRmt g,
m

So in this case, the trolley also returns asymptotically to equilibrium.

Thus

Case 3. d*> < 4mk. This is the most interesting case, and explains the name os-

cillator. Here p has two complex roots: r £ ¢s where r = % < Oand s =

3—+/4km — d2. The general solution is

x(t) = ce cos(st — @) = ce” W2

cos(st — ).
The initial conditions yield zp = x(0) = ccos ¢ and

d
0=2'(0) = c(—% cos ¢ + ssin ).

Thus tanp = 27‘7113 = \/ﬁ and ¢ = zpsecy = o 4:;,’27:1 - The solution
. T . .2 4m
oscillates above and below the equilibrium with period — = ———. The

s Vakm — d?

dt/2m shows that the trolley approaches equilibrium asymptoti-

damping factor e~
cally.

Now let’s suppose we are in Case 3, and that there is another forcing term
which is periodic, such as f coswt. Then the DE becomes

2" +da’ + kx = fcoswt.

This is a candidate for the technique of undetermined coefficients. Try for a solution
y = acoswt + bsinwt. Then

Y = —awsinwt + bwcoswt and y" = —aw? cos wt — bw? sin wt.
Thus
my" + dy’ + ky = (—maw®+dbw + ka) cos wt + (—mbw? —daw+ kb) sin wt
= fcoswt.

This yields the linear system

| ]
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We get

—dt/2m

_ 2 1
L i coswt + gl sinwt + ce cos(st — ).

Y= (k—mw?)2+d? k—mw?)2+d?w?
Now we solve for c and ¢ to satisfy the initial conditions. What we want to point out
does not depend on the exact constants. Notice that over time, the homogeneous
part of the solution is damped out, while the periodic motion from the external
force continues unabated. An example of this behaviour is a child on a swing.
The pumping action is a periodic force. The initial start is a bit irregular, but the
pumping action quickly becomes dominant. As long as the pumping continues, the
swing will move back and forth in a regular motion.

11.5. Uniqueness of solutions for 2nd order linear DEs

We will not establish a general existence theorem for linear DEs. A more
general result known as Picard’s Theorem is generally taught is a theoretical DE
course or in a good real analysis course. We can prove uniqueness though.

11.5.1. GRONWALL’S INEQUALITY. Suppose that a differentiable function
f(z) satisfies f'(x) < Cf(x) on [a,b] for some constant C. Then

f(@) < f(@)ef Y for a<z<b.

PROOF. Let g(x) = f(2)e~“?. Then
g(x) = e O%(f'(x) = Cf(x)) <0 for a<xz<b.
Therefore ¢ is a decreasing function on [a, b]. Thus,

f(@)e ¢ < f(a)e % or f(z) < fla)eC@. n

11.5.2. THEOREM. The DEy" = po(z)y + p1(x)y’ + q(z) with y(a) = o and
y'(a) = 1 has at most one solution.

PROOF. Suppose that y; and 1, are two solutions. Then by Lemma 11.3.1,
y = y1 — y satisfies ¥ = po(z)y + pi(x)y’ and y(a) = y'(a) = 0. Define
s(z) = y* + (¥')% so that s > 0 and s(a) = 0. Compute

s'(x) =2yy' +20'y" =20/ (y + ")
=2y'(y + po(x)y + p1(2)y)
= 2p1(2)(y)* + 2(1 + po(z))yy'
<2[p1(@)|(¥)* + (1 + [po(@) ) (* + (¥')?)-
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The last inequality uses the AMGM inequality [2yy’| < y? + (v')*. Let
C = max{2|pi(z)], 1 + [po(x)| : @ < = < b}.

Then s'(z) < Cs(z). By Gronwall’s inequality, s(x) < s(a)e(*=%) = 0. There-
fore s = 0 and hence y = 0. That is, y; = y»; the solution is unique. [ |

11.5.3. COROLLARY. If the homogeneous linear DE y" = po(x)y + p1(x)y’
has two solutions y; and vy, such that (y(a),y](a)) and (y2(a),y5(a)) are linearly
independent, then every solution of the DE is a linear combination of y, and y». So
the vector space of solutions is at most 2 dimensional.

PROOF. Let yg be a solution of the homogeneous DE. Since (y;(a),y](a)) and
(y2(a), ¥4 (a)) are linearly independent, they span R2. Therefore there are constants
c1 and ¢ so that

(vo(a),yo(a)) = ci(yi(a), ¥i(a)) + c2(y2(a), y3(a)).
Then by Lemma 11.3.1, y3 = c1y1 + ¢y satisfies

y3 =po(z)ys + pi(2)yy and y3(a) = y(a), yi(a) =y (a).
By Theorem 11.5.2, this DE has a unique solution, and thus yo = y3 = c1y1 + c2y».
Therefore every solution is a linear combination of y; and y,. |

Exercises for Chapter 11

1. (a) Solve the DE (22 — 3?)y’ — 2xy = 0.
(b) Sketch the set of solution curves.
(c) If (1,2) is a point on the solution curve, find the solution.

2. (a) Solve the DE (1 + z?)y’ + 22y = 0.
(b) Solve the DE (1 + 2?)y’ 4 22y = cotz.

3. (a) Consider the DE ¢/ + p(z)y = q(z)y® where a ¢ {0, 1} is a real number.
Set z = ! =%, Turn this DE into a linear DE in z.
(b) Use this to solve zy%y’ + 13> = x cos .

4. A function defined on R satisfies the DE f’(z) = 2z f(x) + 4z and f(0) = 1.
Assume that f(x) has a power series about z = 0 and solve for the Taylor
coefficients.

5. Torricelli’s Law for fluid flowing out the bottom of a tank states that the velocity
is calculated as if the fluid dropped from the surface of the water. A hemispher-
ical container of radius R is completely full of water. A small round hole of
radius r at the bottom is unplugged. (You can ignore the small difference in the
height caused by the hole.)
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(a) Use Newtonian mechanics to deduce how long it takes a drop of water to
fall distance & from a position of rest, and use this to compute the velocity
at that point.

(b) Compute the volume V' (h) in the bowl when the water depth is h.

(c) How long does it take the bowl to empty?

HINT: compute % in two ways. Get a DE in h.

Consider the homogeneous linear DE 4" + p(x)y’ + q(x)y = 0. Suppose that

y1 and y, are two solutions on [a, b].

(a) Find a first order DE satisfied by the Wronskian T (z) and solve it.

(b) Prove that if the vectors (y;(c),y](c)) and (y2(c), y5(c)) are linearly inde-
pendent for some ¢ € |[a, b], then W (x) never vanishes. Hence show that
(y1(z), v} (z)) and (y2(z), y5(x)) are linearly independent vectors for every
x € [a,b].
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A.1. Equivalence Relations

We introduce a basic mathematical construction known as an equivalence re-
lation. Equivalence relations occur frequently in mathematics and have appeared
occasionally in these notes.

A.1.1. DEFINITION. Let X be a set, and let R be a subset of X x X. Then
R is a relation on X. Let us write z ~ y if (z,y) € R. We say that R or ~ is an
equivalence relation if it is

(1) (reflexive) x ~ x forall z € X.
(2) (symmetric) if z ~ y for z,y € X, theny ~ z.

(3) (transitive) if x ~ yandy ~ zfory x,y,z € X, thenz ~ z.

If ~ is an equivalence relation on X and z € X, then the equivalence class [x]
is the set {y € X : y ~ x}. By X/~ we mean the collection of all equivalence
classes.

A.1.2. EXAMPLES.
(1) Equality is an equivalence relation on any set. Verify this.

(2) Consider the integers Z. Say that m = n (mod 12) if 12 divides m — n. Note
that 12 divides n — n = 0 for any n, and thus n = n (mod 12). So it is reflexive.
Also if 12 divides m —n, then it divides n —m = —(m—mn). Som = n (mod 12)
implies that n = m (mod 12) (i.e., symmetry). Finally, if [ = m (mod 12) and
m = n (mod 12), then we may write [ — m = 12a and m — n = 12b for certain
integers a,b. Thus I —n = (I —m) + (m —n) = 12(a + b) is also a multiple of
12. Therefore, [ = n (mod 12), which is transitivity.

There are twelve equivalence classes [r] for 0 < r < 12 determined by the
remainder 7 obtained when n is divided by 12. So [r] = {12a + r : a € Z}.

(3) Consider the set R with the relation x < y. This relation is reflexive (z < x)
and transitive z < y and y < z implies x < z. However, it is antisymmetric: © < y
and y < x both occur if and only if x = y. This is not an equivalence relation.

When dealing with functions defined on equivalence classes, we often define
the function on an equivalence class in terms of a representative. In order for the
function to be well defined, that is, for the definition of the function to make sense,
we must check that we get same value regardless of which representative is used.

214
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A.1.3. EXAMPLES.

(1) Consider the set of real numbers R. Say that x = y (mod 27) if x — y is an
integer multiple of 27r. Verify that this is an equivalence relation. Define a function
f([z]) = (cos x,sinz). We are really defining a function F'(z) = (cos x,sinz) on
R and asserting that F'(x) = F(y) when z = y (mod 27). Indeed, we then have
y = = + 27n for some n € Z. As sin and cos are 27-periodic, we have

F(y) = (cosy,siny)
= (cos(z + 27n), sin(x + 27n))

= (cosz,sinx) = F(x).

It follows that the function f([z]) = F(x) yields the same answer for every y € [z].
So f is well defined. One can imagine the function f as wrapping the real line
around the circle infinitely often, matching up equivalent points.

(2) Consider R modulo 27 again, and look at f([z]) = e®. Then 0 = 27 (mod 2)
but e = 1 # €27. So f is not well defined on equivalence classes.

(3) Now consider Example A.1.2(2). We wish to define multiplication modulo 12
by [n][m] = [nm]. To check that this is well defined, consider two representatives
ni,ny € [n] and two representatives m, my € [m]. Then there are integers a and
b so that no, = ny + 12a and m, = mq + 12b. Then

nomy = (n1 + 12a)(m; + 12b)
=nym; + 12(am; + n1b + 12ab).

Therefore, nym,; = nym; (mod 12). Consequently, multiplication modulo 12 is
well defined.

A.2. A Construction of R

Our description of the real numbers as the set of all infinite decimals modulo
the issue with terminal 9’s versus terminal O’s, (which is an equivalence relation!),
was a bit problematic because the rules for addition and multiplication were very
hard to formulate. Now that you have read Chapter 2, we can introduce a superior
method for constructing the reals. The idea is to start with the rational numbers, Q,
and complete it.

Let C denote the set of all Cauchy sequences of rational numbers. Note that in
the definitions of Cauchy sequence and limit, there is no harm in using only rational
numbers for €. Put an equivalence relation on C by (zy,) ~ (y,) if nlgréo Ty — Yn =

0. The three properties of an equivalence relation are very easy to check. Let
R = C/ ~ be the set of equivalence classes. We define an imbedding J of Q into
R by J(r) = [(r,r,r,7,...)], the equivalence class of the constant sequence.
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Next we define addition, multiplication and order.
o [(@a)] + [(wn)] = [(@n + yn)].
o [(zn)]- [(yn)] = [(2nyn)]-

o If [(xn)] # [(yn)], say [(xn)] < [(yn)] if there is some N so that x,, <
yp foralln > N.

We need to verify that these notions are well defined. Suppose that (x]) ~ (z,)
and (y},) ~ (yn). Then

Jim (a7, +y,) = (20 +yn) = lim 2 — 2 + lim g, — yn = 0.
Hence (2, + y},) ~ (n + yn), and thus addition is well defined. Similarly

lim (wéy%) — (Tnyn) = lim (:U;L - mn)y; + lim xn(?/;z —Yn) = 0.
n—o0 n—0 n—o0

This uses that Cauchy sequences are bounded by Proposition 2.6.3.

The order is a bit more delicate. If [(zy,)] # [(yn)]. then z,, — y,, does not con-
verge to 0. Thus there is some £ > 0 so that |x,,, — yn,| > € for some subsequence.
Use /3 in the definition of Cauchy sequence to obtain N so that for N < m < n,

|xn — x| < £ and |yp, — ym| < E.
3 3

Then choose some n; > N, and for definiteness, suppose that x,, — yn, > €. (The
other case is similar.) Then forn > N,

e € ¢
T = Yn = (Tn; — Yn;) — (Tn; — Tn) — (Yn — Yn, 25—5—5 = 3
Hence [(y,)] < [(x)]. Now take equivalent sequences (z/,) and (y/,). Then
liminfx), —y;, = liminf(z), — 25) + (20 — yn) + (Y —Yn) =0+ % +0= %

This shows that order is well defined. Moreover, we see that exactly one of

[(zn)] < [(yn)], (@) = [(yn)] or [(zn)] > [(yn)]
holds. You should check that [(z,,)] < [(yn)] and [(yn)] < [(2n)] implies that
[(zn)] < [(zn)].

Next observe that the embedding J : Q — R preserves the ordered field
properties:
Jr)+J(s)=J(r+s) and J(r)-J(s)=J(rs) for r,seQ,
and r < s implies that J(r) < J(s). Welet0 = J(0) and 1 = J(1).
It is straightforward to verify all of the field operations. We give two examples.
The distributive law follows from the corresponding property for Q:

([@)] + [(wa)]) - [(za)] = [(@a + ya)] - [(20)] = [((z0 + yn)z0)) ]
= [(Zn2n + Ynzn)] = [(@n2n)] + [(Yn2n)]

= [(@n)] - [(z)] + [(wa)] - [(20)]-
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Multiplicative inverses take a bit of work. If [(z,,)] # O, then there is some £
so that |z,,| = o forn > N. Lety, = 0forn < N and y,, = x,,;! forn > N. We
have to show that this is Cauchy. Choose N1 = N so that if N; < m < n, then
|Tn — x| < 556. Then

1 1 |Zm — Tn|  e€3
=] = | = | = ol e
T Tm ‘$n$m| €0

Thus (y,) € R and [(x,)] - [(yn)] = 1.

We leave the straightforward verification of the other properties of an ordered
field to the interested reader.

There is more work to be done. The ordered field R is Archimedean: if
[(z)] > 0, then there is an r € Q so that 0 < J(r) < [(xy)]. This follows be-
cause we showed that liminfz,, > ¢ > 0 for some rational ¢, and soany 0 < r < ¢
will work. If we like, we can take r = % for k € N sufficiently large. This also
implies that that if [(x,,)] € R, then there is an integer k € N so that [(x,,)] < J(k).
Indeed, if [(x,)] < O, then k = 1 suffices. If x = [(z,,)] > 0, thenx~' > 0. By
the Archimedean property, J() < x~' for some k € N, and thus x < J(k).

We need to verify the Least Upper Bound Property for R. Let S < R be
a nonempty set which is bounded above by z € R, and let s € S. Since R is
Archimedean, we can find integers a, b so that ¢ < s < z < b. Recursively define
sequences x, and y, of rational numbers as follows. Let x; = a and y; = b.
Suppose that z; and y; have been defined in Q for 1 < i < n so that J(z;) is not an
upper bound for S and J(y;) is an upper bound for S and y; — x; = 2! 7¢(b — a).
Letc, = %(mn_1 + Yn—1). If ¢, is an upper bound for S, then let 2, = z,,—; and
Yn = Cp; While if ¢, is not an upper bound for S, then let x,, = ¢, and y,, = yp_1.
Let x = [(zy)]. Then x = [(yn)] because limy, .o yp, — , = 0. We claim that
supS = x.

Lets = [(sn)] € S. If s > x, then by the Archimedean property, s>x+J(})
for some k € N. So there is an integer N so that s,, > vy, + ﬂ foralln > N.

Choose M > N so that 2!~ (b — a) < ;.. Then for n > M

1
n = YM + Z —Yi1) <ym + Z 211b—a)<yM+@
i=M+1 i=M+1

Therefore for n > M, we have s, > yas + z5; and hence s > J(yar) + J (%)
This contradicts the fact that J(y,s) is an upper bound for S. So no such s exists,
and x is an upper bound for S. A similar argument shows that if z < x, then z is
not an upper bound.

It follows that R is an ordered field with the Least Upper Bound Property.
This is exactly the property of R that we used to establish the various versions of
completeness. We call this field the real numbers, R. It is a subtle point that there
is only one such field with these properties. This issue will not be addressed here.
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A.3. Cardinality

Cardinality is the notion that measures the size of a set in the crudest of ways—
by counting the numbers of elements. Obviously, the number of elements in a set
could be 0, 1, 2, 3, 4, or some other finite number. Or a set can have infinitely
many elements. Perhaps surprisingly, not all infinite sets have the same cardinality.
For our purposes, infinite sets have two possible sizes: countable and uncountable
(the uncountable ones are larger). The most important ideas to understand are what
countable means and what distinguishes countable sets from those with larger car-
dinality.

A.3.1. DEFINITION. Two sets A and B have the same cardinality if there is a
bijection f from A onto B. We write |A| = | B| in this case. Similarly, we say that
the cardinality of A is less than that of B (|A| < | B|) if there is an injection f from
Ainto B.

The definition says simply that if all of the elements of A can be paired, one-
to-one, with all of the elements of B, then A and B have the same size. If A fits
inside B in a one-to-one manner, then A is smaller than B. One of the subtleties
that we address later is whether |A| < |B| and |B| < |A| mean that |A| = |B|. The
answer is yes, but this is not obvious for infinite sets.

A.3.2. EXAMPLES.

(1) The cardinality of any finite set is the number of elements, and this number
belongs to Ny = {0,1,2,3,4,...}. Set theorists go to some trouble to define the
natural numbers too. But we will take for granted that the reader is familiar with
the notion of a finite set.

(2) Most sets encountered in analysis are infinite, meaning that they are not finite.
The sets of natural numbers N, integers Z, rational numbers @, and real numbers
R are all infinite. Moreover, we have the natural containments N ¢ Z < Q < R.
So IN| < |Z| < |Q|] < |R|. Notice that the integers can be written as a list
0,1,—1,2,—2,3,—3,.... This amounts to defining a bijection f : N — Z by

f<n):{(1—n)/2 if nisodd

n/2 if niseven.

Therefore, |N| = |Z|.

A.3.3. DEFINITION. A set A is a countable set is it is finite or if |A| = |N]|.
The cardinal |N| is denoted by Ro. This is the first letter of the Hebrew alphabet,
aleph, with subscript zero. It is pronounced aleph nought.

An infinite set that is not countable is called an uncountable set.
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Equivalently, A is countable and infinite if the elements of A may be listed
as ap,ap,a3,.... Indeed, the list itself determines a bijection from N to A by
f(k) = ag. It is a basic fact that countable sets are the smallest infinite sets.

Notice that two uncountable sets could have different cardinalities.

A.3.4. LEMMA. Every infinite subset of N is countable. Moreover, if A is an
infinite set such that |A| < |N|, then |A| = |N]|.

PROOF. Any nonempty subset X of N has a smallest element. Indeed, as
X is nonempty, it contains an integer n. Consider the elements of the finite set
{1,2,...,n} in order and pick the first one that belongs to X—that is, the smallest.

Let B be an infinite subset of N. List the elements of B in increasing order as
by < by < b3 < .... This is done by choosing the smallest element by, then the
smallest of the remaining set B\{b;}, then the smallest of B\{b;,b,} and so on.
The result is an infinite list of elements of B in increasing order. It must include
every element b € B because {n € B : n < b} is finite, containing say k elements.
Then b, = b. As noted before the proof, this implies that | B| = |N|.

Now consider a set A with |A| < |N|. By definition, there is a injection f of
Ainto N. Let B = f(A). Note that f is a bijection of A onto B. Then B is an
infinite subset of N. So |A| = |B| = |N|. [

A.3.5. PROPOSITION. The countable union of countable sets is countable.

PROOF. By the previous lemma, we may assume that there is a countably in-
finite collection of sets Ay, Ay, A3, ... that are each countably infinite. Write the
elements of A; as a list a; 1,a;2,a;3,.... Then we may write A = U@l A; as a
list as follows:

ain,a1,2,021,013,022,031,01,4,023,0A32,04]1,-- -,

where the elements a; ; are written so that ¢ + j is monotone increasing, and within
the set of pairs (¢, ) with i + j = n, the terms are written with the 7’s in increasing
order. See Figure 12.1. Thus A is countable. |

A.3.6. COROLLARY. The set Q of rational numbers is countable.

PROOF. The set Z x N = {(i,j) : i € Z, j € N} is the disjoint union of
the sets A; = {(i,7) : 7 € N} for i € Z. Each A; is evidently countable. By
Example A.3.2(2), Z is countable. Hence Z x N is the countable union of countable
sets, and thus is countable by Proposition A.3.5.

Define a map from Q into Z x N by f(r) = (a,b) if r = a/b, where a and b are
integers with no common factor and b > 0. These conditions uniquely determine
the pair (a, b) for each rational 7, and so f is a function. Clearly, f is injective
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4,1
a3 1

@21

aii a2 ai3 ar4 Gais

FIGURE 12.1. The set N x N is countable.

since r is recovered from (a, b) by division. Therefore, f is an injection of Q into
a countable set. Hence Q is an infinite set with |Q| < |N|. So Q is countable by
Lemma A.3.4. u

A.3.7. COROLLARY. If A and B are countable, then A x B is countable.
Hence Z' is countable for all n > 1.

PROOF. First A x B = ;.5 A x {b} is a countable union of countable sets,
and thus is countable. In particular, Z? is countable. By induction, Z" is countable
foreachn > 1. |

There are infinite sets that are not countable.

A.3.8. THEOREM. The set R of real numbers is uncountable.

PROOF. The proof uses a diagonalization argument due to Cantor. Suppose
to the contrary that R is countable. Then all real numbers may be written as a list
x1,%2,x3,.... Express each x; as an infinite decimal, which we write as x; =
Ti0-Ti1Ti2%33 - - - » Where ;0 18 any integer and x;;, is an integer from 0 to 9 for each
k = 1. Our goal is to write down another real number that does not appear in this
(supposedly exhaustive) list. Let ap = 0 and define a;, = 7 if x;;, € {0, 1,2,3,4}
and ay, = 2 if x;; € {5,6,7,8,9}. Define a real number a = ag.ajazas . ...

Since a is a real number, it must appear somewhere in this list, say a = xj.
However, the kth decimal place aj, of a and xy,j of x;, differ by at least 3. This
cannot be accounted for by the fact that certain real numbers have two decimal
expansions, one ending in zeros and the other ending in nines because this changes
any digit by no more than 1 (counting 9 and 0 as being within 1). So @ # zy, and
hence a does not occur in this list. It follows that there is no list containing all real
numbers, and thus R is uncountable. [ |

We conclude with the result promised in the start of this section.
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A.3.9. SCHROEDER-BERNSTEIN THEOREM. If A and B are sets with
|A| < |B|and |B| < |A|, then |A| = |B].

PROOF. The proof is surprisingly simple. Since |A| < | B, there is an injection
f mapping A into B. Likewise, as |B| < |A|, there is an injection g mapping B
into A. Let B; = B\ f(A). Recursively define A; = g(B;) and B;;| = f(A;) for
i = 1. Define Ay = A\|J;>, 4i and By = B\J;>, Bi- We will show that the
actions of f and g fit the scheme of Figure 12.2.

Al A | Ay | Ay | A
g \ 9| \ g gl f

f f
B| B, | Ba | Bs | By

FIGURE 12.2. Schematic of action of f and g on A and B.

First we show that the B;’s are disjoint. Clearly each B; for > 2 is in the range
of f and hence does not intersect B;. Suppose that 1 < i < j. Then (fg)*~!is an
injection of B into itself that carries By, onto By ;_| for every k > 1. In particular,
B is mapped onto B; and B;_;, is mapped onto B;. Since By n Bj_;y| = &
and (fg)"~! is one-to-one, it follows that B; n Bj = .

By construction, g_1 is a bijection of each A; onto B; for ¢ > 1. We claim that
f maps Ag onto By. Observe that f maps A; onto B; | for each i > 1. Thus the
remainder of A, namely Ay, is mapped onto the remainder of the image. Thus

f(Ao) = f(A\ U f(A;) = (B\B1)\ U Biy = B\U B; = By.

=1 i=1 =1

This means that the function

g Ha) if aelUps A
ha) = {f(a) i oacdg

is a bijection between A and B. Therefore |A| = |B|. [

A.4. eis transcendental

We first establish a relatively easy fact.

A.4.1. THEOREM. e is irrational.
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PROOF. We use the formula e = ZZO 0 kl!. Suppose that e = g where p, g € N.
Then g > 2 since 2 < e < 3. We have that

(q_]l—q!e_E Z 1

k= q+1

is an integer. Therefore we have an integer

Z = + : + 1 -
q+1 (@+1D(g+2)  (¢g+1)(g+2)(qg+3)

k= q+1
@ 1
1 il 1
< Z 4 - <1.
Ul e AT

Hence this “integer” lies in (0, 1), which is absurd. Therefore e is irrational. |

A.4.2. DEFINITION. A real number « is algebraic if there is a polynomial p(z)
with integer coefficients with « as a root. A real number is transcendental if it is
not algebraic.

A.4.3. PROPOSITION. The set of algebraic numbers is countable.

PROOF. First count the number of polynomials with integer coefficients of de-
gree n. Such a polynomial has n + 1 coefficients, which we can associate to a point
in Z"*!, (or more precisely Z" x (Z\{0}) since the leading coefficient a,, # 0,)
which is countable by Corollary A.3.7. Each polynomial has n roots, so the set of
roots is countable. Finally we take the union over all n, and the countable union of
countable sets is countable. Thus the set of algebraic numbers is countable. |

The following proof is tricky and pulls several functions out of thin air.

A.4.4. THEOREM. e is transcendental.

PROOF. Suppose that e is algebraic. Then there are integers cy, . . . , ¢, so that
ene” + cpo1€” N+ cre+ ¢ =0.

We may suppose that ¢,, # 0 # cg because we can factor out an = if ¢ = 0. Let
p be a prime which is much larger than max{n, |cy|} to be specified more precisely
later. Define a polynomial f(x) of degree r = (n + 1)p — 1 by

flx) = ! PV = 22— 2P (n— )P = (n+ip_l ar
(p—1)! DI ey
= (n!)p azp—l + ap 7P ap+1 po 4+ ﬂx(n+l)p—l'

(p—1)! (p—1)! (p—1)! (p—1)!
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Note that each ay, is an integer; and a;,—| = n! and a(,,41),—1 = (—1)".
Claim: If | > pand j € Z, then f()(4) is an integer multiple of p. Indeed,

since f is a polynomial, and [ > p, ddjll (%:Ep_l) =0 and

d a k(k—1)...(k+1=p)...(k+1=1)
@((p—kl)!xk> = Pk D!

:paij)(k—p)...(k—l—l—l).

This is a product of integers including p; so is a multiple of p.

Claim: If 0 < I < p—1and 0 < j < n, then fO(j) = 0 except for
f®=D(0) = (n!)P; and (n!)? is an integer but is not a multiple of p. For each
1 < j < n, the factor (j — z)? has a zero of order p, and so f)(z) has a zero of
order p — 1 > 1; and hence f)(j) = 0. Atj = 0, a similar argument shows that
f®(0) = 0for 0 <1 < p—2. Finally, f»~1)(z) = (n!)? + higher order terms, so
f@=1(0) = (n!)P. Since n < p, this has no factor of p.

Now we define two more functions.

F(z) = f(z) + f'(2) + fP @) + -+ fO(2) = D fP(a)

k=0
and G(x) = e *F(z). Then
G'(x) = e " (F'(z) — F(x))
= (Y S5 @) = Y fP@) = —e f@).
k=0 k=0
Apply the MVT on [0, k] for 1 < k < n and find points xj, € (0, k) so that
G(k) ; G(O) _ G/(xk) _ —efx’“f(xk).

Multiply by ¢, ke to get
cpF (k) — ckekF(O) = —kckekiwkf(xk)

and sum from 1 to n
Z cF (k) — ( Z ckek)F(O) = — Z kere® =2 f(ap,).

Now we observe that »;'_, cxe® = —cy by hypothesis, and by the two claims
above, the LHS is a sum of integers and all but one is a multiple of p,

Z ctF(k) = co(n!)? #£0 (mod p).
k=0
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In particular, this is a non-zero integer—and hence is at least 1 in absolute value.
Now we make some estimates to show that the RHS is too small for p sufficiently
large, reaching a contradiction.

n+1\p
Using the formula for f(x), we get the crude estimate max |f(z)| < (n"") T
Theref. 0<z<n (p-—]).
erefore
n k (nn-i-l )p
RHS| < (3] klexle”) .
,; (p—1)!
ABP
The bound has the form W for constants A and B. However
p—1)!

) ABP
lim — =
p—o (p—1)!
Thus we can choose a prime p large enough that |RHS| < 1. Therefore e is not
algebraic, and so is transcendental. |

A.5. 7 isirrational

Here is another off-the-wall irrationality proof. It implies that 7 is irrational.
The argument will need to use a trig function in order to encapsulate the value 7
somehow. It is much in the same spirit as the previous proof.

A.5.1. THEOREM. 77 is irrational.
2 a . : ma"
PROOF. Suppose that 7= = ¢ where a,b € N. Since lim — = 0, we

n—w n!
ma" ™ (1 — )"

choose an 7 so that 0 < —- < L. Let f(z) = (7')
n! n!

if0 <z < 1. Also

F(z) = %x" i (Z)(—n%k - i %xk

k=0 k=n

. Then 0 < f(x) < 4,

n!

where ¢y € Z are integers and ¢,, = 1. Compute
FM(0) =0 ifO<k<n—landk>2n

™ (0) = 1 — if kb —
f (())—n!n!—l ifk=n

7 (0) = k;zi’j —k(k—1)-(n+Dep ifn+1<k<2n.
n.

In particular, f(*)(0) is always an integer. Notice that f(1 —z) = f(x), and hence
f® (1 —2z) = (=1)¥f*) (), Therefore, f*)(1) is also always an integer.
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Define another polynomial

F(a) =b" (7" f(z) = 7" 2 fP(2) + - + (=1)"f ) (2))

=" Z (_1>I<:7r2n—2k:f(2k) (.%')
k=0
Since 72 = 7 by assumption, bn? 2k are integers. Also by the previous para-
graph, F'(0) and F'(1) are integers. Compute

WZF(x) +F”(x) " Z (—l)szn+2_2kf(2k) (x) +n Z (_1)kﬂ_2n—2kf(2k:+2) (x)
k=0
n+1

k=0
_ i (— 1)k 222k p(28) () _pn Z (= 1)l 220 20 ()
k=0 =1
= "2 f(x) = a"n? f (x).
Now we introduce some trig functions. Define
G(z) = F'(z)sintz — 7F(x) cos .
Then
G'(z) = F"(z)sinwz + 7F'(x) cos mx — nF'(x) cos mx + w° F(z) sin
= (F"(z) + n°F(z)) sintx = a"n° f(z) sin 7.
Now G(0) = —nF(0) and G(1) = wF(1). Therefore
G(1) — G(0)
7r
The MVT provides an z € (0, 1) so that G(1) — G(0) = G'(z0). Hence
IG(1) = GO)] _ |G'(x0)]
s

™

= —F(0)— F(1) e Z.

| = F(0) - F(1)| = = a"7|f(xo) sinmzg| > 0
and a"7|f(zo) sinwzo| < “Z—,’T < 1. This is an integer in (0, 1), which is a contra-

diction. Therefore 72 is irrational. [ |

A.6. Stirling’s Formula

In this section, we derive an asymptotic formula for n! known as Stirling’s for-
n

mula. It is based on approximating the integral of f(x) = Inz, A, = J Inzdzx,
1
for n > 2. Since the second derivative f”(x) = —ﬁ < 0, the curve f(x) is curving

downwards or concave. This means that the (red) line segments from (k — 1,In k)
and (k,Ink) lies below the curve for 2 < k < n. Hence the sum of the areas of
these trapezoids provides a lower bound for the integral. On the other hand, the
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tangent line through (k — 3, In(k — 3)) lies above the curve. We use them to bound
the area from above.

/74_
// j;’h

//

/l 2 3 n-—\ [a)

n

FIGURE 12.3. Approximate J Inz dx
1

The lower bound is

ilnk—lJrlnk nl

1 1
A, > 5 =kz::21nk:+21nn:1nn!—21nn:: B,

k=2
Now
n n
Ay, = J Inzdr=zlnz — :z:’l =nlnn—(n—1).
1
Define the error to be
E,=A,—B,=nlnn—(n—1)—Inn!+1nn
=(n+3)Inn—(n—1)—Inn!.
Therefore
Inn! = (n+3)Inn—n+(1-E,).
Exponentiating yields
n! = e "Enpny/ne .

Now we consider the upper bound. The tangent line through (k — 1,In(k — 1))
from k — 1 to k has average height In(k — %) Hence the upper bound is

Ap < Y In(k —§) =: Cp.
k=2
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Thus using In(1 + z) < z, as f(x) lies below the tangent line through (1,0),

E,<C,—B 2 —(Ink—1+Ink)
2z
ln, K —k+ $ 1
SEPLLC R < )
24 K-k = 1)k
1 n n
I )
24 4(k — ) 8 = k
1 1 1
=—(1-= -
8 ( n) 8
This yields the Stirling inequality
7/8(>\f<n'<e()\/ﬁ.
However we can do better by computing £ := lim E,. Note that E, is
n—0o0

monotone increasing and bounded above, so that the limit exists by the Monotone
Convergence Theorem. We know that

1-E .. nle”
e = nh_r)rolo SO
nle™
Set b, = RO Compute
@ _ (n!)262n (2n)2n+% _ % (2”71!)2
bon n2tl (2n)len n (2n)!

_\F 22.42.6%...(2n)?
" Nnl1-2-3-4---2n—1)(2n)
_\F 2-4.6---(2n)
1-3.5---(2n—1)
\/T\/ - (2n)?
1-32. 2n— 1)2(2n + 1)

By the Wallis product formula, we obtain

e F = lim 2 = 2\/7 V2
n—0a0 bln

Therefore we have established:

|
A.6.1. STIRLING’S FORMULA. lim S L 1.

n—0 ne=N4\/21n
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A7, (78 gy

There are many different ways to compute the integral in the title. None of them
are easy, and many would not be considered elementary from the point of view of
first year calculus. This one draws inspiration from the theory of Fourier seres, but
we hide this by proving the necessary results without their real motivation. That
makes the proof seem artificial. In fact, every method for this integral has some
sort of trick. The first lemma is an easy result about the Dirichlet kernel.

™ sin(n + 1)z

A.7.1. LEMMA. f ———dr = T.
0 sin 5
2n + 1 ifz=0
PROOF. Let f(z) = < sin(n + 3z . This function is continu-
fla)=qsinnt2)e oo an
sin 5
ous because
. 1
sin(n + 5)x
lim sin(n + 3)v _ 2n + 1.

z—0 sin %

We use the identity 2 sin z cos y = sin(z + y) — sin(z — y) in the following calcu-
lation.

n n
sin%(l +2];cosku> sin§+];125m§cosku

n
sing + ]; sin(k + 3)x — sin(k — 3)

= sin(n + 1)z

Therefore f(z) =142, _,coskufor0 < z < 7 and also at z = 0.
Now we can integrate

T 1 1 T n
sm(n + 5)x
J (.m2)da:=f l—i-ZZcosk:ud:z::w. |
0 sin 5 0 =

A.7.2. LEMMA. Define g(z) = i— ZSiln

g' () extend to be continuous at x = 0.

for0 < x < m. Then g(z) and

E4
2
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x

PROOF. The argument using the Taylor expansion sinx = = — éx3 + O(2°)
near z = 0 is straightforward.

o1 1 . 2s1n§ —x
lim g(z) = lim — — —— = lim ————
z—0 z—0 X 2511’1% z—0 2x s1n§
i 2(%90 — ﬁ:ﬁ +O0(2%)) —x
z—0 2z(32 + O(23)
1.3 5 1 3
—5x" + O(x —>x + O(x
= lim —% ( )=lim24—()=0.

z—0 12+ 0(354) z—0 1+ 0(132)

So g extends to be continuous at x = 0. We have

1 cos £ 2% cos £ — 4sin® &
g’(x):——2+ : 290: i-Zaf :
T 4 sin® 5 4x°sin” 5
Therefore, since cos z = 1 — 2% + O(z*) near z = 0,
2 T : x
z?cos £ — 4sin® &
1 = li 2 2
xlil})g( ™) = 200 422 sin* £
= lim 2 (1 — g2* + O(a*)) — 43z — gga* + O(2°))?
- 4225 — o’ + O(a3)?
o 2 gt + 000 — 4(Ga? — ggat + 0())
= lim
=0 42 (122 — Lot + O(a0))
oy BEOEY L hr0E) 1
z—0 p4 — Tx6 + O(xS)) o0 1+ O(.TUZ) 24
Thus ¢’ extends to be continuous at = = 0 by setting ¢'(0) = —5;. m

The following is a special case of the Riemann-Lebesgue Lemma.

us

A.7.3. LEMMA. Ifg(z) is C! on [0, 7], then lim | g(x)sin(tx)dz = 0.

t—00 0

PROOF. Integrating by parts yields

1 1 ("
'J ) sin(tx da?‘ = ‘ — a:); cos(tx) + tf g (z) cos(tx) dz
0
;(2\\9Hoo + 119 llo0)-
Clearly this goes to 0 as t — oo0. |

A.7.4. REMARK. It is easy to show that every continuous function can be ap-
proximated by a C'! function uniformly with €. So an easy argument upgrades this
lemma to continuous functions. That would mean that we did not have to show
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that g(x) was differentiable in the previous lemma. Also one can easily replace the
interval [0, ] with [a, b] without change.

sinz T

de —
=3

x

o0
A.7.5. THEOREM. J
0

PROOF. In Example 8.1.7, we showed that the improper integral

D o b o
sinz ) sin z
j ——dzx = lim | —dx
0 x b—w0 Jo T
. . 1
exists. Using g(x) = — — ———, we see that
x 2sin3
d . ™ sin(n + 1)a ™ sin(n + 1)a
J g(x)sm(n—i—;)xd:r—f (Z)dx—f (7172)

0 0 T 0 2sin 3

r — —.

1
_J("*z)’r sinxd T
N 0 xT 2

We used a change of variables for the first integral and Lemma A.7.1 for the second.
By Lemma A.7.3, the LHS tends to 0. Since the improper integral exists,

0 o (n+hHm
f smxdx: limJ 2 smxdx

0 X n—aw Jo X
0 ) T _ 0
=3 + nlgrolo ; g(z)sin(n + )z dr = 5 [

A.8. Isoperimetric inequality

A famous problem from the time of the ancient Greeks is to determine the
closed curve of given perimeter which encloses the largest area. The Greeks be-
lieved that the answer was a circle, but could not prove it. There are now a variety
of proofs and generalizations to higher dimensions. Here we give a proof based on
calculus.

First notice that any closed curve that has a chance to encircle the largest area
must be convex. Thus if we arrange the figure so that the x-coordinates run from
a to b and back, in the counterclockwise direction, then the first part of the curve
must be a convex function, and the second part is a concave function. We showed
in Part I, Theorem 5.6.5 and Corollary 5.6.6, that a convex function has a left de-
rivative everywhere and it is monotone increasing. Similarly the concave part has
a monotone decreasing left derivative. This isn’t quite enough to be piecewise C',
however monotone functions are Riemann integrable. So with a bit of care, Green’s
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Theorem 8.5.3 is still valid. Indeed, convex curves fall under the special case for
the first part of that proof. So our proof of the isoperimetric inequality is actually
valid in general.

A.8.1. ISOPERIMETRIC INEQUALITY. Let v be a piecewise C' closed
curve of arc length 2m. Then the area enclosed by ~y is at most 7, and this occurs
only when vy is a circle.

PROOF. We parameterize the curve by arc length s. Then v(s) = (x(s), y(s))
for0 < s < 2mand

= 2'(s)> +9/(s)* = 1.

We can reposition the curve by translation and rotation (which does not affect arc
length or area) so that v(0) and y(m) lie on the z-axis with z(w) < x(0). So
y(0) = y(m) = 0. The discussion above shows that ([0, 7r]) lies above the axis,
and ([, 27]) lies below. Note that if 0 < s < 7, we have 2/(s) < Oand y(s) = 0;
while for 7 < « < 27, we have 2/(s) > 0 and y(s) < 0. So —y(s)z'(s) = 0 for
all s. By Green’s Theorem 8.5.3, the area enclosed by -y is

A= | () () ds = | 7 ()2 (5)| ds.

0 0

‘djz_
d

Recall that ab < %(a2 + b%), a special case of the AMGM inequality. Thus

21 21 27
A= . ly(s)z'(s)|ds < Jo %(y(s)2 +2/(5)%) ds = ;Ly(s)z +1—14/(s)*ds.

Define u(s) = @ Observe that

NI
tim 25 i Y6 5
s—0 SIn s s—>0 S SsIns

" () _ .yl h)
. y(s . ylm+h h ,
lim 22 = — —y/(n).
. sin s hIE}) h sinw + h y(m)
Thus w is continuous on [0, 27], and differentiable except possibly at 0, 7 and 27.

Then y(s) = u(s)sins and y/(s) = u(s) cos s + u/(s) sin s. Therefore

27
A< > J u(s)?sin®s + 1 — (u(s)cos s + u(s) sin 3)2 ds
0

1 21
= 5 J <U(S)2(Sin2 S — 0052 5) — 2“(8)’[/(8) sin s cos 8) + 1_ul(s)2 Sil’lz sds
0

2

. w1
sins cos 5| +2f 1 —u'(s)”sin” s ds

0

1
= —Eu(s)

<0+7m=m.
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Equality holds in the last inequality only if «/(s) = 0 everywhere, so that u is
constant, which yields y(s) = c¢sins. The AMGM inequality is an equality only if
|2’ (s)] = |y(s)], so that 2/(s) = —csin s because y(s)z’(s) < 0. Hence z(s) =
ccos s + d. Our initial choices show that ¢ > 0. Also

1 =2'(s)? +1/(s)* = ?sin’ s + 2 cos’ s = 2.

So ¢ = 1. That s, y(s) = (d,0) + (cos s,sin s) for 0 < s < 2. This is a circle of
radius 1 and area 7. n

A.9. Euler’s sum

2

We will establish the famous formula of Euler: }; — = % and some related
n=1 n

formulae. The arguments use knowledge of the complex numbers including de
Moivre’s Theorem:

(cos@ +isin#)" = cosnh +isinnf for 6 € Randne N.

n(2n — 1)
R

2n+1

A.9.1. LEMMA. i cot? (527-) =
k=1

PROOF. By de Moivre’s Theorem,
cos(2n + 1)8 + isin(2n 4 1)0 = (cos 6 + isinf)*" !

— sin®"*1 9(cot O + i)2H!

2n+1 m +
2n+1 2n+1—k
= sin 0 k cot .

Taking imaginary parts and dividing by sin®>"*! 6 yields

sin(2n + 1)6 2n +1 . 2n +1 2
Smon T )Y 2ng - 220 1oy ()"
I ( | >co 3 co +o+ (1)

= (_1)m(2” * 1) cot2m 9 — P, (co2 0)

= 2m + 1

where we define the polynomial

= D e = e (e (e

m=0
Then
sin k7

2n+1 km
2n+1

Pn(cot2 ki )=

P+l =0 for 1<k<n.
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Since deg P, = n, this is a complete list of the roots of P,. Because P,(x) =

(2n1+1)xn — (zn;rl)x"_l + ..., the sum of the roots is
2n+1
2 w0l (xy = () _ @t D@n)@n—1) _n(2n 1)
2n+l (an-&-l) 6(2n+ 1) 3 . -

A.9.2. EULER’S THEOREM. }  — 1 =<
n=1 "1

PROOF. For0 < x < %, we have sinx < x < tan x. Therefore

2

1
cot? x < — <cschx = 1 + cot® z.
T

Therefore
n n
Zcot k“ 2 n+l 2n+ 2iz<n+2cot2(2ﬁl).

Applying Lemma A.9.1, we obtain
2n — 1 2 S 2n —1
n(2n — 1) s <Z—<(n+n(n ))( s

3 (2n + 1)2 = k2 3 2n +1)
Simplifying we get
ﬁ%@hn<ii<ﬁMnH)
6 2n+1)2 Ak 6 2n+1)?
1 w2
Now let n — o0 and apply the squeeze theorem to get Z SRl |
=1
o0
Now we will push this a bit harder to compute 1;1 R We first need a formula

for the sum of the squares of the roots of a polynomial.
A.9.3. LEMMA. Ifp(z)=azx"+a,_ 12" ' +.. 4+a9 = an [ 1oz, (x —rk), then
- 2 (Gn-1 2 anp—2
D= () 200
k=1 an
PROOF. Expanding the first few terms of the product, we get

ﬁ(w —rg) =a" — ( Tk>x”71 + ( Z rjrk>x"*2 Foee (=) ﬁrk'
k=1

I<j<k<n k=1

-
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Hence
n
—Qp—1 an—2
Z T = and Z riTE =
k=1 An 1<j<k<n n
Therefore
n n
2 2 an—1\2 An—2
I O e .
k=1 k=1 1<j<k<n tn An

A.9.4. LEMMA. zcw%kg)—£¢/+0()

PROOF. We use the polynomial P, (x) from Lemma A.9.1 and apply the pre-
ceding Lemma.

I O
Yo (1 7) - <2"1“>> ~2 e
(n2(2n— 1> 2(2n + 1)(2n)(2n — 1)(2n — 2)(2n — 3)

9 120(2n + 1)
2n —1
- (TL(ZS)(S@nz —n) —3(2n° — 5n + 3))
~(n2n—1), 8
= 15 (4n” +10n —9) = 2 Sn + lower order terms.
The lower order terms are bounded by a multiple of n> for large n, so the sum
equals f<n* + O(n?). |
7r4
A.9.5. THEOREM. Z = —.
ns1 M ~ 90

. : . 1
PROOF. Again we use the inequality cot? z < — <1+ cot? z. Thus
x

1
cot* z < — <+ cot® )%
x

Therefore

Zcot k” <Zn: Zntly <Zn]< 1 + cot® 2n+1>
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By Lemma A.9.4 and Lemma A.9.1,

w4 L
2n+ 1) (%” +0()) < 214 2n+ 2nt 1) (%” +0@).

Simplifying, we get
4

35 = 55+ O

7[.4

© 1
Letting n go to infinity, we obtain kgl =00 |

There are other ways to get these identities. Once you learn about Fourier
series, easier proofs will be available.
L 1 (27)*| By

There is a general formula )|

2 o 2(2n)! where the B,, are the

n—1
Bernoulli numbers. They are given by By = 1 and B,, = — )| ( )nJrl - Thus
k=0

By =—%, By =0forn>1,B, =1 Bs= 31, B = 35, Bs = 31, .... Also
B B 2 Bs 4 1 1 , 1 4

A.10. The Gamma function

The gamma function is a continuous (in fact, C®) function which behaves like
the factorial function. It arises naturally in various places in classical analysis.

0
F(x)zf t* letdt for x> 0.
0

The integand is positive, so this improper integral is defined as long as it is bounded
above. We establish this in two steps. Fix > 0.

! ot 1
J tﬂ”—le—tdtgf tldt = =— <.
0 0 X 1t=0 x
z—1 r—1
Since lim —7- = 0, M, = sup,>; —5 < o0 by the Extreme Value Theorem.
t—00 et/z = et/2

Therefore
f 1 _tdt<f Mye 2 dt = —2Me~ f/Z‘t © M
1

_1 Ve

< Q0.

Therefore I'(x) is defined for all z > 0.
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CLAM: I'(z + 1) = zI'(x). Lete > 0 and R > 0 large. Integrate by parts:

R R R
f tTe tdt = —t%e? +J‘xﬂ%%#
e € 5

R
=ecef — R% I 4 :cj T~ L™t dt.

€

Now lete — 0" and R — +o0 and we get

[z +1)=2I(z) + lim ce © — hm R*e " = zI(x).

e—0t R—o0

CLAIM: I'(n + 1) = n! for n € Np.
0 o0
(1) = j etdt=—et =1.
0 0
The claim is now established by induction. It is true for n = 0. If it is true for
n—1,thenI'(n) = (n — 1)!. Thus I'(n 4+ 1) = nI'(n) = n!. This establishes the
induction step.

CLAIM: T'($) = /7. Substitute ¢ = u? and dt = 2u du to get

0 0 5 Q0 5
[(x) = J t* et dt = J u e Qudu = 2f u? e du.
0 0 0
o0

In particular, T'(3) = ZJ e du. The trick for this integral is to square it and

0
consider this as an integral over the first quadrant (). Then use polar coordinates
and the fact (compare with area in polar coordinates) that du dv = r drd#.

L,
)? —4] v duj v dv—4jf ~u =" gy dy
0
/2
f f "rdrdo = E(—%e—”)
L,
—u du=2f e " du = +/T.

0

(3

N[—

By symmetry, we also have f

—00

VOLUMES OF SPHERES. Let the unit ball in R™ be B,,. The surface of the ball

B,, is called S,,_1, or the n — 1-sphere. The notation reflects the fact that .S, _; is
an n— l-dimensional object. Observe that

n/2 _ * —u? " — (W Hud - Fud)
T —( e du) =1 e ‘T ) duy duy ... duy,

0
We employ the spherical shell method to compute this integral. Observe that on
the sphere 7S,,_, of radius r, the function e~ (414 ++43) takes the constant value

e~"*. Thus integrating over r5,_; will yield e~ times the n — 1-dimensional
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volume of S,,_;. This must be 7"~! times the n—1-dimensional volume |Sp—1] of
Sr—1. Now integrate with respect to r from 0 to oo to obtain the integral over R".

o0
A= [t dr = 4TS,
0

277/2
r(3)
27T2/2
So the circumference of a circle of radius r is rﬁ = 2mr. The sphere of
2
273/2 273/2
r? Wn = 17r i r? = 4nr?,
I'(52)  5T(3)
The 3-sphere S5 has volume and the 4-sphere has 4-dimensional volume
2 4/2 22 2 5/2 2 5/2
%:Ly:z”z and  |Syf = 7T5 = 317T o=
I(3) Il I'(z)  3221G3)
We compute the n-volume of B, (R) of radius R by the spherical shell technique:

Therefore the sphere S, has n— 1-dimensional volume

radius r has area

1S3] =

R 2 n/2
B.(R)| :f NS, dr = 28

R".
0 nl“(%)
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e, 37

e is irrational, 221
kth derivative, 74

nth order DE, 196

Abel’s theorem, 191
absolute convergence, 162
aleph nought (Rp), 218
algebraic, 222

alternating harmonic series, 163
alternating series test, 163
and, 1

antiderivative, 106
antisymmetric, 214
Archimedean, 217
asymptote, 41

Bernouilli’s inequality, 40
Bernoulli numbers, 235

bijective, 29

Bolzano-Weierstrass Theorem, 22
bounded above, 18

bounded below, 18

bounded partial sums, 167

Cantor, 220

Cantor function, 54

Cantor set, 55

cardinality, 218

catenary, 140

Cauchy criterion for series, 156
Cauchy sequence, 23

Cauchy sequence of functions, 180
Cauchy’s condensation test, 161
Cauchy’s mean value theorem, 82
centre of mass, 137

centroid, 137

Chain Rule, 64

closed, 26

closed curve, 147

closed interval, 26

codomain, 29

common refinement, 94
comparison test, 157

complete, 24

Completeness Theorem, 24

239

composition, 29

concave, 74

conditional convergence, 162
continuous function, 45
contrapositive, 2

converge, 13

converge conditionally, 162
convergent series, 155
converges absolutely, 162
converges pointwise, 177
converges uniformly, 177
converse, 2

convex, 74

countable, 53

countable set, 218
counterexample, 3

cycloid, 154

damped harmonic oscillation, 209
Darboux’s Theorem, 82
de Moivre’s Theorem, 232
DE, unique solution, 211
diagonalization, 220
differentiable, 60
differentiable at xo, 60
Dirichlet kernel, 228
Dirichlet’s test, 167
discontinuous, 45
divergent series, 155
domain, 29

epicycloid, 149
equivalence class, 214
equivalence relation, 214
Euler’s constant, 159
Euler’s theorem, 233

even, 32

eventually periodic, 4
exponential function, 38
Extreme Value Theorem, 48

Falling bodies, 202
Fermat’s Principle, 69
Fermat’s Theorem, 68
first order DE, 196
for all, 2
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forcing term, 200

formula, 2

function, 29

Fundamental Theorem of Calculus, 105
Fundamental Theorem of Calculus II, 106

gamma function, 235

generalized geometric mean—arithmetic
mean inequality, 81

geometric series, 155

greatest lower bound, 18

Green’s Theorem, 147

Gronwall’s inequality, 211

Hadamard’s theorem, 185
harmonic oscillator, 209
harmonic series, 133, 155
homogeneous linear DE, 200
hyperbolic trig functions, 73

implication, 2

improper integral, 134
improper integrals, 131
increasing sequence, 20
infimum, 18

initial value conditions, 196
injective, 29

integral convergence theorem, 181
integral test, 158

integration by substitution, 114
Intermediate Value Theorem, 49
inverse function, 29

Inverse trig functions., 53
isoperimetric inequality, 231

Jensen’s inequality, 80
jump discontinuity, 52

L’Hopital’s rule, 83

least upper bound, 18

Least Upper Bound Principle, 19
left derivative, 79

limit from the left, 30

limit from the right, 30

limit of a function, 29

limit points, 26

linear DE of order n, 200

linear DE, constant coefficients, 207
Lipschitz, 46

Lipschitz constant, 46

local maximum, 68

local minimum, 68

Index

lower sum, 94

maximum, 68

Mean Value Theorem, 70

mesh, 94

minimum, 68

modus ponens, 2

Monotone Convergence Theorem, 20
monotone increasing, 20

natural logarithm, 37
negation, 1

Newton’s method, 86
norm, 180

not, 1

oblique asymptote, 42
one-to-one, 29
one-to-one and onto, 29
onto, 29

open, 26

open interval, 26

or, 1

order dense, 11

ordered field, 11

Pappus’s Theorem, 138
parameter, 146

partial fractions, 125
partition, 94

piecewise C"', 147
piecewise monotone, 101
pigeonhole principle, 4
point of inflection, 76
positive definite, 180
positive homogeneous, 180
power series, 185
principal value, 132
Principle of Induction, 6
proof by contradiction, 5
proof by induction, 6
Pursuit curves, 198

quantifiers, 2

Radioactive decay, 197
radius of convergence, 186
range, 29

ratio test, 160
rearrangement, 163
rearrangement theorem, 166
recursion formulae, 118
refines, 94



relation, 214

rhombic dodecahedron, 139
Riemann sum, 95

Riemann’s condition, 97
Riemann-Lebesgue Lemma, 229
right derivative, 79

Rolle’s Theorem, 69

root test, 160

Schroeder—Bernstein Theorem, 221
secant, 60

Secant Lemma, 78

second derivative, 74

second derivative test, 75

series, 155

Snell’s Law, 69

Squeeze Theorem, 14

Squeeze Theorem for Functions, 30
standard form, 196

statements, 1

Stirling inequality, 227

Stirling’s formula, 227

strictly convex, 74

strictly increasing sequence, 20
subsequence, 21

summable, 155

summation by parts lemma, 167
supremum, 18

surjective, 29

tangent line, 61

tautology, 2

Taylor polynomial, 170

Taylor’s Theorem, 171

term by term differentiation, power series,
187

term by term integration, power series, 188

there exists, 3

Thomae’s function, 46

total order, 11

transcendental, 222

triangle inequality, 12, 180

truth tables, 2

uncountable set, 218

undetermined coefficients, 209

uniform convergence, series of functions,
182

uniform norm, 180

uniformly continuous, 56

upper bound, 18

upper sum, 94

Index

241

variation of parameters, 205

Wallis product formula, 120

Weierstrass M-test, 182

Weierstrass’s Nowhere Differentiable
Function, 184

Wronskian, 206
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