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PREFACE

These notes are designed for a rigorous two semester course in calculus based on
the completeness of the real numbers. Students are assumed to have had a high
school level calculus course already. While we do not assume that students know
about proofs, we only provide a rather brief introduction to the notion of proofs in
the first chapter before diving in to the business of doing real analysis.

The real numbers are defined as the set of infinite decimals with the identifi-
cation of a number ending in an infinite string of 9s with another decimal number
ending in an infinite string of 0s. This definition has its problems when it comes
to defining addition and multiplication. However it is familiar, and is the quickest
way to get going. A better method of defining the real numbers is provided in an
appendix. Chapter 2 is the meat of the course, and is also the most difficult. We
explore what is meant by the completeness of the real numbers in several guises.
All of the deeper theorems of calculus, including the Extreme Value Theorem and
the Intermediate Value Theorem, rely in an essential way on this material.

Curve sketching is stressed from the beginning. Students can use their knowl-
edge of calculus from their earlier course to help them. To a great extent, the early
examples require only a little differentiation. Trigonometric functions, and the log-
arithm and exponential functions are used throughout, as these provide a wealth
of interesting functions. We assume that students are already familiar with trig
functions and the basic trig identities such as the addition formula. The natural
logarithm is introduced as an area and its properties are derived without the use of
integration. The exponential function is the inverse function of the logarithm.

Chapter 4 introduces the key concept of continuity and establishes the Extreme
Value Theorem and the Intermediate Value Theorem.

Finally in Chapter 5, we define the derivative formally. We discuss maxima and
minima with an emphasis on the Mean Value Theorem. We do not spend much time
on the useful topic of max-min problems. We assume that this was well covered
in the high school course. We do include some exercises with such problems. We
discuss convexity of functions in some detail, relating it to the second derivative
and deriving Jensen’s inequality.

It is my experience that students have learned L’Hôpital’s Rule in high school,
of course without the rather tricky proof. I make a big deal about this being unac-
ceptable until it is proven. In particular, if the famous limit limxÑ0

sinx
x “ 1 is ever

‘proven’ using L’Hôpital’s Rule, there will be a severe penalty. This limit is needed
to determine the derivative of the sin function, and so using L’Hôpital’s Rule is cir-
cular. Moreover, I make the point soon after that many limits that can be computed
by two or three applications of L’Hôpital’s Rule can be established quickly using
low order Taylor polynomial approximations.

At the University of Waterloo, all of integration is left for the second semes-
ter. To accomodate this, we cover some of the material in Chapter 10 in the first
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ii Preface

semester. Specifically we discuss Taylor polynomials and a few examples of when
the infinite series converges. The general discussion of series, both of numbers and
functions, is done in the second semester.

In the second semester, we begin with the theory of integration culminating in
the Fundamental Theorem of Calculus which ties the integral (a computation of
area) with the derivative. Chapter 7 deals with a variety of computational methods
and tricks for calculating integrals. Then in Chapter 8, there is a variety of topics
on integration: improper integrals, volumes and arc length, polar coordinates and
parameterizations.

Chapter 9 deals with infinite series. In a certain sense, a series is just another
way of describing a sequence. However it is a common method, and there are a
number of new methods for handling them. Then we turn to sequences and series of
functions. As mentioned above, we cover Taylor polynomials in the first semester.
We make a systematic study of uniform convergence. Then we look at power series,
which have some especially nice properties. We conclude the chapter with a proof
of Abel’s theorem about convergence at the radius of convergence.

The last chapter is an introduction to differential equations. We only look at
first order DEs and second order linear DEs. This will give students a sense of the
ideas involved. It is really only a taste.

Finally, the appendix contains a number of interesting enrichment topics.

Kenneth R. Davidson
August, 2021
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CHAPTER 1

The Logic of Proofs

1.1. The Language of Mathematics

In this section, we provide a quick overview of some of the language behind
mathematical and logical statements. This is not a thorough treatment, but should
suffice to get us going.

Mathematics deals with statements, which assert some relationship between
certain items or classes of items. Examples are

‚ x belongs to the set X .

‚ Y is a subset of X .

‚ x “ y or x ă y or x ą y.

‚ x ă y.

‚ f : r0, 1s Ñ R is a monotone increasing function.

‚ All horses are white.

‚ Every cat has one tail.

Examples of non-statements are

‚ x` y.

‚ Don’t divide by 0.

Statements must have the property that they are either True or False. Often a con-
text is specified that limits the variables (if any) in the statements. Certain self-
referential statements are not allowed, such as

‚ This statement is false.

Statements can be manipulated or combined with others to make new state-
ments. There are three key words that have precise meanings that may differ from
popular usage in everyday speech. These are not, and and or.

If A is a statement, then “not A” or ␣A is the negation of A. If A is true, then
␣A is false and vice versa.

If A and B are statements, then “A and B” or A^B is true if and only if both
A and B are true. If either is false, then A^B is false.

IfA andB are statements, then “A or B” orA_B is true if and only if at least
one of A or B is true. If both are false, then A_B is false.
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2 The Logic of Proofs

We also define implication, “A implies B” or Añ B, means that if A is true,
then B is true. The statement A ñ B is true if A and B are both true, but also if
A is false regardless of the truth of B. This is because such a statement means “If
A is true, then B is also true.” For this reason, you also see this written “if A, then
B”.

Since a statement can be either true or false, one can make truth tables which
start with the various possibilities for the original statements and calculates the truth
or falsity of other statements obtained by combining them. Here is an example. To
save space, let MP be the statement pA^ pAñ Bqq ñ B.

A B ␣A A^B A_B AñB BñA ␣Bñ␣A A^pAñBq MP
T T F T T T T T T T
T F F F T F T F F T
F T T F T T F T F T
F F T F F T T T F T

We don’t use truth tables to prove theorems, but they can be used to investigate
general relationships. The converse of the statement Añ B is the statement B ñ
A. You can see from the truth table that these statements are not equivalent. IfAñ
B is true, the converse may or may not be true depending on the circumstances.

The contrapositive of the statement A ñ B is the statement ␣B ñ ␣A. The
truth table shows that these statements are equivalent. You can think this through as
follows: Assume that Añ B. This means that if A is true, then B is true. So if B
is false, then A cannot be true, so A is also false. That is the statement␣B ñ ␣A.

We use the expression “A if and only if B” and write A ô B to mean that
pAñ Bq^ pB ñ Aq. It means that either both A and B are true or both are false.

A statement is a tautology if it is always true. The statementMP is a tautology.
This particular statement is known as modus ponens.

A formula is a statement usually involving some variables. The truth or falsity
of the statement may depend on the values assigned to the variables.

For example, consider the statement P px, yq that 2x2´2xy`y2`2x´4y ě 20.
Here we are told that x and y are real numbers. You can check that P p4, 2q is true,
but P p3, 3q is false.

1.1.1. Quantifiers. There are two important quantifiers that we use in math-
ematics. The first is the universal quantifier “for all” or @. This has the form
@x P X, P pxq. It states that for every variable x in some specified range X , the
statement P pxq is true. If the statement fails for a single value of a variable, then
the whole statement is false. Consider

(A) @n P N, n2 ´ 2 is even.

(B) @n P N, n2 ` n` 41 is prime.

In both statements, the range is specified to be positive integers. Statement (A) is
true because n2 ´ n “ npn´ 1q, and either n is even, and thus so is the product or
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n is odd, in which case n ´ 1 is even, and so is the product. Thus n2 ´ n is even
for all choices of n.

For (B), we look at the value of n2 ` n ` 41 for n ě 1. It starts out well:
43, 47, 53, 61, 71, 83, 97, 113, 131, 151. So far, all are prime. However when you
get to n “ 40, we get p40q2`40`41 “ p41q2 which is not prime. So the statement
is false. The number n “ 40 is called a counterexample to statement (B).

The second is the existential quantifier “there exists” or D. A statement has the
form “Dx P X such that P pxq”. It is true if there is a single x for which P pxq is
true. Consider

(C) Dx P R such that x sinp 1
xq “ 1.

(D) Dn P N such that 1141n2 ` 1 is a perfect square.

The function fpxq “ x sinp 1
xq is even, i.e., fp´xq “ fpxq, so we can consider

x ě 0. When 0 ď x ă 1, |x sinp 1
xq| ď |x| ă 1. If x ě 1, then 1

x ď 1 P p0, π2 q.
In this range, we will show in the course that 0 ă sin 1

x ă
1
x , so 0 ă fpxq ă 1.

Therefore there is not a single value of x which makes the statement true—so (A)
is false.

To properly analyze (D), we would need to know some more number theory.
You could check on a computer, say the first trillion numbers, and you would not
succeed. It turns out that there are infinitely many integers which make this a
perfect square, but the smallest has 26 digits:

30, 693, 385, 322, 765, 657, 197, 397, 208

Therefore (D) is true, even though you would never find it by crude methods.
When you negate a statement using @, it becomes an D. The reason is that a

“for all” statement is contradicted by a single counterexample. For instance ␣pBq
is the statement: Dn P N such that n2`n`41 is not prime. This is a true statement,
since n “ 40 does the job.

Similarly, when you negate D, it becomes a @ statement. This is again because
to contradict Dx P X such that P pxq, you must show that P pxq is false for all
x P X . So the negation is @x P X , ␣P pxq. For instance, ␣pCq is the statement
@x P R, x sinp 1

xq ‰ 1. We showed that this is a true statement by proving some-
thing a bit stronger, that

ˇ

ˇx sinp 1
xq
ˇ

ˇ ă 1 for all x P R.
Things start to get more complicated when we have more quantifiers. This

comes up in calculus because the definitions of limit and continuity require multiple
quantifiers. Here we just give a couple of elementary examples. Consider

(E) @n P N0 Dm P N0 such that 13 divides m2 ` n2.

(F) Dm P N0 such that @n P N0, 13 divides m2 ` n2.

For statement (E), we are asked if for each n P N0, we can select some m P N0 so
that m2 ` n2 is a multiple of 13. We are allowed to choose m any way we wish.
So let’s choose m “ 5n. Then m2 ` n2 “ 25n2 ` n2 “ 13p2n2q is divisible by
13. Therefore (E) is true.
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Look at the difference when we reverse the order of the quantifiers. This is
asking for a singlem so thatm2`n2 is always a multiple of 13. Thus bothm2`02

and m2 ` 12 would need to be divisible by 13. But then pm2 ` 1q ´ pm2 ` 0q “ 1
would be divisible by 13. This is absurd. So the statement (F) is false.

1.2. Proofs

1.2.1. Direct proofs. Start with the hypothesis and work through straight to
the answer. Here is an example.

1.2.1. DEFINITION. If x “ a0.x1x2x3 . . . is an infinite decimal (here a0 is an
integer and xi P t0, 1, . . . , 9u), we say that the expansion is eventually periodic if
there are positive integers N and d so that xn`d “ xn for all n ě N .

1.2.2. THEOREM. If x P R has a decimal expansion which is eventually peri-
odic, then x is rational.

PROOF. Multiply x by 10N and by 10N`d. There are integers b and c so that

10N`dx “ c.xN`d`1xN`d`2xN`d`3 . . .

10Nx “ b.xN`1xN`2xN`3 . . .

Hence by subtracting,
p10N`d ´ 10N qx “ c´ b.

Therefore x “
c´ b

10N`d ´ 10N
is rational. ■

1.2.2. Pigeonhole Principle. If n` 1 or more objects are divided into n cate-
gories, then there are at least two objects in the same category. The name refers to
an office mailroom in which each person gets a pigeonhole in which to receive let-
ters. There are variants, such as putting mn` 1 objects into n categories. You can
deduce that some category contains at least m` 1 objects. Usually two is enough.

1.2.3. THEOREM. If x P Q, then the decimal expansion of x is eventually
periodic.

PROOF. Since x is rational, we can write x “
p

q
where p, q are integers and

q ą 0. For each k ě 0, there is a unique integer rk P t0, 1, . . . , q ´ 1u so that
q divides 10k ´ rk. That is, rk is the remainder left when dividing q into 10k.
Then tr0, r1, . . . , rqu are q ` 1 remainders taking only q possible values. By the
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pigeonhole principle, there are two values 0 ď i ă j ď q so that ri “ rj . Since q
divides 10i´ri and 10j´rj , it also divides the difference 10j´10i, say 10j´10i “
qa. Then

x “
p

q
“
ap

aq
“ 10´i ap

10j´i ´ 1
.

Let d “ j ´ i and divide the denominator 10d´ 1 into ap to get an integer b with a
remainder s with 0 ď s ă 10d ´ 1. So s has a most d digits, and thus we can write
s “ s1s2 . . . sd with si P t0, 1, . . . , 9u and we put 0’s at the beginning if required
to make this a d digit number. Then

y “ 0.s1s2 . . . sds1s2 . . . sd ¨ ¨ ¨ “
8
ÿ

k“1

10´dks “
10´ds

1´ 10´d
“

s

10d ´ 1

because a periodic decimal is a geometric series. Hence

10ix “ b.s1s2 . . . sds1s2 . . . sd ¨ ¨ ¨ “ b.s1s2 . . . sd

and the decimal expansion of x is just the same with the decimal place shifted i
places to the left. So it is eventually periodic. ■

1.2.3. Proof by Contradiction. We saw that the contrapositive of a statement
A ñ B is ␣B ñ ␣A, and has the same truth. So we assume that B is false,
and deduce that A is false. This proves the contrapositive, so we are done. We
usually think of this as reaching a contradiction to the hypothesis that A is true,
which explains the name.

1.2.4. THEOREM. If d P N is a positive integer which is not a perfect square,
then

?
d is irrational.

PROOF. Assume that
?
d is rational. Then A “ tn P N : n

?
d P Nu is not

empty. A non-empty subset of N has a smallest element, so let a be the smallest
element of A. So a

?
d P N but b

?
d is not an integer for 1 ď b ă a.

Choose the integer m P N so that m2 ă d ă pm` 1q2. Notice that

0 ă
?
d´m ă

b

pm` 1q2 ´m “ 1.

Therefore 0 ă b :“ ap
?
d ´mq ă a. However b “ a

?
d ´ am is an integer, so

1 ď b ď a´ 1. Finally b
?
d “ ad´ pa

?
dqm is an integer. This means that b P A

and b ă a. This contradicts the assumption that a was the smallest element, which
in turn was a consequence of the fact that A was non-empty. Hence A is empty,
and so

?
d is irrational. ■
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1.2.4. Proof by Induction. The Principle of Induction: let P pnq be a se-
quence of statements for n ě n0. Suppose that

p1q P pn0q is true, and

p2q If n ą n0 and P pkq is true for n0 ď k ă n, then P pnq is true.

Then P pnq is true for each n ě n0.
You can think of the statements P pnq as dominoes which are lined up in such

a way that if the earlier dominoes are knocked over, then one of them will knock
over the nth domino. Then you knock over the first one and watch them all fall in
succession.

Simple induction works by showing that statement P pn´1q implies P pnq. But
there is no reason that it cannot be some other earlier statement or more than one
earlier statement which are required to establish P pnq. We will see two examples.
The first is a bit trickier than simple induction in that it depends on two previous
statements.

1.2.5. THEOREM. The Fibonacci sequence is defined recursively by

F p0q “ F p1q “ 1 and F pn` 2q “ F pnq ` F pn` 1q for n ě 0.

Let τ “

?
5` 1
2

. Then F pnq “
τn`1 ´ p´1{τqn`1

?
5

.

PROOF. First observe that

1
τ
“

2
?

5` 1

?
5´ 1

?
5´ 1

“
2p
?

5´ 1q
4

“

?
5´ 1
2

.

Let P pnq be the statement F pnq “
τn`1 ´ p´1{τqn`1

?
5

for n ě 0. When n “ 0,

τ 1 ´ p´1{τq1
?

5
“

1
?

5

´

?
5` 1
2

`

?
5´ 1
2

¯

“

?
5

?
5
“ 1.

Hence P p0q is true. Next consider n “ 1.

τ 2 ´ p´1{τq2
?

5
“

1
?

5

´

p
?

5` 1q2

4
´
p
?

5´ 1q2

4

¯

“
4
?

5
4
?

5
“ 1.

Thus P p1q is true. This is step one.
We need the identities

1` τ “ 1`

?
5` 1
2

“

?
5` 3
2

“ τ 2

and

1´ 1{τ “ 1´

?
5´ 1
2

“
3´

?
5

2
“

1
τ 2 .
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Now for the induction step. Suppose n ě 2 and that P pn ´ 2q and P pn ´ 1q
are true. Then

F pnq “ F pn´ 2q ` F pn´ 1q

“
τn´1 ´ p´1{τqn´1

?
5

`
τn ´ p´1{τqn

?
5

“
1
?

5

´

τn´1p1` τq ´ p´1{τqn´1p1´ 1{τq
¯

“
1
?

5

´

τn´1τ 2 ´ p´1{τqn´1p1{τq2
¯

“
τn`1 ´ p´1{τqn`1

?
5

This shows that P pnq follows from the previous two statements, P pn ´ 2q and
P pn´ 1q. By induction, the statements P pnq are true for all n ě 0. ■

Here is a second example.

1.2.6. THEOREM. Every natural number n ě 2 is a product of prime numbers.

PROOF. Let P pnq be the statement that n factors as a product of primes. Start
at n “ 2. Then P p2q holds because 2 is prime (so is the product of one prime). For
the induction step, we need to assume P pkq for all 2 ď k ă n. Consider P pnq.
There are two cases.

Case 1: n is prime. Then P pnq is true,
Case 2: n is not prime, so n “ ab where 2 ď a, b ă n. By P paq and P pbq, we

can write a “ p1 . . . pm as a product of primes and b “ q1 . . . qn as another product
of primes. Therefore n “ ab “ p1 . . . pmq1 . . . qn is a product of primes, so P pnq
is true. By induction, every n ě 2 is a product of primes. ■

In principle, this proof is more complex than the first. For example, for P p48q,
we might factor 48 “ 6 ¨ 8. Then the statement P p48q is deduced from P p6q and
P p8q. In each case, we don’t need to know the explicit factorization, only that a
and b are strictly smaller so that we are assured that P paq and P pbq have already
been verified.
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Exercises for Chapter 1

1. In Xanadu, people are either Knights, Normals or Villains. Knights always tell
the truth, Villains always lie, and Normals can do both. Knights outrank Nor-
mals, who outrank Villains.
(a) Three people are known to consist of exactly one Knight, one Normal and

one Villain. They say:
Alice: I’m normal.
Bob: That is true.
Charlie: I’m not normal.

Determine which type each person is. Explain.

(b) Two people from Xanadu, Dick and Jane, say:
Dick: I rank below Jane.
Jane: That is not true.

Determine the types of both and decide who is telling the truth. Explain.

2. Three young men accused of stealing cellphones make the following state-
ments:

(1) Ed: “Fred did it, and Ted is innocent.”
(2) Fred: “If Ed is guilty, then so is Ted.”
(3) Ted: “I’m innocent, but at least one of the others is guilty.”

(a) If they are all innocent, who is lying? Explain.
(b) If all these statements are true, who is guilty? Explain.
(c) If the innocent told the truth and the guilty lied, who is guilty? Explain.

3. (a) Show that |15 sin θ ` 8 cos θ| ď 17.
Use trig identities, not calculus, to do this exercise.
HINT: show that there is an angle α with sinα “ 8

17 and cosα “ 15
17 .

(b) When does equality hold in this inequality?

4. Let a, b, c be positive real numbers greater than 1. Show that

logapbcq logbpacq logcpabq “ logapbcq ` logbpacq ` logcpabq ` 2.

HINT: : express everything in terms of A “ log a, B “ log b and C “ log c.

5. (a) Find an expression for

fpxq “
ˇ

ˇ2x´ |2x` 1|
ˇ

ˇ´
ˇ

ˇx´ |x´ 2|
ˇ

ˇ for x P R

which avoids the use of absolute value signs or square roots. You may split
the real line into disjoint intervals and have a different algebraic expression
on each one.

(b) Graph fpxq. In particular, indicate all solutions of fpxq “ 0.
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6. (a) Show that if x is a positive real number, then
´1
8x2 ă x

´

a

x2 ` 1´ x
¯

´
1
2
ă

´1
8px2 ` 1q

.

HINT: Use a ´ b “ a2´b2

a`b to ‘rationalize the numerator’ twice! This is
superior to working backwards from the answer and bashing it out using
algebra.

(b) Use (a) to show that for x ą 0,

x`
1

2x
´

1
8x3 ă

a

x2 ` 1 ă x`
1

2x
´

1
8x3 `

1
8x4 .

7. The Fibonacci sequence is defined by F p0q “ F p1q “ 1 and F pn ` 2q “
F pn`1q`F pnq for all n ě 0. Fix an integerD ě 2. Consider the remainders
qpnq obtained by dividing F pnq by D, with 0 ď qpnq ă D. Prove that this
sequence is periodic with some period d ď D2 as follows:
(a) Show there are integers 0 ď i ă j ď D2 such that qpiq “ qpjq and

qpi` 1q “ qpj ` 1q.
HINT: pigeonhole.

(b) Let d “ j´i. Use induction to show that qpn`dq “ qpnq and qpn`1`dq “
qpn` 1q for all n ě i.

(c) Show that qpn ` dq “ qpnq for all n ě 0. HINT: work backwards from
n “ i.



CHAPTER 2

The Real Numbers and Limits

2.1. The real numbers

What are the real numbers? You may think that you know the answer, but it
turns out that you need to be very careful about this. It took mathematicians a long
time to realize that this was even necessary. There are some sophisticated ways to
accomplish this, but we will get by with a more mundane approach. We will have
to slough over some fine points in order to get on with doing calculus.

We will define a real number to be an infinite decimal. For convenience, we
will (temporarily) write our real numbers in the form

x “ a0.a1a2a3 . . . where a0 P Z and ai P t0, 1, . . . , 9u for i ě 1.

This is a bit peculiar in the sense that we think of x as a (possibly negative) integer
a0 plus a positive infinite decimal number 0.a1a2a3 . . . . This will be convenient
for us, in that it treats all intervals rn, n ` 1s the same. Once we start doing our
real business, we make the fairly trivial change back to the common usage where
negative real numbers are written as the negative of a positive real number.

We immediately run into difficulty with this definition. Are 1.000 . . . and
0.999 . . . different real numbers? They are definitely different infinite decimals.
However, when we try to distinguish them, we find that they are infinitely close to
one another. Indeed, if we have any infinite decimal that ends in an infinite string
of 9’s, we use the formula for summing a geometric series to get

x “ a0.a1 . . . an999 . . .

“ a0.a1 . . . an ` 10´n
ÿ

kě1

9
10k

“ a0.a1 . . . an ` 10´n.

The rational number on the right hand side has a finite decimal expansion. If I
start at the point where an ‰ 9, this is y “ a0.a1 . . . an´1pan`1q000 . . . So it
make sense to identify x and y as the same real number. We can think of the
infinite decimal as a name for the real number, and certain numbers, those ending
in an infinite string of 0’s or 9’s, have two names. We call this an equivalence
relation where certain names are identified and considered as a single object. (See
Appendix A.1.)

10
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The set R of real numbers is an ordered field. It has a total order: a relation ă
on R such that

p1q For x, y P R, exactly one of x ă y, x “ y or y ă x holds.

p2q For x, y, z P R, if x ă y and y ă z, then x ă z.

And R is a field: there are operations of addition (x ` y) and multiplication (xy)
and special elements 0, 1 such that for x, y, z P R,

p3q x` y “ y ` x (addition is commutative).

p4q x` py ` zq “ pz ` yq ` z (addition is associative).

p5q x` 0 “ x (0 is the additive identity).

p6q For x P R, Dy P R called “´x” so that x` y “ 0 (additive inverse).

p7q xy “ yx (multiplication is commutative).

p8q xpyzq “ pxyqz (multiplication is associative).

p9q x1 “ x (1 is the multiplicative identity).

p10q If x ‰ 0, Dy P R called “x´1” so that xy “ 1 (multiplicative inverse).

p11q px` yqz “ xz ` yz (distributive law).

Finally there are some axioms that relate the order with the algebraic relations.

p12q If x ă y, then x` z ă y ` z.

p13q If 0 ă x and 0 ă y, then 0 ă xy.

It is a lot of work to check all of these properties, and we are not going to do it.
We will just discuss a few issues that arise.

Firstly, the order is easy to describe. If x ‰ y, then choose a decimal expansion
for each:

x “ a0.a1a2a3 . . . and y “ b0.b1b2b3 . . .

Since they differ, there is a first n ě 0 such that ai “ bi for 0 ď i ă n and an ‰ bn.
If an ă bn, we say that x ă y, and if an ą bn, we say y ă x. The rational numbers,
and even the numbers with a finite decimal expansion (you can check that these are
rational numbers of the form x “ p

2m5n ) are order dense in R, i.e., if x ă y, there is
a finite decimal number z such that x ă z ă y. Indeed, z “ b0.b1b2b3 . . . bn000 . . .
works unless y “ z. If an ď bn ´ 2, z “ b0.b1b2b3 . . . bn´1pbn´1q000 . . . works.
Lastly, if an “ bn ´ 1 and x “ a0.a1a2a3 . . . an999999999am . . . with am ă 9,
then

z “ a0.a1a2a3 . . . an999999999pam`1q000 . . .

works. Note that in this case, x cannot end in infinitely many 9’s because then

x “ a0.a1a2a3 . . . an999 ¨ ¨ ¨ “ a0.a1a2a3 . . . pan`1q000 ¨ ¨ ¨ “ y.
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Adding and multiplying infinite decimals is delicate. Considering computing
π ` e.

π “ 3.141592653589 . . .
e “ 2.718281828459 . . .

π ` e “ 5.85987448204?

We have to add from the left, but it is necessary to look ahead for carries from the
right. The red digits are the result of carries. The blue ? indicates that we need
more information to decide if the next digit is 8 or 9. You may have to look a long
way to be sure of the next digit. However we can say for sure that

5.859874482048 ă π ` e ă 5.859874482050.

So we know the answer is 5.859874482049˘ 10´12. In calculus, this information
is just as useful as knowing the digit for sure.

Multiplication is even more challenging to define than addition. Again we can
bound the product to any desired accuracy by using finite decimal approximations.
In Appendix A.2, we will explain a better way to approach this problem.

We will need to use the absolute value frequently. This is defined as

|x| “

#

x if x ě 0
´x if x ă 0

.

An easy but important fact is the triangle inequality

|x` y| ď |x| ` |y|.

This is an equality if x and y have the same sign, but is strict when xy ă 0. It can
be rearranged to provide the inequalies

|x| ě |x` y| ´ |y| and |x˘ y| ě
ˇ

ˇ|x| ´ |y|
ˇ

ˇ.

A frequent use of the absolute value is in describing an interval by tx : |x´a| ă ru.
This means that ´r ă x´ a ă r, which can be rewritten as a´ r ă x ă a` r.

2.2. Limits

What does it mean to say that a sequence an converges to L? Here are some
attempts:

(A) The larger n gets, the closer an gets to L.

(B) The larger n gets, the closer an gets to L; and it gets arbitrarily close.

(C) Eventually an “ L.

(D) Eventually an is close but not equal to L.

(E) Eventually every an is as close as we want to L.
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One problem with (A) is that it doesn’t say how close. So a sequence like
1
2 , 1,

2
3 , 1,

3
4 , 1,

4
5 , . . . gets closer and closer to π, but also closer and closer to e.

Statement (B) tries to fix that by specifying that it has to get very, very close. How-
ever it seems to suggest a monotone approach. What about 1

2 ,
3
2 ,

2
3 ,

5
4 ,

3
4 ,

9
8 .

4
5 ,

17
16 , . . .

This sequence approaches 1 from both sides, and the even terms are getting there a
lot faster than the odd terms. This sequence should be considered as convergent—
so the sequence can get close, back off a little bit, and get even closer. A sequence
can approach the limit from both sides, and doesn’t have to get closer at each step.
Statement (C) is way too strong. And (D) excludes a sequence like 1, 1, 1, 1, . . . or
1
2 , 1,

2
3 , 1,

3
4 , 1, . . . .

What about the sequence 1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

4
5 , . . . ? Does this converge to both 0

and 1, or to neither? What about 0, 1, 0, 1, 0, 1, . . . ? We say that these sequences
do not converge because they do not get close to any number L. The odd terms
are far from 1, and the even terms are far from 0. All are eventually bounded away
from anything else.

Statement (E) seems to paraphrase what we want. The trouble with it is just
that the meaning is not precisely articulated. In mathematics, we need to be able
to nail it down is quantitative terms. By “arbitrarily close’’, we use a small (but
unspecified) positive number ε ą 0. By ‘eventually’, we mean that there should be
some numberN so that we are close within ε for all n ě N . Putting this altogether
we get the following formulation.

2.2.1. DEFINITION. lim
nÑ8

an “ L means: for any ε ą 0, there is an N so that

for all n ě N , we have |an ´ L| ă ε. In symbols: @εą0DNPN@něN |an ´ L| ă ε.
A sequence which has a limit is said to converge.

We will refer to this as the ε–N definition of limit. To verify this definition in
examples, you should think of ε being given to you, and your job is to find the N
which makes the definition work.

2.2.2. EXAMPLE. Let an “

#

n
n`1 if n is odd.
1` 2´n if n is even.

Let’s show that L “ 1

is the limit. We are given ε ą 0, and we can find some N large enough so that
1
N ă ε. If n ě N is odd, then |an´1| “ 1

n ď
1
N ă ε; while if n ě N is even, then

|an ´ 1| “ 2´n ď 1
N ă ε. So this choice of N does the job. There is no advantage

to choosing N in an optimal way. Thus lim
nÑ8

an “ 1.

2.2.3. EXAMPLE. Let xn “
2n3 ` n2 ´ 137

5n3 ´ n´ 1
for n ě 1. We rewrite this as
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xn “
2` 1

n ´
137
n3

5´ 1
n2 ´

1
n3

.

This makes it clear that the numerator tends to 2 while the denominator tends to 5.
We need a quantitative estimate for the difference that is tractable and goes to 0.

|xn ´
2
5 | “

ˇ

ˇ

ˇ

2n3 ` n2 ´ 137
5n3 ´ n´ 1

´
2
5

ˇ

ˇ

ˇ

“
|p10n3 ` 5n2 ´ 685q ´ p10n3 ´ 2n´ 2q|

p5n3 ´ n´ 1q5

“
|7n2 ´ 687|

25n3 ´ 5n´ 5
ă

7n2

24n3 ă
1

3n
.

The second last inequality is valid provided that n ě 10. Now given ε ą 0, choose
an N ě maxt10, 1

3εu. Then N ě 10, so that the inequality is valid, and also
1

3N ă ε. Now if n ě N , we have |xn ´ 2
5 | ă

1
3n ă ε. This verifies the definition

of limit. Thus lim
nÑ8

xn “
2
5 .

2.2.4. EXAMPLE. Let an “ p´1qn for n ě 1; i.e., ´1, 1,´1, 1,´1, 1, . . . .
This sequence does not appear to converge. To establish this, we first need to
understand the negation of the limit definition. In order for the definition to fail for
a specific value of L, we only need to find a single ε ą 0 for which it fails, but we
then need to show that no choice of N will work. To that end, given any N , we
need to find some n ě N so that |an ´ L| ě ε. But we also need to consider all
values of L.

So take an arbitrary L P R. Consider two cases.
Case 1 L ě 0. Take ε “ 1. Given any N , choose an odd n ą N . Then

|an ´ L| “ L` 1 ě ε.

So no N works, and thus L is not the limit.
Case 2 L ă 0. Take ε “ 1. Given any N , choose an even n ą N . Then

|an ´ L| “ |L| ` 1 ą ε.

So no N works, and thus L is not the limit. Therefore this sequence has no limit.

2.2.5. EXAMPLE. If the limit exists, then it is unique. That is, if lim
nÑ8

an “ L

and lim
nÑ8

an “ M , then L “ M . Indeed, if M ‰ L, let ε “ |L ´ M |{2. If

lim
nÑ8

an “ L, use this ε and find N so that |an ´ L| ă ε for all n ě N . Then

|an ´M | ě |L´M | ´ |L´ an| ą |L´M | ´ |L´M |{2 “ ε.

Hence the sequence does not converge to M .
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2.2.6. SQUEEZE THEOREM. Suppose that an ď bn ď cn for n ě 1, and that
lim
nÑ8

an “ L “ lim
nÑ8

cn. Then lim
nÑ8

bn “ L.

PROOF. Let ε ą 0. Since lim
nÑ8

an “ L, there is an N1 P N so that for all

n ě N1, |an´L| ă ε. Similarly, since lim
nÑ8

cn “ L, there is an N2 P N so that for

all n ě N2, |cn ´ L| ă ε. Let N “ maxtN1, N2u. If n ě N , then

L´ ε ă an ď bn ď cn ă L` ε.

Therefore |bn ´ L| ă ε. So lim
nÑ8

bn “ L. ■

Here are some more examples.

2.2.7. EXAMPLE. Consider bn “
`

1 ` 1
n2

˘n for n ě 1. By the binomial
theorem,

bn “
n
ÿ

k“0

ˆ

n

k

˙

1
n2k “ 1`

n
ÿ

k“1

npn´ 1q . . . pn` 1´ kq
nk

1
k!nk

Therefore for n ě 2,

1 ď bn ď 1`
8
ÿ

k“1

1
nk
“ 1`

1
n

1´ 1
n

“ 1`
1

n´ 1
.

This is crude but sufficient for our purpose. Take bn “ 1 and cn “ 1 ` 1
n´1 for

n ě 2. They both converge to 1. So by the Squeeze Theorem, lim
nÑ8

bn “ 1.

2.2.8. EXAMPLE. Let a1 “
1
2 , a2 “

1
2` 1

2
, a3 “

1
2` 1

2` 1
2

, a4 “
1

2` 1
2` 1

2` 1
2

,

a5 “
1

2` 1
2` 1

2` 1
2` 1

2

, a6 “
1

2` 1
2` 1

2` 1
2` 1

2` 1
2

, a7 “
1

2` 1
2` 1

2` 1
2` 1

2` 1
2` 1

2` 1
2

, . . .

The limit is called a continued fraction. What we need is a formula for an. The
natural way to do this is to find a recursion formula which defines an`1 in terms of

an. Here we have a1 “
1
2 and an`1 “

1
2` an

for n ě 1.

First suppose that the limit L exists. Then we can compute

L “ lim
nÑ8

an`1 “ lim
nÑ8

1
2` an

“
1

2` L
.

Therefore L2 ` 2L ´ 1 “ 0. Thus L “ ´1 ˘
?

2. However L ě 0, so we get
L “

?
2 ´ 1. To check that this really is the limit, we must verify the definition.
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Note that L “ 1
2`L .

an`1 ´ L “
1

2` an
´

1
2` L

“
L´ an

p2` anqp2` Lq
.

This shows that an ´ L alternates in sign, and we can estimate

|an`1 ´ L| “
|an ´ L|

p2` anqp2` Lq
ă
|an ´ L|

4
.

Now
|a1 ´ L| “ |

1
2
´ p
?

2´ 1q| “
3
2
´
?

2 ă
1

10
.

Therefore

|an`1 ´ L| ă
|an ´ L|

4
ă
|an´1 ´ L|

42 ă
|a1 ´ L|

4n
ă

1
10

4´n.

We can now show that lim
nÑ8

an “
?

2´ 1.

Suppose that ε “ 1
2 10´100 because we want 100 decimals accuracy. We would

require n so that 1
10 4´n ă 1

2 10´100, or 1099 ă 22n´1. Use the simple fact that
210 “ 1024 ą 103. Then 1099 ă 2330, so that n “ 166 works.

2.2.9. EXAMPLE. Consider lim
nÑ8

5n100 ` 3 ¨ 2n ` 7n!
3n100 ` 2n ` 5n!

. The question here is

which term dominates as n Ñ 8, n100, 2n or n!? First, polynomials grow more

slowly than exponentials. The way to see this is to consider the ratio bn “
n100

2n
.

Observe that
bn`1

bn
“

´n` 1
n

¯100 1
2
ÝÑ

1
2
.

So eventually this ratio is decreasing almost by a factor of 2 each time, and thus
bn Ñ 0. This shows that 2n grows faster than n100. Let’s deal with n! in a similar

fashion. Set cn “
n!
2n

. Then

cn`1

cn
“
pn` 1q!
n!

2n

2n`1 “
n` 1

2
ÝÑ `8.

This shows that cn Ñ8, and hence n! grows more quickly that 2n. Therefore

lim
nÑ8

5n100 ` 3 ¨ 2n ` 7n!
3n100 ` 2n ` 5n!

“ lim
nÑ8

5n100{n!` 3 ¨ 2n{n!` 7
3n100{n!` 2n{n!` 5

“
7
5
.

We have already been using some rules of manipulation of limits which appear
to be true. We record these basic operations.

2.2.10. PROPOSITION. Suppose that lim
nÑ8

an “ L and lim
nÑ8

bn “ M , and let
r P R. Then



2.3 Limits 17

p1q lim
nÑ8

an ` bn “ L`M .

p2q lim
nÑ8

ran “ rL.

p3q lim
nÑ8

anbn “ LM .

p4q If M ‰ 0, then there is an N0 so that bn ‰ 0 for n ě N0, and

lim
nÑ8

an
bn
“

L

M
.

PROOF. I will prove (4) and leave the others as exercises. First take ε “ |M |{2.
Find an N0 so that for n ě N0, |bn ´M | ă |M |{2. Then

|bn| ě |M | ´ |M |{2 “ |M |{2.

In particular, bn ‰ 0. Calculate
L

M
´
an
bn
“
Lbn ´Man

Mbn
“
Lbn ´ LM ` LM ´Man

Mbn

“
Lpbn ´Mq `MpL´ anq

Mbn
.

Therefore for n ě N0,
ˇ

ˇ

ˇ

L

M
´
an
bn

ˇ

ˇ

ˇ
ď
|L| |bn ´M | ` |M | |L´ an|

|M | |M |{2

“
2|L|
M2 |bn ´M | `

2
|M |

|an ´ L|.

Now let ε ą 0 be given. Use the two limits to find N1 so that if n ě N1, then

|an ´ L| ă
ε|M |

4
; and choose N2 so that if n ě N2, then |bn ´M | ă

εM2

4|L| ` 1
.

Define N “ maxtN0, N1, N2u. If n ě N , then
ˇ

ˇ

ˇ

L

M
´
an
bn

ˇ

ˇ

ˇ
ă

2|L|
M2 |bn ´M | `

2
|M |

|an ´ L|

ă
2|L|
M2

εM2

4|L| ` 1
`

2
|M |

ε|M |

4
ă
ε

2
`
ε

2
“ ε.

Therefore lim
nÑ8

an
bn
“

L

M
. ■

2.2.11. PROPOSITION. Every convergent sequence is bounded.

PROOF. Suppose that lim
nÑ8

an “ L. Take ε “ 1 and find N so that if n ě N ,

then |an ´ L| ă 1. Then

M “ maxt|a1|, |a2, . . . , |aN´1|, |L| ` 1u

is a bound for tan : n ě 1u. ■
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2.3. Least upper bound Principle

2.3.1. DEFINITION. If ∅ ‰ S Ă R, say S is bounded above if it has an upper
bound R P R, meaning that s ď R for all s P S. A number M is the least upper
bound or supremum of S if M is an upper bound for S and whenever R is an upper
bound, then M ď R. We write M “ supS.

Similarly S is bounded below if there is some R P R so that R ď s for all
s P S. The greatest lower bound or infimum of S is the lower bound L which is
largest among all lower bounds. We write L “ infS.

If S has no upper bound, we write supS “ `8; and if it has no lower bound,
we write infS “ ´8.

2.3.2. EXAMPLES.

(1) If our universe is Q, the set of rational numbers, then some sets do not have
a supremum. Consider A “ tx P Q : x2 ă 2u. It is not hard to show that
supA “

?
2. However since

?
2 is not rational, the upper bounds in Q are all

strictly bigger than
?

2. Then because Q is order dense in R, if r P Q is an upper
bound, we can find another s P Q such that

?
2 ă s ă r. Hence there is no best

choice. This is an important difference between Q and R.

(2) A “ t1,´e, 6,
?

91,´3.5, πu. Then supA “
?

91 and infA “ ´3.5.

(3) B “ t2, 4, 6, 8, . . . u “ 2N. Then supB “ `8 and infB “ 2.

(4) C ´ tp´1qn n
n`1 : n ě 1u. Then supC “ 1 and infC “ ´1. Neither ˘1

belongs to C.

2.3.3. EXAMPLE.
D “ tsinn : n P Nu. Then 1 is an upper bound and´1 is a lower bound. To figure
out the sup and inf, we use the pigeonhole principle. Let ε ą 0.

The angle n (always in radians because this is calculus!!) only matters modulo
integer multiples of 2π. So for each n, let θpnq “ n ´

X

n
2π

\

2π P r0, 2πq. No two
are the same because if 2π divides m ´ n, say m ´ n “ 2πk, then π “ m´n

2k is
rational. But π is irrational, so this doesn’t happen. (See Appendix A.5.)

Divide r0, 2πq into N intervals of length less than ε. We have to take N ą

2π{ε. Now tθpnq : n ě 1u is an infinite sequence. There are infinitely many
θpnq’s in N intervals. Hence there are two in one interval, say |θpnq ´ θpmq| ă ε
for 1 ď n ă m. then

θpm´ nq “

#

θpm´ nq P p0, εq if θpmq ą θpnq

2π ` θpm´ nq P p2π ´ ε, 2πq if θpmq ă θpnq
.
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Now sin π
2 “ 1. Suppose that θpm ´ nq “ α P p0, εq. Let k “

X

π
2α

\

and look at
θpkm ´ knq. This belongs to the interval

`

π
2 ´ ε, π2

˘

, say θpkm ´ knq “ π
2 ´ β

for 0 ă β ă ε. If, on the other hand, if θpm ´ nq “ 2π ´ α P p2π ´ ε, 2πq, let
k “

P 3π
2α

T

and look at θpkm ´ knq. Again, θpkm ´ knq “ π
2 ´ β for 0 ă β ă ε.

Therefore

sinpkm´ knq “ sinpπ2 ´ βq “ cosβ ą 1´ β2 ą 1´ ε2.

(We will prove this estimate for cosx later in the course.) Since ε ą 0 was arbitrary,
we obtain that supD “ 1. Similarly, infD “ ´1.

Now we will establish a very important property of the real numbers.

2.3.4. LEAST UPPER BOUND PRINCIPLE. Every non-empty set S Ă R
which is bounded above has a least upper bound. Every non-empty set S Ă R
which is bounded below has a greatest lower bound.

PROOF. We prove the second statement.
Assume that S has a lower bound M , and we can take M to be an integer.

Let s P S, and let k “ rs ´M s. Consider M,M ` 1,M ` 2, . . . ,M ` k. Since
M`k ě s, there is a largest integer in this list, say a0 so that a0 is a lower bound for
S and a0`1 is not. Choose s0 P S so that s0 ă a0`1. This is a ‘witness’ to the fact
that a0 ` 1 is not a lower bound. Now consider the numbers a0.0, a0.1, . . . , a0.9.
Pick the largest value a1 P t0, 1, . . . , 9u so that a0.a1 is a lower bound. Select a
witness s1 P S so that s1 ă a0.a1 `

1
10 .

Repeat this procedure recursively. Suppose that a0.a1a2 . . . an is a lower bound
for S, and there is an sn P S so that sn ă a0.a1a2 . . . an ` 10´n. Consider
a0.a1a2 . . . an0, . . . , a0.a1a2 . . . an9 and pick the largest an`1 P t0, 1, . . . , 9u so
that a0.a1a2 . . . anan`1 is a lower bound. Then select a witness sn`1 P S so that
sn`1 ă a0.a1a2 . . . anan`1 ` 10´n´1 to show that this is not a lower bound.

Let L “ a0.a1a2a3 . . . . If s P S, then s ě a0.a1a2 . . . an for all n ě 0.
Therefore s ě L. If L ă b, then there is a finite decimal so that

L ă c “ c0.c1c2 . . . cn ă b.

Thus

a0.a1a2 . . . an ď L ď sn ă a0.a1a2 . . . an ` 10´n ď c ă b.

The witness sn shows that b is not a lower bound. Therefore L is the greatest lower
bound.

For the first part, we observe that supS “ ´ supp´Sq. ■
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2.4. Monotone Sequences

2.4.1. DEFINITION. Say that panqně1 is a increasing sequence if an ď an`1
for all n ě 1; and say that it is a strictly increasing sequence if an ă an`1 for all
n ě 1. Sometimes we say that panq is monotone increasing for emphasis. Similarly
we define decreasing sequence and strictly decreasing sequence.

2.4.2. MONOTONE CONVERGENCE THEOREM. If panq is an increasing
sequence which is bounded above, then panq converges, i.e., lim

nÑ8
an “ L exists. If

panq is a decreasing sequence which is bounded below, then panq converges.

PROOF. Suppose M is an upper bound for S “ tan : n ě 1u. Let L “ supS,
which exists by the Least Upper Bound Principle. We claim that lim

nÑ8
an “ L.

Let ε ą 0. Then L´ ε is not a lower bound for S. Hence there is an N so that
L´ ε ă aN . For n ě N , L´ ε ă aN ď an ď L. Therefore |L´ an| ă ε. Thus
lim
nÑ8

an “ L.

If panq is decreasing, then p´anq is increasing with limit supt´an : n ě 1u.
Therefore panq has limit L “ inftan : n ě 1u. ■

2.4.3. EXAMPLE. Let a1 “ 1 and an`1 “
a

2`
?
an for n ě 1.

Claim: an is increasing. Indeed, a2 “
?

3 ą a1. Proceed by induction. If
an ą an´1, then

an`1 “

b

2`
?
an ą

b

2`
?
an´1 “ an.

Hence by induction, an`1 ą an for all n ě 1.
Claim: an ď 2 for all n ě 1. Again this is true for a1 “ 1. If an ă 2, then

an`1 “
a

2`
?
an ă

a

2`
?

2 ă 2.
Therefore panq is monotone increasing and bounded above. By the Monotone

Convergence Theorem (MCT), L “ lim
nÑ8

an exists. Hence

L “ lim
nÑ8

an`1 ““ lim
nÑ8

b

2`
?
an “

b

2`
?
L

So L2 “ 2`
?
L; whence pL2 ´ 2q2 “ L, or

0 “ L4 ´ 4L2 ´ L` 4 “ pL´ 1qpL3 ` L2 ´ 3L´ 4q.

NowL ě a2 “
?

3, soL ‰ 1. ThusL is a root of the cubic ppxq “ x3`x2´3x´4.
Now p1pxq “ 3x2 ` 2x´ 3 “ 3px2 ´ 1q ` 2x ą 0 on r1, 2s. Thus p is strictly

increasing and pp1q “ ´5 and pp2q “ 2. The curve must cross the axis, and it has
exactly one root between 1 and 2. There is a formula for cubics, though it is not
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very enlightening:

L “
1
3

˜

3

d

79`
?

2241
2

`
3

d

79´
?

2241
2

´ 1

¸

« 1.831177.

2.4.4. EXAMPLE. Let a1 “ 2 and an`1 “
1` a2

n

2
for n ě 1. First we show

that panq is increasing. Now a2 “
5
2 ą 2 “ a1. If an´1 ă an, then

an “
1` a2

n´1

2
ă

1` a2
n

2
“ an`1.

Thus the sequence is increasing by induction.
Suppose that L “ lim

nÑ8
an. Then

L “ lim
nÑ8

an`1 “ lim
nÑ8

1` a2
n

2
“

1` L2

2
.

Therefore 0 “ L2´ 2L` 1 “ pL´ 1q2; so that L “ 1. But this is absurd, because
an ě 2. What went wrong?

The problem is that this sequence isn’t bounded, and thus does not converge.
In fact, an ą n for n ě 1. We have seen this for n “ 1, 2; and a3 “

29
8 ą 3.

Suppose that n ě 3 and an ą n. Then an`1 “
1` a2

n

2
ą

1` n2

2
; and

1` n2

2
´ pn` 1q “

1
2
pn2 ´ 2n´ 1q ą

1
2
npn´ 3q ě 0.

By induction, an ą n for all n, and the sequence is unbounded.

It is convenient to be able to describe the divergence to infinity precisely.

2.4.5. DEFINITION. If panqně1 is a sequence, then lim
nÑ8

an “ `8 means that
for allR ą 0, there is an integerN so that for n ě N , an ą R. And lim

nÑ8
an “ ´8

is defined analogously.

The notion of being close to a limit value L is replaced by eventually being
greater than any large number R. In our example above, given R, we just choose
N so that N ě R and for n ě N , an ą n ą R.

2.5. Subsequences

2.5.1. DEFINITION. A subsequence of panqně1 is a sequence paniqiě1 where
n1 ă n2 ă n3 ă . . . .
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The following proposition is elementary.

2.5.2. PROPOSITION. Suppose that lim
nÑ8

an “ L and that paniqiě1 is a subse-

quence of panqně1. Then lim
iÑ8

ani “ L.

PROOF. Let ε ą 0 and select an N so that |an ´ L| ă ε for n ě N . Then if
i ě N , then ni ě i ě N , so |ani ´ L| ă ε. Thus lim

iÑ8
ani “ L. ■

We showed in Proposition 2.2.11 the elementary fact that convergent sequences
are bounded. The following result is deep, and deals with a partial converse. It has
a very interesting proof.

2.5.3. BOLZANO-WEIERSTRASS THEOREM. Every bounded sequence
has a convergent subsequence.

PROOF. Suppose that |an| ď B for n ě 1. Let I0 “ r´B,Bs, and split this
interval into two halves, I0´ “ r´B, 0s and I0` “ r0, Bs. One (and possibly
both) of these two intervals must contain infinitely many terms of the sequence.
Let I1 “ rb1, c1s be such an interval, and pick n1 so that an1 P I1. Split I1 into
two halves I1´ “

“

b1,
b1`c1

2

‰

and I1` “
“

b1`c1
2 , c1

‰

. Again, at least one of these
intervals, say I2 “ rb2, c2s, contains infinitely many terms of the sequence. Pick an
n2 ą n1 so that an2 P I2.

We repeat this procedure recursively. Suppose that we have a nested sequence
of intervals I1 Ą I2 Ą ¨ ¨ ¨ Ą Im “ rbm, cms so that the length |Ik| “ 2´k|I0| for
1 ď k ď m so that Im contains infinitely many terms of the sequence, and that
we have selected n1 ă n2 ă ¨ ¨ ¨ ă nm so that ank

P Ik for 1 ď k ď m. Split
Im into two halves Im´ “

“

bm,
bm`cm

2

‰

and Im` “
“

bm`cm
2 , cm

‰

. Pick one, say
Im`1 “ rbm`1, cm`1s, which contains infinitely many elements of the sequence.
Then select nm`1 ą nm so that anm`1 P Im`1.

Our subsequence is paniqiě1. Observe that because of the construction of the
nested intervals Im, we have that

b1 ď b2 ď ¨ ¨ ¨ ď bm ď anm ď cm ď ¨ ¨ ¨ ď c2 ď c1

and cm ´ bm “ 2´m|I0| “ 21´mB. The sequence pbmq is increasing and bounded
above by c1. By the MCT, lim

mÑ8
bm “ L exists. Also pcmq is a decreasing sequence

bounded below by b1, and thus by MCT, lim
mÑ8

cm “M exists. Moreover

M ´ L “ lim
mÑ8

cm ´ bm “ 0.

so M “ L. Finally lim
iÑ8

ani “ L follows from the Squeeze Theorem. ■
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2.5.4. EXAMPLE. In Example 2.3.3, we considered the sequence psinnq. What
are the possible limits of subsequences of this? The way the argument worked is
that we found terms in this sequence approaching 1 by approximating the angle π

2
by θpniq for various integers ni. There was nothing special about π

2 except that it
was where sinx takes the value 1. We can do the same thing for any angle. Thus
given L P r´1, 1s, we can find positive integers mi (not necessarily increasing) so
that sinmi converges to L.

To select an increasing sequence, look back at the construction. The number

km´ kn ě k “
Y π

2α

]

ą

Y π

2ε

]

.

This is large when ε is very small. So what we do is to choose the sequence recur-
sively, and if n1 ă ¨ ¨ ¨ ă nk are defined, we select ε so small that the lower bound
is greater than nk. Then the terms that we choose will be increasing. Thus every
value in r´1, 1s is a limit of a subsequence of psinnq.

2.6. Completeness

Given a sequence panq, is it possible to decide if it will converge without iden-
tifying a limit? The answer is crucial to explaining why the real line has no “holes”
in it, while the rational numbers has many. A sequence like Example 2.2.9 is a
sequence of rational numbers with an irrational limit,

?
2 ´ 1. How do we know

that there aren’t sequences of real numbers converging to something in a larger uni-
verse? The answer is the notion of completeness, which relies on a good answer to
the question just posed.

2.6.1. PROPOSITION. If lim
nÑ8

an “ L and ε ą 0, there is an integer N so that

for all N ď m ď n, |an ´ am| ă ε.

PROOF. Use ε
2 is the definition of limit, and find N so that for n ě N , we have

|an ´ L| ă
ε
2 . Then if N ď m ď n,

|an ´ am| ď |an ´ L| ` |L´ am| ă
ε

2
`
ε

2
“ ε. ■

2.6.2. DEFINITION. A sequence panq is a Cauchy sequence if for every ε ą 0,
there is an integer N so that for all N ď m ď n, |an ´ am| ă ε.

We can use essentially the same proof as for Proposition 2.2.11 to show that
Cauchy sequences are bounded.

2.6.3. PROPOSITION. Every Cauchy sequence is bounded.
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PROOF. Suppose that panq is a Cauchy sequence. Take ε “ 1 and find N so
that for all N ď m ď n, |an ´ am| ă ε. Let

M “ maxt|a1|, |a2, . . . , |aN´1|, |aN | ` 1u.

If n ě N , then |an| ď |aN | ` |an ´ aN | ă |aN | ` 1. ■

Like convergent sequences, Cauchy sequences don’t have multiple limit points.

2.6.4. LEMMA. Let panq be a Cauchy sequence. If there is a convergent subse-
quence lim

iÑ8
ani “ L, then lim

nÑ8
an “ L.

PROOF. Let ε ą 0 be given. Using ε
2 , select N so that |an ´ am| ă

ε
2 for all

N ď m ď n. Using the limit, find an integer I so that if i ě I , then |ani ´L| ă
ε
2 .

Select some i0 ě I so that ni0 ě N . Then if n ě N ,

|an ´ L| ď |an ´ ani0
| ` |ani0

´ L| ă
ε

2
`
ε

2
“ ε.

Therefore lim
nÑ8

an “ L. ■

2.6.5. DEFINITION. A set S Ď R is complete if every Cauchy sequence in S
converges to a point in S.

2.6.6. COMPLETENESS THEOREM. R is complete.

PROOF. Let panq be a Cauchy sequence. By Proposition 2.6.3, it is bounded.
By the Bolzano-Weierstrass Theorem, there is a convergent subsequence paniq.
Then by Lemma 2.6.4, the whole sequence converges. Therefore R is complete. ■

2.6.7. EXAMPLE. Let a0 “ 0 and an “
2

3an ` 5
for n ě 0. The first few terms

are 0, 2
5 ,

10
31 ,

62
185 ,

370
1111 , . . . which is approximately

0, 0.4, 0.32258, 0.335135, 0.3330333, . . .

We will show that panqně1 is a Cauchy sequence. First

an`1 ´ an “
2

3an ` 5
´

2
3an´1 ` 5

“
6pan´1 ´ anq

p3an ` 5qp3an´1 ` 5q
.

Since it is clear that an ě 0 for all n,

|an`1 ´ an| ă
6|an ´ an´1|

25
ă
|an ´ an´1|

4
.

Therefore,

|an`1 ´ an| ă
|an´1 ´ an´2|

42 ă
|an´2 ´ an´3|

43 ă
|a1 ´ a0|

4n
.
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Now, since a1 ´ a0 “
2
5 , if N ď m ă n,

|an ´ am| “
ˇ

ˇ

ˇ

n´1
ÿ

i“m

ai`1 ´ ai

ˇ

ˇ

ˇ
ď

n´1
ÿ

i“m

|ai`1 ´ ai|

ă
2
5

n´1
ÿ

i“m

4´i ă
2
5

4´m 1
1´ 1

4

“
8
15

4´m ď
8
15

4´N .

Given ε ą 0, we choose N so large that 8
15 4´N ă ε, and we see that panq is

Cauchy. By the Completeness Theorem, L “ lim
nÑ8

an exists. Therefore,

L “ lim
nÑ8

an`1 “ lim
nÑ8

2
3an ` 5

“
2

3L` 5
.

Thus 0 “ 3L2 ` 5L ´ 2 “ p3L ´ 1qpL ` 2q. So L P t 1
3 ,´2u and we know that

L ě 0. Therefore lim
nÑ8

an “
1
3 .

We have established a number of results which all say something rather similar.
In particular, we started by establishing the Least Upper Bound Principle. This was
used to derive the Monotone Convergence Theorem. Then, we used MCT to prove
the Bolzano-Weierstrass Theorem. And finally we used the Bolzano-Weierstrass
Theorem to prove Completeness of R. Let’s go full circle, and use the Complete-
ness Theorem to prove the Least Upper Bound Principle. This will show that each
of these results is an equivalent formulation of completeness.

Suppose that S Ă R is non-empty and bounded above. To get started suppose
that s0 P S and s ď M for all s P S. Let L “ ps0 `Mq{2. If L is not an upper
bound for S, pick s1 P S with s1 ą L and setM1 “M . Otherwise, if L is an upper
bound, set M1 “ L and s1 “ s0. Either way, M1 ´ s1 ď

1
2pM ´ s0q. Repeat this

procedure recursively to construct an increasing sequence sn in S and a decreasing
sequence Mn of upper bounds for S so that lim

nÑ8
Mn´ sn “ 0. The sequence psnq

is Cauchy because if ε ą 0, select N so that MN ´ sN ă ε. Then if N ď m ď n,
then

sN ď sm ď sn ďMN ă sN ` ε.

Therefore |sn ´ sm| ă ε. By the Completeness Theorem, L “ lim
nÑ8

sn exists.

Moreover lim
nÑ8

Mn “ lim
nÑ8

sn ` pMn ´ snq “ L. Thus no number smaller than L
is an upper bound, but L is an upper bound; and so it is the supremum of S.

2.7. Some Topology

It is convenient to introduce some notation that is used to describe two special
classes of sets of real numbers.
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2.7.1. DEFINITION. A subset U of R is open if for each x P U , there is an
r ą 0 so that px´ r, x` rq Ă U . In particular, pa, bq “ tx P R : a ă x ă bu is an
open interval.

A subset A of R is closed if it contains all of its limit points; i.e., if an P A and
lim
nÑ8

an “ b, then b P A. In particular, ra, bs “ tx P R : a ď x ď bu is a closed
interval.

2.7.2. EXAMPLES.
(1) An open interval pa, bq is open. If x P pa, bq, then r “ mintx´ a, b´ xu ą 0
and px´ r, x` rq Ă pa, bq.

(2) A closed interval ra, bs is closed. For if xn P ra, bs and lim
nÑ8

xn “ y, then since
a ď xn ď b, we get a ď y ď b.

(3) A union of open sets if open: if Un are open, then U “
Ť

ně1 Un is open. For
if x P U , there is some n so that x P Un. Hence there is some r ą 0 so that
px´ r, x` rq Ă Un Ă U .

(4) The intersection of two open sets is open: if U and V are open, and x P U XV ,
then there are r1, r2 ą 0 so that px ´ r1, x ` r1q Ă U and px ´ r2, x ` r2q Ă V .
Take r “ mintr1, r2u and note that px´ r, x` rq Ă U X V .

2.7.3. PROPOSITION. A set U is open if and only if U c “ RzU is closed.

PROOF. Suppose that U is open, and an P U c and lim
nÑ8

an “ b. If b P U , then

for some r ą 0, pb ´ r, b ` rq Ă U . But then there is an N so that |an ´ b| ă r
for all n ě N , and they all belong to U , which is false. Thus b P U c; whence U c is
closed.

Conversely, suppose thatA is a closed set. Let x P Ac. IfAXpx´r, x`rq ‰ ∅
for all r ą 0, then taking r “ 1

n , we can pick an P A so that |x ´ an| ă
1
n . Then

lim
nÑ8

an “ x. Since A is closed, x P A, a contradiction. Thus for some r ą 0,

px´ r, x` rq Ă Ac. So Ac is open. ■

2.7.4. PROPOSITION. A subset S Ă R is complete if and only if it is closed.

PROOF. Suppose that S is complete, and sn P S so that the sequence psnqně1
converges in R, say lim

nÑ8
sn “ b. Then psnq is a Cauchy sequence in S. Therefore

the limit b belongs to S. Thus S is closed.
Conversely, suppose that S is closed. Let psnq be a Cauchy sequence in S.

Since R is complete, lim
nÑ8

sn “ b exists in R. Then because S is closed, b P S.
Thus S is complete. ■
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Exercises for Chapter 2

1. For the following sequences, determine the limit if it exists, or prove that it
does not converge using the definition of limit

(a)
p´1qn

?
n cosn

n2 ` 1
.

(b) sin
´nπ

3

¯

.

(c)
2100`5n

e4n´10 , n ě 1.

(d) p´1q
npn´1qpn´2qpn´3q

8 , n ě 1.

2. (a) Let an “
?
n2 ` 3n´ 3´ n for n ě 1. Find the limit.

(b) Using ε “ 1
2 10´20, find an N that works in the limit definition.

3. Suppose that lim
nÑ8

an “ L. Show that lim
nÑ8

a1 ` a2 ` ¨ ¨ ¨ ` an
n

“ L.

4. Let x0 “ 3 and xn`1 “ pxn `
8
xn
q{2 for n ě 0.

(a) Assume a limit exists and figure out what L must be.
(b) Set εn “ xn ´ L. Show that 0 ă εn`1 ă ε2

n{5.
(c) Hence show that the limit exists.

5. Let x0 “ 0 and xn`1 “
?

15´ 2xn for n ě 0.
(a) Figure out what the limit L should be.
(b) Show by induction that 2 ď xn ď 4 for n ě 1.
(c) Define εn “ xn´L. Find a formula for εn`1 in terms of εn. Show that this

alternates in sign. Hence prove that lim
nÑ8

xn “ L.

6. Let a0 and a1 be positive numbers, and set an`2 “
?
an`1 `

?
an for n ě 0.

(a) Show that here is some N so that an ě 1 for all n ě N .
(b) Let εn “ |an ´ 4|. Show that εn`2 ď pεn`1 ` εnq{3 for n ě N .
(c) Hence prove that this sequence converges.

7. Give a careful ε–N proof that: if panq and pbnq are sequences of real numbers
so that lim

nÑ8
an “ L and lim

nÑ8
bn “M , then lim

nÑ8
anbn “ LM.

8. Let an “ n
?

3n ` 5n for n ě 1.
(a) Prove that this sequence is monotone decreasing and bounded below. What

can you conclude?
(b) Evaluate lim

nÑ8
an.

9. A series
8
ř

n“1
an is said to converge if the sequence sn “

n
ř

k“1
ak, for n ě 1,

converges. Suppose that an ě 0 for all n ě 1. Prove that the following are all
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equivalent:

(i)
ř8

n“1 an converges.
(ii) the sequence sn “

řn
k“1 ak is bounded above.

(iii) for all ε ą 0, there is an N so that
řm

k“N`1 ak ă ε for all m ą N .

10. Suppose that pxnq8n“1 is a sequence such that
ř8

n“1 |xn`1 ´ xn| converges.
Prove that pxnq is a Cauchy sequence.

11. Let S “ tx P R : x ‰ 0, 0 ă sinp 1
xq ă

1
2u. Find supS and infS.

12. Suppose that panq8n“1 is a sequence such that

a2n´1 ď a2n`1 ď a2n`2 ď a2n for all n ě 1

Prove that the sequence converges if and only if lim
nÑ8

an ´ an`1 “ 0.

13. (a) Find lim
hÑ0

3
?

1` h´ 1
h

. HINT: rationalize the numerator.

(b) (i) Show that if h ą ´1 and h ‰ 0, then 3
?

1` h ă 1` h
3 .

(ii) For any 0 ă ε ă 1
8 , show that if 0 ă h ă 4ε, then

1` p
1
3
´ εqh ă 3

?
1` h.

(iii) For any 0 ă ε ă 1
8 , show that if ´4ε ă h ă 0, then

1` p
1
3
` εqh ă 3

?
1` h.

(c) Use (b) to provide a different proof of (a).

14. Let x0 “ 0 and xn`1 “
?

5´ 2xn for n ě 0.
(a) Compute x1, . . . , x10 on your calculator or computer.
(b) Prove that the even terms are increasing and bounded above by all the odd

terms, which are decreasing. HINT: fpxq “
?

5´ 2x is decreasing.
(c) Get a bound for |xn`1 ´ xn| in terms of |xn ´ xn´1| for n ě 4.
(d) Prove that lim

nÑ8
xn exists, and evaluate this limit.

15. Find a sequence of rational numbers panq so that a real number L is a limit of
a subsequence of panq if and only if e ď |L| ď π.



CHAPTER 3

Functions

We briefly review some the of terminology regarding functions. A function is a
map f : X Ñ Y from a set X into a set Y that assigns exactly one value y “ fpxq
for each x P X . The domain of f is the set on which it is defined, and the target
space Y is the codomain. The range of f is the set ty “ fpxq : x P Xu.

A function is one-to-one or injective if x1 ‰ x2 P X implies fpx1q ‰ fpx2q.
A function is onto or surjective if for each y P Y , there is some x P X so that
fpxq “ y. A function is one-to-one and onto or bijective if it is both injective and
surjective.

When the range is a field like R, say f, g : X Ñ R, we can add, subtract and
multiply functions: pf ˘ gqpxq “ fpxq ˘ gpxq and pfgqpxq “ fpxqgpxq. We can
also multiply them by a real scalar, say t P R: ptfqpxq “ tfpxq. If gpxq ‰ 0 for all

x P X , we can divide: pf{gqpxq “
fpxq

gpxq
.

If f : X Ñ Y and g : Y Ñ Z, the composition g ˝ f : X Ñ Z is defined by
g ˝ fpxq “ gpfpxqq. If f : X Ñ Y is a bijection, then there is a unique function
g : Y Ñ X so that g ˝ fpxq “ idXpxq “ x for all x P X , namely, for each y P Y ,
there is a unique x P X so that fpxq “ y; and we set gpyq “ x. This is called the
inverse function of f , and is denoted f´1. We also have f ˝ f´1 “ idY , so that f
is also the inverse of f´1. We will discuss inverse functions in more detail later.

3.1. Limits of functions

We want to extend our definition of limits of sequences to limits of functions.

3.1.1. DEFINITION. Suppose that a real valued function f is defined on an
interval pa ´ d, a ` dqztau for some d ą 0. The limit of a function f as x Ñ a
is L, written lim

xÑa
fpxq “ L, means that for all ε ą 0, there is a δ ą 0 so that if

0 ă |x´ a| ă δ, then |fpxq ´ L| ă ε.
In symbols, @εą0Dδą0@0ă|x´a|ăδ |fpxq ´ L| ă ε.

3.1.2. REMARKS. (1) f does not need to be defined at x “ a, and in any case,
the value fpaq has no bearing on the value of the limit.

29
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(2) When f is defined on pa, a ` dq, we can talk about the limit from the right.
We write lim

xÑa`
fpxq “ L to mean: for all ε ą 0, there is a δ ą 0 so that if

a ă x ă a ` δ, then |fpxq ´ L| ă ε. Similarly, we define limit from the left,
lim

xÑa´
fpxq “ L, if for all ε ą 0, there is a δ ą 0 so that if a ´ δ ă x ă a, then

|fpxq ´ L| ă ε.

3.1.3. EXAMPLE. lim
xÑ3

?
x “

?
3. To prove this, estimate the difference

|
?
x´

?
3| “

ˇ

ˇ

ˇ

px´
?

3qpx`
?

3q
x`

?
3

ˇ

ˇ

ˇ
“

|x´ 3|
?
x`

?
3
.

Make an initial choice to control the denominator: if |x´ 3| ă 1, then 2 ă x ă 4
and so

1
?
x`

?
3
ă

1
?

2`
?

3
ă

1
3
.

Therefore |
?
x ´

?
3| ă

|x´ 3|
3

. Given ε ą 0, pick δ “ mint3ε, 1u. Then if

0 ă |x ´ 3| ă δ, we get |
?
x ´

?
3| ă

|x´ 3|
3

ă ε. The first inequality requires

δ ď 1 and the second requires δ ď 3ε. Hence lim
xÑ3

?
x “

?
3.

3.1.4. EXAMPLE. Let fpxq “

#

1 if x P Q
0 if x R Q

. Then lim
xÑ0

fpxq does not exist.

Take any value L, and let ε “ 1
2 .

Case 1. Suppose that L ď 1
2 . For any δ ą 0, pick n P N so that 0 ă 1

n ă δ.
Then |fp 1

nq ´ L| “ |1´ L| ě
1
2 “ ε. So L is not the limit.

Case 2. Suppose that L ě 1
2 . Given δ ą 0, choose n P N so that 0 ă π

n ă δ.
Then |fpπnq ´ L| “ |L| ě 1

2 “ ε. Thus L is not the limit. So the limit does not
exist.

Let gpxq “ xfpxq “

#

x if x P Q
0 if x R Q.

Then 0 ď gpxq ď x. Then lim
xÑ0

0 “ 0 “

lim
xÑ0

x. Therefore lim
xÑ0

gpxq “ 0 by the function version of the Squeeze Theorem.

3.1.5. SQUEEZE THEOREM FOR FUNCTIONS. Suppose that f, g, h are
functions on ra ´ d, a ` dsztau such that fpxq ď gpxq ď hpxq and lim

xÑa
fpxq “

L “ lim
xÑa

hpxq. Then lim
xÑa

gpxq “ L.

The following analogue of Proposition 2.2.10 is established in the same way as
for sequences. We leave the proofs as an exercise.
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3.1.6. PROPOSITION. Suppose that f and g are functions on pa ´ d, a ` dq
such that lim

xÑa
fpxq “ L and lim

xÑa
gpxq “M , and let r P R. Then

p1q lim
xÑa

fpxq ` gpxq “ L`M .

p2q lim
xÑa

rfpxq “ rL.

p3q lim
xÑa

fpxqgpxq “ LM .

p4q If M ‰ 0, then there is a δ0 ą 0 so that gpxq ‰ 0 for 0 ă |x´ a| ă δ0;
and

lim
xÑa

fpxq

gpxq
“

L

M
.

3.1.7. EXAMPLE. Consider lim
θÑ0

sin θ
θ

. Remember that we are using radians.

Note that if ´π
2 ă θ ă 0, then

sin θ
θ

“
sin |θ|
|θ|

because this is an even function. So

it is enough to work with 0 ă θ ă π
2 . Draw a circle of radius 1, centre O, and mark

the points A and B on rays separated by angle θ. Draw the lines perpendicular to
OA throughA andB, and mark pointsC andD as in the figure. Note that segments













































O

B

C

D A

FIGURE 3.1. Limit of sinx
x

OA and OB have length 1, while BD has length sin θ, and AC has length tan θ.
Observe that

△OAB Ă sector OAB Ă △OAD.
Thus their areas compare:

1
2

sin θ ď
1
2
θ 12 ď

1
2

tan θ “
sin θ

2 cos θ
.

Rearranging we get

cos θ ď
sin θ
θ
ď 1.
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In particular, 0 ă sin θ ă θ if 0 ă θ ă π
2 . Therefore if 0 ă θ ă 1,

cos θ “
a

1´ sin2 θ ě
a

1´ θ2 ě 1´ θ2.

Thus 1´ θ2 ď
sin θ
θ
ď 1. By the Squeeze Theorem, lim

θÑ0

sin θ
θ
“ 1.

Another important limit that is a consequence of this is

lim
xÑ0

1´ cosx
x2 “ lim

xÑ0

1´ p1´ 2 sin2 x
2 q

x2 “ lim
xÑ0

2 sin2 x
2

4px2 q
2 “

1
2

We can use these two limits to compute the derivative of the sinx and cosx
functions. We will not study the derivative formally until Chapter 5. However most
students in this course have seen the derivative in their high school calculus course.
So we will make use of that knowledge until we get to the theory later on.

d

dx
psinxq

ˇ

ˇ

x“a
“ lim

hÑ0

sinpa` hq ´ sin a
h

“ lim
hÑ0

sin a cosh` cos a sinh´ sin a
h

“ lim
hÑ0

sin a
pcosh´ 1q

h
` cos a

sinh
h

“ sin ap0q ` cos ap1q “ cos a.

and
d

dx
pcosxq

ˇ

ˇ

x“a
“ lim

hÑ0

cospa` hq ´ cos a
h

“ lim
hÑ0

cos a cosh´ sin a sinh´ cos a
h

“ lim
hÑ0

cos a
pcosh´ 1q

h
´ sin a

sinh
h

“ cos ap0q ´ sin ap1q “ ´ sin a.

Thus
d

dx
psinxq “ cosx and

d

dx
pcosxq “ ´ sinx.

Now I want to graph the function fpxq “
sinx
x

for x ‰ 0. Before we draw any-
thing, I will collect some information. First we know that sinx oscillates between
˘1 with period 2π. Therefore fpxq oscillates between the graphs of y “ ˘ 1

x . Since
sinx has zeros at all integer multiples of π, πZ, fpxq “ 0 at

␣

nπ : n P Zzt0u
(

;
but as we appraoch x “ 0, we have lim

xÑ0
fpxq “ 1. Also fpxq touches the curves

y “ ˘ 1
x at alternate odd multiples of π

2 . The function f is even, meaning that

fp´xq “
sinp´xq
´x

“
sinx
x

“ fpxq.
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It won’t help much to solve for f 1pxq “ 0 because we know that when the
curve touches y “ ˘ 1

x , it will be tangent there, but won’t have derivative zero.
Thinking of x ą 0, the zeroes of f 1pxq will happen a bit before touching the curve
y “ ˘ 1

x , reaching an extremal point and turning slightly to line up with the other
curve. We can’t actually solve explicitly for these points, and the information only
helps a little bit. For example, the minimum of the function occurs at points ˘x0
where x0 is a bit smaller than 3π

2 . The exception is the behaviour near x “ 0. Here
it helps.

f 1pxq “
x cosx´ sinx

x2 and lim
xÑ0

f 1pxq “ lim
xÑ0

cosx´ sinx
x

x
.

But we just showed that 0 ą cosx ´ sinx
x ą cosx ´ 1, and limxÑ0

1´cosx
x “ 0.

Thus by the Squeeze Theorem, lim
xÑ0

f 1pxq “ 0. This means that the curve flattens

out as it approached x “ 0 at p0, 1q.














































O

B

C

D A

FIGURE 3.2. Graph of sinx
x

3.1.8. EXAMPLE. Graph gpxq “ x sin 1
x on Rzt0u. This is also an even func-

tion. As x approaches 0, 1
x approaches ˘8. So sin 1

x oscillates faster and faster
between ˘1. So gpxq oscillates between the two functions y “ ˘x. In particular,
lim
xÑ0

gpxq “ 0. The zeroes occur at
␣ 1
nπ

: n P Zzt0u
(

. At the points 2
p2n`1qπ for

n ě 0, gpxq “ p´1qnx. So the largest point where the curve touches the bounding
lines is at x “ 2

π . Use the even property to reflect this over to the negative real axis.
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FIGURE 3.3. Graph of x sin 1
x

This explains the behaviour as we approach x “ 0. What happens as xÑ 8?
In this limit, substitute u “ 1

x . As xÑ8, uÑ 0`.

lim
xÑ8

x sin 1
x “ lim

uÑ0`

sinu
u

“ 1.

Thus this curve has a horizontal asymptote y “ 1 as x Ñ 8 and by symmetry, as
xÑ ´8 as well.

3.2. The natural logarithm

For 0 ă a ă b, define Apa, bq to be the area under the graph y “ 1
x between

x “ a and x “ b. Set Apb, aq “ ´Apa, bq when b ą a and Lpaq “ Ap1, aq.
Observe that Apa, aq “ 0 and Apa, bq `Apb, cq “ Apa, cq.

We are not going to do any integral calculus here. Rather I am going to argue
geometrically to obtain the properties that we need. For s ą 0, consider the linear
transformation

Tspx, yq “ psx,
y
s q for px, yq P R2.

This takes a square S with corners px, yq, px` h, yq, px, y` hq and px` h, y` hq
to the rectangle R “ TsS with corners psx, ys q, psx ` sh, ys q, psx,

y
s `

h
s q, and

psx ` sh, ys `
h
s q. Now S has area h2 while R has area pshqphs q “ h2. Any nice

planar region can be approximated by a union of small squares. Since Ts preserves
area on each square, it preserves area for any nice region.

Next observe that the points on the curve y “ 1
x for x ą 0, say px, 1

xq, are
mapped by Ts to psx, 1

sxq. So Ts maps the curve onto itself. It similarly maps the
x-axis onto itself. The line x “ a, which consists of points pa, yq, is mapped onto
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FIGURE 3.4. Area under y “ 1
x

the line x “ sa. It is now easy to see that the region under the curve y “ 1
x between

x “ a and x “ b is mapped by Ts onto the region under y “ 1
x between x “ sa

and x “ sb. Therefore, since Ts preserves area,

Apa, bq “ Apsa, sbq for 0 ă a ă b and s ą 0.

3.2.1. PROPOSITION. For a, b ą 0, Lpabq “ Lpaq ` Lpbq.

PROOF. Lpabq “ Ap1, abq “ Ap1, aq `Apa, abq

“ Ap1, aq `Ap1, bq “ Lpaq ` Lpbq. ■

3.2.2. COROLLARY. For a ą 0 and n P Z, Lpanq “ nLpaq.

PROOF. First consider n ě 0. Clearly Lpa0q “ Lp1q “ Ap1, 1q “ 0 and
Lpa1q “ Lpaq. Proceed by induction. Assume that the formula is true for n. Then

Lpan`1q “ Lpaanq “ Lpaq ` Lpanq “ Lpaq ` nLpaq “ pn` 1qLpaq.

Thus by induction, the formula is valid for all n P N0.
Next consider n “ ´1.

Lp 1
aq “ Ap1, 1

aq “ ´Ap
1
a , 1q “ ´Ap1, aq “ ´Lpaq.

Finally, if n P N, Lpa´nq “ ´Lpanq “ ´nLpaq. So the formula is valid for n P Z.
■

3.2.3. COROLLARY. Lpxq is a strictly increasing function on p0,8q, and

lim
xÑ8

Lpxq “ `8 and lim
xÑ0`

Lpxq “ ´8.
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PROOF. Strictly increasing is clear because Apa, bq ą 0 for a ă b. Therefore

lim
xÑ8

Lpxq “ lim
nÑ8

Lp2nq “ lim
nÑ8

nLp2q “ `8

because Lp2q ą 0. Similarly,

lim
xÑ0`

Lpxq “ lim
nÑ ´8

Lp2nq “ lim
nÑ´8

nLp2q “ ´8. ■

3.2.4. PROPOSITION. For a, b ą 0,
1
b
ă

Apa, bq

b´ a
ă

1
a

. Thus for x ą 1,

1
x
ă
Lpxq

x´ 1
ă 1.

PROOF. Notice that the region with areaApa, bq contains the rectangle on ra, bs
with height 1

b and is contained in the rectangle on ra, bs with height 1
a . Therefore

 

FIGURE 3.5. Bounds for Apa, bq

b´ a

b
ď Apa, bq ď

b´ a

a
.

Divide by b´ a. Take a “ 1 and b “ x to get the second formula. ■

3.2.5. COROLLARY. d

dx
Lpxq “

1
x

for x ą 0.

PROOF. For x ą 0 and h ą 0, we have
1

x` h
ă
Apx, x` hq

h
“
Lpx` hq ´ Lpxq

h
ă

1
x
.

Let hÑ 0` and use the Squeeze Theorem to get

lim
hÑ0`

Lpx` hq ´ Lpxq

h
“

1
x
.



3.2 The natural logarithm 37

Similarly if 0 ă h ă x,

1
x
ă
Apx´ h, xq

h
“
Lpx´ hq ´ Lpxq

´h
ă

1
x´ h

.

Thus

lim
hÑ0´

Lpx` hq ´ Lpxq

h
“

1
x
.

Therefore L1pxq “
1
x

. ■

3.2.6. DEFINITION. The natural logarithm, written lnx or logx, is defined as
lnx “ Lpxq for x ą 0. The number e is the unique real number such that ln e “ 1.

The main property of any logarithm function is given in Proposition 3.2.1:
lnpabq “ ln a ` ln b. The base of the logarithm is the number, in this case e,
such that ln e “ 1. This specific number is chosen so that the derivative is 1

x , not
some multiple. Corollary 3.2.2 shows that ln en “ n, but in fact it says much more.
Consider a rational number m

n . Then

m “ ln em “ lnppem{nqnq “ n ln em{n.

Therefore ln em{n “ m
n .

If we have a log function such that a number a ą 1 had log equal to 1, we call
this function loga x. Because of the product property, it follows that loga a

m
n “ m

n

and ln a
m
n “ m

n ln a. Therefore loga x “
lnx
ln a

. Therefore
d

dx
loga x “

1
x ln a

.

We want to get a rough estimate for the value of e. We will find more precise
methods later. First estimate ln 2 “ Ap1, 2q is bounded above by the trapezoid with
vertices p1, 0q, p1, 1q, p2, 1

2q, p2, 0q which has base 1 and average height 1
2p1`

1
2q “

3
4 . So ln 2 ă 0.75. Next look at ln 2.5. From 2 to 2.5, we bound the curve by

 

FIGURE 3.6. Estimating e

another trapezoid including vertices p2.5, 0.4q and p2.5, 0q. Its area is greater than
Ap2, 2.5q. This trapezoid has base 1

2 and average height 1
2p

1
2 `

2
5q “

9
20 , so it adds

an additional 9
40 . Therefore ln 2.5 ă 3

4 `
9

40 “
39
40 ă 1. Hence 2.5 ă e.
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On the other hand, the area Ap1, 3q under 1
x from 1 to 3 is bounded below by

a trapezoid on r1, 2s with upper edge tangent to 1
x at p 3

2 ,
2
3q plus the rectangle on

r2.3s of height 1
3 . This provides a lower bound ln 3 “ Ap1, 3q ą 1p 2

3q `
1
3 “ 1.

See the figures. Thus 2.5 ă e ă 3.

3.3. The exponential function

Since lnx is strictly increasing on p0,8q and maps onto the whole line, R,
there is an inverse function E : RÑ p0,8q satisfying

Eplnxq “ x for x ą 0 and lnpEpxqq “ x for x P R.

In particular, E is strictly increasing, and Ep0q “ 1 and Ep1q “ e. Each point
px, yq on the graph of lnx converts to the point py, xq on the graph of E.

Since lnpabq “ ln a` ln b, apply E to get ab “ Epln a` ln bq. Substitute x “
ln a and y “ ln b, which are arbitrary real numbers, to get EpxqEpyq “ Epx` yq.
Thus Epxqn “ Epnxq and so Epxnq

n “ Epxq. Thus Epmn
n q “ Epxnq

m “ Epxq
m
n .

Now take x “ 1 to get Epmn q “ e
m
n . As E is monotone increasing, we obtain that

Epxq “ ex for all real numbers. This is known as the exponential function.

(A) Graph of lnx (B) Graph of ex

3.3.1. EXAMPLES. Let’s try to understand the growth rates of these functions
more precisely.

(1) lim
xÑ8

lnx
x

. If en ď x ď en`1, we have n ď lnx ď n` 1, and hence

n

en`1 ď
lnx
x
ď
n` 1
en

.

Claim: lim
nÑ8

n

en
“ 0. Set an “

n

en
and compute

an`1

an
“
n` 1
ne

ď
2
e
ă 0.8.
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Therefore by repeated application, we get an`1 ď p.8qna1 Ñ 0. Thus by the

Squeeze Theorem, lim
xÑ8

lnx
x
“ 0.

(2) Let a ą 0 (think of a as small). Then in the next limit, substitute y “ xa and
note that as xÑ8, then y Ñ8.

lim
xÑ8

lnx
xa

“ lim
yÑ8

ln y1{a

y
“

1
a

lim
yÑ8

ln y
y
“ 0.

This says that lnx grows more slowly than any positive power of x, and thus in-
creases very slowly for large x. The curve gets flatter and flatter as x increases.

(3) This converts to a statement about ex. Here we substitute y “ ex, and note that
as xÑ8, then y Ñ8.

lim
xÑ8

ex

x
“ lim

yÑ8

y

ln y
“ `8.

Then for any b ą 0 (think of b as very large), and again substitute y “ ex,

lim
xÑ8

ex

xb
“ lim

yÑ8

y

pln yqb
“ lim

yÑ8

´y1{b

ln y

¯b
“ `8.

Hence ex grows faster than any power of x.

(4) Now consider the behaviour of lnx as x Ñ 0`. Again let a ą 0. So as
x Ñ 0`, we have lnx Ñ ´8 and xa Ñ 0. We will substitute y “ 1

x , so that
y Ñ8.

lim
xÑ0`

xa lnx “ lim
yÑ8

y´a ln y´1 “ lim
yÑ8

´ ln y
ya

“ 0.

Moreover it takes negative values. So while lnx Ñ ´8, it goes more slowly than
xa goes to 0 for any a ą 0.

(5) If I substitute y “ ´x in the following:

lim
xÑ´8

|x|bex “ lim
yÑ8

yb

ey
“ 0.

This shows that ex goes to zero faster than any polynomial xn goes to 8 as x Ñ
´8.

3.3.2. EXAMPLE. Graph fpxq “ x lnx for x ą 0. Then fpxq “ 0 only at
x “ 1, where it changes from negative to positive. It increases to infinity a bit
faster than a straight line. The interesting behaviour is between 0 and 1. We have
lim

xÑ0`
fpxq “ 0. Now look at the derivative: f 1pxq “ lnx ` 1. The is monotone

increasing, so the curve always curves upwards as a faster rate as x increases. Note
that 0 “ f 1pxq implies that lnx “ ´1, so that x “ 1

e . This is a minimum at p 1
e ,´

1
eq.
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Notice also that lim
xÑ0`

f 1pxq “ ´8. This means that the curve is becoming vertical.

There is a vertical tangent at the limit point p0, 0q. See the figure.

 

FIGURE 3.8. Graph of x lnx.

3.3.3. PROPOSITION. d

dx
pexq “ ex for x P R.

PROOF. Apply the chain rule to the identity lnpexq “ x to get

1
ex

d

dx
pexq “ 1 or

d

dx
pexq “ ex. ■

3.3.4. PROPOSITION. lim
nÑ8

`

1` x
n

˘n
“ ex for x P R.

PROOF. By Proposition 3.2.4 applied to 1` x
n , we have

1
1` x

n

ă
lnp1` x

nq

x{n
ă

1
1
.

Therefore
x

1` x
n

ă ln
`

1` x
n

˘n
ă x.

Exponentiate to get

e
x

1` x
n ă

`

1` x
n

˘n
ă ex.

Now let nÑ8. By the Squeeze Theorem, lim
nÑ8

`

1` x
n

˘n
“ ex. ■

In the next result, we need Bernouilli’s inequality.

3.3.5. LEMMA. p1` xqn ě 1` nx for 1` x ą 0 and n ě 1.
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PROOF. Proceed by induction on n. For n “ 1, 1` x “ 1` x. Assume that it
is true for n´ 1. Then

p1`xqn “ p1`xqn´1p1`xq ě p1`pn´1qxqp1`xq “ 1`nx`pn´1qx2 ě 1`nx.

Hence it is true for n. By induction, this holds for all n ě 1. ■

3.3.6. PROPOSITION. Let an “ p1 ` 1
n

˘n and bn “ p1 ` 1
n

˘n`1. Then an is
monotone increasing, bn is monotone decreasing and

lim
nÑ8

an “ lim
nÑ8

bn “ e

Similarly cn “ p1 ´ 1
n

˘n´1 and dn “ p1 ´ 1
n

˘n are monotone decreasing and
increasing respectively with limit 1

e .

PROOF. Set x “ 1 in the previous Proposition and get lim
nÑ8

an “ e1. Also

lim
nÑ8

bn “ lim
nÑ8

anp1` 1
n

˘

“ ep1q “ e.

Compute, using Bernouilli’s inequality at the last step.

an`1

bn
“

´n` 2
n` 1

¯n`1´ n

n` 1

¯n`1
“

´

pn` 2qn
pn` 1q2

¯n`1

“

´

1´
1

pn` 1q2

¯n`1
ě 1´

n` 1
pn` 1q2

“
n

n` 1
.

Thus an`1 ě
n

n`1bn “ an. Similarly we can invert this to get

bn
an`1

“

´

1`
1

n2 ` 2n

¯n`1
ě 1`

n` 1
n2 ` 2n

ą
n` 2
n` 1

.

Thus bn`1 “
n`2
n`1an`1 ă bn.

Note that cn “
1

an´1
and dn “

1
bn´1

. The monotonicity and limit follows. ■

3.3.7. EXAMPLE. We will graph a more complicated function, gpxq “ xe1{x.
We first collect as much information as we can about zeros and limits approaching
˘8 and any points where gpxq is undefined. Then we will look for critical points.

‚ g is undefined at x “ 0. Also g has no zeros.

‚ Check the behaviour as xÑ 0. Substitute y “ 1
x in the limits.

lim
xÑ0`

xe1{x “ lim
yÑ`8

ey

y
“ `8.

This is a vertical asymptote. Notice that the limits from the two sides
differ!

lim
xÑ0´

xe1{x “ lim
yÑ´8

ey

y
“ 0´.
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‚ Behaviour at `8. lim
xÑ`8

xe1{x “ `8. However e1{x Ñ 1, so in some

sense xe1{x « x. To see how good an approximation this is, we compute
another limit. Substitute y “ 1

x .

lim
xÑ`8

xe1{x ´ x “ lim
xÑ`8

e1{x ´ 1
1{x

“ lim
yÑ0`

ey ´ 1
y

“
d

dy
peyq|y“0 “ e0 “ 1.

This means that gpxq approaches the line y “ x ` 1 as x Ñ 8. So this
line is an oblique asymptote.

‚ Behaviour at ´8. lim
xÑ´8

xe1{x “ ´8, and again looks like x.

lim
xÑ´8

xe1{x ´ x “ lim
yÑ0´

ey ´ 1
y

“
d

dy
peyq|y“0 “ 1.

Thus the line y “ x` 1 is an oblique asymptote as xÑ ´8 as well.

‚ g1pxq “ e1{x ` xe1{xp
´1
x2 q “ e1{xp1 ´

1
x
q. So g1p1q “ 0 is the only

critical point. Since gpxq Ñ `8 as x Ñ 0` and as x Ñ `8, there is a
local minimum at p1, eq.

‚ We should also check how g approaches 0 as xÑ 0´.

lim
xÑ0´

g1pxq “ lim
xÑ0´

p1´ 1
xqe

1{x “ lim
yÑ´8

p1´ yqey “ 0.

So there is a horizontal tangent at the limit point p0, 0q.
 

FIGURE 3.9. Graph of gpxq.
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Exercises for Chapter 3

1. Give a careful ε–δ argument to prove that lim
xÑ8

3x1{3

x` 4
“

1
2

.

2. Compute the following limits:

(a) lim
xÑ1

3
x3 ´ 1

´
4

x4 ´ 1

(b) lim
xÑ1

sinpx2 ´ 1q
x´ 1

(c) lim
xÑ0

tanx´ sinx
x3

(d) lim
xÑ`8

x3{2
`?
x` 2`

?
x´ 2

?
x` 1

˘

3. Consider the functions fpxq “ x sin2p 1
xq for x ‰ 0

(a) Where does the graph of this function touch the curves y “ 0, y “ x and
y “ 1

x?
(b) Graph the function fpxq (by hand! ). Include graphs of the the auxillary

curves y “ x and y “ 1
x on the same graph and show the intersection

points from (a). Pay attention to the behaviour of fpxq as x approaches 0
and ˘8 and identify any asymptotes.
Do not try to compute local maxima and minima or inflection points.

4. Compute the following limits:

(a) lim
xÑ`8

lnx1000

x1{1000

(b) lim
xÑ0

x´4e´1{x2

(c) lim
xÑ1

x2 ´ 1
lnx

(d) lim
nÑ`8

`

1` 1
n

˘n2`
1` 1

n`1

˘´pn`1q2

5. Graph the function fpxq “
1´ cosx

x2 for x ‰ 0. Draw the auxillary curve

y “
2
x2 on the same graph and explain where these two curves touch and where

f touches the x-axis. Pay attention to the behaviour of fpxq as x approaches 0
and˘8 and identify any asymptotes. Do not try to compute local maxima and
minima or inflection points.

6. (a) Graph the function fpxq “
lnx
x

for x ą 0. Pay attention to the behaviour

of fpxq as x approaches 0` and `8, asymptotes, maxima and minima,
zeros and points of inflection (i.e. points where f2pxq changes sign).

(b) Which is larger, 3π or π3?
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7. Two of the hyperbolic trig functions are

sinhpxq “
ex ´ e´x

2
and coshpxq “

ex ` e´x

2
.

(a) Sketch the functions ex{2, e´x{2, sinhpxq and coshpxq on the same graph.
Pay attention to the relationships between the four curves. I am not expect-
ing a detailed graph here.

(b) Show that cosh2pxq ´ sinh2pxq “ 1 for all x P R.
(c) Show that sinhpx`yq “ sinhpxq coshpyq`coshpxq sinhpyq for all x, y P R.
(d) Solve sinhpxq “ y for x as a function of y.

8. Consider the function fpxq “ xe
3x´1
x2 for x ‰ 0. Graph the function fpxq (by

hand! ). Pay attention to the following (show your work):
‚ asymptotic behaviour at ˘8 and behaviour at 0.
‚ compute the derivative and find the critical points, including lim

xÑ0
f 1pxq.

‚ compute any points of inflection.
‚ choose a scale that illustrates the key features.

9. For which values of t ą 1 does the expression tt
tt
..
.

make sense?
HINT: fix t ą 1 and define a0 “ 1 and an`1 “ tan for n ě 0. The question
asks when this sequence has a limit. Try t “

?
2 and t “ 2 on the computer to

see what happens.
(a) Show that an`1 ą an for all n ě 1. What does this tell you?
(b) When L “ lim

nÑ8
an exists, solve for t in terms of L. Use this to find the

optimal upper bound for those values of t for which the limit exists. What
happens for larger t?

(c) For these values of t, show by induction that an is bounded above by e for
all n ě 1. What does this tell you?

Note: the behaviour when 0 ă t ă 1 is very interesting, but much trickier.
Compute a few terms using t “ 1

16 and see what occurs. Compare with t “ 1
4 .



CHAPTER 4

Continuity

4.1. Continuous functions

We introduce an extremely important property of functions.

4.1.1. DEFINITION. Suppose that f : rb, cs Ñ R and b ă a ă c. The function
f is continuous at a if lim

xÑa
fpxq “ fpaq. That is, for ε ą 0, there is a δ ą 0 so

that if |x ´ a| ă δ, then |fpxq ´ fpaq| ă ε. If it is not continuous at a, then it is
discontinuous at a.

At endpoints of a closed interval, use one-sided limits. So f is continuous at b
if lim

xÑb`
fpxq “ fpbq; and f is continuous at c if lim

xÑc´
fpxq “ fpcq. We say that

fpxq is a continuous function on a set X if it is continuous at each a P X .

4.1.2. REMARK. In the definition of lim
xÑa

fpxq, we specify that 0 ă |x´a| ă δ.

But here we said |x´a| ă δ. This is fine because fpaq is defined and is the putative
limit. In particular. |fpaq ´ fpaq| “ 0 ă ε is always true.

4.1.3. EXAMPLES.
(1) Let fpxq “ 1

x for x ‰ 0. Fix a ‰ 0. Then

|fpxq ´ fpaq| “
ˇ

ˇ

ˇ

1
x
´

1
a

ˇ

ˇ

ˇ
“
|a´ x|

|ax|
.

Let ε ą 0. If 0 ă δ ď δ0 “
|a|

2 , then |x´a| ă δ implies |x| ě |a|´|x´a| ě |a|{2.

Therefore
|a´ x|

|ax|
ď

2|a´ x|
a2 . Now choose δ “ minta

2ε
2 ,

|a|

2 u. Then |x ´ a| ă δ

implies that |fpxq ´ fpaq| ă
2δ
a2 ď ε. Therefore fpxq is continuous on Rzt0u.

Since lim
xÑ0`

1
x
“ `8, there is no way to define f at 0 to make it continuous there.

(2) Consider sinx. Use the addition formula

sinpa`hq´sin a“sin a cosh`cos a sinh´sin a“sin apcosh´1q ` cos a sinh.

45
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Using the estimates from Example 3.1.7 for |h| ă π{2,

| sinpa` hq ´ sin a| ď 1| cosh´ 1| ` 1| sinh| ă h2 ` |h|.

Therefore lim
hÑ0

sinpa` hq “ sin a. Hence sinx is continuous.

(3) A function f : ra, bs Ñ R is Lipschitz with Lipschitz constant L if

|fpxq ´ fpyq| ď L|x´ y| for all x, y P ra, bs.

Given ε ą 0, we can take δ “ ε{L. Then for any x, y in the domain with |x´ y| ă
δ, we have |fpxq´ fpyq| ď Lδ “ ε. Therefore Lipschitz functions are continuous.

(4) Let fpxq “

$

&

%

sinx
x

if x ‰ 0

1 if x “ 0
. Then fpxq is continuous at x “ 0 because

of Example 3.1.7. It is continuous everywhere else by general facts that we will
establish in the next section.

(5) Let fpxq “

$

’

&

’

%

1 if x ą 0
0 if x “ 0
´1 if x ă 0

. Then fpxq is continuous on Rzt0u, but is dis-

continuous at 0.

(6) Let fpxq “

#

x if x P Q
0 if x P RzQ.

Then fpxq is continuous at 0, but discontinuous

at every a ‰ 0.

(7) Let fpxq “ sin 1
x . This has a bad discontinuity at 0. There is no way to define

fp0q to make it continuous because every value in r´1, 1s is a limit of fpxq along
some subsequence approaching 0.

x

y1

−1

0.5−0.5

FIGURE 4.1. Graph of sinp1{xq.

(8) Thomae’s function. Let fpxq “

#

1
q if x “ p

q P Q, gcdpp, qq “ 1, q ą 0.
0 if x P RzQ.

Claim: fpxq is discontinuous on Q and continuous on RzQ.
Every a P R is a limit of irrational numbers. So if a P Q, then since fpaq ‰ 0,

f is discontinuous at a. Now suppose that a is irrational, and ε ą 0. Choose N so
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x

y

−1 0 1 2

1

FIGURE 4.2. Thomae’s function on r´1, 2s

that 1
N ď ε. The set X “ t

p
q

: 1 ď q ď N, p P Zu X ra ´ 1, a ` 1s is a finite
set of rational numbers. Thus distpa,Xq “ mint|a ´ x| : x P Xu “ δ ą 0. If
|x ´ a| ă δ, then either x R Q and fpxq ´ fpaq “ 0 or x “ p

q with q ą N and
gcdpp, qq “ 1. Hence |fpxq ´ fpaq| ď 1

N`1 ă ε. Therefore f is continuous at a.

4.2. Properties of Continuous Functions

The standard operations of functions that we use preserve continuity.

4.2.1. PROPOSITION. Suppose that f, g : rb, cs Ñ R are both continuous at a.
Then rf ` sg and fg are continuous at a for any r, s P R. If gpaq ‰ 0, then f{g is
also continuous at a.

PROOF. This is an immediate consequence of Proposition 3.1.6. We will use
the ε–δ definition to show that fg is continuous at a. We need to control

|fpxqgpxq ´ fpaqgpaq| “ |fpxqgpxq ´ fpaqgpxq ` fpaqgpxq ´ fpaqgpaq|

ď |fpxq ´ fpaq| |gpxq| ` |fpaq|, |gpxq ´ gpaq|.

First bound |gpxq|. Take ε0 “ 1 and find δ0 ą 0 so that |x ´ a| ă δ0 implies
that |gpxq ´ gpaq| ă 1; and hence |gpxq| ď |gpaq| ` 1. Now given ε ą 0, find
δ1 ą 0 so that |x ´ a| ă δ1 implies that |fpxq ´ fpaq| ă ε

2p|gpaq|`1q
. Also choose

δ2 ą 0 so that |x ´ a| ă δ2 implies that |gpxq ´ gpaq| ă ε
2p|fpaq|`1q

. Define
δ “ mintδ0, δ1, δ2u. If |x´ a| ă δ, then

|fpxqgpxq ´ fpaqgpaq| ď |fpxq ´ fpaq| |gpxq| ` |fpaq|, |gpxq ´ gpaq|

ă
ε

2p|gpaq| ` 1q
p|gpaq| ` 1q `

ε

2p|fpaq| ` 1q
|fpaq| ă ε.

Therefore fpxqgpxq is continuous at a. ■

Next we show that composition preserves continuity.
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4.2.2. THEOREM. Suppose that f : rr, ss Ñ ru, vs and g : ru, vs Ñ R.
Suppose that a P pr, sq and fpaq “ b. If lim

xÑa
fpxq “ fpaq and lim

yÑb
gpyq “ gpbq,

then lim
xÑa

g ˝ fpxq “ g ˝ fpaq; i.e., if f is continuous at a and g is continuous at

fpaq, then g ˝ f is continuous at a. If f and g are both continuous, then so is g ˝ f .

PROOF. Let ε ą 0 be given. Find δ1 ą 0 so that |y ´ b| ă δ1 implies that
|gpyq´gpbq| ă ε. Use this δ1 as an epsilon in the limit of f to obtain δ2 ą 0 so that
|x´ a| ă δ2 implies that |fpxq´ fpaq| ă δ1. And hence |gpfpxqq´ gpfpaqq| ă ε.
Therefore g ˝ f is continuous at a. ■

4.2.3. EXAMPLES.
(1) Trig functions. We saw that sinx is continuous everywhere. Hence cosx “

sinpx ` π
2 q is continuous. The function tanx “

sinx
cosx

is then continuous except

at the points where cosx “ 0, namely odd multiples of π
2 . However tanx is not

defined at these points. Similarly, cotx, secx and cscx are continuous where they
are defined.

(2) If a ą 0, we define ax “ ex ln a. This is continuous on R.

(3) Rational functions, which are functions of the form fpxq “
ppxq

qpxq
where p and

q are polynomials are continuous except at the roots of q.

(4) fpxq “ cospx2 ` 1
x3 q sinpe3 tanxq is continuous except at

␣

0, p2n`1qπ
2 : n P Z

(

.

4.3. Extreme Value Theorem

This fundamental result describing general conditions which guarantee that a
function attains its maximum and minimum values depends both on continuity and
on the completeness of the real line.

4.3.1. EXTREME VALUE THEOREM. Let fpxq be a continuous function on
a closed, bounded interval ra, bs. Then f is bounded and there is a point c P ra, bs
so that fpcq “ supaďxďb fpxq, and a point d P ra, bs so that fpdq “ infaďxďb fpxq.

PROOF. Let L “ supaďxďb fpxq. This could possibly be `8. Pick real num-
bers L1 ă L2 ă Ln ă Ln`1 ă . . . so that L “ limnÑ8 Ln. (E.g., if L ă 8,
take Ln “ L´ 1

n and if L “ 8, take Ln “ n.) Since supaďxďb fpxq ą Ln, there
is an xn P ra, bs so that fpxnq ą Ln. Now pxnqně1 is a bounded sequence. By
the Bolzano-Weierstrass Theorem, there is a convergent subsequence pxniq with
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lim
iÑ8

xni “ c. Since ra, bs is closed, c P ra, bs. By continuity of f ,

L ě fpcq “ lim
iÑ8

fpxniq ě lim
iÑ8

Lni “ L.

Therefore L “ fpcq ă 8 and the supremum is attained.
Similarly, there is a point d P ra, bs so that fpdq “ infaďxďb fpxq. ■

4.3.2. EXAMPLES.
(1) Examples where the maximum is attained are familiar. Like fpxq “ 1´ |x| on
r´2, 2s. Then max fpxq “ fp0q “ 1.

(2) The real line, R, is closed but not bounded. The function fpxq “ ´1
1`x2 is

continuous and bounded, but does not attain sup fpxq “ 0.

(3) The continuous function fpxq “ x is not even bounded on R.

(4) Let fpxq “ x on p0, 1q. The interval p0, 1q is bounded, but not closed. The
continuous function f does not attain its supremum or infimum.

(5) Let fpxq “ 1
x on p0, 1s. This is continuous, but unbounded. Again the domain

p0, 1s is not closed.

(6) Define fpxq “

#

0 if x “ 0
1
x if 0 ă x ď 1

. This function is defined on a closed

bounded interval, but is unbounded. The problem is that f is not continuous at
0.

(7) A similar example is fpxq “

#

1
2 if x P t0, 1u
x if 0 ă x ă 1.

Again r0, 1s is closed and

bounded, and here f is bounded, but does not attain its supremum or infimum. The
problem is that f is not continuous at 0 or 1.

4.4. Intermediate Value Theorem

There is a second important theorem about continuous functions that relies in
an essential way on the completeness of R.

4.4.1. INTERMEDIATE VALUE THEOREM. Let f : ra, bs Ñ R be a contin-
uous function such that fpaq ă L ă fpbq. Then there is a point c P pa, bq so that
fpcq “ L.
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4.4.2. REMARK. Intuitively this says that if the curve y “ fpxq starts below the
line y “ L at a and arrives above the line at b, then it must cross the line somewhere.
However if we define f : Q Ñ Q by fpxq “ x3, then fp0q “ 0 ă 3 ă 8 “ fp2q,
but there is no rational number x so that fpxq “ 3. There is a gap in Q at 3

?
3. It is

the incompleteness of Q which allows the result to fail.

PROOF. Let X “ tx P ra, bs : fpxq ă Lu. Then a P X and X Ă ra, bq, so
it is a non-empty bounded set. Hence c “ supX exists by the Least Upper Bound
Principle, and clearly c ď b.

Claim: c ă b. Let ε “ fpbq ´ L ą 0. By continuity of f at b, there is a δ ą 0
so that if |x´ b| ă δ, then |fpxq ´ fpbq| ă ε. Hence fpxq ą fpbq ´ ε “ L. so on
pb´ δ, bs, fpxq ą L. Thus X X pb´ δ, bs “ ∅, and so c ď b´ δ ă b.

Claim: fpcq “ L. Any x ą c is not in X and so fpxq ą L. Choose a sequence
panq in pc, bs and decreasing to c. Then by continuity,

fpcq “ lim
nÑ8

fpanq ě lim
nÑ8

L “ L.

On the other hand, there is a sequence of points xn P X such that lim
nÑ8

xn “ c.
Thus,

fpcq “ lim
nÑ8

fpxnq ď lim
nÑ8

L “ L.

Therefore, fpcq “ L. ■

4.4.3. EXAMPLE. Every polynomial of odd degree has a real root. Write the
polynomial as ppxq “ anx

n ` an´1x
n´1 ` ¨ ¨ ¨ ` a1x ` a0, where n is odd and

an ‰ 0. Observe that

lim
xÑ`8

ppxq “ lim
xÑ`8

anx
n
`

1`
an´1

x
` ¨ ¨ ¨ `

a1

xn´1 `
a0

xn
˘

“

#

`8 if an ą 0
´8 if an ă 0.

Similarly,

lim
xÑ´8

ppxq “ lim
xÑ´8

anx
n
`

1`
an´1

x
` ¨ ¨ ¨ `

a1

xn´1 `
a0

xn
˘

“

#

´8 if an ą 0
`8 if an ă 0.

Therefore ppxq changes sign. By the Intermediate Value Theorem (IVT), there
must be a point x0 so that ppx0q “ 0.

4.4.4. EXAMPLE. Every monic polynomial of even degree attains its minimum
value. Write ppxq “ x2n`a2n´1x

2n´1`¨ ¨ ¨`a1x`a0, Arguing as in the previous
example, we see that

lim
xÑ`8

ppxq “ lim
xÑ´8

ppxq “ `8.
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Therefore there is some large numberN so that if |x| ą N , then ppxq ą pp0q`1. It
follows that the infimum of p occurs in r´N,N s. By the Extreme Value Theorem,
p attains its minimum value.

4.4.5. EXAMPLE. Let fpxq “ x179 `
163

1` x2 ` sin2 x
. The equation fpxq “

119 has a solution. Note that f is continuous since the denominator is always non-

zero. Now fp0q “ 163 ą 119 and fp1q “ 1 `
163

2` sin2 1
ă 1 ` 81.5 ă 119. By

IVT, there is a point c P p0, 1q so that fpcq “ 119.

4.4.6. COROLLARY. If f : ra, bs Ñ R is continuous, then Ranpfq is a closed
bounded interval.

PROOF. By the Extreme Value Theorem, the range of f is bounded, and there
are points x0, x1 P ra, bs so that

fpx0q “ inftfpxq : a ď x ď bu and fpx1q “ suptfpxq : a ď x ď bu.

By the Intermediate Value Theorem, every value y with fpx0q ď y ď fpx1q is in
the range of f . Thus Ranpfq “ rfpx0q, fpx1qs is a closed bounded interval. ■

When f is defined on an interval I which is not closed or not bounded, then by
restricting f to an increasing sequence of closed bounded subintervals with union
I , you can conclude that the range is an interval, but it may be open, closed or half
open independent of I , and it may be unbounded.

4.4.7. COROLLARY. If I is an interval (open, closed or half closed) and f :
I Ñ R is continuous and one-to-one, then f is strictly monotone.

PROOF. We prove this by contradiction. Notice that f is monotone increasing
and one-to-one if and only if a ă b ă c implies fpaq ă fpbq ă fpcq; and likewise
f is monotone decreasing if a ă b ă c implies fpaq ą fpbq ą fpcq. Thus failure
to be monotone means that there are points a ă b ă c so that fpaq ă fpbq ą fpcq
or the inequalities are reversed, since an equality contradicts injectivity. Either
way, there is a value L in pfpaq, fpbqq X pfpcq, fpbqq. By the IVT, there are points
x1 P pa, bq and x2 P pb, cq so that fpx1q “ L “ fpx2q, contradicting the fact that f
is one to one. Therefore f is monotone. ■
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4.5. Monotone Functions

4.5.1. PROPOSITION. Let f : ra, bs Ñ R be a monotone increasing function,
and let a ă c ă b. Then lim

xÑc´
fpxq “ L and lim

xÑc`
fpxq “ M both exist, and

L ď fpcq ďM .

PROOF. Let A “ tfpxq : a ď x ă cu. This is a non-empty set bounded above
by fpcq. Hence L “ supA exists by the LUBP, and L ď fpcq. For ε ą 0, L´ ε is
not an upper bound for A, and hence there is some x0 ă c so that fpx0q ą L´ ε.
Set δ “ c ´ x0. If c ´ δ ă x ă c, then L ´ ε ă fpx0q ď fpxq ď L. Therefore
lim

xÑc´
fpxq “ L. Similarly lim

xÑc`
fpxq “ inftfpxq : c ă x ď bu “M ě fpcq. ■

4.5.2. DEFINITION. If lim
xÑc´

fpxq “ L and lim
xÑc`

fpxq “ M both exist, but L,

M and fpcq are not all equal, then f is said to have a jump discontinuity.

4.5.3. REMARK. At the endpoint a, a similar analysis shows that lim
xÑa`

fpxq “

M exists, and fpaq ď M . If fpaq ă M , we call this a jump discontinuity as well.
Similarly, lim

xÑb´
fpxq “ L ď fpbq; and it is a jump discontinuity if L ă fpbq.

The Proposition shows that the only type of discontinuity that a monotone func-
tion can have is a jump discontinuity. This leads to the following useful conclusion.

4.5.4. COROLLARY. If I is an interval (closed, open or half open) and f : I Ñ
R is a monotone function, then f is continuous if and only if Ranpfq is an interval.

PROOF. If f is discontinuous at an interior point c P I , then

lim
xÑc´

fpxq “ L ăM “ lim
xÑc`

fpxq.

Thus Ranpfq Ă rfpaq, LsYtfpcquYrM,fpbqs. The range omits all except possibly
one point of pL,Mq, and hence the range is not an interval. A similar analysis
works at an endpoint.

Conversely, if Ranpfq is an interval, then we see that f has no jump disconti-
nuities. Thus for a ă c ă b, we have lim

xÑc´
fpxq “ fpcq “ lim

xÑc`
fpxq. Therefore

f is continuous at c. The argument works similarly at any endpoints. ■

Recall that when a function f is one-to-one, it is a bijection from its domain
onto its range. Thus it has an inverse function f´1. We have seen that when f
is continuous and one-to-one on an interval, then it is monotone and the range in
an interval. We can now show that the inverse function is also continuous and
monotone.
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4.5.5. PROPOSITION. If I is an interval and f is continuous and strictly in-
creasing, then the inverse function f´1 is continuous and strictly increasing. Sim-
ilarly, if f is continuous and strictly decreasing, then the inverse function f´1 is
continuous and strictly decreasing.

PROOF. We will deal with the increasing case. Since f is continuous, the range
is an interval J . The inverse function f´1 : J Ñ I is a bijection. If y1 ă y2 P J ,
then there are unique points x1, x2 P I with fpxiq “ yi. Since f is increasing,
x1 ă x2. Thus f´1py1q “ x1 ă x2 “ f´1py2q. Thus f´1 is strictly increasing.
The range is an interval, and thus has no gaps. Therefore f´1 is continuous. ■

A countable set X is either finite or can be written as a list X “ txn : n P Nu.
See the Appendix section A.3.

4.5.6. PROPOSITION. A monotone function f : pa, bq Ñ R is continuous
except on a countable set.

PROOF. We may suppose that f is increasing. Since the only discontinuities
are jump discontinuities, we count the jumps based on their size. Since the range
of f may be unbounded, we also need to carefully approach the endpoints.

Between a` 1
n and b´ 1

n , count the jumps Jn of height at least 1
n . There can’t

be more than n
`

fpb´ 1
nq´fpa`

1
nq
˘

, which is finite. Therefore all discontinuities
belong to J “

Ť

ně1 Jn, which is countable. ■

4.5.7. EXAMPLE. Inverse trig functions. The trig functions are all periodic,
either 2π-periodic like sinx and cosx or π-periodic like tanx and cotx. So they are
not one-to-one. We get around that by restricting the domain so that it is injective,
maps onto the whole range, and the domain is as connected as possible and includes
the first quadrant p0, π2 q.

Take sinx. It is monotone increasing on r´π
2 ,

π
2 s and maps onto r´1, 1s. Thus

sin´1pyq is the unique x P r´π
2 ,

π
2 s with sinx “ y. For cosx, we use r0, πs, on

which cosx is monotone decreasing and maps onto r´1, 1s.
The tangent tanx is defined on p´π

2 ,
π
2 q, is strictly increasing, and maps onto

R. So tan´1 : R Ñ p´π
2 ,

π
2 q is a bounded function on the whole line. Similarly

cotx maps p0, πq onto R and is strictly decreasing.
The secant is a problem, because the range of secx is p´8,´1s Y r1,8q,

which is the union of two disjoint intervals. Normal practice is to restrict the do-
main to r0, π2 q Y p

π
2 , πs. On r0, π2 q, secant is monotone increasing and maps onto

r1,8q; while on pπ2 , πs, secant is also increasing with range p´8,´1s. Hence
sec´1 is increasing, and maps r1,8q onto r0, π2 q, and maps p´8,´1s onto pπ2 , πs.
Similarly, csc´1 is strictly decreasing, and maps r´π

2 , 0q onto p´8,´1s and p0, π2 s
onto r1,8q.
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FIGURE 4.3. sec´1pxq

4.5.8. EXAMPLE. Enumerate Q X p0, 1q “ t1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 , . . . u as

trn : n ě 1u. Define f : r0, 1s Ñ r0, 1s by

fpxq “
ÿ

tn:rnăxu

2´n.

Then if 0 ď x ă y ď 1, there is some rn so that x ă rn ă y, and therefore
fpxq ă fpyq. So f is strictly monotone increasing. Clearly f has a jump discon-
tinuity at every rn. However it is continuous at each irrational number as well
as 0 and 1. Say c is irrational in p0, 1q and ε ą 0. Pick N so that 2´N ă ε.
Set δ “ distpx, trn : 1 ď n ď Nu. If c ´ δ ă y ă x ă z ă c ` δ, then
tn : y ď rn ă zu Ă tn : n ą Nu, and hence

fpzq ´ fpyq “
ÿ

tn:yďrnăzu

2´n ă
ÿ

nąN

2´n “ 2´N ă ε.

Defining L and M as in Proposition 4.5.1, we see that M ´L ă fpzq ´ fpyq ă ε.
But ε ą 0 was arbitrary, and thus L “M and f is continuous at c.

4.5.9. EXAMPLE. The Cantor function. Define a function f : r0, 1s Ñ r0, 1s
as follows: set fp0q “ 0 and fp1q “ 1. On the middle third, r1

3 ,
2
3 s, set fpxq “ 1

2 .
Then take the middle third from each of the remainder, and set fpxq “ 1

4 on r1
9 ,

2
9 s

and fpxq “ 3
4 on r7

9 ,
8
9 s. At the nth stage, there are 2n ´ 1 intervals on which f is

defined to take the values k
2n , in order, for 1 ď k ď 2n ´ 1. What remains are 2n

intervals of length 3´n on which f has not yet been defined. In each one, take the
middle third and define f to take the average of the values at the two ends of the
interval, which will be a number of the form 2k´1

2n`1 for 1 ď k ď 2n. In the end, we
have defined a monotone increasing, locally constant function on the union S of all
of these intervals, taking all of the values k

2n for n ě 1 and 0 ď k ď 2n. These
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are the diadic rationals numbers in r0, 1s. The set S does not include the whole
interval, so now we define f on the rest by

fpxq “ suptfptq : t ď x, t P Su.

This defines a monotone increasing function on r0, 1s known as the Cantor function.
Notice that the range of f has no gaps because the range includes all diadic

rationals,. Therefore f is continuous. On each open interval in S, namely p 1
3 ,

2
3q,

p 1
9 ,

2
9q, p

7
9 ,

8
9q, etc., the function f is constant, and thus has derivative 0. The total

length of all of these intervals is

1
3
` 2p1

9q ` 4p 1
27q ` ¨ ¨ ¨ “

8
ÿ

k“1

2k´1

3n
“

1{3
1´ 2{3

“ 1.

So this is “most” of the interval in some sense. What remains after these open
intervals are removed is a closed set C known as the Cantor set. It includes the
endpoints of the removed intervals, and their limits, which is actually quite a lot
more.

x1

y
1

0

FIGURE 4.4. The Cantor function

To understand this function better, write x in base 3 as x “ p0.x1x2x3 . . . qbase 3,
where xi P t0, 1, 2u. The interval r1

3 ,
2
3 s “ tx : x1 “ 1u. The endpoints are

1
3 “ p0.1000 . . . qbase 3 and 2

3 “ p0.1222 . . . qbase 3. Like in base 10, numbers with a
finite expansion in base 3 also have another ending in an infinite string of 2’s. Then

r 1
9 ,

2
9 s “ tx “ p0.01x3x4 . . . qbase 3u and r7

9 ,
8
9 s “ tx “ p0.21x3x4 . . . qbase 3u.

At the nth stage the intervals are determined by an initial sequence of 0s and/or 2’s
of length n ´ 1 followed by a 1. The endpoints actually have another expression
using only 0s and 2s, 1

3 “ p0.0222 . . . qbase 3, 2
3 “ p0.2000 . . . qbase 3,

1
9 “ p0.00222 . . . qbase 3, 2

9 “ p0.02000 . . . qbase 3, 7
9 “ p0.20222 . . . qbase 3, etc.
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The Cantor set consists of all numbers in r0, 1s which have a ternary expansion
with no 1s. Let pε1, ε2, . . . q be a sequence of 0s and 1s. Then

fpp0.p2ε1qp2ε2qp2ε3q . . . qbase 3 “ p0, ε1ε2ε3 . . . qbase 2.

The Cantor set is mapped onto r0, 1s by f . This shows that the Cantor set has the
same cardinality as r0, 1s and R, (See Appendix A.3.)

4.6. Uniform Continuity

Recall that f : J Ñ R is continuous if for each x P J and ε ą 0, there is a
δ ą 0 so that |x ´ y| ă δ implies |fpyq ´ fpxq| ă ε. However in checking this
in many examples, we find a δ which works for many, sometimes all, values of x
simultaneously. This is an important distinction which is captured in this definition.
Note that the quantifiers for x and δ come in the reversed order.

4.6.1. DEFINITION. A function f : J Ñ R is uniformly continuous if for each
ε ą 0, there is a δ ą 0 so that x, y P J and |x´ y| ă δ implies |fpyq ´ fpxq| ă ε.

4.6.2. EXAMPLES.
(1) Let f P C1ra, bs and set M “ maxaďxďb |f

1pxq|, which is finite by the Ex-
treme Value Theorem. Then by the Mean Value Theorem, there is some x0 so that
|fpyq ´ fpxq|

|y ´ x|
“ |f 1px0q| ď M . Hence |fpyq ´ fpxq| ď M |y ´ x|. So f is Lips-

chitz with constant M . As in Example 4.1.3(3), Lipschitz functions are uniformly
continuous using δ “ ε{M . Thus C1 functions on a closed bounded interval are
uniformly continuous.

(2) Let fpxq “
1
x

on p0, 1s. Then f is continuous. However if 0 ă ε ă 1 is given

and δ ą 0, choose x “ mintε, δu. Then |x´ x
10 | ă |x| ď δ, but

|fp
x

10
q ´ fpxq| “

9
x
ą 9 ą ε.

So this (arbitrary) choice of δ does not work! Therefore this function is not uni-
formly continuous. This is a C1 function, but the derivative blows up as xÑ 0.

(3) fpxq “ x2. On any bounded interval, the derivative is bounded. So by (1), f is
uniformly continuous. However on the whole line R, it is not uniformly continuous.
For 0 ă x ă y,

fpyq ´ fpxq “ y2 ´ x2 “ py ` xqpy ´ xq.
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Let 0 ă ε ă 1, and suppose that δ ą 0. Take x “ 1
δ and y “ x ` δ{2. Then

|y ´ x| “ δ{2 ă δ, but

|fpyq ´ fpxq| “ py ` xqpy ´ xq ą 2x
δ

2
“ 1 ą ε.

Hence this (arbitrary) choice of δ does not work! So this function is not uniformly
continuous. In this example, the derivative f 1pxq “ 2x blows up as xÑ8.

(4) fpxq “
?
x on r0,8q. This function is continuous, but it fails to be differen-

tiable at x “ 0. Moreover f 1pxq “
1

2
?
x

is unbounded as x Ñ 0`. Nevertheless,

we will show that f is uniformly continuous.
Let ε ą 0. Define δ “ ε2{2. Suppose that 0 ď x ď y and |y ´ x| ă δ. There

are two cases. If x ď δ, then y ă 2δ “ ε2. Then |
?
y ´

?
x| ď

?
y ă ε.

In the second case, δ ă x. Then

|
?
y ´

?
x| “

y ´ x
?
y `

?
x
ă

δ

2
?
δ
“

?
δ

2
“

ε

2
?

2
ă ε.

There is an important general result which implies uniform continuity.

4.6.3. THEOREM. Suppose that f : ra, bs Ñ R is continuous on a closed,
bounded interval. Then f is uniformly continuous.

PROOF. If f is not uniformly continuous, then the definition fails for some
ε0 ą 0. That means that no value of δ makes the definition work. So we take
δn “

1
n . Since the definition fails, there are xn, yn P ra, bs so that |xn ´ yn| ă

1
n

and |fpxnq ´ fpynq| ě ε0. By the Bolzano-Weierstrass Theorem, the sequence
pxnq has a convergent subsequence pxnk

qkě1, say c “ lim
kÑ8

xnk
. Therefore

lim
kÑ8

ynk
“ lim

kÑ8
pynk

´ xnk
q ` xnk

“ 0` c “ c.

By continuity of fpxq at c, we have

fpcq “ lim
kÑ8

fpxnk
q “ lim

kÑ8
fpynk

q.

Hence
0 “ lim

kÑ8
|fpxnk

q ´ fpynk
q| ě ε0.

This is a contradiction. Thus f must be uniformly continuous. ■
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Exercises for Chapter 4

1. Let fpxq and gpxq be continuous functions on ra, bs. Define

f ^ gpxq “ mintfpxq, gpxqu and f _ gpxq “ maxtfpxq, gpxqu.

Prove that f ^ g and f _ g are continuous on ra, bs.

2. (a) Let fpxq “ x
1

1´x for x ě 0, x ‰ 1. Can f be defined at x “ 1 in order to
make the function continuous there?

(b) Let gpxq “
e1{x

1` e1{x
for x ‰ 0. Can g be defined at x “ 0 in order to make

the function continuous there?
(c) Let fpxq “ psin2 xqsec2 x. Where is this function defined? Can f be defined

at the missing points in order to make the function continuous there?
HINT: xa “ ea lnx. Look for a derivative in the exponent.

3. Fix a number d ą 0. A function fpxq on R is called d–periodic if fpx` dq “
fpxq for all x P R. Let f be a continuous d-periodic function on R. Show that
f attains its maximum and minimum values.

4. Suppose that f : RÑ p0,8q is a continuous function such that fp0q ą 0 and
lim

xÑ`8
fpxq “ 0 “ lim

xÑ´8
fpxq. Prove that f attains its supremum.

5. Let f : pa, bq Ñ R be a monotone increasing function.
(a) Show that if f is bounded above, then lim

xÑb´
fpxq exists.

HINT: use MCT for a sequence approaching b´.
(b) Hence show that for all a ă c ă b that lim

xÑc´
fpxq and lim

xÑc`
fpxq both exist.

When is fpxq continuous at c?
(c) Construct a function which is monotone increasing and bounded on R and

is discontinuous at every rational number.
HINT: list all of the rational numbers as Q “ tr1, r2, r3, . . . u and introduce
a small jump discontinuity at each rk.

6. Show that fpxq “ |x|1{2 is continuous but not Lipschitz.

7. Suppose that there is a constant C such that

|fpxq ´ fpyq| ď C|x´ y|2 for all a ď x, y ď b.

Prove that f is constant.

8. Show that tanx´ 4 sinx “ ex has at least 3 solutions in p´π
2 ,

π
2 q.

9. Show that there are two antipodal points on the equator with exactly the same
temperature. HINT: parametrize points on the equator by r0, 2πs using the
angle θ from the centre of the earth. Assume that the temperature function
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T pθq is continuous. (Is this reasonable?) You are asked to prove the existence
of some θ so that T pθq “ T pθ ` πq.

10. Suppose that f : R Ñ p0,8q is a positive continuous function such that
lim

xÑ`8
fpxq “ 0 “ lim

xÑ´8
fpxq. Prove that f attains its supremum.

11. (a) Show that a continuous function on p´8,`8q cannot take every real value
exactly twice.

(b) Find a continuous function on p´8,`8q which takes every real value ex-
actly three times. A sketch of the curve will suffice. An exact formula is not
required.

12. Let

fpxq “

$

&

%

1
1` plnxq2

if x ą 0

0 if x “ 0.
Prove that fpxq is uniformly continuous on r0,8q.
HINT: first prove it separately on r0, 3s and on r2,8q.



CHAPTER 5

Differentiation

5.1. The derivative

As you have seen in high school calculus, the derivative of a function fpxq at
x0, if it exists, is the slope of the tangent line to the curve y “ fpxq at a point
px0, fpx0qq. We compute this by computing the slope of a secant, the line segment
from px0, fpx0qq to px0 ` h, fpx0 ` hqq, and taking the limit as h Ñ 0 through
both positive and negative values.

 

FIGURE 5.1. Tangent line

5.1.1. DEFINITION. Let f : pa, bq Ñ R and let x0 P pa, bq. Then f is differen-
tiable at x0 if

lim
xÑx0

fpxq ´ fpx0q

x´ x0
“ lim

hÑ0

fpx0 ` hq ´ fpx0q

h

exists and is finite. The limit is called f 1px0q or
`

d
dxf

˘

px0q.
We say fpxq is differentiable on pa, bq if it is differentiable at every point

x0 P pa, bq. When f is defined on a closed interval ra, bs, we will say that f is
differentiable on ra, bs if it is differentiable on pa, bq and the one-sided derivatives

lim
hÑ0`

fpa` hq ´ fpaq

h
and lim

hÑ0´

fpb` hq ´ fpbq

h

60



5.1 The derivative 61

both exists and are finite. The tangent line to fpxq at x0 is

T pxq “ fpx0q ` f
1px0qpx´ x0q.

This is the line through px0, fpx0qq with slope f 1px0q.

5.1.2. THEOREM. If fpxq is differentiable at x0, then f is continuous at x0.

PROOF. This is an easy computation

lim
xÑx0

fpxq ´ fpx0q “ lim
xÑx0

fpxq ´ fpx0q

x´ x0
px´ x0q “ f 1px0q ¨ 0 “ 0. ■

Now we provide two useful variants which are equivalent to differentiability.

5.1.3. THEOREM. Let f : pa, bq Ñ R and let x0 P pa, bq. The following are
equivalent:

p1q f is differentiable at x0 and f 1px0q “ m.

p2q there is a linear function T pxq “ fpx0q `mpx´ x0q such that

lim
xÑx0

fpxq ´ T pxq

x´ x0
“ 0.

p3q there is a function φpxq which is continuous at x0 such that φpx0q “ m
and fpxq “ fpx0q ` φpxqpx´ x0q.

PROOF. (1)ñ(3). Define φpxq “
fpxq ´ fpx0q

x´ x0
if x ‰ x0 and φpx0q “ m.

Then fpxq “ fpx0q ` φpxqpx´ x0q and

lim
xÑx0

φpxq “ lim
xÑx0

fpxq ´ fpx0q

x´ x0
“ f 1px0q “ m “ φpx0q.

Therefore φ is continuous at x0, and (3) holds.
(3)ñ(2). Let T pxq “ fpx0q `mpx´ x0q. Then

lim
xÑx0

fpxq ´ T pxq

x´ x0
“ lim

xÑx0

fpx0q ` φpxqpx´ x0q ´ fpx0q ´mpx´ x0q

x´ x0

“ lim
xÑx0

φpxq ´m “ 0.

(2)ñ(1). If (2) holds, then

0 “ lim
xÑx0

fpxq ´ T pxq

x´ x0
“ lim

xÑx0

fpxq ´ fpx0q

x´ x0
´m.

Therefore f 1px0q “ lim
xÑx0

fpxq ´ fpx0q

x´ x0
“ m exists. ■
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5.1.4. EXAMPLES.
(1) Let fpxq “ sinx. we have shown that f 1pxq “ cosx. Our proof used the
addition formula:

sinpx0 ` hq “ sinx0 cosh` cosx0 sinh

“ sinx0 ` cosx0 h` sinx0pcosh´ 1q ` cosx0ph´ sinhq.

The tangent line is T px0 ` hq “ sinx0 ` cosx0 h. Define

φpx0 ` hq “ cosx0 ` sinx0
cosh´ 1

h
` cosx0

h´ sinh
h

.

Then sinpx0 ` hq “ sinx0 ` φpx0 ` hqh and

lim
hÑ0

φpx0 ` hq “ cosx0 ` sinx0 lim
hÑ0

cosh´ 1
h

` cosx0 lim
hÑ0

h´ sinh
h

“ cosx0.

(2) Let fpxq “ xn. Then using the binomial theorem,

f 1paq “ lim
hÑ0

pa` hqn ´ an

h
“ lim

hÑ0

řn
k“0

`

n
k

˘

an´khk ´ an

h

“ lim
hÑ0

an ´ an

h
`

ˆ

n

1

˙

an´1h

h
`

n
ÿ

k“2

ˆ

n

k

˙

an´khk´1

“ nan´1 ` lim
hÑ0

h
n
ÿ

k“2

ˆ

n

k

˙

an´khk´2 “ nan´1.

So f 1pxq “ nxn´1.

(3) fpxq “ ax “ ex ln a. Then

f 1px0q “ lim
hÑ0

ax0`h ´ ax0

h
“ ax0 lim

hÑ0

eh ln a ´ 1
h ln a

ln a

“ ax0 ln a lim
uÑ0

eu ´ 1
u

“ ax0 ln a.

5.1.5. EXAMPLE. Let fpxq “

#

x2 sin 1
x if x ‰ 0

0 if x “ 0
. For x ‰ 0, we have

f 1pxq “ 2x sin 1
x ` x

2
´

´1
x2

˘

cos 1
x “ 2x sin 1

x ´ cos 1
x .

However at x “ 0, we have

lim
hÑ0

fphq ´ fp0q
h

“ lim
hÑ0

h sin 1
h “ 0

by the Squeeze Theorem (since ´|h| ď h sin 1
h ď |h|). Thus f 1p0q “ 0. Notice

however that f 1pxq is discontinuous at 0:

lim
xÑ0

f 1pxq “ lim
xÑ0

2x sin 1
x ´ cos 1

x
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does not exist!
To graph fpxq, we notice that as x Ñ 0, the curve oscillates rapidly between

y “ x2 and y “ ´x2. The function is odd. It has zeroes at 1
nπ for n P Zzt0u.

It touches the bounding curves in between, and at ˘2
π . As x Ñ ˘8, we can

approximate x2 sin 1
x « x2 1

x “ x. Thus we compute (by substituting u “ 1
x )

lim
xÑ8

x2 sin
1
x
´ x “ lim

uÑ0`

1
u

´sinu
u

´ 1
¯

We showed that for 0 ă u ă π
2 , that cosu ă

sinu
u

ă 1, and hence

cosu´ 1
u

ă
1
u

´sinu
u

´ 1
¯

ă 0.

As limuÑ0
cosu´ 1

u
“ 0, the Squeeze Theorem shows that lim

xÑ8
x2 sin 1

x ´x “ 0.
Thus y “ x is an oblique asymptote. A similar analysis shows that as xÑ ´8, it
is also an asymptote.

FIGURE 5.2. Graph of x2 sin 1
x

5.2. Differentiation Rules

We first derive the rules for derivatives of sums, products and quotients of func-
tions. The addition rule is routine. The proofs of the product rule and the quotient
rule are similar, but the latter is a bit more complicated. We will prove the quotient
iule and leave the others as an exercise.
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5.2.1. PROPOSITION. Let f, g be differentiable at x, and let r, s P R. Then
p1q prf ` sgq1pxq “ rf 1pxq ` sg1pxq.

p2q pfgq1pxq “ f 1pxqgpxq ` fpxqg1pxq.

p3q If gpxq ‰ 0,
`

f{g
˘1
pxq “

f 1pxqgpxq ´ fpxqg1pxq

gpxq2
.

PROOF.

lim
hÑ0

fpx`hq

gpx`hq
´

fpxq

gpxq

h
“ lim

hÑ0

fpx` hqgpxq ´ fpxqgpx` hq

hgpx` hqgpxq

“ lim
hÑ0

1
gpx`hqgpxq

´fpx`hq´fpxq

h
gpxq`fpxq

gpxq´gpx` hq

h

¯

“
1

gpxq2
`

f 1pxqgpxq ´ fpxqg1pxq
˘

.

We used the fact that differentiability of g implies continuity of g at x. ■

The chain rule for the derivative of a composition will be proven using Theo-
rem 5.1.3.

5.2.2. CHAIN RULE. Let f : pa, bq Ñ pc, dq and g : pc, dq Ñ R. Suppose
that f is differentiable at x0 and that g is differentiable at fpx0q. Then g ˝ f is
differentiable at x0 and

pg ˝ fq1px0q “ g1pfpx0qqf
1px0q.

PROOF. Since f is differentiable at x0, applying Theorem 5.1.3, we can write
fpxq “ fpx0q ` φpxqpx ´ x0q where φpx0q “ f 1px0q “ lim

xÑx0
φpxq. Similarly,

set y0 “ fpx0q and write gpyq “ gpy0q ` ψpyqpy ´ y0q where ψpy0q “ g1py0q “

lim
yÑy0

ψpyq. Set hpxq “ pg ˝ fqpxq “ gpfpxqq. Then

hpxq “ hpx0q ` ψpfpxqqpfpxq ´ fpx0qq “ hpx0q ` ψpfpxqqφpxqpx´ x0q.

Let χpxq “ ψpfpxqqφpxq. Then χpx0q “ ψpy0qφpx0q “ g1pfpx0qqf
1px0q. Since

f is continuous at x0, and φ and ψ are continuous at x0 and fpx0q respectively,

lim
xÑx0

χpxq “ lim
xÑx0

ψpfpxqqφpxq “ ψpfpx0qqφpx0q “ χpx0q.

By Theorem 5.1.3, h is differentiable at x0 and h1px0q “ g1pfpx0qqf
1px0q. ■

Suppose that fpxq has an inverse function f´1pxq. If we knew that f and
f´1 were differentiable, we could apply the chain rule to y “ f ˝ f´1pyq to get
1 “ f 1pf´1pyqqpf´1q1pyq. Solving yields

pf´1q1pyq “
1

f 1pf´1pyqq
.
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For this to make sense, we also need f 1pf´1pyqq ‰ 0. To avoid assuming differen-
tiability, we use Theorem 5.1.3 again.

5.2.3. THEOREM (Inverse functions). Suppose that f is strictly monotone
and maps pa, bq onto pc, dq. Let f´1 : pc, dq Ñ pa, bq be the inverse function. Let
y0 P pc, dq and x0 “ f´1py0q. If f is differentiable at x0 and f 1px0q ‰ 0, then f´1

is differentiable at y0 and

pf´1q1py0q “
1

f 1pf´1py0qq
.

PROOF. Since f is differentiable at x0, applying Theorem 5.1.3, we can write
fpxq “ fpx0q`φpxqpx´x0q where φpx0q “ f 1px0q “ lim

xÑx0
φpxq. For y P pc, dq,

let x “ f´1pyq. Therefore

y “ fpxq “ fpx0q ` φpxqpx´ x0q

“ y0 ` φpf
´1pyqqpf´1pyq ´ f´1py0qq.

Note that if y ‰ y0, then φpf´1pyqq ‰ 0. Solve for f´1pyq:

f´1pyq “ f´1py0q `
y ´ y0

φpf´1pyqq
“ f´1py0q ` ψpyqpy ´ y0q,

where ψpyq “
1

φpf´1pyqq
for y ‰ y0. Set ψpy0q “

1
f 1px0q

. Then

lim
yÑy0

ψpyq “ lim
yÑy0

1
φpf´1pyqq

“ lim
xÑx0

1
φpxq

“
1

φpx0q
“

1
f 1px0q

“ ψpy0q.

Thus ψ is continuous at y0, so by Theorem 5.1.3, f´1 is differentiable at x0 and

pf´1q1py0q “
1

f 1px0q
“

1
f 1pf´1py0qq

. ■

5.2.4. EXAMPLE. Trig functions. We have seen that d
dx sinx “ cosx and

d
dx cosx “ ´ sinx.

d

dx
tanx “

´ sinx
cosx

¯1

“
pcosxqpcosxq ´ psinxqp´ sinxq

cos2 x
“ sec2 x.

d

dx
cotx “

´cosx
sinx

¯1

“
´ sin2 x´ cos2 x

sin2 x
“ ´ csc2 x.

d

dx
secx “

´ 1
cosx

¯1

“ ´
´ sinx

cos2 x
“

sinx
cosx

1
cosx

“ tanx secx.

d

dx
cscx “

´ 1
sinx

¯1

“ ´
cosx
sin2 x

“ ´ cotx cscx.
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5.2.5. EXAMPLE. Inverse trig functions. We restrict tanx to p´π
2 ,

π
2 q, which

is an increasing function with range R. Hence tan´1 : R Ñ p´π
2 ,

π
2 q. More-

over, lim
xÑ8

tan´1pxq “ π
2 shows that there is a horizontal asymptote, and similarly

lim
xÑ´8

tan´1pxq “ ´π
2 . We compute

ptan´1q1pxq “
1

tan1ptan´1pxqq
“

1
sec2ptan´1pxqq

“ cos2ptan´1pxqq.

Take a right triangle with angle θ “ tan´1pxq and compute cos θ “ 1?
1`x2 . There-

 

FIGURE 5.3. Graph of tan´1pxq

fore d
dx tan´1pxq “

1
1` x2 .

Next we restrict cotx to p0, πq. It has range R, is decreasing, and vertical
asymptotes x “ 0 and x “ π. Thus cot´1 : R Ñ p0, πq is decreasing, and has
horizontal asymptotes y “ 0 and y “ π. The formula cotx “ tanpπ2 ´ xq implies
that cot´1 x “ π

2 ´ tan´1 x. Thus

d

dx
cot´1pxq “ ´

d

dx
tan´1 x “

´1
1` x2 .

For sin´1, we restrict sinx to r´π
2 ,

π
2 s on which sinx is increasing with range

r´1, 1s. Thus the inverse sin´1 : r´1, 1s Ñ r´π
2 ,

π
2 s is increasing. The derivative

is
d

dx
sin´1pxq “

1
cospsin´1 xq

“
1

?
1´ x2

.

 

Again we compute the cosine by drawing a right triangle with angle θ “ sin´1 x.
Notice that the derivative is undefined at x “ ˘1. This corresponds to the points
˘π

2 at which sin1 x “ cosx “ 0. The function sin´1 x has vertical tangents at
p˘1,˘π

2 q corresponding to the horizontal tangents of sinx at p˘π
2 ,˘1q.



5.2 Differentiation Rules 67

Now cosx maps r0, πs onto r´1, 1s and is decreasing. We will use the relation
cosx “ sinpπ2 ´ xq. Therefore cos´1 x “ π

2 ´ sin´1 x. Differentiating shows that
d

dx
cos´1 x “

´1
?

1´ x2
.

For sec´1 x, recall from Example 4.5.7 that sec´1 has two branches defined on
p´8,´1s and r1,8q, respectively. We can compute the derivative by noting that
sec´1 x “ cos´1 1

x . Therefore by the chain rule,

d

dx
sec´1 x “

d

dx
cos´1p 1

xq “
´1

b

1´ 1
x2

´1
x2 “

1
|x|
?
x2 ´ 1

.

There is a subtlety here. Since x2 ą 0, we factor it as |x|
?
x2 in order to

clear the denominator in
b

1´ 1
x2 . This keeps the derivative positive, instead of

changing the sign if we forget the absolute value. Similarly, csc´1 x “ sin´1 1
x and

d

dx
csc´1 x “

´1
|x|
?
x2 ´ 1

.

5.2.6. EXAMPLES.
(1) Let a ‰ 0 and let fpxq “ xa for x ą 0, which is a non-integer power of x. We
write fpxq “ ea lnx. Thus

f 1pxq “ ea lnx a

x
“
axa

x
“ axa´1.

(2) Let fpxq “ ln |x| for x ‰ 0. When x ą 0, fpxq “ lnx and so f 1pxq “ 1
x .

When x ă 0, fpxq “ lnp´xq, and so by the chain rule, f 1pxq “ 1
´xp´1q “ 1

x .
Therefore f 1pxq “ 1

x .

(3) Implicit differentiation. Consider the curve

x3 ` 2x2y ` xy2 ` 3y3 ´ 2x2 ´ xy ´ y2 ` x` 7y ´ 9 “ 0.

By inspection, p0, 1q lies on the curve. However there is no easy way to solve for y
as a function of x. We differentiate the whole expression:

3x2 ` 2xy ` x2y1 ` y2 ` 2xyy1 ` 9y2y1 ´ 4x´ y ´ xy1 ´ 2yy1 ` 1` 7y1 “ 0.

Solve for y1:

y1 “
´p3x2 ` 2xy ` y2 ´ 4x` 1q
x2 ` 2xy ` 9y2 ´ x´ 2y ` 7

.

Plugging in x “ 0 and y “ 1 yields y1 “ ´1{7 at p0, 1q.

(4) Logarithmic differentiation. Consider fpxq “ ptan2 xqcosxex
2
px ` 1q4. Then

since fpxq ě 0

ln fpxq “ 2 cosx ln | tanx| ` x2 ` 2 ln |x` 1|
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which is valid unless fpxq “ 0. Differentiate both sides:

f 1pxq

fpxq
“ ´2 sinx ln | tanx| ` 2

cosx
tanx

sec2 x` 2x`
2

|x` 1|
.

Solve for f 1pxq. At points where fpxq “ 0, a separate argument is needed.

5.3. Maxima and Minima

Recognizing the maximum and minimum points on a graph, even locally, has
many applications.

5.3.1. DEFINITION. If f : ra, bs Ñ R is a function, a point x0 is a maximum
for f if fpx0q “ suptfpxq : a ď x ď bu. A point x0 is a minimum for f if
fpx0q “ inftfpxq : a ď x ď bu.

We say that x0 is a local maximum for f if there is δ ą 0 so that it is a maximum
on the smaller interval rx0´ δ, x0` δs. A point x0 is a local minimum for f if there
is δ ą 0 so that it is a minimum on rx0 ´ δ, x0 ` δs.

5.3.2. FERMAT’S THEOREM. Suppose that f : ra, bs Ñ R is a continuous
function which attains its maximum or minimum value at x0. Then either

p1q x0 P ta, bu is an endpoint of ra, bs,

p2q f 1px0q is undefined,
or

p3q f 1px0q “ 0.

PROOF. Suppose that x0 is a maximum for f and (1) is false, so a ă x0 ă b;
and that (2) is also false, so that f 1px0q is defined. Then
 

FIGURE 5.4. Fermat’s Theorem



5.3 Maxima and Minima 69

f 1px0q “ lim
hÑ0`

fpx0 ` hq ´ fpx0q

h
ď 0

“ lim
hÑ0´

fpx0 ` hq ´ fpx0q

h
ě 0.

The first inequality is because the numerator is negative and the denominator is
positive, while the second inequality is because the numerator is negative and the
denominator is negative. Therefore f 1px0q “ 0. Minima are treated similarly. ■

We get the following important corollary.

5.3.3. ROLLE’S THEOREM. Suppose that f : ra, bs Ñ R is continuous, is
differentiable on pa, bq and fpaq “ fpbq. Then there is a point x0 P pa, bq so that
f 1px0q “ 0.

PROOF. If f is constant, any point x0 P pa, bq will do. Otherwise there is
some x with fpxq ‰ fpaq. without loss of generality, fpxq ą fpaq. By the
Extreme Value Theorem, f attains its maximum value at some point x0; and clearly
x0 R ta, bu. By Fermat’s Theorem, since f is differentiable at x0, f 1px0q “ 0. ■

5.3.4. EXAMPLE. Snell’s Law. A beam of light travels from point A to point
B. It starts in one medium in which the speed of light is c1, but when it crosses
the line CD into the second medium, the speed is c2. (Typical media are air, water,
glass, vacuum, etc.) The light will travel in a straight line from A to some point X
on CD, but then will change the angle (refraction) and follow a straight line to B.
The point X is determined by Fermat’s Principle: the light will travel along the
path requiring the least time.

 

FIGURE 5.5. Snell’s law

Drop perpendicular lines fromA to a point C on the line, and fromB to a point
D. Let the distances be CD “ L, AC “ h1 and BD “ h2. We will treat X as
a variable position along the line, and compute the time it would take the light to
travel through X . Then we will minimize the time to find a relationship between
the angle of incidence, α1 “ =CAX , and the angle of refraction, α2 “ =DXB.
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Once we fix the angle α1, the point X and the angle α2 are determined as functions
of α1.

The distances travelled in each medium are

AX “ h1 secα1 and XB “ h2 secα2.

Thus the time taken is

T pα1q “
h1

c1
secα1 `

h2

c2
secα2.

We also need to work L into this by observing that

L “ CX `XD “ h1 tanα1 ` h2 tanα2.

This works for´π
2 ă α1 ă

π
2 , so even if the light should travel away fromB or be-

yondB at first (actually impossible), the formula is still valid. We will differentiate
it with respect to α1:

0 “
dL

dα1
“ h1 sec2 α1 ` h2 sec2 α2

dα2

dα1
.

Therefore
dα2

dα1
“
´h1 sec2 α1

h2 sec2 α2
. Observe that lim

α1Ñ˘π
2

T pα1q “ 8, and thus T will

attain its minimum value in between. Differentiate T :
dT

dα1
“
h1

c1
secα1 tanα1 `

h2

c2
secα2 tanα2

dα2

dα1

“
h1

c1
secα1 tanα1 ´

h2

c2
secα2 tanα2

h1 sec2 α1

h2 sec2 α2

“ h1 sec2 α1

´sinα1

c1
´

sinα2

c2

¯

.

Therefore T 1pα1q “ 0 if and only if
sinα1

c1
“

sinα2

c2
; and this must be the mini-

mum. The relationship between the two angles is known as Snell’s law.

5.4. Mean Value Theorem

There is a routine but powerful extension of Rolle’s Theorem.

5.4.1. MEAN VALUE THEOREM. Suppose that f : ra, bs Ñ R is continuous,
and is differentiable on pa, bq. Then there is a point x0 P pa, bq so that

f 1px0q “
fpbq ´ fpaq

b´ a
.
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FIGURE 5.6. Mean Value Theorem

PROOF. Let gpxq “ fpxq ´
´fpbq ´ fpaq

b´ a

¯

x. Then

gpbq ´ gpaq “ fpbq ´
´fpbq ´ fpaq

b´ a

¯

b´ fpaq `
´fpbq ´ fpaq

b´ a

¯

a

“ fpbq ´ fpaq ´
´fpbq ´ fpaq

b´ a

¯

pb´ aq “ 0.

So gpaq “ gpbq. By Rolle’s Theorem, thee is a point x0 P pa, bq so that

0 “ g1px0q “ f 1px0q ´
fpbq ´ fpaq

b´ a
.

Thus f 1px0q ´
fpbq ´ fpaq

b´ a
. ■

The following immediate consequence is used all the time.

5.4.2. COROLLARY. Suppose that f : ra, bs Ñ R is continuous, and is differ-
entiable on pa, bq.

‚ If f 1pxq ą 0 on pa, bq, then f is strictly increasing.

‚ If f 1pxq ě 0 on pa, bq, then f is increasing.

‚ If f 1pxq ă 0 on pa, bq, then f is strictly decreasing.

‚ If f 1pxq ď 0 on pa, bq, then f is decreasing.

PROOF. We only prove the first statement. Suppose that a ď x ă y ď b. Then
by the Mean Value Theorem applied to rx, ys, there is a point x0 P px, yq so that

fpyq ´ fpxq

y ´ x
“ f 1px0q ą 0.

Hence fpxq ă fpyq. ■

5.4.3. PROPOSITION. If f : ra, bs has a continuous derivative f 1pxq and
f 1px0q ą 0, then there is a δ ą 0 so that f is strictly increasing on px0´ δ, x0` δq.
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PROOF. Take ε “ f 1px0q. By continuity of f 1, there is a δ ą 0 so that if
x P px0 ´ δ, x0 ` δq, then |f 1pxq ´ f 1px0q| ă ε. Hence

fpxq ě fpx0q ´ |pfpxq ´ fpx0q| ą ε´ ε “ 0.

Thus f is strictly increasing on px0 ´ δ, x0 ` δq. ■

5.4.4. EXAMPLE. This proposition can fail if f 1 is not continuous. Let

fpxq “ ax` x2 sin
1
x

for 0 ă a ă 1. By Example 5.1.4(4), this function is differentiable everywhere,
and f 1pxq is continuous except at x “ 0. Moreover f 1p0q “ a ą 0. However

f 1pxq “ a` 2x sin
1
x
` x2 cos

1
x

´

´1
x2

¯

“ a` 2x sin
1
x
´ cos

1
x
.

For xn “ 1
2nπ , f 1pxnq “ a ´ 1 ă 0. By Proposition 5.4.3, f is decreasing on

a small interval around xn. Since xn Ñ 0, f is not increasing on any interval
containing 0.

If a ą 1, then for any |x| ă pa´ 1q{2 “ ε, we have f 1pxq ě a´ 2ε´ 1 “ 0.
Thus f is strictly increasing on

`1´a
2 , a´1

2

˘

.
When a “ 1, we see that f 1pxnq “ 0. However

f2pxq “ 2 sin 1
x ` 2x cos 1

x

`

´1
x2

˘

` sin 1
x

`

´1
x2

˘

“
`

2´ 1
x2

˘

sin 1
x ´

2
x cos 1

x .

This is continuous except at x “ 0 and f2pxnq “
´2
xn
ă 0. By Proposition 5.4.3,

f 1pxq is strictly decreasing on a small interval pxn ´ δ, xn ` δq around xn. Hence
f 1pxq ă 0 on pxn, xn ` δq. Again f is not increasing on any interval containing 0.

Now we demonstrate another application of the Mean Value Theorem.

5.4.5. EXAMPLE. Let fpxq “ sinx. For 0 ă x ď π
2 , apply MVT on r0, xs.

There is a point x0 P p0, xq so that

sinx
x

“
sinx´ sin 0

x´ 0
“ f 1px0q “ cosx0 P p0, 1q.

Hence 0 ă sinx ă x, an inequality established in Example 3.1.7.
Now let gpxq “ 1

2x
2 ` cosx. Then g1pxq “ x´ sinx ą 0 on p0, π2 q. Thus g is

strictly increasing, so that 1
2x

2 ` cosx ą gp0q “ 1 on p0, π2 s. That is,

1´ 1
2x

2 ă cosx ă 1 for 0 ă x ď π
2 .

Now let hpxq “ sinx´ x` 1
6x

3. This is chosen so that hp0q “ 0 and h1pxq “

cosx´1` 1
2x

2 ą 0. Thus h is strictly increasing on r0, π2 s. Hence hpxq ą hp0q “
0. Therefore

x´ 1
6x

3 ă sinx ă x for 0 ă x ď π
2 .



5.4 Mean Value Theorem 73

Once more! Let kpxq “ cosx ´ p1 ´ 1
2x

2 ` 1
24x

4q. Then kp0q “ 0 and
k1pxq “ ´ sinx ` x ´ 1

6x
3 “ ´hpxq ă 0. Thus k is strictly decreasing, and so

kpxq ă 0. Therefore

1´ 1
2x

2 ă cosx ă 1´ 1
2x

2 ` 1
24x

4 for 0 ă x ď π
2 .

5.4.6. EXAMPLE. Is
tanx
x

ą
x

sinx
on p0, π2 q?

This is true if and only if fpxq “ sinx tanx´ x2 ą 0. Note that fp0q “ 0 and

f 1pxq “ cosx tanx` sinx sec2 x´ 2x “ sinxp1` sec2 xq ´ 2x.

Thus f 1p0q “ 0 and

f2pxq “ cosxp1` sec2 xq ` sinxp2 secxpsecx tanxqq ´ 2

“ pcosx´ 2` secxq ` 2
sin2 x

cos3 x

“

´?
cosx´

1
?

cosx

¯2
` 2

sin2 x

cos3 x
ą 0.

Thus f2pxq ą 0 on p0, π2 q, and therefore f 1pxq is strictly increasing on p0, π2 q.
Since f 1pxq “ 0, we have f 1pxq ą 0, and thus fpxq is strictly increasing. Finally,
since fp0q “ 0, we have fpxq ą 0 on p0, π2 q. So the answer is yes.

5.4.7. EXAMPLE. We introduce the hyperbolic trig functions.

sinhx “
ex ´ e´x

2
coshx “

ex ` e´x

2
and tanhx “

sinhx
coshx

“
ex ´ e´x

ex ` e´x
.

Note that tanhx has lim
xÑ8

tanhx “ 1 and lim
xÑ´8

tanhx “ ´1. Thus tanhx has

horizontal asymptotes y “ ˘1. Note that

d

dx
sinhx “

ex ` e´x

2
“ coshx and

d

dx
coshx “

ex ´ e´x

2
“ sinhx.

Hence

d

dx
tanhx “

cosh2 x´ sinh2 x

cosh2 x

“
pe2x ` 2` e´2xq ´ pe2x ´ 2` e´2xq

4 cosh2 x

“
1

cosh2 x
“: sech2 x.

Claim: tan´1 x ă π
2 tanhx. Note that π

2 tanhx has the same horizontal asymp-
totes, y “ ˘π

2 , as tan´1 x. Also tan´1 0 “ 0 “ tanh 0. However

π

2
tanh1p0q “

π

2
ą 1 “

1
1` 02 “

d

dx
tan´1p0q.
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So π
2 tanhx increases faster near x “ 0. However that means that tan´1 x will

have to increase faster for larger x to make up the difference. Subtracting them and
differentiating will not help us here.

Let fpxq “
tan´1 x

tanhx
for x ě 0. Then lim

xÑ8

tan´1 x

tanhx
“ π

2 . Differentiate

f 1pxq “
1

1`x2 tanhx´ tan´1 x sech2 x

tanh2 x

“
sinhx coshx´ p1` x2q tan´1 x

p1` x2q sinh2 x

“

1
2 sinh 2x´ p1` x2q tan´1 x

p1` x2q sinh2 x

The denominator is positive and f 1p0q “ 0. Let gpxq “ 1
2 sinh 2x´p1`x2q tan´1 x.

Then
g1pxq “ cosh 2x´ 2x tan´1 x´ 1

g2pxq “ 2 sinh 2x´ 2 tan´1 x´
2x

1` x2

and

gp3qpxq “ 4 cosh 2x´
2

1` x2´
2` 2x2 ´ 2xp2xq

p1` x2q2
“ 4

`

cosh 2x´
1

p1` x2q2

˘

ą 0

because cosh 2x ą 1 ą 1
p1`x2q2 . Now 0 “ gp0q “ g1p0q “ g2p0q. Since gp3q ą 0,

g2 is strictly increasing and hence positive. Thus g1 is strictly increasing, and hence
positive; and thus g is strictly increasing. Finally, this means that g ą 0, and thus
f 1 ą 0. Thus fpxq is strictly increasing. In particular, fpxq ă π

2 for all x ą 0.

5.5. Convexity and the second derivative

5.5.1. DEFINITION. Higher order derivatives. If f 1pxq is differentiable, then
we write f2pxq “ d

dxf
1pxq for the second derivative of f . Similarly, for k ě 3,

we write f pkqpxq “ d
dxf

pk´1qpxq “: dk

dxk fpxq for the kth derivative. If f has k
derivatives and f pkq is continuous, we call f a Ck function.

5.5.2. DEFINITION. A function f : pa, bq Ñ R is convex if

fptu` p1´ tqvq ď tfpuq ` p1´ tqfpvq for a ă u ă v ă b and 0 ă t ă 1.

And f is strictly convex if this is a strict inequality. A function g is concave if
fpxq “ ´gpxq is convex.
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5.5.3. REMARK. The straight line through pu, fpuqq and pv, fpvqq is

Lptu` p1´ tqvq “ tfpuq ` p1´ tqfpvq

“ fpuq `
fpvq ´ fpuq

v ´ u
px´ uq for t P R.

The values 0 ă t ă 1 yield all points x “ tu ` p1 ´ tqv between u and v.
So convexity means that the function always lies below the chord connecting two
points on the graph of f .

 

FIGURE 5.7. A convex function

5.5.4. PROPOSITION. f2pxq ě 0 on pa, bq implies that f 1pxq is increasing on
pa, bq, which implies that fpxq is convex on pa, bq. Similarly, f2pxq ď 0 on pa, bq
implies that f 1pxq is decreasing on pa, bq, which implies that fpxq is concave on
pa, bq. Strict inequalities yield strict convexity/concavity.

PROOF. The first step follows from the Mean Value Theorem. Now suppose
that f 1pxq is increasing (even if f2pxq is not defined). Define

gpxq “ fpxq ´ Lpxq “ fpxq ´ fpuq ´
fpvq ´ fpuq

v ´ u
px´ uq.

Then gpuq “ gpvq “ 0 and g1pxq is increasing. By Rolle’s Theorem, there is a
point x0 P pu, vq so that g1px0q “ 0. Then g1pxq ď 0 on ru, x0s, so that gpxq is
decreasing and thus gpxq ď gpuq “ 0. Likewise g1pxq ě 0 on rx0, vs, so that
gpxq is increasing, and thus gpxq ď gpvq “ 0. Thus gpxq ď 0 on ru, vs; whence
fpxq ď Lpxq.

The other cases are similar. ■

This next corollary is known as the second derivative test for extreme points.
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5.5.5. COROLLARY. Suppose that f is C2 on pa, bq. If x0 P pa, bq, f 1px0q “ 0
and f2px0q ă 0, then x0 is a local maximum. If x0 P pa, bq, f 1px0q “ 0 and
f2px0q ą 0, then x0 is a local minimum.

PROOF. Since f2px0q ă 0 and f2 is continuous, there is a δ ą 0 so that
f2pxq ă 0 on px0´δ, x0`δq. Thus f 1pxq is strictly decreasing on px0´δ, x0`δq.
Since f 1px0q “ 0, f 1pxq ą 0 on px0 ´ δ, x0q; and thus fpxq ď fpx0q there.
Similarly, f 1pxq ă 0 on px0, x0 ` δq; and thus fpxq ď fpx0q there too. Hence x0
is a local maximum, ■

The second derivative f2pxq measures the curvature of the curve y “ fpxq.
When f2pxq ą 0, the slope f 1pxq is increasing, and thus the graph is curving
upwards. Similarly if f2pxq ă 0, the slope is decreasing, and the graph is curving
downwards. When f2pxq changes sign, the curve switches from curving down to
curving up or vice versa. The transition point is called a point of inflection. This
can happen when f2pxq “ 0, but also when there is a vertical tangent

 

FIGURE 5.8. Inflection points

What does the third derivative, f p3qpxq represent physically? For a moving
vehicle, it measures the change in acceleration. For example, when a subway car
starts up, there is a jerk as it takes off. For this reason, the third derivative is
sometimes called the jerk, especially in physics.

5.5.6. EXAMPLE. Graph fpxq “
x1{3

x´ 1
.

‚ fpxq “ 0 only at x “ 0.
‚ f is undefined at x “ 1. lim

xÑ1´
fpxq “ ´8 and lim

xÑ1`
fpxq “ `8. So x “ 1 is a

vertical asymptote.
‚ lim

xÑ˘8
fpxq “ 0`. So y “ 0 is a horizontal asymptote as xÑ ˘8.

‚ f 1pxq “
1
3x

´2{3px´ 1q ´ x1{3

px´ 1q2
“
px´ 1q ´ 3x
3x2{3px´ 1q2

“
´1´ 2x

3x2{3px´ 1q2
.

So f 1p´ 1
2q “ 0. Thus p´1

2 ,
3?4
3 q is a critical point. The denominator is positive,

and the numerator changes sign from positive to negative at x “ ´1
2 . Hence this is
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a local maximum.
Also f 1pxq is undefined at x “ 0 and 1. At the point p0, 0q, lim

xÑ0
f 1pxq “ ´8. This

is a vertical tangent. It is also an inflection point.
We already know what is happening near x “ 1.
‚ For f2pxq, use the product rule rather than the quotient rule.

f2pxq “
´2

3x2{3px´ 1q2
`
p´1´ 2xqp´2

3q

3x5{3px´ 1q2
`
p´1´ 2xqp´2q
3x2{3px´ 1q3

“
´2xpx´ 1q ` p1` 2xqp2

3qpx´ 1q ` p1` 2xqp2xq
3x5{3px´ 1q3

“
2p5x2 ` 5x´ 1q

9x5{3px´ 1q3
.

Now f2pxq “ 0 at the roots of 5x2 ` 5x ´ 1 “ 0, namely x “
´5˘ 3

?
5

10
which

are about 0.17 and ´1.17. These are inflection points.
Also f2 is undefined at 0, 1, but this doesn’t add new information.

FIGURE 5.9. Graph of fpxq
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5.6. Convexity and Jensen’s Inequality

We first look at how close convex functions are to being differentiable.

5.6.1. SECANT LEMMA. Let f : pa, bq Ñ R be convex and let a ă x ă y ă
z ă b. Then

fpyq ´ fpxq

y ´ x
ď
fpzq ´ fpxq

z ´ x
ď
fpzq ´ fpyxq

y ´ y
.

 

FIGURE 5.10. Secant Lemma

PROOF. Let t “ z´y
z´x and observe that y “ tx ` p1 ´ tqz. By convexity,

fpyq ď tfpxq ` p1´ tqfpzq. Therefore

fpyq ´ fpxq ď p1´ tqpfpzq ´ fpxqq.

Since y ´ x “ p1´ tqpz ´ xq, we can divide and obtain

fpyq ´ fpxq

y ´ x
ď
fpzq ´ fpxq

z ´ x
.

The second inequality is proven in the same manner. ■

5.6.2. COROLLARY. If f : pa, bq Ñ R is convex, then it is continuous.

PROOF. It is enough to show that f is continuous on rc, ds if a ă c ă d ă b.
Pick c1 and d1 so that a ă c1 ă c ă d ă d1 ă b. If c ď x ă y ď d, then by the
Secant Lemma,

C :“
fpcq ´ fpc1q

c´ c1
ď
fpyq ´ fpxq

y ´ x
ď
fpd1q ´ fpdq

d1 ´ d
“: D.

Hence |fpyq ´ fpxq| ď maxt|C|, |D|u|y ´ x|. Therefore f is Lipschitz on rc, ds,
and so is continuous. ■



5.6 Convexity and Jensen’s Inequality 79

5.6.3. REMARK. A convex function can fail to be continuous at an endpoint.

For example, fpxq “

#

0 if 0 ă x ă 1
1 if x P t0, 1u

.

Also a convex function does not need to be differentiable everywhere. The
function fpxq “ |x| on p´1, 1q is typical.

5.6.4. DEFINITION. A function f : pa, bq Ñ R has a right derivative at x if

D`fpxq “ lim
hÑ0`

fpx` hq ´ fpxq

h
exists. Similarly there is a left derivative at x

if D´fpxq “ lim
hÑ0´

fpx` hq ´ fpxq

h
exists.

5.6.5. THEOREM. Let f : pa, bq Ñ R be convex. Then f has left and right
derivatives at every point. If a ă x ă y ă b, then

D´fpxq ď D`fpxq ď D´fpyq ď D`fpyq.

PROOF. Let 0 ă h ă k ă mintx ´ a, 1
2py ´ xq, b ´ yu “: δ. By the Secant

Lemma,

fpxq ´ fpx´ kq

k
ď
fpxq ´ fpx´ hq

h
ď
fpx` hq ´ fpxq

h
ď
fpx` kq ´ fpxq

k
.

Therefore gphq “
fpx` hq ´ fpxq

h
is an increasing function on p´δ, δqzt0u. By

Proposition 4.5.1,

lim
hÑ0´

fpx` hq ´ fpxq

h
“ sup

hă0

fpx` hq ´ fpxq

h
“ D´fpxq

exists, and similarly

lim
hÑ0`

fpx` hq ´ fpxq

h
“ sup

hą0

fpx` hq ´ fpxq

h
“ D`pxq

exists and D´fpxq ď D`fpxq.

The Secant Lemma also shows that
fpx` hq ´ fpxq

h
ď

fpxq ´ fpx´ kq

k
,

and therefore D`fpxq ď D´fpyq. ■

5.6.6. COROLLARY. A convex function is differentiable except on a countable
set.

PROOF. By Proposition 4.5.6, the monotone function D´fpxq is continuous
except on a countable set. However if D´fpxq is continuous at x, then for ε ą 0,
there is a δ ą 0 so that |y ´ x| ă δ implies that D´fpyq ´D´fpxq| ă ε. Now if



80 Differentiation

y ą x, choose x ă y ă y1 ă x` δ and note that

D´fpxq ď D`fpxq ď D`fpyq ď D´fpy
1q ă D´fpxq ` ε.

Since ε is arbitrarily small, we have that D`fpxq “ D´fpxq, and it is also con-
tinuous at x. Hence f is differentiable at each x except for the countable set of
discontinuities of D´f . ■

In a certain sense, the following is just a repeated application of the defintion
of convex function. However it has some surprising applications.

5.6.7. JENSEN’S INEQUALITY. Let f : pa, bq Ñ R be convex. Suppose that

x, . . . , xn P pa, bq, t1, . . . , tn ě 0 and
n
ř

i“1
ti “ 1. Then

f
`

n
ÿ

i“1

tixi
˘

ď

n
ÿ

i“1

tifpxiq.

If f is strictly convex, and ti ą 0 for all i, then equality only holds if x1 “ ¨ ¨ ¨ “ xn.

PROOF. Proceed by induction on n ě 2. The case n “ 2 is the definition of
convexity. Now assume that the result is true for n, and let x, . . . , xn`1 P pa, bq,

t1, . . . , tn`1 ě 0 and
n`1
ř

i“1
ti “ 1. Define

t “
n
ÿ

i“1

ti “ 1´ tn`1 and y “
n
ÿ

i“1

ti
t
xi.

Then y P pa, bq and
řn

i“1 ti “ 1, so the n case yields

fpyq ď
n
ÿ

i“1

ti
t
fpxiq.

Observe that 0 ă t ă 1 and

ty ` tn`1xn`1 “

n`1
ÿ

i“1

tixi.

By convexity of f ,

f
`

n`1
ÿ

i“1

tixi
˘

“ fpty ` tn`1xn`1q ď tfpyq ` tn`1fpxn`1q

ď t
n
ÿ

i“1

ti
t
fpxiq ` tn`1fpxn`1q “

n`1
ÿ

i“1

tifpxiq.

Now if f is strictly convex, then the n “ 2 case is a strict inequality if x1 ‰ x2
and 0 ă t1 ă 1. So if every ti ą 0, then in the argument above, equality in the first
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line forces y “ xn`1; and equality in the inequality for fpyq, by the n case, forces
x1 “ ¨ ¨ ¨ “ xn “ y. ■

5.6.8. EXAMPLE. Let fpxq “ ex. Since f2pxq “ ex ą 0, this is a strictly
convex function on R. Suppose that ai ą 0 and ti ą 0 for 1 ď i ď n and
n
ř

i“1
ti “ 1. Let xi “ ln ai and apply Jensen’s inequality. It says

at1
1 a

t2
2 . . . a

tn
n “ e

řn
i“1 ti ln ai ď

n
ÿ

i“1

tie
ln ai “

n
ÿ

i“1

tiai.

This is known as the generalized geometric mean–arithmetic mean inequality.
The usual GM–AM inequality takes t1 “ t2 “ ¨ ¨ ¨ “ tn “

1
n . It says that

n
?
a1a2 . . . an ď

a1 ` a2 ` ¨ ¨ ¨ ` an
n

.

5.6.9. EXAMPLE. Let 0 ă s ă t and ai ą 0 for 1 ď i ď n. We will show that
` 1
n

n
ÿ

i“1

asi
˘1{s

ď
` 1
n

n
ÿ

i“1

ati
˘1{t

.

Let fpxq “ xt{s for x ě 0. Then f2pxq “ t
sp

t
s ´ 1qx

t
s

´2 ą 0 if x ą 0. Hence f is
strictly convex. Let xi “ asi and ti “ 1

n . Then by Jensen’s inequality,

f
` 1
n

n
ÿ

i“1

xi
˘

ď
1
n

n
ÿ

i“1

fpxiq;

which becomes
` 1
n

n
ÿ

i“1

asi
˘t{s

ď 1
n

n
ÿ

i“1

ati.

Take the tth root to obtain the inequality.

5.6.10. EXAMPLE. For n ě 3, find the n-gon inscribed in a circle which has
the greatest area.

Choose points A1, . . . , An in order around the circumference of a circle of
radius r. Then the chord AiAi`1 subtends an angle αi P p0, πs and

řn
i“1 αi “ 2π.

(Here we mean A1 when we write An`1 and O is the centre of the circle.) The
triangle OAiAi`1 is isosceles with base 2r sin αi

2 and height r cos αi
2 . Thus it has

area r2 sin αi
2 cos αi

2 “
r2

2 sinαi. Therefore the area of the polygon is

A “ Apα1, . . . , αnq “
r2

2

n
ÿ

i“1

sinαi.

Consider fpxq “ sinx on r0, πs. Since f2pxq “ ´ sinx ă 0 on p0, πq, this is
a strictly concave function. Equivalently, ´fpxq is strictly convex. This reverses
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FIGURE 5.11. Maximize area of the inscribed polygon

the inequality in Jensen’s formula. This becomes

A “
r2n

2
1
n

n
ÿ

i“1

fpαiq ď
r2n

2
f
` 1
n

n
ÿ

i“1

αi

˘

“
r2n

2
sin

2π
n
.

Moreover the inequality is strict unless α1 “ ¨ ¨ ¨ “ αn “
2π
n . The maximum area

occurs only at the regular n-gon which has area r2

2 n sin 2π
n .

5.7. L’Hôpital’s Rule

We begin with an intermediate value theorem for derivatives, which need not
be continuous.

5.7.1. DARBOUX’S THEOREM. Suppose that f, g are differentiable on ra, bs
and f 1paq ă L ă f 1pbq. Then there is an x0 P pa, bq so that f 1px0q “ L.

PROOF. Let gpxq “ fpxq ´ Lx. This is differentiable on ra, bs with g1pxq “
f 1pxq ´ L; so g1paq ă 0 ă g1pbq. Since g is differentiable, it is continuous. By
the Extreme Value Theorem, g attains its minimum value at some point x0 P ra, bs.
Near x “ a,

0 ą g1paq “ lim
hÑ0`

gpa` hq ´ gpaq

h
.

Therefore there is a δ ą 0 so that for 0 ă h ă δ, gpa ` hq ă gpaq, and thus
the minimum does not occur at a. Similarly the minimum cannot occur at b. By
Fermat’s Theorem, since g is differentiable, g1px0q “ 0. Therefore f 1px0q “ L. ■

5.7.2. CAUCHY’S MVT. Suppose that f, g are continuous on ra, bs and dif-
ferentiable on pa, bq. If g1pxq ‰ 0 on pa, bq, then there is a x0 P pa, bq so that

fpbq ´ fpaq

gpbq ´ gpaq
“
f 1px0q

g1px0q
.
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PROOF. Let hpxq “
`

fpbq ´ fpaq
˘

gpxq ´ fpxq
`

gpbq ´ gpaq
˘

. Then

hpaq “ fpbqgpaq ´ fpaqgpbq “ hpbq.

By Rolle’s Theorem, there is an x0 P pa, bq so that

0 “ h1px0q “
`

fpbq ´ fpaq
˘

g1px0q ´ f
1px0q

`

gpbq ´ gpaq
˘

.

Since g1pxq ‰ 0, signpg1pxqq is contant by Darboux’s Theorem. Thus gpxq is
strictly monotone, and thus gpbq ´ gpaq ‰ 0. Now divide by g1px0qq

`

gpbq ´ gpaq
˘

to get the result. ■

The main result of this section is very popular with student’s, but in practice,
there are usually superior methods. The author warns the reader to never ever

apply L’Hôpital’s rule to lim
xÑ0

sinx
x

“ 1. This limit must be known before one can

differentiate sinx, and thus the argument is circular! The hypotheses of this result
are crucial, and need to be verified in any application.

5.7.3. L’HÔPITAL’S RULE. Suppose that f, g are differentiable on an open
interval J with c as an endpoint (˘8 are allowed). Suppose that

p1q gpxq ‰ 0 and g1pxq ‰ 0 for x P J .

p2q lim
xÑc

fpxq “ lim
xÑc

gpxq “ 0 or lim
xÑc

|fpxq| “ lim
xÑc

|gpxq| “ `8.

p3q lim
xÑc

f 1pxq

g1pxq
“ L exists.

Then lim
xÑc

fpxq

gpxq
“ L.

PROOF. Case 1. Suppose that c P R and lim
xÑc

fpxq “ lim
xÑc

gpxq “ 0. (This may

be a one-sided limit, in which case x Ñ c` or x Ñ c´ as appropriate.) Since

lim
xÑc

f 1pxq

g1pxq
“ L, given ε ą 0, there is a δ ą 0 so that 0 ă |x´ c| ă δ implies that

L´ ε ă
f 1pxq

g1pxq
ă L` ε.

If we define fpcq “ gpcq “ 0, then both f and g are continuous at c. Then we
can apply the Cauchy Mean Value Theorem on the interval rc, xs (or rx, cs) with
|x´ c| ă δ to get

fpxq

gpxq
“
fpxq ´ fpcq

gpxq ´ gpcq
“
f 1px0q

g1px0q
P pL´ ε, L` εq.

Since ε ą 0 was arbitrary, lim
xÑc

fpxq

gpxq
“ L.
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Case 2. Suppose that c P R and lim
xÑc

|fpxq| “ lim
xÑc

|gpxq| “ `8. For ε ą 0,

find δ ą 0 for lim
xÑc

f 1pxq

g1pxq
“ L as before. Consider points c ă x ă y ă c ` δ (or

c ´ δ ă y ă x ă c) and apply the Cauchy Mean Value Theorem to rx, ys to get a
point x0 P px, yq so that

f 1px0q

g1px0q
“
fpxq ´ fpyq

gpxq ´ gpyq
“

fpxq

gpxq
´

fpyq

gpxq

1´ gpyq

gpxq

P pL´ ε, L` εq.

Let x Ñ c while holding y fixed. Then
fpyq

gpxq
Ñ 0 and

gpyq

gpxq
Ñ 0. Therefore

for x sufficiently close to c, this quantity will be within ε of
fpxq

gpxq
, and hence

ˇ

ˇ

ˇ

fpxq

gpxq
´ L

ˇ

ˇ

ˇ
ă 2ε. This means that lim

xÑc

fpxq

gpxq
“ L.

Case 3. When c “ ˘8, make the substitution u “ 1
x . Make J smaller to

exclude 0 if necessary. Set F puq “ fp 1
uq and Gpuq “ gp 1

uq and I “ t 1
x

: x P Ju.
Then

p1q Gpuq “ gp 1
uq ‰ 0 and G1puq “ g1p 1

uq
`

´1
u2

˘

‰ 0 for u P I .

p2q lim
uÑ0

F puq “ limxÑc |fpxq| P t0,8u and similarly

lim
uÑ0

Gpuq “ limxÑc |gpxq| P t0,8u.

p3q lim
uÑ0

F 1puq

G1puq
“ lim

uÑ0

f 1p 1
uq
`

´1
u2

˘

g1p 1
uq
`

´1
u2

˘ “ lim
xÑc

f 1pxq

g1pxq
“ L.

So the hypotheses for either Case 1 or 2 is satisfied. Therefore

L “ lim
uÑ0

F puq

Gpuq
“ lim

xÑc

fpxq

gpxq
. ■

5.7.4. EXAMPLE. Let a ą 0. Find lim
xÑa`

?
x`

?
x´ a´

?
a

?
x2 ´ a2

.

Both numerator fpxq and denominator gpxq tend to 0 as x Ñ a`, and gpxq “
?
x2 ´ a2 ‰ 0. Compute g1pxq “

2x
2
?
x2 ´ a2

‰ 0 as well. So we compute

lim
xÑa`

f 1pxq

g1pxq
“ lim

xÑa`

1
2

?
x
` 1

2
?
x´a

2x
2

?
x2´a2

“ lim
xÑa`

p
?
x´ a`

?
xq

2
?
x
?
x´ a

?
x2 ´ a2

x

“ lim
xÑa`

?
x2 ´ a2 `

a

xpx` aq

2x
?
x

“

?
2a

2a
?
a
“

1
?

2a
.
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Thus lim
xÑa`

?
x`

?
x´ a´

?
a

?
x2 ´ a2

“ 1?
2a

.

5.7.5. EXAMPLE. Compute lim
xÑ0

´ tanx
x

¯1{x2

. This function is even, so con-

sider x ą 0. Then take the logarithm
ln tanx´ lnx

x2 “:
fpxq

gpxq
. We now have a

“0{0” situation because lim
xÑ0

ln
tanx
x

“ ln 1 “ 0; and the denominator x2 and its

derivative 2x never vanish on p0, 1q. Compute

lim
xÑ0`

f 1pxq

g1pxq
“ lim

xÑ0`

sec2 x
tanx ´

1
x

2x
“ lim

xÑ0`

x´ sinx cosx
2x2 sinx cosx

“ lim
xÑ0`

2x´ sin 2x
2x2 sin 2x

“ lim
xÑ0`

2x´ sin 2x
4x3

2x
sin 2x

Now lim
xÑ0`

2x
sin 2x

“ 1 is a known limit. Consider lim
xÑ0`

2x´sin 2x
4x3 . This is another

“0{0” situation, and we have (setting y “ 2x)

lim
xÑ0`

2´ 2 cos 2x
12x2 “ lim

yÑ0`

2´ 2 cos y
3y2 “

1
3
.

by Example 3.1.7. Therefore L’Hôpital’s rule applies, and lim
xÑ0`

2x´ sin 2x
4x3 “ 1

3 .

Thus lim
xÑ0`

f 1pxq

g1pxq
“ 1

3 . So by L’Hôpital’s rule again, lim
xÑ0`

fpxq

gpxq
“ 1

3 . Finally we

have

lim
xÑ0

´ tanx
x

¯1{x2

“ e1{3.

5.7.6. EXAMPLE. Consider lim
xÑ8

x´ sinx
x` sinx

. Here we have an “8{8” situation,

and the denominator is never 0 for x ą 1. However, lim
xÑ8

1´ cosx
1` cosx

does not exist,

in part because the denominator vanishes periodically. So L’Hôpital’s rule does not
apply. In fact,

lim
xÑ8

x´ sinx
x` sinx

“ lim
xÑ8

1´ sinx
x

1` sinx
x

“
1
1
“ 1.
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5.8. Newton’s Method

This is an algorithm for approximately solving as equation fpxq “ 0 using
calculus. The idea is to repeatedly solve for where the tangent line crosses the axis.
The power of the method lies in its rapid convergence.

 

FIGURE 5.12. Newton’s method

Given an approximation xn, find the tangent line

Tx “ fpxnq ` f
1pxnqpx´ xnq.

Solve for the root of T , x “ xn ´
fpxnq

f 1pxnq
.

Hypotheses

‚ fpxq has a zero x˚, i.e., fpx˚q “ 0.

‚ f is C2 near x˚.

‚ f 1px˚q ‰ 0.

Algorithm.

‚ Start with an initial guess x0 “sufficiently close” to x˚ with fpx0q ‘small’.

‚ Given xn, set xn`1 “ xn ´
fpxnq

f 1pxnq
.

Error estimates.
Fix a small interval ra, bs containing x˚ and x0 with x˚ near the middle on which
f 1pxq ‰ 0. This is necessary to ensure that the iterates stay in the interval. Let

m “ min
aďxďb

|f 1pxq| and C “ max
aďxďb

|f2pxq|.
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‚ |xn ´ x˚| ď
|fpxnq|

m
. This follows from the MVT

fpxnq

xn ´ x˚

“
fpxnq ´ fpx˚q

xn ´ x˚

“ f 1pcq

for some point c between xn and x˚, so c P ra, bs. Thus

|xn ´ x˚| “
|fpxnq|

|f 1pcq|
ď
|fpxnq|

m
.

‚ Consider the map Sx “ x´
fpxq

f 1pxq
. Then

S1pxq “ 1´
f 1pxqf 1pxq ´ fpxqf2pxq

f 1pxq2
“
fpxqf2pxq

f 1pxq2
.

Then Spx˚q “ x˚ and S1px˚q “ 0. So there is an interval around x˚ on which
|S1pxq| ă 1

2 . Then the MVT shows that

|xn`1 ´ x˚|

|xn ´ x˚|
“
|Spxnq ´ Spx˚q|

|xn ´ x˚|
“ |S1pcq| ă

1
2
.

Therefore, |xn`1 ´ x˚| ă
1
2 |xn ´ x˚|. In particular, this shows that lim

nÑ8
xn “ x˚.

This is decent convergence, but in fact it improves as we get closer because the
estimate on S1 improves.

‚ |xn`1 ´ x˚| ă
C

m
|xn ´ x˚|

2. In the first estimate, we found a point c so that

xn ´ x˚ “
fpxnq

f 1pcq
and the algorithm says xn`1 ´ xn “ ´

fpxnq

f 1pxnq
. Thus

xn`1 ´ x˚ “ pxn ´ x˚q ` pxn`1 ´ xnq

“
fpxnq

f 1pcq
´
fpxnq

f 1pxnq

“
fpxnqpf

1pxnq ´ f
1pcqq

f 1pcqf 1pxnq

We apply MVT to f 1pxnq ´ f 1pcq to find a point d between xn and c, and hence
between xn and x˚, so that f 1pxnq ´ f

1pcq “ f2pdqpxn´ cq. Plugging this back in
yields

xn`1 ´ x˚ “
fpxnqpf

1pxnq ´ f
1pcqq

f 1pcqf 1pxnq

“
fpxnq

f 1pcq

f2pdqpxn ´ cq

f 1pxnq

“
f2pdq

f 1pxnq
pxn ´ x˚qpxn ´ cq
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Therefore, since |xn ´ c| ă |xn ´ x˚|,

|xn`1 ´ x˚| ď
C

m
|xn ´ x˚|

2.

This is known as quadratic convergence, and says that the number of decimals of
accuracy roughly doubles with each iteration. Very quickly on a computer, the issue
becomes the ability to do high precision calculation.

5.8.1. EXAMPLE. Compute
?

149.
Let fpxq “ x2 ´ 149 and restrict the domain to r12, 13s. Then f 1pxq “ 2x and
f2pxq “ 2. Thus m “ minxPr12,13s 2x “ 24 and C “ maxxPr12,13s 2 “ 2. Hence
C
m “ 1

12 .
Start with x0 “ 12 and x˚ “

?
149. The first estimate shows that

|x0 ´ x˚| ď
|fpx0q|

m
“

5
24
ă 0.21.

The algorithm is

xn`1 “ xn ´
fpxnq

f 1pxnq
“ xn ´

x2
n ´ 149

2xn
“
x2
n ` 149

2xn
“

1
2
`

xn `
149
xn

˘

.

The map S has derivative S1pxq “ |fpxqf2pxq|

f 1pxq2 ď
p169´149q2

242 ă 1
12 . So

|xn`1 ´ x˚| ď
1

12
|xn ´ x˚|,

but the quadratic estimate actually is better immediately.

x1 “ 12.2083 |x1 ´ x˚| ď
1
12
p0.21q2 ă 3.7 10´3

x2 “ 12.2065557 |x2 ´ x˚| ď
1
12
p3.7 ¨ 10´3q2 ă 1.16 10´6

x3 “ 12.2065556157337036 |x3 ´ x˚| ď
1
12
p1.16 ¨ 10´6q2 ă 3.6 10´13

x4 “ 12.20655561573370295189 . . . |x4 ´ x˚| ď
1
12
p3.6 ¨ 10´13q2 ă 1.2 10´26

So in four steps, I have surpassed the accuracy of my computer’s significant digits.

5.8.2. EXAMPLE. Solve 2x “ 4x.
Let fpxq “ 2x ´ 4x. By inspection, x “ 4 is a solution, but the graph shows a

second smaller solution. Compute f 1pxq “ 2x ln 2´ 4 and f2pxq “ 2xpln 2q2 ą 0.
Since f2 ą 0, the curve is convex, and hence there are only two solutions. Now
fp0q “ 1 ą 0 ą ´2 “ fp1q, so the second solution is in p0, 1q by IVT. We will
work in r0, 1s. Then

m “ min
xPr0,1s

|f 1pxq| “ 4´2 ln 2 « 2.6 and C “ max
xPr0,1s

|f2pxq| “ 2pln 2q2 ă 1.
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FIGURE 5.13. Graph of 2x and 4x

Thus C
m ă 0.37. Start with x0 “ 0.25. Then

|x˚ ´ x0| ă
|f 1px0q|

m
“

0.1892
2.6

ă 0.073.

Applying the algorithm we get

x1 “ 0.309579 |x1 ´ x˚| ď 0.37p.073q2 ă .002

x2 “ 0.30990692 |x2 ´ x˚| ď 0.37p.002q2 ă 1.5 10´6

x3 “ 0.3099069323806 |x3 ´ x˚| ď 0.37p1.5 ¨ 10´6q2 ă 8.3 10´13

x4 “ 0.3099069323806905654546 |x4 ´ x˚| ď 0.37p8.3 ¨ 10´13q2 ă 2.5 10´25

Exercises for Chapter 5

1. Let fpxq “ e´1{x2
for x ‰ 0 and fp0q “ 0.

(a) Compute the derivative of f at x “ 0 from the definition.
(b) Compute the derivative of f for x ‰ 0. Is f 1pxq continuous?

2. (a) Simplify the expression fpxq “ secptan´1psinptan´1 xqqq for x P R.
(b) Graph fpxq including identification of inflection points.

HINT: work with the simplified formula.

3. Two corridors meet at right angles. They have widths a meters and b meters,
respectively. Find the length of the longest ladder that can be moved around
the corner (while keeping the ladder horizontal). HINT: use an angle as your
variable.

4. (a) A movie screen 10m high is mounted on the wall 5m above the floor. At
what distance from the screen does a point on the floor subtend the greatest
angle and find the angle.
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HINT: consider A “ p0, 5q, B “ p0, 15q and X “ px, 0q for x ě 0. Find
an expression for the angle =AXB as a function of x.

(b) Bonus. Show that the solution to (a) may be obtained by finding the circle
through A and B which is tangent to the x-axis. Explain why this is the
solution using Euclidean geometry.

5. (a) Find the trapezoid that fits inside a semicircle of radius r with the two sides
parallel to the diameter which has the largest area.

(b) Bonus. Find the quadrilateral of largest area that fits inside a semicircle of
radius r.

6. (a) Sketch cscpxq for ´π{2 ď x ď π{2, x ‰ 0 and its inverse function
csc´1pxq.

(b) Compute the derivative of csc´1pxq. Warning: be careful with signs.

7. (a) Show that tanx ą x`
x3

3
`

2x5

15
for 0 ă x ă

π

2
.

(b) Show that tanx ă x`
x3

3
`

2x5

5
for 0 ă x ă 1. HINT: cosx ą 1´

x2

2
on

p0, π2 q.

8. (a) Let fpxq “ x2 sinp1{xq for x ‰ 0 and fp0q “ 0. Show that 0 is a critical
point of f that is not a local maximum nor a local minimum nor an inflection
point.

(b) Let f : pa, bq Ñ R be a continuous function which is differentiable except
possibly at x0, and lim

xÑx0
f 1pxq “ L exists. Prove that f 1px0q “ L. HINT:

use MVT on rx0, x0 ` hs.
(c) Let gpxq “ 2x2 ` fpxq. Show that g does have a global minimum at 0, but

g1pxq changes sign infinitely often on both p0, εq and p´ε, 0q for any ε ą 0.

9. Let f : pa, bq Ñ R be a continuous function which is differentiable except
possibly at x0, and lim

xÑx0
f 1pxq “ L exists. Prove that f 1px0q “ L. HINT: use

MVT on rx0, x0 ` hs.

10. Let f be a differentiable function on ra, bs, but the derivative may be discon-
tinuous.
(a) Suppose that f 1paq ă 0 ă f 1pbq. Show that the minimum of f does not

occur at an endpoint. What can you conclude?
(b) Suppose that f 1paq ă L ă f 1pbq. Prove that there is an c P pa, bq such that

f 1pcq “ L.
(c) Prove that if f 1pxq is monotone, then f 1pxq is continuous.

11. Graph fpxq “ exp
`

x2´3
x2´x

˘

. You can use a computer program to find the ap-
proximate roots of the degree 5 polynomial that occurs in the second derivative.
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12. Let n ě 1, and let f and g have nth order derivatives on pa, bq.

Show that pfgqpnqpxq “
n
ř

k“0

`

n
k

˘

f pn´kqpxqgpkqpxq.

13. (a) Show that lnp1` exq is convex. Sketch it.

(b) Show that for any ai ą 0,
´

1` n
?
a1a2 . . . an

¯n
ď
śn

i“1p1` aiq.
(c) Suppose that 0 ă a “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ b. Show that the maximum

of
x0x1 . . . xn

px0 ` x1qpx1 ` x2q . . . pxn´1 ` xnq
occurs when

xi`1

xi
are all equal for

0 ď i ă n.

14. (a) Suppose that f2paq exists. Show that

lim
hÑ0

fpa` hq ` fpa´ hq ´ 2fpaq
h2 “ f2paq.

(b) Show by example that this limit may exist even when f2paq does not.

15. Compute the following limits.

(a) lim
xÑ0`

p1` xq1{x ´ e

x

(b) lim
xÑ0

cot2 x´
1
x2

16. Let fpxq “ e´2xpcosx` 2 sinxq and gpxq “ e´xpcosx` sinxq.
Find all of the errors (if any) in the following L’Hôpital’s rule argument:

lim
xÑ8

fpxq

gpxq
“ lim

xÑ8

f 1pxq

g1pxq
“ lim

xÑ8

5
2
e´x “ 0.

17. Suppose that f is differentiable on ra, bs, fpaq “ 0 and |f 1pxq| ď A|fpxq| for
all x P ra, bs, where A is a positive real number. Prove that f is constant.

18. Show that ppxq “ x3 ` x` 1 has exactly one real root. Find this root of ppxq
to 6 decimal places using Newton’s method. Provide the algorithm and show
your error estimates.

You can use a computer to do the calculations, but an analysis of the error
should be done by hand. Try using Maple: (punctuation is critical!)

with(Student[Calculus1]):
NewtonsMethod(xˆ5+x+1,x=-0.5,

view=[-1.5 .. 0.0, DEFAULT],output=sequence);

This only yield 5 terms, so substitute the last result back in and repeat.



CHAPTER 6

The Riemann Integral

6.1. Archimedes

Archimedes of Syracuse (287 BC to 212 BC) developed many ideas in mathe-
matics, physics and astronomy which have greatly influenced modern thinking. He
is famous for showing that the area of a circle of radius r is πr2 and computing π
to some accuracy. For example, he showed that 223

71 ă π ă 22
7 . He also computed

the area of a section of a parabola. He always used geometric ideas from Euclidean
geometry. We will derive his formula is a more analytic/algebraic manner.

Consider the following figure: the parabola is given by y “ ax2 ` bx ` c and
x1 ă x2 are given. Here a ą 0. Let P1 “ px1, y1q and P2 “ px2, y2q be the
corresponding points on the curve. We wish to compute the area of the sector of
the parabola determined by the curve and the line between P1 and P2.

 

FIGURE 6.1. Area of a sector of a parabola

The line P1P2 from P1 to P2 has slope

y2 ´ y1

x2 ´ x1
“
apx2

2 ´ x
2
1q ` bpx2 ´ x1q ` c´ c

x2 ´ x1
“ apx2 ` x1q ` b.

There is a line parallel to P1P2 which is tangent to the parabola. Archimedes
showed (without calculus) that it intersects the curve at the midpoint, P3 “ px3, y3q

92
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where x3 “
x1`x2

2 . We can see this by differentiating fpxq “ ax2 ` bx` c to get
f 1pxq “ 2ax ` b and observing that f 1px3q “ apx1 ` x2q ` b, which is the same
slope. Since f 1pxq is a non-constant line, there is only one point with this slope.

The triangle △P1P2P3 has base x2 ´ x1 and average height y1`y2
2 ´ y3. Thus

its area is

T1 “
x2 ´ x1

4
py1 ` y2 ´ 2y3q

“
x2 ´ x1

4

´

a
`

x2
1 ` x

2
2 ´ 2 px1`x2q2

4

˘

` b
`

x1 ` x2 ´ 2x1`x2
2

˘

` pc` c´ 2cq
¯

“
x2 ´ x1

4
apx1 ´ x2q

2

2
“
a

8
px2 ´ x1q

3.

Archimedes method is to repeat the process with the two parabolic sectors re-
maining; and then with four sectors, etc., which will tile the sector with an infinite
family of triangles of the same nature. Summing all of the areas of these triangles
will yield a formula for the area. That is, in the sector of the parabola from P1 to
P3, we obtain a triangle P1P3P4, where P4 “ px4, y4q and x4 “

x1`x3
2 , has area

T2,1 “
a

8
px3 ´ x1q

2 “
a

32
px2 ´ x1q

2.

Similarly setting P5 “ px5, y5q with x5 “
x3`x2

2 yields a triangle P2P3P5 with area

T2,2 “
a

8
px2 ´ x3q

2 “
a

32
px2 ´ x1q

2 “ T2,1 “: T2 “
T1

4
.

This produces two triangles of 1
4 the original size. At the next stage, there are four

triangles with a base half again as big, so they will have area T3 “
T2
4 “ 4´2T1.

Thus at the nth stage, we obtain 2n´1 triangles of area Tn “ 41´nT1. Summing,
we get

area of sector “
ÿ

ně1

2n´141´nT1 “ T1
ÿ

ně1

21´n “ 2T1 “
a

4
px2 ´ x1q

3.

This is a rather complicated and ingenious procedure. Such an approach re-
quires a new idea for each geometric region. Moreover the applicability is rather
limited. Before the Fundamental Theorem of Calculus, providing an excellent gen-
eral method for computing areas, mathematicians developed a variety of more so-
phisticated methods for computing areas. The main take-away from this should be
that the methods of calculus are powerful.

6.2. The Riemann Integral

Riemann’s method of integration is to approximate the area under a curve from
both above and below by a collection of rectangles. This yields an upper and lower
bound for the area under the curve. See figure. If these two estimates converge
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to the same value as the width of the rectangles decreases to 0, we say that the
function is Riemann integrable, and assign this limit to be the value of the integral.
We will make this precise in the following definitions.

 

FIGURE 6.2. A Riemann sum

6.2.1. DEFINITION. A partition of an interval ra, bs is a finite sequence P “

ta “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ bu. A partition Q refines P if P Ă Q. Given two
partitions P1 and P2, the common refinement P1 _ P2 is the ordered list using the
points of P1 Y P2 is order without repetition. The mesh of P is

meshP “ max
1ďiďn

ti ´ ti´1.

Set ∆ti “ ti ´ ti´1.

6.2.2. DEFINITION. Let fpxq be a bounded function defined on ra, bs and let
P be a partition of ra, bs. Set

mi “ mipf,Pq “ inftfpxq : ti´1 ď x ď tiu

Mi “Mipf,Pq “ suptfpxq : ti´1 ď x ď tiu.

The lower sum Lpf,Pq and upper sum Upf,Pq are given by

Lpf,Pq “
n
ÿ

i“1

mipti ´ ti´1q “

n
ÿ

i“1

mi∆ti

Upf,Pq “
n
ÿ

i“1

Mipti ´ ti´1q “

n
ÿ

i“1

Mi∆ti.
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Given a collection of points txiu with ti´1 ď xi ď ti for 1 ď i ď n, the Riemann
sum is

Rpf,P, txiuq “
n
ÿ

i“1

fpxiqpti ´ ti´1q “

n
ÿ

i“1

fpxiq∆ti.

We make the following routine observations which will be useful.

p1q Lpf,Pq ď Rpf,P, txiuq ď Upf,Pq.
p2q If P Ă Q, then

Lpf,Pq ď Lpf,Qq ď Upf,Qq ď Upf,Pq.

To see this, consider an interval rti´1, tis of the partition P . In the refinement
Q, this interval is divided into smaller intervals. Thus the lower bounds on these
smaller intervals will be at least as large as mi, but possible larger; and the upper
bounds will be no greater than Mi, and possibly smaller.

p3q Given P1 and P2, since P1 _ P2 refines both, we obtain

Lpf,P1q ď Lpf,P1 _ P2q ď Upf,P1 _ P2q ď Upf,P2q.

p4q It follows that tLpf,Pq : P a partitionu is bounded above by any element
of tUpf,Pq : P a partitionu; and likewise this latter set is bounded below.

p5q This procedure doesn’t make sense if f is unbounded.

Based on these observations, we are led to the following definition.

6.2.3. DEFINITION. If f is a bounded function on ra, bs, define

Lpfq “ sup tLpf,Pq : P a partitionu

Upfq “ inf tUpf,Pq : P a partitionu.

Say that fpxq is Riemann integrable if Lpfq “ Upfq. Denote this common value

by
ż b

a
fpxq dx.

Note that Lpfq ď Upfq. Moreover if we can find a sequence of partitions Pn

so that
lim
nÑ8

Lpf,Pnq “ L “ lim
nÑ8

Upf,Pnq,

then necessarily f is integrable with integral L. We will spell this out in more detail
after a couple of examples.

6.2.4. EXAMPLE. Let c ą 1 and set fpxq “ cx; and fix a ă b. Consider
the partition Pn with evenly spaced points ti “ a ` i b´a

n for 0 ď i ď n. Then
∆ti “

b´a
n . Since f is monotone increasing, we have mi “ cti´1 and Mi “ cti for
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1 ď i ď n. Compute

Ln “ Lpf,Pnq “

n
ÿ

i“1

cti´1∆ti

“

n
ÿ

i“1

cac
b´a
n

pi´1q b´ a

n
“
b´ a

n
ca

n
ÿ

i“1

`

c
b´a
n

˘i´1

“
b´ a

n
ca
cb´a ´ 1

c
b´a
n ´ 1

“ pcb ´ caq
hn

chn ´ 1

In the last line, we sum a geometric series and set hn “ b´a
n . Observe that

lim
nÑ8

chn ´ 1
hn

“ f 1p0q “ cx ln c
ˇ

ˇ

ˇ

x“0
“ ln c.

Therefore

lim
nÑ8

Ln “
cb ´ ca

ln c
.

Similarly we compute

Un “ Upf,Pnq “

n
ÿ

i“1

cti∆ti “ c
b´a
n Ln.

Hence

lim
nÑ8

Un “ lim
nÑ8

c
b´a
n lim

nÑ8
Ln “

cb ´ ca

ln c
.

Hence f is integrable, and
ż b

a
cx dx “

cb ´ ca

ln c
.

6.2.5. EXAMPLE. Let fpxq “ xp for p ě 0 and let 0 ď a ă b. In this example,
we will use a different partition. Let hn “

`

b
a

˘1{n and set ti “ ahin for 1 ď i ď n.
Then ∆ti “ ti´1phn´ 1q. Since f is monotone increasing, we have mi “ tpi´1 and
Mi “ tpi “ mih

p
n. Calculate

Ln “ Lpf,Pnq “

n
ÿ

i“1

mi∆ti “
n
ÿ

i“1

tpi´1ti´1phn ´ 1q

“ phn ´ 1q
n
ÿ

i“1

`

ahi´1
n

˘p`1
“ ap`1phn ´ 1q

n
ÿ

i“1

hpi´1qpp`1q
n

“ ap`1phn ´ 1q
h
npp`1q
n ´ 1

hp`1
n ´ 1

“ ap`1`p baq
p`1 ´ 1

˘ hn ´ 1

hp`1
n ´ 1

“ pbp`1 ´ ap`1q
hn ´ 1

hp`1
n ´ 1

.
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Now we compute the limit

lim
nÑ8

hp`1
n ´ 1
hn ´ 1

“
d

dx
pxp`1q

ˇ

ˇ

ˇ

x“1
“ p` 1.

Therefore

lim
nÑ8

Ln “
bp`1 ´ ap`1

p` 1
.

Similarly,

Un “ Upf,Pnq “

n
ÿ

i“1

Mi∆ti “
n
ÿ

i“1

mih
p
n∆ti “ Lnh

p
n.

Since lim
nÑ8

hn “ 1, we have

lim
nÑ8

Un “ lim
nÑ8

Ln “
bp`1 ´ ap`1

p` 1
.

Hence f is integrable, and
ż b

a
xp dx “

bp`1 ´ ap`1

p` 1
.

6.2.6. RIEMANN’S CONDITION. Let fpxq be a bounded function on ra, bs.
Then f is Riemann integrable if and only if Riemann’s condition holds:

p˚q for all ε ą 0, there is a partition P so that Upf,Pq ´ Lpf,Pq ă ε.

PROOF. If f is Riemann integrable, we have Lpfq “ Upfq. We can choose
partitions P1 and P2 so that

Lpf,P1q ą Lpfq ´
ε

2
and Upf,P2q ă Upfq `

ε

2
.

Set P “ P1 _ P2. Then

Lpfq´
ε

2
ă Lpf,P1q ď Lpf,Pq ď Upf,Pq ď Upf,P2q ă Upfq`

ε

2
“ Lpfq`

ε

2
.

Hence Upf,Pq ´ Lpf,Pq ă ε. So p˚q holds.
Conversely if p˚q holds, take ε ą 0 and find the appropriate partition P . Then

Upfq ´ Lpfq ď Upf,Pq ´ Lpf,Pq ă ε.

This is valid for all ε ą 0; hence Upfq “ Lpfq and f is Riemann integrable. ■

This allows us to provide a number of conditions equivalent to integrability.

6.2.7. THEOREM. Let fpxq be a bounded function on ra, bs. Then the following
are equivalent:

p1q f is Riemann integrable.

p2q For all ε ą 0, there is a partition P so that Upf,Pq ´ Lpf,Pq ă ε.
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p3q For all ε ą 0, there is a δ ą 0 so that meshP ă δ implies
Upf,Pq ´ Lpf,Pq ă ε.

p4q For all ε ą 0, there is a δ ą 0 so that if meshP ă δ and xi P rti´1, tis,
then Rpf,P, txiuq ´ Lpfq ă ε.

p5q There are partitions Pn so that lim
nÑ8

Lpf,Pnq “ lim
nÑ8

Upf,Pnq.

PROOF. We just established the equivalence of (1) and (2). Clearly (3) implies
(2). Conversely, suppose that Upf,Pq ´ Lpf,Pq ă ε

2 . Let n be the size of P
and let M “ supt|fpxq| : a ď x ď bu. Define δ “

ε

4npM ` 1q
. Suppose that

meshQ ă δ. Set R “ P _Q. Then

Lpf,Rq ´ Lpf,Rq ă Upf,Pq ´ Lpf,Pq ă ε

2
.

The idea is to compare the upper and lower sums for R and Q. Since P has n´ 1
points ti in pa, bq, at most n´ 1 intervals of Q are subdivided by some ti in R. Say
Q “ ta “ s0 ă s1 ă ¨ ¨ ¨ ă sm “ bu and for some (or all) 1 ď i ď n ´ 1, there
are ji so that sji´1 ă ti ă sji . On rsji´1, sjis, we have ´M ď mji ď Mji ď M .
In the calculation of Upf,Qq ´ Lpf,Qq, this interval contributes

pMji ´mjiq∆sji ď 2Mδ ă
ε

2n
.

For the same interval, the contribution to Upf,Rq ´ Lpf,Rq is positive. On the
remaining intervals, the contribution to Upf,Qq´Lpf,Qq and Upf,Rq´Lpf,Rq
are equal. Thus,

Upf,Qq ´ Lpf,Qq ă Upf,Rq ´ Lpf,Rq ` pn´ 1q
ε

2n
ă
ε

2
`
ε

2
“ ε.

Assuming (3), we know that (1) holds so that Lpfq “ Upfq. Given ε ą 0, use
(3) to get δ. Then

Rpf,P, txiuq ´ Lpfq ă Upf,Pq ´ Lpf,Pq ă ε.

Conversely, if (4) holds and ε ą 0, take the δ corresponding to ε{2. Given P with
meshP ă δ and size n, choose xi P rti´1, tis with fpxiq ąMi ´

ε
2pb´aq

. Then

Upf,Pq ´ Lpf,Pq “
n
ÿ

i“1

pMi ´miq∆ti ă
n
ÿ

i“1

`

fpxiq `
ε

2pb´ aq
´mi

˘

∆ti

“ Rpf,P, txiuq ´ Lpf,Pq `
ε

2pb´ aq

n
ÿ

i“1

∆ti ă
ε

2
`
ε

2
“ ε.

So (3) and (4) are equivalent.
If (2) holds, we can choose Pn so that Upf,Pnq ´ Lpf,Pnq ă

1
n . Then

lim
nÑ8

Lpf,Pnq ď lim
nÑ8

Upf,Pnq ď lim
nÑ8

Lpf,Pnq `
1
n “ lim

nÑ8
Lpf,Pnq.
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So (5) holds. Conversely, if (5) holds, then

lim
nÑ8

Upf,Pnq ´ Lpf,Pnq “ 0.

Hence for any ε ą 0, there is an n so that Upf,Pnq ´Lpf,Pnq ă ε. Therefore (2)
and (5) are equivalent. ■

6.3. Basic Properties of the Integral

In this section, we verify some elementary properties which will simplify our
calculations.

6.3.1. PROPOSITION. Let fpxq, gpxq be Riemann integrable functions on ra, bs.

p1q If c P R, then cfpxq is Riemann integrable and
ż b

a
cfpxq dx“c

ż b

a
fpxq dx.

p2q f ` g is Riemann integrable, and

ż b

a
fpxq ` gpxq dx “

ż b

a
fpxq dx`

ż b

a
gpxq dx.

p3q If fpxq ď gpxq on ra, bs, then
ż b

a
fpxq dx ď

ż b

a
gpxq dx.

p4q If a ă c ă b, then f is Riemann integrable on ra, cs and rc, bs, and

ż b

a
fpxq dx “

ż c

a
fpxq dx`

ż b

c
fpxq dx.

PROOF. (1) If c ě 0, we have mipcfq “ cmipfq and Mipcfq “ cMipfq. So
the result is straightforward. If c ă 0, we have mipcfq “ cMipfq and Mipcfq “
cmipfq; and the argument is similar.

(2) If P is any partition of ra, bs,

mipf ` gq “ inf
ti´1ďxďti

fpxq ` gpxq

ě inf
ti´1ďxďti

fpyq ` inf
ti´1ďyďti

gpyq “ mipfq `mipgq.

Mipf ` gq “ sup
ti´1ďxďti

fpxq ` gpxq

ď sup
ti´1ďxďti

fpyq ` sup
ti´1ďyďti

gpyq “Mipfq `Mipgq.
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Hence

Lpf,Pq`Lpg,Pq “
n
ÿ

i“1

´

mipfq`mipgq
˘

∆ti ď
n
ÿ

i“1

mipf`gq∆ti “ Lpf`g,Pq.

Upf`g,Pq “
n
ÿ

i“1

Mipf`gq∆ti ď
n
ÿ

i“1

`

Mipfq`Mipgq
˘

∆ti “ Upf,Pq`Upg,Pq.

Thus if P and Q are partitions,

Lpf,Pq ` Lpg,Qq ď Lpf,P _Qq ` Lpg,P _Qq ď Lpf ` g,P _Qq

and consequently, Lpfq`Lpgq ď Lpf ` gq. Similarly, Upf ` gq ď Upfq`Upgq.
Therefore if f and g are integrable, then

ż b

a
fpxq dx`

ż b

a
gpxq dx “ Lpfq ` Lpgq ď Lpf ` gq

ď Upf ` gq ď Upfq ` Upgq “

ż b

a
fpxq dx`

ż b

a
gpxq dx.

Hence Lpf ` gq “ Upf ` gq “

ż b

a
fpxq dx`

ż b

a
gpxq dx. It follows that f ` g is

Riemann integrable and
ż b

a
fpxq ` gpxq dx “

ż b

a
fpxq dx`

ż b

a
gpxq dx.

(3) is left as an exercise.
(4) follows by using a partition containing the point c. In this case, we see that

Lpf,Pq “ Lpf |ra,cs,P|ra,csq ` Lpf |rc,bs,P|rc,bsq

Upf,Pq “ Upf |ra,cs,P|ra,csq ` Upf |rc,bs,P|rc,bsq.

Details are left to the reader. ■

The following is an immediate consequence of (3).

6.3.2. COROLLARY. Let fpxq be a Riemann integrable function on ra, bs. If
m ď fpxq ďM , then

mpb´ aq ď

ż b

a
fpxq dx ďMpb´ aq.

In particular, if |fpxq| ďM , then
ˇ

ˇ

ˇ

ż b

a
fpxq dx

ˇ

ˇ

ˇ
ďMpb´ aq.
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6.4. Riemann integrable functions

In this section, we prove that two large classes of functions are Riemann inte-
grable.

6.4.1. THEOREM. Every monotone function f on ra, bs is Riemann integrable.

PROOF. We may suppose that fpxq is monotone increasing. Consider the par-
tition Pn with evenly spaced points ti “ a` i b´a

n for 0 ď i ď n. Then ∆ti “
b´a
n .

Since f is monotone increasing, we have mi “ fpti´1q and Mi “ fptiq for
1 ď i ď n. Compute

Lpf,Pnq “

n
ÿ

i“1

mi∆ti “
n
ÿ

i“1

fpti´1q
b´ a

n

Upf,Pnq “

n
ÿ

i“1

Mi∆ti “
n
ÿ

i“1

fptiq
b´ a

n
.

Subtracting, we obtain

Upf,Pnq ´ Lpf,Pnq “
`

fptnq ´ fpt0q
˘b´ a

n
“

`

fpbq ´ fpaq
˘

pb´ aq

n
.

Hence for ε ą 0, pick n so large that Upf,Pnq ´ Lpf,Pnq ă ε. Therefore f
satisfies Riemann’s condition, and hence is Riemann integrable. ■

We can extend this to cover most functions in our everyday experience.

6.4.2. DEFINITION. A function fpxq is piecewise monotone if there is a parti-
tion P “ ta “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ bu of ra, bs so that f is monotone on rti´1, tis
for 1 ď i ď n.

6.4.3. COROLLARY. Every piecewise monotone function is Riemann integrable.

PROOF. Begin with a partition P so that f is monotone on each segment. Then
apply Theorem 6.4.1 on each segment. ■

6.4.4. EXAMPLE. Here is an example of a non-integrable function. Let

fpxq “

#

0 if x R Q
1 if x P Q

for x P ra, bs.

Then for any partition P , we have mi “ 0 and Mi “ 1. Therefore Lpf,Pq “ 0
and Upf,Pq “ b ´ a. So Lpfq “ 0 ‰ b ´ a “ Upfq; and thus f is not Riemann
integrable.
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6.4.5. EXAMPLE. Here is a discontinuous example of an integrable function.
Let

fpxq “

#

0 if x R Q
1
q if x “ p

q P Q, q P N, gcdpp, qq “ 1
for x P r0, 1s.

This is known as Thomae’s function. It is easy to see that f is discontinuous at
every rational point.

Let ε ą 0. Choose an integer N ě 4 so that 1
N ă ε{2. Let P be a partition

with meshP ă ε
2N2 so that ti R Q if 1 ď i ď n ´ 1. Since every interval

contains irrational points, mi “ 0 for all i; so Lpf,Pq “ 0. The function f
takes values ě 1

N only on 0, 1, 1
2 ,

1
3 ,

2
3 , . . . ,

1
N , . . . ,

N´1
N . This consists at most

2` 1` 2` ¨ ¨ ¨ ` pN ´ 1q “ 2` NpN´1q

2 ă N2 points. So on n´N2 intervals,
Mi ă

1
N2 and on the remaining N2 intervals, Mi ď 1. Therefore

Upf,Pq ă 1
N2 p1q ` 1pN2q

ε

2N2 ă
ε

2
`
ε

2
“ ε.

Since ε is arbitrary, f satisfies Riemann’s condition. Hence
ż 1

0
fpxq dx “ 0.

We have seen that there are continuous functions which oscillate rapidly and
are not piecewise monotone. However they are still integrable.

6.4.6. THEOREM. Every continuous function f on ra, bs is Riemann integrable.

PROOF. Recall Theorem 4.6.3 that shows that every continuous function on
a closed bounded interval ra, bs is uniformly continuous. This means that given
ε ą 0, there is a δ ą 0 so that |x ´ y| ă δ implies that |fpxq ´ fpyq| ă ε. Given
ε ą 0, take a δ ą 0 which works for ε

b´a .
Let P be any partition with meshP ă δ. Then

Mi ´mi “ sup
ti´1ďxďti

fpxq ´ inf
ti´1ďyďti

fpyq “ sup
ti´1ďx,yďti

fpxq ´ fpyq ď
ε

b´ a
.

Therefore

Upf,Pq ´ Lpf,Pq “
n
ÿ

i“1

pMi ´miq∆ti ď
ε

b´ a

n
ÿ

i“1

∆ti “ ε.

This verifies Riemann’s condition, and thus fpxq is Riemann integrable. ■

For continuous functions, we have an integral version of the Mean Value The-
orem.
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6.4.7. THEOREM. Suppose that fpxq is continuous on ra, bs. Then there is a
point c P ra, bs so that

1
b´ a

ż b

a
fpxq dx “ fpcq.

PROOF. Let m “ infaďxďb fpxq and M “ supaďxďb fpxq. By the Extreme
Value Theorem, the minimum and maximum values are attained, say fpc1q “ m
and fpc2q “M . Corollary 6.3.2 shows that

m ď L :“
1

b´ a

ż b

a
fpxq dx ďM.

By the Intermediate Value Theorem, there is a point c between c1 and c2 so that
fpcq “ L. ■

6.5. More integrable functions

Here are some constructions that preserve integrability.

6.5.1. PROPOSITION. Let fpxq, gpxq be Riemann integrable functions on ra, bs.

p1q pf _ gqpxq “ maxtfpxq, gpxqu and pf ^ gqpxq “ mintfpxq, gpxqu
are Riemann integrable. In particular, |f |pxq “ |fpxq| is Riemann in-
tegrable.

p2q pfgqpxq “ fpxqgpxq is Riemann integrable.

p3q if infaďxďb |gpxq| “ δ ą 0, then f{g is Riemann integrable.

PROOF. (1) First consider f _ 0. Let ε ą 0 and let P be a partition so that
Upf,Pq ´ Lpf,Pq ă ε. Let mi and Mi have the usual definition. Then

ni “ inftpf _ 0qpxq : ti´1 ď x ď tiu “ mi _ 0

and
Ni “ suptpf _ 0qpxq : ti´1 ď x ď tiu “Mi _ 0.

Therefore, Ni ´ ni ďMi ´mi with equality only if mi ě 0 or mi “Mi. Hence

Upf _ 0,Pq ´ Lpf _ 0,Pq “
n
ÿ

i“1

pNi ´ niq∆ti

ď

n
ÿ

i“1

pMi ´miq∆ti

“ Upf,Pq ´ Lpf Pq ă ε.
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Therefore f _ 0 is Riemann integrable by Riemann’s condition. Since

f _ g “ f ` ppg ´ fq _ 0q and f ^ g “ f ´ ppf ´ gq _ 0q,

they are also Riemann integrable. In particular, |f | “ f _ ´f is Riemann inte-
grable.

(2) Let F “ 1`supt|fpxq| : a ď x ď bu andG “ 1`supt|gpxq| : a ď x ď bu.
Given ε ą 0, choose a partition P so that

Upf,Pq ´ Lpf,Pq ă ε

2G
and Upg,Pq ´ Lpg,Pq ă ε

2F
.

Let mi,Mi come from f , and let ni and Ni come from g. Similarly let

li “ inftfpxqgpxq : ti´1 ď x ď tiu and Li “ suptfpxqgpxq : ti´1 ď x ď tiu.

Now

fpxqgpxq ´ fpyqgpyq “
`

fpxq ´ fpyq
˘

gpyq ` fpxq
`

gpxq ´ gpyq
˘

ď GpMi ´miq ` F pNi ´ niq.

Thus

Li ´ li “ sup
ti´1ďx,yďti

fpxqgpxq ´ fpyqgpyq ď GpMi ´miq ` F pNi ´ niq.

Therefore

Upfg,Pq ´ Lpfg,Pq “
n
ÿ

i“1

pLi ´ liq∆ti

ď G
n
ÿ

i“1

pMi ´miq∆ti ` F
n
ÿ

i“1

pNi ´ niq∆ti

“ G
`

Upf,Pq ´ Lpf,Pq
˘

` F
`

Upg,Pq ´ Lpg,Pq
˘

ă
ε

2
`
ε

2
“ ε.

Thus fg satisfies Riemann’s condition, and therefore is integrable.
(3) First consider 1{g. Note that

ˇ

ˇ

ˇ

1
gpxq

´
1

gpyq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

gpxq ´ gpyq

gpxqgpyq

ˇ

ˇ

ˇ
ď δ´2|gpxq ´ gpyq|.

For ε ą 0, choose a partition P so that Upf,Pq ´ Lpf,Pq ă δ2ε. Let

ki “ inf
␣ 1
gpxq

: ti´1 ď x ď ti
(

and Ki “ sup
␣ 1
gpxq

: ti´1 ď x ď ti
(

.

Then Ki ´ ki ď δ´2pMi ´miq. Therefore

Up 1
g ,Pq ´ Lp

1
g ,Pq “

n
ÿ

i“1

pKi ´ kiq∆ti ď δ´2
n
ÿ

i“1

pMi ´miq∆ti

“ δ´2`Upg,Pq ´ Lpg,Pq
˘

ă δ´2δ2ε “ ε.
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Thus
1
g

satisfies Riemann’s condition, and therefore is integrable. Finally the quo-

tient
f

g
“ f

`1
g

˘

is integrable by (2). ■

6.6. Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is called fundamental because it pro-
vides a deep link between integration and differentiation. This link allows for a
variety of useful computational methods for computing integrals.

Recall that a function gpxq on ra, bs is Lipschitz if there is a constant C so that
|gpxq ´ gpyq| ď C|x ´ y| for x, y P ra, bs. In Example 4.1.3(3), we showed that
Lipschitz functions are uniformly continuous. And Example 4.6.2(1) showed that
if g is differentiable and g1 is bounded by M , then g is Lipschitz with constant M .

6.6.1. FUNDAMENTAL THEOREM OF CALCULUS. Let fpxq be a Riemann

integrable function on ra, bs, and define F pxq “
ż x

a
fptq dt. Then F is Lipschitz,

and hence continuous. If f is continuous at a point x0 P ra, bs, then F is differen-
tiable at x0 and F 1px0q “ fpx0q.

PROOF. Riemann integrable functions are bounded. Let

M “ }f}8 :“ supt|fpxq| : a ď x ď bu.

Then if a ď x ă y ď b, we have

|F pyq ´ F pxq| “
ˇ

ˇ

ˇ

ż y

x
fptq dt

ˇ

ˇ

ˇ
ď

ż y

x
M dt “M |y ´ x|.

Hence F is Lipschitz with constant M , and thus is continuous.
Suppose that f is continuous at x0. Given ε ą 0, pick δ ą 0 so that |y´x0| ă δ

implies that |fpyq ´ fpx0q| ă ε. Then for 0 ă h ă δ, we have
ˇ

ˇ

ˇ

ˇ

F px0 ` hq ´ F px0q

h
´ fpx0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1
h

ż x0`h

x0

fptq dt´
1
h

ż x0`h

x0

fpx0q dt

ˇ

ˇ

ˇ

ˇ

ď
1
h

ż x0`h

x0

|fptq ´ fpx0q| dt ă
1
h

ż x0`h

x0

ε dt “ ε.

Similarly one shows that
ˇ

ˇ

ˇ

ˇ

F px0q ´ F px0 ´ hq

h
´ fpx0q

ˇ

ˇ

ˇ

ˇ

ă ε.

Therefore F 1px0q “ lim
hÑ0

F px0 ` hq ´ F px0q

h
“ fpx0q. ■
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The most important consequence of this theorem is the following method for
computing integrals.

6.6.2. COROLLARY. Suppose that fpxq is continuous on ra, bs and G is a
differentiable function such that G1pxq “ fpxq for x P ra, bs. Then

ż b

a
fpxq dx “ Gpbq ´Gpaq.

PROOF. Let F pxq “
ż x

a
fptq dt. By the Fundamental Theorem of Calculus,

F 1pxq “ fpxq “ G1pxq for x P ra, bs. Therefore pG´ F q1 “ G1 ´ F 1 “ 0. By the

Mean Value Theorem, G´F is constant, say c. Therefore Gpxq “ c`

ż x

a
fptq dt.

Hence Gpbq ´Gpaq “
ż b

a
fptq dt. ■

6.6.3. DEFINITION. If fpxq is a continuous function on ra, bs, an antiderivative
of f is a continuous function F pxq on ra, bs which is differentiable on pa, bq with
F 1pxq “ fpxq.

Note that if F and G are two antiderivatives of f , then pF ´Gq1 “ 0 on pa, bq
and thus F ´ G is constant. Thus the set of all antiderivatives of f have the form
F pxq ` c for some constant c. We will indicate the antiderivative of f by

ż

fpxq dx “ F pxq ` c.

6.6.4. EXAMPLE. Let

fpxq “

#

´1 if ´ 1 ď x ă 0
1 if 0 ď x ď 1.

Then one can see geometrically that

F pxq “

ż x

´1
fptq dt “

#

´1´ x if ´ 1 ď x ă 0
x´ 1 if 0 ď x ď 1

“ |x| ´ 1.

Then F is differentiable on r´1, 0q Y p0, 1s, but fails to be differentiable at x “ 0,
which is a point of discontinuity for f .

The Fundamental Theorem of Calculus can be pushed a bit further, dropping
continuity of f provided that f is a derivative and also Riemann integrable.
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6.6.5. FUNDAMENTAL THEOREM OF CALCULUS II. Suppose that fpxq
is a Riemann integrable function on ra, bs and that F pxq is a differentiable function
such that F 1pxq “ fpxq for x P ra, bs. Then

ż b

a
fpxq dx “ F pbq ´ F paq.

PROOF. Let ε ą 0. Choose a partition P “ ta “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ bu of
ra, bs so that Upf,Pq´Lpf,Pq ă ε. By the Mean Value Theorem, there is a point
xi P pti´1, tiq so that

F ptiq ´ F pti´1q

ti ´ ti´1
“ F 1pxiq “ fpxiq.

Therefore

Rpf,P, txiuq “
n
ÿ

i“1

fpxiqpti ´ ti´1q “

n
ÿ

i“1

F ptiq ´ F pti´1q “ F pbq ´ F paq.

Now both Rpf,P, txiuq and
ż b

a
fpxq dx lie in the interval rLpf,Pq, Upf,Pqs.

Therefore
ˇ

ˇ

ˇ

ˇ

ż b

a
fpxq dx´

`

F pbq ´ F paq
˘

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż b

a
fpxq dx´Rpf,P, txiuq

ˇ

ˇ

ˇ

ˇ

ă ε.

Since ε ą 0 is arbitrary, we have
ż b

a
fpxq dx “ F pbq ´ F paq. ■

The hypothesis that f is Riemann integrable does not follow just because f is
the derivative of a function F pxq, even if it is bounded. That is the point of the
following rather difficult example.

6.6.6. EXAMPLE. We start with a variant of the Cantor set constructed as fol-
lows. Start with r0, 1s. Remove the middle open interval of length 1

4 , i.e. p 3
8 ,

5
8q.

Then from the middle of the remaining intervals, remove an interval of length 4´2,
namely p 5

32 ,
7

32q and p 25
32 ,

27
32q. At the nth stage, remove an open interval of length

4´n from the middle of each of the remaining 2n´1 closed intervals. Then the total
length of the pieces removed is

8
ÿ

n“1

2n´1

4n
“

1
2

8
ÿ

n“1

2´n “
1
2
.

Let tIk “ pak, bkq : k ě 1u be a list of the removed intervals. Define U “
Ť

kě1 Ik
andC “ r0, 1szU . Inside each interval Ik, let Jk “ pck, dkq be an interval of length
|Ik|

2 with the same centre; and let V “
Ť

kě1 Jk. Notice that after the nth stage,
the 2n intervals that remain all have the same length, and so it tends to 0. That
means that C does not contain any interval. Thus if x P C, then px ´ ε, x ` εq
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intersects U . This means that there is a sequence of points in U converging to x.
While x could be an endpoint of some Ik, it can be approached from the other side
as well. So we can assume that the points belong to distinct intervals Ik, so that the
lengths of the Ik will tend to 0. Now we can alter such a sequence by replacing a
point of Ik with any point we choose in Jk, and keep the same limit.

Define functions

fkpxq “

#

0 if x R Jk
sin

`2πpx´ckq

dk´ck

˘

if x P Jk
and fpxq “

ÿ

kě1

fkpxq.

Note that the functions fpxq are continuous and have disjoint supports. Thus fpxq
is bounded by 1, and in particular fpekq “ 1 where ek “ 3ck`d

4 . However it is not
continuous because each x P C is a limit of points ek in Jk, and f takes the value
1 at these points and is 0 on C. We will show that fpxq is not Riemann integrable,
but is a derivative.

Let P be any partition of r0, 1s. The collection

A “ ti : pti´1, tiq Ă Ik for some ku

has total length
ÿ

iPA

ti ´ ti´1 ď
ÿ

kě1

|Ik| “
1
2
.

Let B “ t1, . . . , nuzA. Then
ÿ

iPB

ti ´ ti´1 “ 1´
ÿ

iPA

ti ´ ti´1 ě
1
2
.

If i P B, then there is a point xi P pti´1, tiq X C. As observed above, there
is a sequence of points ek in certain Ik’s converging to x. Thus there is a point
yi P pti´1, tiq which is one of these ek. Hence fpykq “ 1 and fpxq “ 0. That is
mi “ 0 and Mi “ 1 if i P B. Therefore

Upf,Pq ´ Lpf,Pq ě
ÿ

iPB

pMi ´miq∆ti “
ÿ

iPB

ti ´ ti´1 ě
1
2
.

Hence the Riemann condition is not satisfied, so f is not Riemann integrable.
Next we define

Fkpxq “

ż x

0
fkptq dt for k ě 1 and F pxq “

ÿ

kě1

Fkpxq.

Since fk is continuous, Fk is differentiable with F 1
kpxq “ fkpxq. Also each Fk “ 0

for x R Jk, and }Fk}8 “ Fk

`

ck`dk
2

˘

“ 1
π |Jk| “

1
π |Ik|

2. The sum of these values

converges, and hence the seriesGn “
n
ř

k“1
Fkpxq converges uniformly to F . Indeed,

for any x, there is at most one f so that Fkpxq ‰ 0.
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Finally we show that F is differentiable. On each interval In “ pak, bkq, we
have F pxq “ Fkpxq. This is differentiable and

F 1pxq “ F 1
kpxq “ fkpxq “ fpxq for x P Ik.

Now consider x P C. Then F pxq “ 0. For y ‰ x, there are two cases. If y R V ,

then F pyq “ 0 and so
F pyq ´ F pxq

y ´ x
“ 0. Otherwise y P Jk for some k. Since

x R Ik, the interval px, yq intersects Ik in either pak, yq or py, dkq. In either case,
this has length at least

ck ´ ak “
1
2
p|Ik| ´ |Jk|q “

1
2
|Ik|p1´ |Ik|q ě

3
8
|Ik|.

Therefore
ˇ

ˇ

ˇ

F pyq ´ F pxq

y ´ x

ˇ

ˇ

ˇ
ď
|Jk|{π

3|Ik|{8
“

8
3π
|Ik|.

As y tends to x, the length of Ik must tend to 0 (since 3
8 |Ik| ď |y ´ x|). Therefore,

F 1pxq “ lim
yÑx

F pyq ´ F pxq

y ´ x
“ 0 “ fpxq.

Hence F is differentiable with bounded derivative f , but f is not Riemann inte-
grable.

Exercises for Chapter 6

1. Let fpxq “ 1
x on ra, bs where 0 ă a ă b. Let

Pn “ tti “ apb{aqi{n : 0 ď i ď nu for n ě 1.

(a) Find Lpf,Pnq and Upf,Pnq.
(b) Show that f is Riemann integrable, and evaluate lim

nÑ8
Upf,Pnq.

2. Evaluate the area of a sector of a parabola using Riemann sums.

3. Let fpxq “

$

’

&

’

%

1 for 0 ď x ď 1
2 for 1 ă x ď e
3 for e ă x ď π
4 for π ă x ď 4.

(a) Verify Riemann’s condition.
(b) Given ε ą 0, find an explicit value for δ ą 0 so that every partition P with

meshpPq ă δ satisfies Riemann’s condition for ε.

4. Prove Proposition 6.3.1(3): if fpxq ď gpxq are integrable on ra, bs, then
ż b

a
fpxq dx ď

ż b

x
gpxq dx.
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5. Prove Proposition 6.3.1(43): if fpxq is Riemann integrable on ra, bs and a ă
c ă b, then f is Riemann integrable on ra, cs.

6. Let fpxq “ sinp 1
xq for x ‰ 0 and fp0q “ 0. Prove that f is Riemann integrable

on r0, 1s. HINT: verify Riemann’s condition by using a partition with a small
t1 and using the continuity of f on rt1, 1s.

7. Suppose that fpxq and gpxq are continuous, monotone increasing functions on
ra, bs. Prove that

1
b´ a

ż b

a
fpxq dx

1
b´ a

ż b

a
gpxq dx ď

1
b´ a

ż b

a
fpxqgpxq dx.

HINT: integrate
`

fpxq ´ fpcq
˘`

gpxq ´ gpcq
˘

for a certain value of c.

8. Evaluate lim
nÑ8

řn
k“1

n5 ` 4kn4 ` 9k2n3 ` 16k3n2 ` 25k4n` 36k5

n6 .

HINT: why is this in this chapter?

9. Let fpxq be a continuous strictly increasing function from ra, bs onto rc, ds.
(a) Let P “ ta “ t0 ă ¨ ¨ ¨ ă tn “ bu be a partition of ra, bs, and define a

partition P 1 of rc, ds by t1i “ fptiq for 0 ď i ď n. Show that

Lpf,Pq ` Upf´1,P 1q “ bd´ ac.

HINT: see figure.
(b) Hence show that for any continuous strictly monotone function fpxq

ż d

c
f´1pxq dx “ df´1pdq ´ cf´1pcq ´

ż f´1pdq

f´1pcq

fpxq dx.

(c) For any positive real numbers p, q, show that
ż 1

0
p1´ xpq1{q dx “

ż 1

0
p1´ xqq1{p dx.
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FIGURE 6.3. Exercise (9)



CHAPTER 7

Techniques of Integration

7.1. Simple observations

Here are a few simple techniques to get us started.

7.1.1 Recognizing a derivative. Sometimes you can see an antiderivative by rec-
ognizing the integrand as a derivative. For example

ż 1

0
ex

2
x dx “

1
2
ex

2
ˇ

ˇ

ˇ

1

0
“
e´ 1

2
.

ż 1

´1

dx

1` x2 “ tan´1pxq
ˇ

ˇ

ˇ

1

´1
“
π

4
`
π

4
“
π

2
.

ż π{4

0
secx tanx dx “ secx

ˇ

ˇ

ˇ

π{4

0
“
?

2´ 1.

7.1.2 Recognizing symmetry. If the integrand is even or odd or periodic, there
may be a simplification which is helpful. For example,

ż 1

´1
ex

4
sinx dx “ 0 because the integrand is an odd function.

ż 1

´1

dx

1` x2 “ 2
ż 1

0

dx

1` x2 because the integrand is an even function.

The following function is 2π periodic, which explains the first two equalities,
and it is odd, which explains the last.

ż 10π

0
sin3 x dx “ 5

ż 2π

0
sin3 x dx “ 5

ż π

´π
sin3 x dx “ 0

112
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7.1.3 The chain rule and FTC. To differentiate fpxq “
ż x3

x2
et

2
dt, let us define

F pxq “

ż x

0
et

2
dt. By FTC, F 1pxq “ ex

2
. Notice that fpxq “ F px3q ´ F px2q.

Therefore by the Chain Rule,

f 1pxq “ F 1px3q3x2 ´ F 1px2q2x “ 3x2ex
6
´ 2xex

4
.

7.2. Integration by Parts

We start with the product rule for derivatives:

pfgq1pxq “ f 1pxqgpxq ` fpxqg1pxq.

Therefore
ż b

a
f 1pxqgpxq dx “

ż b

a
pfgq1pxq dx´

ż b

a
fpxqg1pxq dx

“ fpxqgpxq
ˇ

ˇ

ˇ

b

a
´

ż b

a
fpxqg1pxq dx.

Using this method involves recognizing a derivative as a factor of the integrand.

7.2.1. EXAMPLE. In the following, f 1pxq “ x and gpxq “ tan´1pxq. Then
fpxq “ x2

2 and g1pxq “ 1
1`x2 .

ż 1

0
x tan´1pxq dx “

x2

2
tan´1pxq

ˇ

ˇ

ˇ

1

0
´

ż 1

0

x2

2
1

1` x2 dx

“
x2

2
tan´1pxq

ˇ

ˇ

ˇ

1

0
´

1
2

ż 1

0
1´

1
1` x2 dx

“
x2

2
tan´1pxq

ˇ

ˇ

ˇ

1

0
´
x´ tan´1pxq

2

ˇ

ˇ

ˇ

ˇ

1

0

“
x2 ` 1

2
tan´1pxq ´

x

2

ˇ

ˇ

ˇ

ˇ

1

0
“
π

4
´

1
2
.

7.2.2. EXAMPLE. This works for indefinite integrals as well.
ż

xe2x dx “ x
`1

2e
2x˘´

ż

1
`1

2e
2x˘ dx

“ 1
2xe

2x ´ 1
4e

2x ` c “
2x´ 1

4
e2x ` c.
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7.2.3. EXAMPLE. If a ‰ ´1, we integrate xa and differentiate lnx.
ż

xa lnx dx “
xa`1

a` 1
lnx´

ż

xa`1

a` 1
1
x
dx “

xa`1

a` 1
lnx´

1
a` 1

ż

xa dx

“
xa`1

a` 1
lnx´

xa`1

pa` 1q2
` c.

When a “ ´1, we observe that 1
x is the derivative of lnx. Therefore we observe

that
d

dx
plnxq2 “

2
x

lnx. Hence
ż

x´1 lnx dx “ 1
2plnxq

2 ` c.

This is best handled by the substitution method.

7.2.4. EXAMPLE. What is wrong with the following argument?
ż

1
x
dx “

ż

1 ¨
1
x
dx “ x

1
x
´

ż

x
´

´1
x2

¯

dx “ 1`
ż

1
x
dx.

Therefore 0 “ 1.

7.3. Integration by Substitution

This is a fundamental method which will get a great deal of use. It can be a bit
tricky to use because the limits of integration change. In a sense, this is the integral
version of the chain rule.

7.3.1. PROPOSITION. Let fpxq be continuous on ra, bs. Suppose u : rp, qs Ñ
ra, bs is a C1 function. Then

ż q

p
fpupxqqu1pxq dx “

ż upqq

uppq

fptq dt.

PROOF. Let F pyq “
ż y

a
fptq dt. Since u maps rp, qs into ra, bs, we can define

Gpxq “ F pupxqq for x P rp, qs. By the chain rule and FTC,

G1pxq “ F 1pupxqqu1pxq “ fpupxqqu1pxq.

Therefore
ż q

p
fpupxqqu1pxq dx “

ż q

p
G1pxq dx “ Gpxq

ˇ

ˇ

ˇ

q

p

“ F pupqqq ´ F puppqq
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“ F pyq
ˇ

ˇ

ˇ

upqq

uppq
“

ż upqq

uppq

fptq dt. ■

7.3.2. REMARKS.
(1) If u is monotone, which is frequently the case in practice, then it suffices to
check that a ď uppq, upqq ď b to ensure that uprp, qsq Ă ra, bs.

(2) If we set y “ upxq, then y1 “ u1pxq. So formally we get

dy “
dy

dx
dx “ u1pxq dx.

Thus we substitute y for upxq and replace u1pxq dx by dy to get
ż q

p
fpupxqqu1pxq dx “

ż q

p
fpyqy1pxq dx “

ż upqq

uppq

fpyq dy.

The limits of integration change becasue we are now integrating with respect to y.
As x runs from p to q, y “ upxq runs from uppq to upqq.

(3) If u is monotone decreasing, then uppq ą upqq, so that
ż q

p
fpupxqqu1pxq dx “

ż upqq

uppq

fpyq dy “ ´

ż uppq

upqq

fpyq dy.

(4) Often substitution works in the other direction. That is, we are considering
ż b

a
fptq dt and we substitute t “ upxq. To do this, we need u to be monotone, C1,

and contain ra, bs in its range. We set t “ upxq and hence dt “ u1pxq dx. The new
limits will be u´1paq “: p and u´1pbq “: q. That is,

ż b

a
fptq dt “

ż u´1pbq

u´1paq

fpupxqqu1pxq dx.

7.3.3. EXAMPLE. Consider
ż π{4

0
tanx dx “

ż π{4

0

sinx
cosx

dx.

We recognize ´ sinx as the derivative of cosx. So we substitute u “ cosx and
du “ u1pxq dx “ ´ sinx dx. Thus the integral becomes

ż π{4

0

sinx
cosx

dx “

ż π{4

0

´1
cosx

p´ sinxq dx

“

ż cospπ{4q

cosp0q

´du

u
“ ´ ln |u|

ˇ

ˇ

ˇ

1{
?

2

1

“ ´ ln
ˇ

ˇ

ˇ

1
?

2

ˇ

ˇ

ˇ
` ln |1| “

ln 2
2
.
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7.3.4. EXAMPLE. Consider
ż

?
3r{2

r{2

1
?
r2 ´ t2

dt.

Substitute t “ r sinx. This will greatly simplify the quantity under the square
root. Then dt “ r cosx dx. Then upxq “ r sinx, so that p “ u´1pr{2q “ π

6 and
q “ u´1p

?
3r{2q “ π

3 . Thus

ż

?
3r{2

r{2

1
?
r2 ´ t2

dt “

ż π{3

π{6

1
a

r2 ´ r2 sin2 x
r cosx dx

“

ż π{3

π{6

1
r cosx

r cosx dx

“

ż π{3

π{6
dx “ x

ˇ

ˇ

ˇ

π{3

π{6
“
π

6
.

For an indefinite integral, one must convert back to the original variable
ż

1
?
r2 ´ t2

dt “ x “ sin´1
´ t

r

¯

` c.

This can be verified by differentiation.

7.3.5. EXAMPLE. Consider
ż

dx

a2 sin2 x` b2 cos2 x
.

First we manipulate this to put it into a more useful form. Multiply by
sec2 x

sec2 x
to get

ż

sec2 x

a2 tan2 x` b2 dx “
1
b2

ż

sec2 x
`

a
b tanx

˘2
` 1

dx

Substitute u “ a
b tanx. Then du “ a

b sec2 x dx. We obtain

1
b2
b

a

ż a
b sec2 x dx

`

a
b tanx

˘2
` 1

“
1
ab

ż

du

u2 ` 1

“
1
ab

tan´1puq ` c “
1
ab

tan´1 `a
b tanx

˘

` c.

7.3.6. EXAMPLE. Consider
ż

secx dx.

This requires a clever trick using the fact that d
dx tanx “ sec2 x and d

dx secx “
secx tanx.

ż

secx dx “
ż

secx
secx` tanx
secx` tanx

dx “

ż

sec2 x` secx tanx
secx` tanx

dx.
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So the numerator is the derivative of u “ secx ` tanx. Making this substitution,
we get

ż

secx dx “
ż

sec2 x` secx tanx
secx` tanx

dx

“

ż

u1pxq

upxq
dx “

ż

du

u

“ ln |u| ` c “ ln
ˇ

ˇ secx` tanx
ˇ

ˇ` c.

Similarly,
ż

cscx dx “ ln
ˇ

ˇ cscx´cotx
ˇ

ˇ`c. It might be worthwhile remembering

these two integrals.

7.3.7. EXAMPLE. What can go wrong if we ignore the range of u? Let fpxq “
1

px` 1q2
for x ‰ ´1. Set upxq “ x2´2x. Then up0q “ 0 and up4q “ 8. Compare

ż 4

0
fpupxqqu1pxq dx and

ż 8

0
fpyq dy.

The integral on the right is
ż 8

0

1
py ` 1q2

dy “
´1
y ` 1

ˇ

ˇ

ˇ

ˇ

8

0
“ ´

1
9
` 1 “

8
9
.

Since u1pxq “ 2x´ 2, the integral on the left is
ż 4

0
fpupxqqu1pxq dx “

ż 4

0

2x´ 2
px2 ´ 2x` 1q2

dx “

ż 4

0

2
px´ 1q3

dx.

This is not integrable because the integrand blows up at x “ 1. The problem is that
upr0, 4sq “ r´1, 8s, not r0, 8s.

7.3.8. EXAMPLE. Sometimes we combine our two new techniques. Consider
ż 1

0
esin´1pxq dx. The substitution x “ sinu jumps out. So sin´1psinuq “ u. Then

dx “ cosu du. Note that u runs from 0 to π
2 . We substitute and then integrate by

parts twice, integrating eu each time.
ż 1

0
esin´1pxq dx “

ż π{2

0
eu cosu du

“ eu cosu
ˇ

ˇ

ˇ

π{2

0
´

ż π{2

0
eup´ sinuq du

“ eu cosu` eu sinu
ˇ

ˇ

ˇ

π{2

0
´

ż π{2

0
eu cosu du.
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Therefore

2
ż π{2

0
eu cosu du “ eupcosu` sinuq

ˇ

ˇ

ˇ

π{2

0
“ eπ{2 ´ 1.

Thus
ż 1

0
esin´1pxq dx “

eπ{2 ´ 1
2

.

If we solve cosu “
a

1´ sin2 u “
?

1´ x2, we get
ż

esin´1pxq dx “ 1
2e

upcosu` sinuq ` c “ esin´1pxq
´

?
1´ x2 ` x

2

¯

` c

This can be verified by differentiation.

7.4. Integral Recursion Formulae

Sometimes a method can be repeated by induction to get a whole family of
integral formulas. These formulas are called recursion formulae. (There are two
acceptable plurals for formula, formulas and formulae, which comes from latin. As
time goes on, formulas is becoming much more common.)

7.4.1. EXAMPLE. Let In “
ż

xnex dx for integers n ě 0. We know that

I0 “ ex ` c. Using integration by parts, we get

In “

ż

xnex dx “ xnex ´

ż

nxn´1ex dx “ xnex ´ nIn´1.

Hence

I1 “ px´ 1qex ` c

I2 “ x2ex ´ 2ppx´ 1qex ` cq “ px2 ´ 2x` 2qex ` c

I3 “ x3 ´ 3I2 “ px
3 ´ 3x2 ` 6x´ 6qex ` c

Note that since c is an arbitrary constant, it does not change when added or multi-
plied. By observation, we detect the pattern as

In “
`

xn ´ nxn´1 ` npn´ 1qxn´2 ´ ¨ ¨ ¨ ` p´1qnn!
˘

ex ` c

“

n
ÿ

j“0

p´1qjnpn´ 1q ¨ ¨ ¨ pn` 1´ jqxn´j “

n
ÿ

j“0

p´1qj
n!

pn´ jq!
xn´j .
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The last formula an be verified by induction. It is true for n “ 0, 1, 2, 3 as shown.
Suppose that it holds for n. Then

In`1 “ xn`1ex ´ pn` 1qIn “ xn`1ex ´ pn` 1q
n
ÿ

j“0

p´1qj
n!

pn´ jq!
xn´j

“ xn`1ex ´
n
ÿ

j“0

p´1qj
pn` 1q!
pn´ jq!

xn´j

set k “ j ` 1,

“ xn`1ex ´
n`1
ÿ

k“1

p´1qj
pn` 1q!

pn` 1´ kq!
xn`1´k

“

n`1
ÿ

k“0

p´1qj
pn` 1q!

pn` 1´ kq!
xn`1´k.

So the formula holds for all n ě 0.

7.4.2. EXAMPLE. Let In “
ş

sinn x dx for integers n ě 0. Then I0 “ x ` c
and I1 “ ´ cosx` c. Again we integrate by parts

In “

ż

sinn x dx “
ż

sinn´1 x sinx dx

“ ´ sinn´1 x cosx`
ż

pn´ 1q sinn´2 cos2 x dx

“ ´ sinn´1 x cosx` pn´ 1q
ż

sinn´2p1´ sin2 xq dx

“ ´ sinn´1 x cosx` pn´ 1qpIn´2 ´ Inq.

Solving, we get

In “ ´
1
n

sinn´1 x cosx`
n´ 1
n

In´2.

Now let an “
şπ{2

0 sinn x dx Then a0 “
π
2 and a1 “ 1. The recursion formula

shows that for n ě 2,

an “
n´ 1
n

an´2.

We iterate this formula:

a2n “
2n´ 1

2n
a2n´2 “

2n´ 1
2n

2n´ 3
2n´ 2

a2n´4 “ . . .

“
2n´ 1

2n
2n´ 3
2n´ 2

. . .
3
4

1
2
a0

“
p2nq!

p2nq2p2n´ 2q2 ¨ ¨ ¨ 4222
π

2
“

p2nq!
22npn!q2

π

2
.
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Similarly

a2n`1 “
2n

2n` 1
a2n´1 “

2n
2n` 1

2n´ 2
2n´ 1

a2n´3 “ . . .

“
2n

2n` 1
2n´ 2
2n´ 1

. . .
4
5

2
3
a1

“
p2nq2p2n´ 2q2 ¨ ¨ ¨ 4222

p2n` 1q!
“

22npn!q2

p2n` 1q!
.

These formulas lead to a famous formula for π.

7.4.3. WALLIS PRODUCT FORMULA.

π

2
“ lim

nÑ8

2¨
1¨

2¨
3¨

4¨
3¨

4 ¨ ¨ ¨
5 ¨ ¨ ¨

p2nq
p2n´ 1q

p2nq
p2n` 1q

“ lim
nÑ8

24npn!q4

p2nq!p2n` 1q!
.

PROOF. Observe that

a2n

a2n`1
“

1¨
2¨

3¨
2¨

3¨
4¨

5 ¨ ¨ ¨
4 ¨ ¨ ¨

p2n´ 1q
p2nq

p2n` 1q
p2nq

π

2
.

Hence

π

2
“

2¨
1¨

2¨
3¨

4¨
3¨

4 ¨ ¨ ¨
5 ¨ ¨ ¨

p2nq
p2n´ 1q

p2nq
p2n` 1q

a2n

a2n`1
“

24npn!q4

p2nq!p2n` 1q!
a2n

a2n`1
.

Thus Wallis’s product formula holds if we can show that lim
nÑ8

a2n

a2n`1
“ 1.

Observe that on r0, π2 s, 0 ď sin2n`1 x ď sin2n x ď sin2n´1 x. Therefore
a2n`1 ď a2n ď a2n´1. Also a2n`1 “

2n´1
2n a2n´1. Hence

1 ď
a2n

a2n`1
ď

2n
2n´ 1

a2n

a2n´1
ď

2n
2n´ 1

Ñ 1.

By the Squeeze Theorem, we obtain lim
nÑ8

a2n

a2n`1
“ 1. ■

7.4.4. EXAMPLE. Let In “
ż

dx

px2 ` a2qn
. So I0 “ x` c and

I1 “
1
a

ż

dx{a
`

x
a

˘2
` 1

“
1
a

tan´1 `x

a

˘

` c.
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Integrating by parts,

In “

ż

p1q
1

px2 ` a2qn
dx

“
x

px2 ` a2qn
´

ż

x
´2nx

px2 ` a2qn`1 dx

“
x

px2 ` a2qn
` 2n

ż

x2 ` a2 ´ a2

px2 ` a2qn`1 dx

“
x

px2 ` a2qn
` 2npIn ´ a2In`1q.

Therefore
In`1 “

x

2na2px2 ` a2qn
`

2n´ 1
2na2 In.

For example,
ż

dx

px2 ` 4q4
“

x

24px2 ` 4q3
`

5
24
I3

“
x

24px2 ` 4q3
`

5
24

´ x

16px2 ` 4q2
`

3
16
I2

¯

“
x

24px2`4q3
`

5x
24p16qpx2`4q2

`
15

24p16q

´ x

8px2`4q
`

1
8
I1

¯

“
x

24px2`4q3
`

5x
384px2`4q2

`
15x

3072px2`4q
`

15
6144

tan´1 `x

2
˘

`c.

Hence
ż 1

0

dx

px2 ` 4q4
“

1
24p5q3

`
5

384p5q2
`

15
3072p5q

`
15

6144
tan´1p 1

2q

“
1

3000
`

1
1920

`
1

1024
`

5
2048

tan´1p 1
2q.

7.5. Partial Fractions

A rational function is a function of the form
ppxq

qpxq
for two polynomials p and

q. There is a systematic method to integrate any rational function. You can always
divide q into p to get a polynomial plus a remainder. Thus we can always assume
that deg p ă deg q.

Since qpxq is a real polynomial, it factors into a product of linear and irreducible
quadratic terms. Say

qpxq “ px´ a1q
m1 . . . px´ adq

md
`

px´ b1q
2 ` c2

1
˘n1 . . .

`

px´ beq
2 ` c2

e

˘ne .

Of course, this factorization is not always readily available.
First we will deal with some important special cases.
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Case 1. Suppose that qpxq “ px´ a1qpx´ a2q . . . px´ adq has d simple real roots.

Then ppxq ” ppaiq pmod x´ aiq for 1 ď i ď d. Let qipxq “
qpxq

x´ ai
and define

P pxq “
d
ÿ

i“1

ppaiq

qipaiq
qipxq.

Then degP ď maxtdeg qi : 1 ď i ď nu “ d´ 1 ă d “ deg q. Moreover

P pxq ” P paiq “ ppaiq pmod x´ aiq for 1 ď i ď d.

That means x ´ ai divides P pxq ´ ppxq for 1 ď i ď d. Hence q divides P ´ p.
Since degP ´ p ď d´ 1 ă deg q, we have P “ p. Therefore

ppxq

qpxq
“

d
ÿ

i“1

ppaiq

qipaiq

qipxq

qpxq
“

d
ÿ

i“1

ppaiq

qipaiq

1
x´ ai

.

Thus
ż

ppxq

qpxq
dx “

d
ÿ

i“1

ppaiq

qipaiq
ln |x´ ai| ` c.

7.5.1. EXAMPLE.
ż

x3 ´ x2 ` x` 2
x3 ´ x

dx “

ż

1`
´x2 ` 2x` 2
px` 1qxpx´ 1q

dx

“

ż

1`
´1{2
x` 1

´
2
x
`

3{2
x´ 1

dx

“ x´
1
2

ln |x` 1| ´ 2 ln |x| `
3
2

ln |x´ 1| ` c

“ x`
1
2

ln
|x´ 1|3

x4|x` 1|
` c.

Here ppxq “ ´x2 ` 2x ` 2, and pp´1q

q1p´1q
“ ´1

p´1qpp´2q
“ ´ 1

2 , pp0q

q2p0q
“ 2

1p´1q
“ ´2

and pp1q

q3p1q
“ 3

p2qp1q
“ 3

2 .

Case 2. Suppose that qpxq “ px ´ aqd, and suppose that deg p ă d. Write
ppxq “

řd´1
k“0 bkpx ´ aqk. It is easy to see that tpx ´ aqk : 0 ď k ă du is a

basis for the space of polynomials of degree at most d´ 1. Thus the coefficients bk
are uniquely determined. In fact, if we compute the derivatives

ppiqpaq “
d´1
ÿ

k“i

bkkpk ´ 1q ¨ ¨ ¨ pk ` 1´ iqpx´ aqk´i
ˇ

ˇ

ˇ

x“a
“ bii!.

Hence bi “
ppiqpaq

i! .
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7.5.2. EXAMPLE. Consider
ż

x3 ` x2 ´ x´ 1
px´ 2q4

dx. Then

ppxq “ x3 ` x2 ´ x´ 1px´ 2q2 b0 “
pp2q
0!

“ 9

p1pxq “ 3x2 ` 2x´ 1 b1 “
p1p2q

1!
“ 15

p2pxq “ 6x` 2 b2 “
p2p2q

2!
“ 7

pp3qpxq “ 6 b3 “
pp3qp2q

3!
“ 1.

Therefore
ż

x3`x2´x´1
px´2q4

dx “

ż

9
px´ 2q4

`
15

px´ 2q3
`

7
px´ 2q2

`
1

x´ 2
dx

“ 3́px´2q´3´
15
2
px´2q´2´7px´2q´1`ln |x´2|`c.

Case 3. Suppose that qpxq “
`

px´ aq2 ` c2
˘k, and that deg p ă d “ 2k. Then we

can write ppxq “
k´1
ř

i“0
bipxq

`

px´aq2`c2
˘i, where each bipxq “ di`eix are linear,

in a unique way. It isn’t quite as easy as Case 2, but we achieve this by repeated
division of ppxq by rpxq “ px´ aq2` c2 and getting the remainders. For example,
consider qpxq “ px2 ` 2x` 5q3 and ppxq “ 3x5 ´ 2x4 ` 7x3 ` x2 ´ 1. Division
by x2 ` 2x` 5 yields

3x5´2x4`7x3`x2´1 “ p3x3´8x2`8x`25qpx2`2x`5q´10x´126

3x3 ´ 8x2 ` 8x` 25 “ p3x´ 14qpx2 ` 2x` 5q ` 21x` 45

Hence

3x5´2x4`7x3`x2´1 “ p3x´14qpx2`2x`5q2`p21x`45qpx2`2x`5q´10x´26.

Therefore
ż

3x5´2x4`7x3`x2´1
px2`2x`5q3

dx“

ż

3x´14
x2`2x`5

`
21x`45

px2`2x` 5q2
´

10x` 126
px2 ` 2x` 5q3

dx.

Now we discuss how to integrate
ż

rx` s
`

px´ aq2 ` c2
˘k
dx for c ą 0. We can

substitute cu “ x´ a and c du “ dx to get
ż

cru` ar ` s
`

c2u2 ` c2
˘k
c du “ c2´2kr

ż

u

pu2 ` 1qk
du` c1´2kpar ` sq

ż

du

pu2 ` 1qk
du.
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Now
ż

u

pu2 ` 1qk
du “

$

&

%

´1
2pk´1q

pu2 ` 1q1´k ` c if k ě 2

1
2 lnpu2 ` 1q ` c if k “ 1

Finally for Ik “
ż

1
pu2 ` 1qk

du, use recursion. We know I1 “ tan´1 u` c.

Ik “

ż

1
pu2 ` 1qk

p1q du

“
u

pu2 ` 1qk
´

ż

´2ku2

pu2 ` 1qk`1 du

“
u

pu2 ` 1qk
` 2k

ż

u2 ` 1´ 1
pu2 ` 1qk`1 du

“
u

pu2 ` 1qk
` 2kpIk ´ Ik`1q

Therefore Ik`1 “
u

2kpu2 ` 1qk
` 2k´1

2k Ik.

7.5.3. EXAMPLE. Here is example of Case 3 where we use our knowledge of
the answer to find unknown coefficients. The analysis of case 3 shows that there
are constants a, b, c, d so that

ż

2x3 ´ 7x2 ` 5
p2x2 ` 3x` 2q2

dx “
ax` b

2x2 ` 3x` 2
`

ż

cx` d

2x2 ` 3x` 2
dx.

Differentiate to get

2x3 ´ 7x2 ` 5
p2x2 ` 3x` 2q2

“
ap2x2 ` 3x` 2q ´ pax` bqp4x` 3q

p2x2 ` 3x` 2q2
`

cx` d

2x2 ` 3x` 2

Therefore

2x3 ´ 7x2 ` 5

“ 2ax2`3ax`2a´4ax2´3ax´4bx´3b`2cx3`3cx2`2cx`2dx2`3dx`2d

“ 2cx3 ` ṕ 2a`3c`2dqx2 ` ṕ 4b`2c`3dqx` p2a´3b`2dq.

Thus

2c “ 2
´2a` 3c` 2d “ ´7
´4b` 2c` 3d “ 0

2a´ 3b` 2d “ 5.

The coefficient of x3 shows that c “ 1. Setting x “ 1 (or adding the four equations)
yields ´7b` 7` 7d “ 0, so b “ d` 1. Setting x “ ´1 yields b´ 1` d “ ´4, so
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d “ ´2 and b “ ´1. Hence a “ 3. Therefore
ż

2x3 ´ 7x2 ` 5
p2x2 ` 3x` 2q2

dx “
3x´ 1

2x2 ` 3x` 2
`

ż

x´ 2
2x2 ` 3x` 2

dx

“
3x´ 1

2x2 ` 3x` 2
`

1
4

ż

4x` 3
2x2 ` 3x` 2

dx´
11
8

ż

1
px` 3

4q
2 ` 7

16

dx

“
3x´ 1

2x2 ` 3x` 2
`

1
4

ln |2x2 ` 3x` 2| `
22
7

ż

1
p 4?

7
x` 3?

7
q2 ` 1

dx

“
3x´ 1

2x2 ` 3x` 2
`

1
4

ln |2x2 ` 3x` 2| `
11

2
?

7
tan´1p 4?

7
x` 3?

7
q ` c.

We now show how to reduce the general case to cases 2 and 3. This method
is known as partial fractions. The proof uses some polynomial algebra from Math
145.

7.5.4. THEOREM. Let

qpxq “ px´ a1q
m1 . . . px´ adq

md
`

px´ b1q
2 ` c2

1
˘n1 . . .

`

px´ beq
2 ` c2

e

˘ne ,

where cj ą 0, and let ppxq be a polynomial with deg p ă deg q. Then there are
unique polynomials pipxq with deg pi ă mi for 1 ď i ď d and deg pd`j ă 2nj for
1 ď j ď e so that

ppxq

qpxq
“

d
ÿ

i“1

pipxq

px´ aiqmi
`

s
ÿ

j“1

pd`jpxq

ppx´ bjq2 ` c2
jq

nj
.

PROOF. Let qipxq “ px´aiqmi for 1 ď i ď d and qd`jpxq “
`

px´bjq
2`c2

j

˘nj

for 1 ď j ď s. Then qi and qj have no common factor for i ‰ j, and thus
gcdpqi, qjq “ 1. There are unique polynomials ripxq so that

ppxq ” ripxq pmod qipxqq and deg ri ă deg qi for 1 ď i ď d` e.

Let Qipxq “
qpxq

qipxq
, so that qpxq “ qipxqQipxq.

Suppose that there are polynomials pi with deg pi ă deg qi so that

ppxq

qpxq
“

d`e
ÿ

i“1

pipxq

qipxq
“

1
qpxq

d`e
ÿ

i“1

pipxqQipxq.

Then ppxq “
řd`e

i“1 pipxqQipxq. Since Qj is a multiple of qi when j ‰ i, we have

ri ” p ” piQi pmod qiq.

Now ri andQi are known, and since gcdpQi, qiq “ 1, this congruence equation has
a unique solution pi pmod qiq. In particular, there is a unique polynomial pi with
deg pi ă deg qi in this congruence class.
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Define P pxq “
řd`e

i“1 pipxqQipxq. Then

degP ď maxtdeg pi ` degQiu ă deg q.

Observe that by construction,

P pxq ” piQi ” ri ” ppxq pmod qiq for 1 ď i ď d` e.

Hence qi divides P ´ p. Since the factors qi are relatively prime, their product q
divides P ´ p. However degpP ´ pq ă deg q, which forces P “ p. Therefore ppxq
has the desired decomposition. ■

Surprisingly one does not need to solve the congruences to find the decomposi-
tion. Instead, one can replace the coefficients by variables and simplify, or plug in
some values of x, to get enough linear equations to determine them. Solving linear
equations is easily done on a computer, and for small systems, easily done by hand.

7.5.5. EXAMPLE. Consider
ż

dx

x4 ` 1
. The tricky part is factoring x4 ` 1 into

two quadratics. It has no real roots because it is strictly positive. It isn’t obvious,
but it is the difference of two perfect squares.

x4 ` 1 “ px4 ` 2x2 ` 1q ´ 2x2 “ px2 `
?

2x` 1qpx2 ´
?

2x` 1q.

Thus
1

x4 ` 1
has a partial fraction decomposition of the form

1
x4 ` 1

“
ax` b

x2 `
?

2x` 1
`

cx` d

x2 ´
?

2x` 1

“
pa`cqx3 ` p´

?
2a`b`

?
2c`dqx2 ` pa´

?
2b`c`

?
2dqx`pb`dq

x4 ` 1

So

a` c “ 0

´
?

2a` b`
?

2c` d “ 0

a´
?

2b` c`
?

2d “ 0
b` d “ 1

Thus c “ ´a and the third equation yields b “ d, so b “ d “ 1
2 by the fourth.

Finally the second shows that 2
?

2a “ 1, so a “ 1
2
?

2
“ ´c.
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Therefore

ż

dx

x4`1
“

ż 1
2

?
2
x` 1

2

x2 `
?

2x` 1
`

´ 1
2
?

2
x` 1

2

x2 ´
?

2x` 1
dx

“

ż

1
4

?
2

2x`
?

2
x2`

?
2x`1

` 1
2

1
p
?

2x`1q2`1
´ 1

4
?

2

2x´
?

2
x2´

?
2x`1

` 1
2

1
p
?

2x´1q2`1
dx

“
1

4
?

2
ln
ˇ

ˇ

ˇ

x2`
?

2x`1
x2´

?
2x`1

ˇ

ˇ

ˇ
`

1
2
?

2
tan´1p

?
2x`1q`

1
2
?

2
tan´1p

?
2x´1q`c

7.6. Rationalization Tricks

One of the reason integrating rational functions by partial fractions is important
is that there are methods to reduce other more complicated integrals to the rational
situation. We will look at two such techniques.

7.6.1
ż

Rpsinx, cosxq dx where R is rational.
Making the substitution t “ tan x

2 always converts this to the integral of a rational
function. We have the following identities, all of which are rational functions of t:

x “ 2 tan´1 t thus dx “
2

1` t2
dt

tanx “
2t

1´ t2

sinx “
2t

1` t2

cosx “
1´ t2

1` t2
.

 

7.6.2. EXAMPLE. Make this substitution in the following integral.

ż

dx

sinxp2`cosx´2 sinxq
“

ż

1
2t

1`t2

`2`2t2`1´t2´4t
1`t2

˘

2
1` t2

dt

“

ż

1` t2

tpt2´4t`3q
dt “

ż

1{3
t
`

5{3
t´ 3

´
1

t´ 1
dt

“ 1
3 ln |t| ` 5

3 ln |t´ 3| ´ ln |t´ 1| ` c

“ 1
3 ln

ˇ

ˇ tan x
2

ˇ

ˇ` 5
3 ln

ˇ

ˇ tan x
2 ´ 3

ˇ

ˇ´ln
ˇ

ˇ tan x
2 ´ 1

ˇ

ˇ`c.
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7.6.3
ż

Rpx,
a

ax2 ` bx` cq dx where R is rational.
There are two tricks that might work here.

Case 1. ax2 ` bx` c has real roots r1, r2, so ax2 ` bx` c “ apx´ r1qpx´ r2q.

Substitute t “

?
ax2 ` bx` c

x´ r1
. Then

t2 “
ax2 ` bx` c

px´ r1q2
“
apx´ r2q

x´ r1
.

t2x´ r1t
2 “ ax´ ar2.

Thus

x “
r1t

2 ´ ar2

t2 ´ a
.

Notice that

x´ r1 “
apr1 ´ r2q

t2 ´ a
.

Hence

dx “
d

dt

´apr1 ´ r2q

t2 ´ a

¯

dt “
´2apr1 ´ r2qt

pt2 ´ aq2
dt

and
a

ax2 ` bx` c “
a

apx´ r1qpx´ r2q “ px´ r1q

d

apx´ r2q

x´ r1

“ px´ r1qt “
apr1 ´ r2qt

t2 ´ a
.

These are all rational substitutions.

7.6.4. EXAMPLE.
ż

x

p7x´ 10´ x2q3{2 .

Then ´x2 ` 7x´ 10 “ ´px´ 2qpx´ 5q. Set t “

?
7x´ 10´ x2

x´ 2
. The formulae

above show that

x “
2t2 ` 5
t2 ` 1

a

7x´ 10´ x2 “
3t

t2 ` 1
and dx “

´6t
pt2 ` 1q2

dt.

ż

x

p7x´ 10´ x2q3{2 “

ż

2t2 ` 5
t2 ` 1

pt2 ` 1q3

p3tq3
´6t

pt2 ` 1q2
dt

“

ż

p2t2 ` 5qp´6q
27t2

dt “

ż

´4t2 ´ 10
9t2

dt “ ´
4
9
t`

10
9t
` c

“
´4
9

?
7x´ 10´ x2

x´ 2
`

10
9

x´ 2
?

7x´ 10´ x2
` c
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“
´4p7x´ 10´ x2q{px´ 2q ` 10px´ 2q

9
?

7x´ 10´ x2
` c

“
´4p5´ xq ` 10px´ 2q

9
?

7x´ 10´ x2
` c “

14x´ 40
9
?

7x´ 10´ x2
` c

Case 2. c ą 0. Set t “

?
ax2 ` bx` c´

?
c

x
. Then

pxt`
?
cq2 “ ax2 ` bx` c or x2t2 ` 2

?
cxt “ ax2 ` bx.

Divide by x and solve

x “
b´ 2

?
ct

t2 ´ a
“: hptq.

Therefore

dx “ h1ptq dt and
a

ax2 ` bx` c “ xt`
?
c “ hptqt`

?
c.

These are all rational functions of t.

7.6.5. EXAMPLE.
ż

1
x
?
x2 ` x` 1

dx.

Set t “

?
x2 ` x` 1´ 1

x
. The formulae above show that x “ hptq “

1´ 2t
t2 ´ 1

.

Thus
a

x2 ` x` 1 “
t´ 2t2

t2 ´ 1
` 1 “

t´ t2 ´ 1
t2 ´ 1

and

dx “ h1ptq dt “
2pt2 ´ t` 1q
pt2 ´ 1q2

dt.

ż

1
x
?
x2 ` x` 1

“

ż

t2 ´ 1
1´ 2t

t2 ´ 1
t´ t2 ´ 1

2pt2 ´ t` 1q
pt2 ´ 1q2

dt

“

ż

2
2t´ 1

dt “ ln |2t´ 1| ` c

“ ln
ˇ

ˇ

ˇ

ˇ

2
?
x2 ` x` 1´ 2

x
´ 1

ˇ

ˇ

ˇ

ˇ

` c

“ ln |2
a

x2 ` x` 1´ 2´ x| ´ ln |x| ` c
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Exercises for Chapter 7

1. Compute the following integrals: (a)
ż

sin3 x
?

cosx
dx

(b)
ż

x2 sin´1px3q dx (c)
ż 63

0

dt
?

1` t` 3
?

1` t

(d)
ż 2

1

`

logx
˘2
dx (e)

ż

e2x cosp3xq dx.

(f)
ż 1

´1
x3ex

4
cos 2x dx (g)

ż

5x2 ´ 13x` 9
x3 ´ 3x2 ` 4

dx

(h)
ż ´2

´3

x2 ` 8x` 10
px2 ` 6x` 10q2

dx (i)
ż π{2

´π{2

1
5` sinx` 7 cosx

dx.

2. Compute a recursion formula for Im “
ż

xaplogxqm dx, m ě 0, a ‰ ´1.

Hence obtain an explicit formula for I3.

3. Compute
ż π

0

x sinx
1` cos2 x

dx.

HINT: Substitute u “ π ´ x and combine the two integrals.

4. Suppose that fpxq is aC2 function on R such that |fpxq| ď A and |f2pxq| ď C

for x P R. Prove that |f 1pxq| ď
?

2AC.

HINT: fix x0 with f 1px0q “ b ě 0. Get a lower bound for f 1px0 ˘ hq.

Use this to estimate
ż x0`H

x0´H
f 1pxq dx for a good choice of H .

5. Suppose that fp0q “ 0 and 0 ă f 1pxq ď 1 for all x ě 0. Show that
ż x

0
fptq3 dt ď

ˆ
ż x

0
fptq dt

˙2

for all x ą 0.

When does equality hold? HINT: differentiate, factor and differentiate again.

6. Compute
ż

?
tanx dx. HINT: try setting u2 “ tanx.



CHAPTER 8

Other Aspects of Integration

8.1. Improper integrals

Sometimes it is not enough to integrate bounded functions on bounded inter-
vals, which is what the Riemann integral accomplishes. When the domain is un-
bounded or the function is unbounded, there is a way to extend the definition of
integral. These are called improper integrals to stress the point that they are not
Riemann integrable.

8.1.1. DEFINITION. Let fpxq be Riemann integrable on ra, bs for all b ą a.
We define

ż 8

a
fpxq dx “ lim

bÑ8

ż b

a
fpxq dx

when the limit exists. Similarly we can define
ż b

´8

fpxq dx. If f is Riemann

integrable on ra, bs for all a ă b P R, we let
ż 8

´8

fpxq dx “ lim
aÑ´8

lim
bÑ8

ż b

a
fpxq dx.

8.1.2. EXAMPLE. Let fpxq “
1

1` x2 . Then

ż 8

0

1
1` x2 dx “ lim

bÑ8

ż b

0

1
1` x2 dx “ lim

bÑ8
tan´1pxq

ˇ

ˇ

ˇ

b

0
“ lim

bÑ8
tan´1pbq “

π

2
.

Similarly,
ż 8

´8

1
1` x2 dx “ lim

aÑ´8
lim
bÑ8

tan´1pbq ´ tan´1paq “ π.

8.1.3. EXAMPLE. Let fpxq “

#

x if |x| ď 1
1
x if |x| ě 1

. Then

ż b

0
fpxq dx “

1
2
` ln b and

ż 0

a
fpxq dx “ ´

1
2
´ ln |a|

131
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for b ą 1 and a ă ´1. Thus
ż 8

´8

fpxq dx “ lim
aÑ´8

lim
bÑ8

ln b´ ln |a|.

This limit is undefined, and the function does not have an integral. Notice that

lim
bÑ8

ż b

´b
fpxq dx “ 0.

However

lim
bÑ8

ż rb

´b
fpxq dx “ lim

bÑ8
lnprbq ´ ln b “ ln r

for any r ą 0. Thus this integral might be assigned any real value if we specify
how we approach the two limits in a synchronized fashion. So this function is not

integrable. There are some instances where the limit lim
bÑ8

ż b

´b
fpxq dx is used, and

in this case it is called the principal value of the integral.

8.1.4. EXAMPLE. Let fpxq “ xp for p ă 0 and p ‰ ´1. Then
ż 8

1
xp dx “ lim

bÑ8

ż b

0
xp dx “ lim

bÑ8

xp`1

p` 1

ˇ

ˇ

ˇ

b

0

“ lim
bÑ8

bp`1 ´ 1
p` 1

“

#

`8 if ´ 1 ă p ă 0
1

|p`1|
if p ă ´1

Thus f is integrable only when p ă ´1.

The following is a useful check that will guarantee that an improper integral
exists. Later on in our study of series, this can be compared to absolute conver-
gence.

8.1.5. PROPOSITION. Let fpxq be Riemann integrable on ra, bs for all b ą a.

If
ż 8

a
|fpxq| dx ă 8, then

ż 8

a
fpxq dx exists.

PROOF. Proposition 6.5.1 shows that |fpxq| is also Riemann integrable on
ra, bs for b ą a. So we can define

F pxq “

ż x

a
fptq dt and Gpxq “

ż x

a
|fptq| dt for x ą a.

Note that Gpxq is monotone increasing, and by hypothesis, it is bounded above.
Thus lim

xÑ8
Gpxq “ supxąaGpxq “M ă 8.
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Given ε ą 0, choose b0 so that Gpb0q ąM ´ ε. Then if b0 ď b1 ď b2, then

|F pb2q ´ F pb1q| “
ˇ

ˇ

ż b2

b1

fptq dt
ˇ

ˇ

ˇ
ď

ż b2

b1

|fptq| dt

“ GpB2q ´Gpb1q ďM ´Gpb0q ă ε.

Since ε ą 0 is arbitrary, the values F pbq satisfy the Cauchy condition, and therefore

lim
bÑ8

F pbq “

ż 8

a
fpxq dx exists. ■

8.1.6. EXAMPLE. Let fpxq “
sinx
x2 for x ě π. Then

ż 8

π
|fpxq| dx “

ż 8

π

| sinx|
x2 dx ď

ż 8

π

1
x2 dx “

´1
x

ˇ

ˇ

ˇ

8

π
“

1
π
ă 8.

Therefore Proposition 8.1.5 shows that
ż 8

π

sinx
x2 dx exists.

8.1.7. EXAMPLE. Here is a more subtle example where Proposition 8.1.5 does

not apply. Let fpxq “
sinx
x

for x ě 0, and consider
ż 8

0

sinx
x

dx. Since fpxq has

limit 1 as xÑ 0, setting fp0q “ 1 makes fpxq continuous. Therefore it is Riemann
integrable on r0, bs for every b ą 0. Now sinx changes sign at each multiple of π.
Define

ak “

ż kπ

pk´1qπ

sinx
x

dx for k ě 1.

Then ak “ p´1qk´1|ak| alternates sign. Observe that for pk ´ 1qπ ď x ď kπ,

| sinx|
kπ

ď
| sinx|
x

ď
| sinx|
pk ´ 1qπ

.

Therefore
ż kπ

pk´1qπ

| sinx|
kπ

dx ď

ż kπ

pk´1qπ

| sinx|
x

dx ď

ż kπ

pk´1qπ

| sinx|
pk ´ 1qπ

dx

Thus
2
kπ
ď |ak| ď

2
pk ´ 1qπ

.

It follows that
ż nπ

0

| sinx|
x

dx ě
n
ÿ

k“1

1
kπ
“

1
π

n
ÿ

k“1

1
k
“ `8.

This is called the harmonic series. The reason it diverges is that

1` 1
2 `p

1
3 `

1
4q` p

1
5 `¨ ¨ ¨`

1
8q` p

1
9 `¨ ¨ ¨`

1
16q` ¨ ¨ ¨ ą 1`

1
2
`

1
2
`

1
2
`

1
2
` . . .
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because 1
2n´1`1 ` ¨ ¨ ¨ `

1
2n ą

2n´1

2n
“

1
2

for each n ě 1.

On the other hand, we have |an| ą 1
nπ ě |an`1|, so the sequence |an decreases

monotonely to 0. The Alternating Series Test 9.3.2, which we prove later, shows
that the series

n
ÿ

k“1

ak “

ż nπ

0

sinx
x

dx

converges. From this it follows that
ż 8

0

sinx
x

dx is defined.

It takes some sophisticated methods to find the actual limit, which is
π

2
. We

provide one proof in Appendix A.7.

Now we deal with functions which are unbounded as they approach a single
point.

8.1.8. DEFINITION. Suppose that fpxq is Riemann integrable on ra ` ε, bs
for all ε ą 0 but f is unbounded on ra, bs. We say that the improper integral
ż b

a
fpxq dx exists if there is a limit

ż b

a
fpxq dx :“ lim

εÑ0`

ż b

a`ε
fpxq dx.

Similarly we define an improper integral if fpxq becomes unbounded as it ap-
proaches b. If fpxq becomes unbounded as x approaches an interior point c but
is Riemann integrable on ra, c ´ εs and rc ` δ, bs for ε, δ ą 0, then the improper
integral exists if there are two limits

lim
εÑ0`

ż c´ε

a
fpxq dx and lim

δÑ0`

ż b

c`δ
fpxq dx

and then
ż b

a
fpxq dx :“ lim

εÑ0`

ż c´ε

a
fpxq dx` lim

δÑ0`

ż b

c`δ
fpxq dx.
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8.1.9. EXAMPLE. For a ă 0, consider
ż 1

0
xa dx. First consider a ‰ ´1.

ż 1

0
xa dx “ lim

εÑ0`

ż 1

ε
xa dx

“ lim
εÑ0`

xa`1

a` 1

ˇ

ˇ

ˇ

1

ε
“ lim

εÑ0`

1´ εa`1

a` 1

“

#

1
a`1 if ´ 1 ă a ă 0
´8 if a ă ´1

Similarly the integral
ż 1

0
x´1 dx does not exist. Note that for this reason,

ż 1

´1
x´1 dx also does not exist. However as in Example 8.1.3,

lim
εÑ0`

ż ´ε

´1

dx

x
`

ż 1

ε

dx

x
“ 0 and lim

εÑ0`

ż ´2ε

´1

dx

x
`

ż 1

ε

dx

x
“ ln 2.

8.2. Volumes

8.2.1 Disk method. Consider a volume obtained by rotating a function fpxq
about the x-axis from x “ a to x “ b.
The idea is to consider a slice perpendicular
to the x-axis at a point x. The cross section
is a solid disc of radius fpxq. We imagine
that it has an infinitesimal thickness dx and
integrate. The disc has area πfpxq2. Thus
the volume is

V “

ż b

a
πfpxq2 dx.

If we are integrating a solid figure bounded
above by fpxq and below by gpxq, then we
can think of this as the volume of the rota-
tion of fpxq minus the volume obtained by
rotating gpxq. FIGURE 8.1. disc method

8.2.2. EXAMPLE. Compute the volume of a doughnut obtained by taking a disc
of radius r and rotating it about an axis which is distance R from the centre of the
disc. For convenience, let the disc have centre p0, Rq. Then the upper and lower
arcs of the boundary circle are fpxq “ R `

?
r2 ´ x2 and gpxq “ R ´

?
r2 ´ x2
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for ´r ď x ď r. Thus the volume is

V “ π

ż r

´r
fpxq2 ´ gpxq2 dx “ π

ż r

´r

`

R`
a

r2 ´ x2
˘2
´
`

R´
a

r2 ´ x2
˘2
dx

“ π

ż r

´r
4R

a

r2 ´ x2 dx substitute x “ r sin θ and dx “ r cos θ dθ

“ 4πR
ż π{2

´π{2

a

r2 ´ r2 sin2 θ r cos θ dθ “ 4πRr2
ż π{2

´π{2
cos2 θ dθ

“ 2πRr2
ż π{2

´π{2
cos 2θ ` 1 dθ “ 2πRr2p 1

2 sin 2θ ` θq
ˇ

ˇ

ˇ

π{2

´π{2

“ 2π2Rr2 “ p2πRqpπr2q.

8.2.3. EXAMPLE. There is no reason to restrict this technique to circular cross
sections. Let’s compute the volume of a regular tetrahedron with side length s.

The base of the tetrahedron is an equilateral triangle. We need a formula for
the height. When you drop a perpendicular line from the apex to the base, it hits the
centroid of the base triangle. Now AB “ s

2 . Also △ABC is similar to △DBA.
so that BC “ 1

2AC. Let t “ DC “ AC “ t. Then DB “ t ` t
2 “

?
3s
2 .

 

FIGURE 8.2. height of a regular tetrahedron

Thus t “ s?
3
. Let Z be the apex of the tetrahedron, and observe that △ACZ is a

right triangle. Therefore the height is h “
?
s2 ´ t2 “

b

2
3s. The cross section at

height x is an equilateral triangle with side length proportional to h ´ x changing
linearly from s when x “ 0 to 0 when x “ h, so that the side length is s

hph´ xq “
b

3
2ph´xq. The area of an equilateral triangle of side y is 1

2y
2 sin π

3 “
?

3
4 y

2. Thus
the volume is

V “

ż h

0

?
3

4
3
2
ph´ xq2 dx “ ´

?
3

8
ph´ xq3

ˇ

ˇ

ˇ

h

0
“

?
3

8
h3 “

s3

6
?

2
.
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8.2.4 Cylinder method. Consider a volume obtained by rotating a function fpxq
from x “ a to x “ b about the y-axis. The vertical line segment from px, 0q

FIGURE 8.3. cylinder method

to px, fpxqq is swept around the y axis to form a cylinder of radius x and height
fpxq. We introduce an infinitesimal thickness dx and integrate. The volume of
this thin cyclinder is the surface area of the cylinder times dx. The surface area is
the circumference of the circle times the height, so 2πxfpxq dx is the infinitesimal
volume. Hence the volume is

V “

ż b

a
2πxfpxq dx.

If the region swept around the y-axis is bounded above by fpxq and below by gpxq,
then the volume is

V “

ż b

a
2πx

`

fpxq ´ gpxq
˘

dx.

8.2.5. EXAMPLE. Compute the volume of a sphere of radius r by sweeping a
semicircle with diameter along the y axis around. Put the centre at p0, 0q so that
fpxq “

?
r2 ´ x2 and gpxq “ ´

?
r2 ´ x2 Thus the volume is

V “

ż r

0
2πx

`

fpxq ´ gpxq
˘

dx “ 4π
ż r

0
x
a

r2 ´ x2 dx

“ ´4π
1
3
pr2 ´ x2q3{2

ˇ

ˇ

ˇ

r

0
“

4
3
πr3.

8.2.6. EXAMPLE. The centroid or centre of mass of a planar object is the point
at which it will balance on a pin. The physical information that we need is that mass
at distance h from the midpoint will exert a force proportional to h. We assume that
the planar object is of uniform density; and that it is bounded above and below by
fpxq and gpxq for a ď x ď b. We compute the x and y coordinates separately. To
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compute the x coordinate x̄, we imaging the figure balancing on the line x “ x̄.
Let the cross section at x be lpxq “ fpxq ´ gpxq. If the figure when sitting on
x “ x̄, the force exerted by a rectangle of length lpxq and infinitesimal width dx is
lpxqpx´ x̄q dx. The total force should be 0, whence

0 “
ż b

a
px´ x̄qlpxq dx “

ż b

a
x
`

fpxq ´ gpxq
˘

dx´ x̄

ż b

a
fpxq ´ gpxq dx.

Since the area of the figure is A “
ż b

a
fpxq ´ gpxq dx, we obtain

x̄ “
1
A

ż b

a
x
`

fpxq ´ gpxq
˘

dx.

A similar formula will hold for ȳ. The centroid is then px̄, ȳq.
Now if we assume that this body lies in the right half plane, and we rotate this

body around the y axis, the formula for the volume is known as Pappus’s Theorem.

V “

ż b

a
2πx

`

fpxq ´ gpxq
˘

dx “ 2πAx̄

8.2.7. EXAMPLE. Compute the volume of the intersection of two solid cylin-
ders of the same diameter which meet at right angles. If we align the cylinders
along the x and y axes, respectively, then we have

C1 “ tpx, y, zq : y2 ` z2 ď r2u and C2 “ tpx, y, zq : x2 ` z2 ď r2u.

Fix a value z0 with |z0| ď r. The intersection of the plane z “ z0 is

tpx, y, z0q : x2 ď r2 ´ z2
0 , y

2 ď r2 ´ z2
0u.

This is a square of area 4pr2 ´ z2
0q. Thus the volume is

V “

ż r

´r
4pr2 ´ z2q dz “ 4r2z ´

4
3
z3
ˇ

ˇ

ˇ

r

´r
“ 8r3 ´

8
3
r3 “

16
3
r3.

8.2.8. EXAMPLE. Now compute the volume of the intersection of three solid
cylinders of the same diameter which meet at right angles. If we align the cylinders
along the x, y, z axes, respectively, then we have a third cylinder

C3 “ tpx, y, zq : x2 ` y2 ď r2u.

Notice that the intersection C “ C1 X C2 X C3 contains the cube

D “ tpx, y, zq : |x| ď
r
?

2
, |y| ď

r
?

2
, |z| ď

r
?

2
u

In addition, it contains a ‘cap’ on each of the six faces of the cube. Let us intersect
the plane z “ z0 for z0 ě

r?
2

with C. As in the previous example, we obtain a
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square tpx, y, z0q : x2 ď r2 ´ z2
0 , y

2 ď r2 ´ z2
0u which has area 4pr2 ´ z2

0q. Thus
the volume is

V “ V pDq ` 6V pcapq “ 8
´ r
?

2

¯3
` 6

ż r

r{
?

2
4pr2 ´ z2q dz

“ 2
?

2r3 ` 24pr2x´ 1
3z

3q

ˇ

ˇ

ˇ

r

r{
?

2

“ 2
?

2r3 ` 24r3 ´ 12
?

2r3 ´ 8r3 ` 2
?

2r3

“ 16r3 ´ 8
?

2r3 “ 8p2´
?

2qr3.

The set C is interesting geometrically. The six caps each consist of 4 curvilin-
ear triangles. For example, on the cap computed above with z ě r{

?
2, the four

curves defined by

x “ ˘
b

r2 ´ z2
0 and y “ ˘

b

r2 ´ z2
0 for

r
?

2
ď z ď r

lie on C1 X C2 and together with the four sides of the square face of the cube

D1 “ tpx, y, zq : z “
r
?

2
, x2 ď r2{2, y2 ď r2{2u

determine the four triangular regions. The ‘triangle’

T “ tpx, y, zq : x2 ď r2 ´ z2, y “
a

r2 ´ z2,
r
?

2
ď z ď ru

lies on the surface of C1. This triangle fits together with another triangle on the
adjacent cap and form one connected rhombus on the surface of C1.

So instead of 24 triangles, there are actually 12 congruent rhombuses that fit
together to make the surface of C. There are 14 vertices, 8 corners of the cube
and 6 vertices at the top of each cap. Four rhombuses meet at each cap vertex
and three meet at each corner of the cube. There is a semiregular solid called a
rhombic dodecahedron with twelve congruent rhombic faces. The intersection C
is a curvy version of it. We can check the Euler characteristic. We have 12 faces, 14
vertices, and since each rhombus has 4 sides, but each side lies on two faces, there
are 12p4q{2 “ 24 edges. The Euler characteristic is F´E`V “ 12´24`14 “ 2,
which is the same for any convex solid polyhedron in 3-space.

8.3. Arc length

In this section, we explain how to compute the length of a curve. Suppose that
the curve is y “ fpxq from x “ a to x “ b. Let spxq be the length of the curve
from a to x. As in computation of areas, we compute the infinitesimal change in s
from x to x` ∆x.
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FIGURE 8.4. computing arc length

On the infinitesimal interval from x to x ` ∆x, the curve f “ fpxq is well
approximated by the tangent line yptq “ fpxq ` f 1pxqpt ´ xq. So the segment of
the curve has length

∆s “
b

∆x2 ` ∆fpxq2 “
b

∆x2 ` pf 1pxq∆xq2 “
b

1` f 1pxq2 ∆x.

This leads us to the formula

s “ spbq “

ż b

a

b

1` f 1pxq2 dx.

8.3.1. EXAMPLE. Compute the circumference of a circle of radius r. It is
enough to compute the length of a semicircle and double it. So let fpxq “

?
r2 ´ x2

for ´r ď x ď r. Thus f 1pxq “
´x

?
r2 ´ x2

. Therefore its length is

s “

ż r

´r

d

1`
x2

r2 ´ x2 dx “

ż r

´r

d

r2

r2 ´ x2 dx “ r

ż r

´r

1
?
r2 ´ x2

dx

Substitute x “ r sin θ for ´π
2 ď θ ď π

2 ; so dx “ r cos θ dθ. Hence

s “ r

ż π{2

´π{2

r cos θ
a

r2 ´ r2 sin2 θ
dθ “ πr.

Therefore a circle of radius r has a circumference of 2πr.

8.3.2. EXAMPLE. Consider a uniform cable suspended between two points
px1, y1q and px2, y2q. What is the shape and length of this curve?

The shape of a hanging cable is called a catenary. Say y “ fpxq. There will be
a point x0 P px1, x2q at which the cable attains its minimum height, so f 1px0q “ 0.
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It always has the form y “ fpxq “ a` b cosh x´x0
b . The length of the cable is

L “

ż x2

x1

b

1` f 1pxq2 dx “

ż x2

x1

b

1` sinh2 x´x0
b dx

“

ż x2

x1

cosh x´x0
b dx “ b sinh x´x0

b

ˇ

ˇ

ˇ

x2

x1

“ b sinh x2´x0
b ´ b sinh x1´x0

b .

In particular, if y1 “ y2, we have x0 “
x1`x2

2 by symmetry, and L “ 2b sinh x2´x1
2b .

To derive the shape of the curve, let ρ be the density of the cable. Consider the
segment of cable between px0, y0q and another point px, yq on the curve. The length

of the cable from x0 to x is spxq “
ż x

x0

b

1` f 1ptq2 dt; and thus this section of

cable has mass ρspxq. There are three forces acting on this segment of chain. There
is a force T0 at x0 tangent to the curve, and thus parallel to the ground provided by
the tension on the cable. Likewise there is a tension T1 at the point x with slope
f 1pxq. Finally there is the force of gravity, ρgspxq, where g is the force of gravity.
Since the cable is in equilibrium, these forces must sum to 0. See figure.

 

FIGURE 8.5. hanging cable at equilibrium

Let the tangent at px, fpxqq be at an angle θ to the horizontal. Then f 1pxq “
tan θ. We get

T0 “ T1 cos θ and ρgspxq “ T1 sin θ.

Therefore

f 1pxq “
T1 sin θ
T1 cos θ

“
ρg

T0

ż x

x0

b

1` f 1ptq2 dt.

Let b “
T0

ρg
, which is a constant. For simplicity of notation, write ppxq “

f 1pxq. Then

ppxq “
1
b

ż x

x0

b

1` pptq2 dt.
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Differentiate this using the FTC to get

p1pxq “
1
b

b

1` pptq2 or
p1pxq

a

1` pptq2
“

1
b
.

Now integrate this. We recall that sinh2 u ` 1 “ cosh2 u. Hence we substitute
p “ sinhu. Then p1ptq dt “ coshu du. Thus

ż

p1pxq
a

1` pptq2
dt “

ż

coshu
coshu

du “ u “ sinh´1ppptqq.

Therefore since sinh´1p0q “ 0,

x´ x0

b
“

ż x

x0

1
b
dt “

ż x

x0

p1pxq
a

1` pptq2
dt “ sinh´1ppptqq

ˇ

ˇ

ˇ

x

x0
“ sinh´1pppxqq.

That is,

f 1pxq “ ppxq “ sinh
x´ x0

b
.

Integrating again, we get

fpxq “ fpx0q `

ż x

x0

sinh x´x0
b dt “ y0 ` b cosh x´x0

b

ˇ

ˇ

ˇ

x

x0

“ py0 ´ bq ` b cosh x´x0
b .

So the shape of a catenary is a hyperbolic cosine as claimed.
This still does not explicitly determine b in terms of known quantities. We can

make the following computation.

L2´py2´y1q
2 “

`

b sinh x2´x0
b ´b sinh x1´x0

b

˘2
´
`

b cosh x2´x0
b ´b coshpx1´x0

b

˘2

“ b2` sinh2 x2´x0
b ´ cosh2 x2´x0

b ` sinh2 x1´x0
b ´ cosh2 x1´x0

b

` 2 coshpx2´x0
b cosh x1´x0

b ´ 2 sinh x2´x0
b sinh x1´x0

b

˘

“ b2`2 cosh x2´x1
b ´ 2

˘

“ 2b2`1` 2 sinh2 x2´x1
2b ´ 1

˘

“ 4b2 sinh2 x2´x1
2b .

Therefore

2b sinh x2´x1
2b “

b

L2 ´ py2 ´ y1q2.

The quantities L, y1 and y2 are known, and the LHS, as a function of b, is monotone
decreasing on p0,8q. (Check that gptq “ t sinh c

t has g2ptq ą 0 on p0,8q, and
lim
tÑ8

g1ptq “ 0.) Thus there is a unique solution to this equation. In general, this
computation requires numerical techniques such as Newton’s Method.

In the special case in which y2 “ y1, we can compute b explicitly as a function
of the length L “ 2b sinh x2´x1

2b and the sag of the cable,

h “ fpx1q ´ fpx0q “ b
`

cosh x2´x1
2b ´ 1

˘

.
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Indeed,

L2 ´ 4h2 “ 4b2` sinh2 x2´x1
2b ´ pcosh2 x2´x1

2b ´ 2 cosh x2´x1
2b ` 1q

˘

“ 4b2p2 cosh x2´x1
2b ´ 2q “ 8bh.

Thus b “
L2 ´ 4h2

8h
.

8.4. Polar coordinates

Polar coordinates is an alternative method of specifying a point in the plane. It
starts with the positive real axis including the special point of the origin O.

 

FIGURE 8.6. polar coordinates

A point P in the plane is specified by the distance r from O, which places it
on the circle of radius r centred at O, together with the angle θ from the positive
real axis in the anticlockwise direction. Of course, θ is in radians because this is
calculus!

The angle is only determined up to a multiple of 2π because an angle of 2π is a
complete rotation. The point pr, θq and pr, θ` 6πq and pr, θ´ 4πq all represent the
same point. Normally we use r ě 0. However should a formula yield a negative
value for r, we can interpret this as the opposite direction; i.e., p´r, θq “ pr, θ`πq.

It is not difficult to convert between Cartesian coordinates and polar coordi-
nates. The point pr, θq corresponds to px, yq where x “ r cos θ and y “ r sin θ.
Conversely, px, yq converts to r “

a

x2 ` y2 and θ “ cos´1pxr q X sin´1p
y
r q. The

point of the intersection is that cos θ “ cosp˘θ ` 2nπq while sinpθ ` 2nπq “
sinpπ ´ θ ` 2mπq.

Certain figures are more easily described using polar coordinates. We will
see first how to compute area. The small sector of a circle of radius rpθq and
infinitesimal angle dθ is 1

2r
2pθq dθ. You can see this from its share of the full circle
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FIGURE 8.7. area in polar coordinates

because the sector of a circle of radius r and angle α is 1
2r

2α. Thus the area swept
out by a curve specified a r “ rpθq for θ1 ď θ ď θ2 is

A “

ż θ2

θ1

1
2
r2pθq dθ.

8.4.1. EXAMPLE. Consider the figure r “
a

| sin θ|. This figure has two lobes,
one in the upper half plane, and its reflection in the x-axis. The area of both lobes

> > 

> > 

> > 

^(1/2) < t, t < t, t = 0 .. 2*pi]
polarplot t, t, t = .. , 2 cos t , sin t , t = .. , numpoints = 50
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polarplot sqrt sin t , t, t = .. , axis radial = color = "Blue"
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FIGURE 8.8. r “
a

| sin θ|

is double the one on top. So

A “ 2
ż π

0

1
2
r2pθq dθ “

ż π

0
sin θ dθ “ ´ cos θ

ˇ

ˇ

ˇ

π

0
“ 2
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8.4.2. EXAMPLE. Consider the figure y2 “
x2p1` xq

1´ x
for ´1 ď x ă 1. It is

probably easier to understand this curve in Cartesian coordinates. But for practice,
we will convert this to polar coordinates by setting x “ r cos θ and y “ r sin θ. We
get

r2 sin2 θ “
r2 cos2 θp1` r cos θq

1´ r cos θ
or

sin2 θ ´ r sin2 θ cos θ “ cos2 θ ` r cos3 θ.

Thus

r cos θ “ sin2 θ ´ cos2 θ “ 1´ 2 cos2 θ

so that

r “ sec θ ´ 2 cos θ.

When θ “ 0, we have r “ ´1, indicating the point p1, πq “ p´1, 0q which is
p´1, 0q in Cartesian coordinates. We have r “ 0 when cos2 θ “ 1

2 , or θ “ ˘π
4 .

In the range r´π
4 ,

π
4 s, rpθq ď 0 and the loop of the strophoid is swept out. In the

range rπ4 ,
π
2 q, the radius rpθq tends to `8. It is much easier to see what happens

in Cartesian coordinates. As x Ñ 1´, y2 tends to infinity. So there is a vertical
asymptote at x “ 1. The range rπ4 ,

π
2 q corresponds to the upper part of the curve,

while the range p´π
2 ,´

π
4 s corresponds to the lower part of the curve.

Let’s compute the area of the loop in two ways. Using polar coordinates,

A “

ż π{4

´π{4

1
2
psec θ ´ 2 cos θq2 dθ “

1
2

ż π{4

´π{4
sec2 θ ´ 4` 4 cos2 θ dθ

“
1
2

ż π{4

´π{4
sec2 θ ´ 2` 2 cos 2θ dθ “

1
2

tan θ ´ θ ` 1
2 sin 2θ

ˇ

ˇ

ˇ

π{4

´π{4

“
1
2
p2q ´

π

2
` 1 “ 2´

π

2
.

Using Cartesian coordinates, we see that the area is double the area above the x-
axis in the range r´1, 0s. The best substitution after some manipulation is x “ sin θ

A “ 2
ż 0

´1

d

x2p1` xq
1´ x

dx “

ż 1

0
2x

c

1´ x
1` x

dx

“

ż 1

0

2xp1´ xq
?

1´ x2
dx “

ż π{2

0

2 sin θ ´ 2 sin2 θ

cos θ
cos θ dθ

“

ż π{2

0
2 sin θ ` cos 2θ ´ 1 dθ “ ´2 cos θ ` 1

2 sin 2θ ´ θ
ˇ

ˇ

ˇ

π{2

0
“ 2´

π

2
.
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(1)(1)
with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d,
inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d,
listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto,
plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
tubeplot

polarplot sec t 2 cos t , t, t = 1.3 ..1.3 , axis radial = color = "Blue"
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FIGURE 8.9. strophoid

8.5. Parametric equations

A curve in the plane can sometimes be conveniently described as γptq “
pxptq, yptqq for a ď t ď b where x and y are functions of a parameter t. Generally
x and y will be continuous, and frequently differentiable functions, of t. This can
be convenient when a curve is nice, but has singularities as a function of x, or there
are two or more y values for some (many) choices of x.

8.5.1. EXAMPLE. A simple example is a circle of radius r and centre px0, y0q

given by
γptq “ px0 ` r cos t, y0 ` r sin tq for 0 ď t ď 2π.

For x0 ´ r ă x ă x0 ` r, there are two values of y for each x on the circle.
Moreover the function y “ y0 ˘

a

r2 ´ px´ x0q2 fails to be differentiable when

x “ x0 ˘ r. However
dγ

dt
“ p´r sin t, r cos tq is defined for all t P r0, 2πs.

Let’s look at various techniques to find
dy

dx
. The Cartesian formula for the curve

is px´ x0q
2 ` py ´ y0q

2 “ r2. Thus

y ´ y0 “ ˘

b

r2 ´ px´ x0q2 thus y1 “
¯px´ x0q

a

r2 ´ px´ x0q2
“ ´

x´ x0

y ´ y0
.

By implicit differentiation of px´ x0q
2 ` py ´ y0q

2 “ r2, we get

2px´ x0q ` 2py ´ y0qy
1 “ 0 thus y1 “ ´

x´ x0

y ´ y0
.



8.5 Parametric equations 147

Finally with the parametric form xptq “ x0 ` r cos t and yptq “ y0 ` r sin t,

x1ptq “ ´r sin t “ y0 ´ yptq and y1ptq “ r cos t “ xptq ´ x0,

and thus
dy

dx
“
y1ptq

x1ptq
“ ´ cot t “ ´

x´ x0

y ´ y0
.

8.5.2. EXAMPLE. Other conics can be expressed nicely using parameters.
The ellipse

x2

a2 `
y2

b2 “ 1

can be expressed as

xptq “ a cos t and yptq “ b sin t for 0 ď t ď 2π.

The hyperbola
x2

a2 ´
y2

b2 “ 1

can be expressed using the hyberbolic trig functions as

xptq “ a cosh t and yptq “ b sinh t for ´8 ă t ă 8.

We say that γ is a closed curve if γpaq “ γpbq. The curve γ does not intersect
itself if γpsq “ γptq implies that s “ t or ts, tu “ ta, bu. The curve γ is called
C1 if xptq are yptq are C1 functions and we write γ1ptq “ px1ptq, y1ptqq, provided
that if γ is a closed curve, then γ1paq “ γ1pbq. We say that γ is piecewise C1 is
the derivative is piecewise continuous, meaning that there are at most finitely many
jump discontinuities in x1ptq and y1ptq.

To compute the area enclosed in a closed curve γ, we use a special case of a
result from multivariable calculus.

8.5.3. GREEN’S THEOREM. Let γptq “ pxptq, yptqq for a ď t ď b be a
closed, piecewise C1, curve that does not intersect itself. Assume that x1ptq “ 0 for
only finitely many values of xptq. Then the area enclosed by γ is

A “
ˇ

ˇ

ˇ

ż b

a
´yptqx1ptq dt

ˇ

ˇ

ˇ
.

If the direction of γ is counterclockwise, the integral is positive.

PROOF. For convenience, we will assume that the curve is traversed in the
counterclockwise direction, keeping the enclosed area on the left at all times. It
is easy to see that if the integral is computed for the contrary direction, this just
changes the sign.

The main idea is contained in the following special case. Suppose that xptq
is strictly monotone increasing on ra, cs, constant on rc, ds, and strictly monotone
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decreasing on rd, es and constant on re, bs. Then there are functions fpxq and gpxq
on rxpaq, xpcqs “ rxpeq, xpdqs so that γptq “ pxptq, fpxptqq for a ď t ď c and
γptq “ pxptq, gpxptqq for d ď t ď e, and two vertical segments of the curve on the
left and right sides. Since the curve is traversed counterclockwise, the first section

 

FIGURE 8.10. Special case

of the curve lies below the second section, so that fpxq ď gpxq. Hence the area is

A “

ż xpcq

xpaq

gpxq ´ fpxq dx.

Now compute the other integral, making the substitution xptq and dx “ x1ptq dt.
Note that x1ptq “ 0 for t P rc, ds Y re, bs.

ż b

a
´yptqx1ptq dt “ ´

ż c

a
yptqx1ptq dt´ 0´

ż e

d
yptqx1ptq dt´ 0

“ ´

ż xpcq

xpaq

fpxq dx´

ż xpeq

xpdq

gpxq dx

“

ż xpcq

xpaq

gpxq ´ fpxq dx “ A.

Let D be the finite points at which x1ptq is discontinuous. Let

C “ tc : xptq“c and x1ptq“0 or t P Du.

By hypothesis, this is a finite set, so we may write it as c0 ă c1 ă ¨ ¨ ¨ ă cn. Draw
vertical lines x “ ci for 0 ď i ď n. When ci´1 ă xptq ă ci, we have that x1ptq
is continuous and non-zero. Thus x1ptq does not change sign on any interval pu, vq
with xptq in one of these intervals. So any maximal interval of this type maps onto
an arc of the curve γ for which xptq is strictly monotone, and necessarily runs from
ci´1 to ci or vice versa. Thus the vertical strips cut γ into a finite number of arcs.
It is now possible to obtain a finite number of closed curves γj which follow an arc
from ci´1 to ci, then taking a vertical line segment up to the next segment of the
curve, which must run from from ci to ci´1, and then a vertical segment down to
the beginning of the first arc. Altogether, the sum of these curves consists of the
original curve γ together with a number of vertical segments. However any vertical
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FIGURE 8.11. Cutting the curve

segment that is not part of γ occurs twice with opposite orientations in two of the
smaller curves. Thus any integral over one is cancelled by the integral over the
other. However in our situation, the integrals are always 0 because x1ptq “ 0 on
these segments.

The integral over γj of´yptqx1ptq dt is the area enclosed by γj by the first part
of our proof. The total area enclosed by γ is the sum of these areas. As noted, the
sum of the integrals over each γj yields the integral over γ. Thus the formula is
verified. ■

8.5.4. EXAMPLE. The ellipse

xptq “ a cos t and yptq “ b sin t for 0 ď t ď 2π.

has area

A “

ż 2π

0
´b sin tp´a sin tq dt “ ab

ż 2π

0
sin2 t dt “ πab.

I’ll mention a simple trick here. When integrating sin2 t over an interval which is a
multiple of π

2 , a simple symmetry argument shows that
ż a`nπ{2

a
sin2 t dt “

ż a`nπ{2

a
cos2 t dt “

1
2

ż a`nπ{2

a
sin2 t` cos2 t dt “

nπ

4
.

A related and useful argument is that
ż a`2π

a
sin t dt “ 0.

8.5.5. EXAMPLE. An epicycloid is the curve swept out by a point on the cir-
cumference of a small circle of radius r as it rolls around the circumference of a
large circle of radius R. Let’s set the centre of the large circle as the origin, so

γ1ptq “ px1ptq, yptqq “ pR cos t, R sin tq for t ě 0.
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Let’s start the small circle tangent to the point γp0q “ pR, 0q with the special point
at pR ` 2r, 0q corresponding to angle 0 to the positive axis. Roll the small circle
counterclockwise around the large circle without slipping. At time t, the small
circle is tangent to γptq. The arc of the large circle has length Rt. The small circle
has traversed the same distanceRt. So it has rotated through an angleRt{r relative
to the tangent point γ1ptq. Thus the angle from the horizontal is the sum of the angle
t from the fact that the circle is now tangent at γ1ptq plus Rt{r for a total of R`r

r t.
The centre of the small circle lies on the circle γ2ptq “ ppR`rq cos t, pR`rq sin tq
or radius R` r. Thus the new curve γ is given by

γptq “ γ2ptq ` pr cos R`r
r t, r sin R`r

r tq

“
`

pR` rq cos t` r cos R`r
r t, pR` rq sin t` r sin R`r

r t
˘

.

In general, this curve is not periodic because R is not a rational multiple of r.
Let’s take R “ 5 and r “ 1. Then 5 rotations of the small circle will exactly make

(3)(3)

SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, TangentLine, TangentPlane,
TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff,
eval, evalVF, int, limit, series

plot 6 cos t   cos 6 t , 6 sin t   sin 6 t , t = Pi ..Pi , labels = x, y

x
6 4 2 0 2 4 6

y

6

4

2

2

4

6

FIGURE 8.12. An epicycloid

a single turn around the larger one. So the curve should consist of 5 lobes. The
formula is

γptq “ p6 cos t` cos 6t, 6 sin t` sin 6tq for 0 ď t ď 2π.

The area of this figure is

A “ ´

ż 2π

0
yptqx1ptq dt “ ´

ż 2π

0

`

6 sin t` sin 6t
˘`

´ 6 sin t´ 6 sin 6t
˘

dt

“

ż 2π

0
36 sin2 t` 42 sin t sin 6t` 6 sin2 6t dt

“ 36π ` 6π ` 42
ż 2π

0
cos 5t´ cos 7t dt “ 42π.
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The formula for the perimeter of the epicycloid follows from the natural analogue
arc length formula

P “

ż 2π

0

b

x1ptq2 ` y1ptq2 dt

“

ż 2π

0

b

p´6 sin t´ 6 sin 6tq2 ` p6 cos t` 6 cos 6tq2 dt

“

ż 2π

0

a

36 sin2 t`72 sin t sin 6t`36 sin2 6t`36 cos2 t`72 cos t cos 6t`36 cos2 6tdt

“

ż 2π

0

?
72` 72 cos 5t dt “ 6

?
2
ż 2π

0

?
1` cos 5t dt

“ 6
?

2
ż 2π

0

b

1` 2 cos2 5t
2 ´ 1 dt “ 6

?
2
ż 2π

0

?
2
ˇ

ˇ cos 5t
2

ˇ

ˇ dt

“ 120
ż π{5

0
cos 5t

2 dt “ p120q
2
5

sin 5t
2

ˇ

ˇ

ˇ

π{5

0
“ 48.

8.5.6. EXAMPLE. Folium of Descartes. Consider the curve

x3 ` y3 “ 3axy

where a ą 0 is a constant. There is no obvious way to solve this equation. It is
symmetric about the line x “ y because if px, yq is a solution, so is py, xq.

Note that if x “ 0 or y “ 0, then x “ y “ 0. So we may look for solutions of
the form y “ tx. This yields x3p1` t3q “ 3atx2. Thus

x “
3at

1` t3
and y “

3at2

1` t3
for t ‰ ´1.

This must be a complete solution since y{x “ t ‰ 0 is defined whenever x ‰ 0.
Also y “ ´x would yields 3axy “ 0 and thus x “ y “ 0, which corresponds to
t “ 0. This yields a parameterization γptq of the solution set.

Notice that

γ
`1
t

˘

“

´ 3a{t
pt3 ` 1q{t3

,
3a{t2

pt3 ` 1q{t3

¯

“

´ 3at2

t3 ` 1
,

3at
t3 ` 1

¯

.

This is the reflection of γptq in the line y “ x. We will also compute the derivative

x1ptq “
3ap1´ 2t3q
p1` t3q2

and y1ptq “
3atp2´ t3q
p1` t3q2

.

To understand this solution, we consider three regions for t.

Case 1. t ě 0. Then γp0q “ p0, 0q and γ1p0q “ p3a, 0q. Thus γptq is tangent to the
x-axis at the origin. When t ą 0, γptq remains bounded. The maximum value for
xptq occurs when x1ptq “ 0 of t “ 2´1{3 which yields γp2´1{3q “ p41{3a, 21{3aq.
Similarly y1ptq “ 0 when t “ 21{3 and γp21{3q “ p21{3a, 41{3aq is the reflected
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point. In between, γ crosses y “ x at γp1q “ p3a
2 ,

3a
2 q. As tÑ `8, γptq Ñ p0, 0q

again. But dy
dx “

y1ptq
x1ptq “

tp2´t3q

1´2t3 approaches `8, indicating that the curve has a
vertical tangent. Thus this section sweeps out a closed loop.

(3)(3)

SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, TangentLine, TangentPlane,
TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff,
eval, evalVF, int, limit, series

plot 6 cos t   cos 6 t , 6 sin t   sin 6 t , t = Pi ..Pi , labels = x, y
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p2 plot 3 t 1 t3
1
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1 
, t = .666 ..100 , labels = x, y :

plots:-display p1, p2

x
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FIGURE 8.13. Folium of Descartes, a “ 1

Case 2. ´1 ă t ă 0. In this range, xptq ă 0 ă yptq, so the points lie in the second
quadrant. As in Case 1, as t Ñ 0´, the curve approaches γp0q “ p0, 0q tangent to
the x axis. Moreover

lim
tÑ´1

xptq “ ´8 and lim
tÑ´1

yptq “ `8.

Observe that

lim
tÑ´1`

xptq ` yptq “ lim
tÑ´1`

3atp1` tq
1` t3

“ lim
tÑ´1`

3at
1´ t` t2

“ ´a.

Therefore the curve γptq is asymptotic to the line x` y ` a “ 0 as tÑ ´1`.

Case 3. ´8 ă t ă ´1. This portion of the curve is the reflection of case 2, so
it lies in the fourth quadrant. As t Ñ ´1´, the curve is asymptotic to the line
x` y ` a “ 0. And as tÑ ´8, the curve approaches p0, 0q tangent to the y axis.

Let’s compute the area of the closed loop. Substitute u “ t3 and du “ 3t2 dt.

A “ ´

ż 8

0
yptqx1ptq dt “ ´

ż 8

0

3at2

1` t3
3ap1´ 2t3q
p1` t3q2

dt

“ ´9a2
ż 8

0

1´ 2t3

p1` t3q3
t2 dt “ ´3a2

ż 8

0

1´ 2u
p1` uq3

du

“ ´3a2
ż 8

0
3p1` uq´3 ´ 2p1` uq´2 du

“ 3a3`3
2p1` uq

´2 ´ 2p1` uq´1˘
ˇ

ˇ

ˇ

8

0
“ 3

2a
2.
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A famous problem of the ancient Greeks was to determine the closed curve
of given perimeter which encloses the largest area. The solution, known as the
isoperimetric inequality, is established in Appendix A.8.

Exercises for Chapter 8

1. Evaluate the following improper integrals when they exist.

(a)
ż 8

2

dx

xplogxqa
for a ą 0.

(b)
ż π{2

0
log sinx dx. HINT: substitute u “ π

2 ´ x and combine.

2. Which of the following improper integrals exist? (Do not try to evaluate them
exactly.)

(a)
ż 8

0

1
?
x

sin 1
x dx (b)

ż 1

0

dx

lnx
(c)

ż 8

π

sinx
logx

dx

3. Suppose that fpxq and gpxq are bounded continuous functions on r0,8q. If
ż 8

0
fpxq dx exists as an improper integral, does it follow that

ż 8

0
fpxqgpxq dx

also exists? Give a proof or provide a counterexample.

4. Consider a region R bounded by the curve y “
1

?
7x´ 10´ x2

for 2 ă x ă 5

together with the lines x “ 2, x “ 5 and y “ 0. Compute the volume of the
solid obtained by rotating R about the y-axis.

5. Consider the region S bounded by the curve y “ logx for 0 ă x ď 1 together
with the lines x “ 0 and y “ 0. Compute the volume of the solid obtained by
rotating S about the x-axis.

6. Consider the parabola P given by y “ ax2 for a ą 0. At each point px0, y0q

on P , construct the normal line through px0, y0q perpendicular to the tangent
line, and consider the area of the sector of P cut off by this line.
(a) Find the minimal area of this sector.
(b) What are the slopes of the normal lines that minimize this area?

7. Compute the arc length of the curve y “ x2 from x “ 0 to x “ 1.

8.˚ Show that the arc length of the curve y “ xp from x “ 0 to x “ 1 is an
increasing function of p for p ě 1. Warning: as far as I know, this cannot be
done using the arc length formula. A geometric argument is needed.
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9. Consider a curve given in polar coordinates by rpθq “
1

1` e cos θ
, where

e ě 0.
(a) Show that the distance of each point on this curve to the line x “ 1

e is a
constant multiple of rpθq.

(b) When e ą 1, show that the curve approaches two asymptotes, find them and
sketch the curve. HINT: If the critical angles are ˘θ0, compute the vertical
distance of the point of the curve at angle θ “ θ0`h to the line θ “ θ0, and
take a limit.

(c) Observe that the curve is bounded if and only if e ă 1. Show that the
curve is an ellipse as follows: Let a be the midpoint between the two points
intersecting the x-axis. Show that p1´ e2qpx´ aq2 ` y2 is constant.

(d) What happens when e “ 1?

10. A point on the circumference of a bicycle tire of radius R starts touching the
road. As the bicycle rides along a straight line, the point on the tire sweeps out
copies of a figure called a cycloid. Find the arc length of a single loop, and
compute the area between the loop and the road.



CHAPTER 9

Series

9.1. Convergence of series

9.1.1. DEFINITION. A series is an infinite sum
8
ř

n“1
an. The series converges

or is summable if the sequence of partial sums sn “
n
ř

i“1
ai converges as n Ñ 8.

Otherwise the series diverges.

9.1.2. EXAMPLE. A geometric series has the form
8
ř

n“0
a0r

n, where a0 ‰ 0 and

an “ a0r
n for n ě 0. (It is usual to begin at n “ 0 here.) Let

sn “
n´1
ÿ

i“0

a0r
i “ a0

1´ rn

1´ r
.

This familiar formula comes from

p1´ rq
n´1
ÿ

i“0

ri “
n´1
ÿ

i“0

ri ´ ri`1 “

n´1
ÿ

i“0

ri ´
n
ÿ

i“1

ri “ 1´ rn.

If |r| ă 1, lim
nÑ8

sn “
a0

1´ r
, and the series converges. If r “ 1, then sn “ na0.

This diverges. Likewise if r “ ´1, then s2n`1 “ a0 and s2n “ 0; so again the
series diverges. If |r| ą 1, then

lim
nÑ8

|sn| “ |a0| lim
nÑ8

|rn ´ 1|
|r ´ 1|

“ `8.

Thus this series diverges.

9.1.3. EXAMPLE. The harmonic series
ř

ně1

1
n

diverges. This follows from

s2n “ 1`
1
2
`

n
ÿ

k“2

2k
ÿ

i“2k´1`1

1
i
ą 1`

1
2
`

n
ÿ

k“2

2k´1 1
2k
“ 1`

n

2
.

In fact this shows that sn ą 1
2 log2 n. We will improve on this soon.

155



156 Series

9.1.4. EXAMPLE. Consider
ř

ně1

1
npn` 3q

. Observe that 1
npn`3q

“ 1
3

` 1
n´

1
n`3

˘

.

Therefore for n ě 3,

sn “
1
3

n
ÿ

i“1

1
i
´

1
3

n`3
ÿ

i“4

1
i
“

1
3
`

1`
1
2
`

1
3
´

1
n` 1

`
1

n` 2
`

1
n` 3

˘

.

This is an example of a telesoping sum because most terms cancel. Therefore
ÿ

ně1

1
npn` 3q

“ lim
nÑ8

sn “
1
3
`

1`
1
2
`

1
3
˘

“
11
18
.

A basic result is the following. The harmonic series shows that the converse is
false.

9.1.5. PROPOSITION. If
8
ř

n“1
an converges, then lim

nÑ8
an “ 0.

PROOF. If the series converges to L, then

L “ lim
nÑ8

sn “ lim
nÑ8

sn`1.

Therefore
lim
nÑ8

an “ lim
nÑ8

sn`1 ´ sn “ L´ L “ 0. ■

The Cauchy criterion for a convergent sequence readily translates to series.

9.1.6. CAUCHY CRITERION FOR SERIES. For a series
8
ř

n“1
an, the following

are equivalent:
p1q The series converges.

p2q For all ε ą 0, there is N P N so that
ˇ

ˇ

ˇ

m
ř

i“n`1
ai

ˇ

ˇ

ˇ
ă ε for all N ď n ă m.

PROOF. Suppose that the series converges to L. Then given ε ą 0, there is an
N so that if n ě N , then |sn ´ L| ă ε{2. Therefore is N ď n ă m, we have

ˇ

ˇ

ˇ

m
ÿ

i“n`1

ai

ˇ

ˇ

ˇ
“ |sm ´ sn| ď |sm ´ L| ` |L´ sn| ă

ε

2
`
ε

2
“ ε.

Conversely, if (2) holds, for any ε ą 0, we have an N so that |sm ´ sn| ă ε if
N ď n ă m. This says that the sequence psnq is Cauchy. By completeness of R,
this sequence has a limit, say L. Therefore the series converges. ■

There is also a straightforward translation of the Monotone Convergence The-
orem to series with positive terms.
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9.1.7. PROPOSITION. If an ě 0 for n ě 1, then
8
ř

n“1
an converges if and only

if supně1 sn ă 8.

PROOF. Since an ě 0, the sequence of partial sums sn are monotone increas-
ing. Thus by the Monotone Convergence Theorem, the sequence converges only if
it is bounded above, in which case, it converges to the supremum. Otherwise the
series diverges to `8. ■

9.2. Tests for Convergence

Now we come to some new ideas that apply specifically to series.

9.2.1. COMPARISON TEST. Suppose that
ř

ně1
an and

ř

ně1
bn are series such

that |an| ď bn for n ě 1. Then if
ř

ně1
bn converges, then so does

ř

ně1
an.

PROOF. Suppose that
ř

ně1
bn converges. Let ε ą 0. By the Cauchy criterion,

there is an N so that if N ď n ă m, then
m
ř

i“n`1
bi ă ε. Therefore

ˇ

ˇ

ˇ

m
ÿ

i“n`1

ai

ˇ

ˇ

ˇ
ď

m
ÿ

i“n`1

|ai| ď
m
ÿ

i“n`1

bi ă ε.

Therefore
ř

ně1
an converges by the Cauchy criterion. ■

9.2.2. EXAMPLE. Consider
8
ř

n“1
p1 ´ n

?
nqn. Observe that fpxq “ lnpx1{xq “

lnx
x

has derivative f 1pxq “
1´ lnx
x2 ă 0 for x ą e. Therefore n

?
n´1 ď 3

?
3´1 ă

1
2 for n ě 3. Hence

|an| “ p
n
?
n´ 1qn ă 2´n for n ě 3.

Set bn “ 2´n for n ě 3. Since
8
ř

n“3
2´n ă 8, it follows that

8
ř

n“3
p1 ´ n

?
nqn

converges by the comparison test. Of course, convergence is unaffected by the first
few terms, so the original series converges.

Next we have a continuous version of the comparison test.
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9.2.3. INTEGRAL TEST. Let fpxq be a positive, monotone decreasing function

on r1,8q. Then
8
ř

n“1
fpnq converges if and only if

ż 8

1
fpxq dx ă 8. Indeed,

8
ÿ

n“2

fpnq ď

ż 8

1
fpxq dx ď

8
ÿ

n“1

fpnq.

PROOF. Take the integral
ż n`1

1
fpxq dx. With partition P“t1, 2, 3, . . . , n, ǹ 1u,

form the upper and lower Riemann sums. Since f is monotone decreasing, on the
interval rk, k ` 1s, we have fpk ` 1q ď fpxq ď fpkq. Therefore

 

FIGURE 9.1. Integral test

Lpf,Pq “
n`1
ÿ

k“2

fpkq ď

ż n`1

1
fpxq dx ď

n
ÿ

k“1

fpkq “ Upf,Pq.

Now let nÑ8. If the series converges, then
ż 8

1
fpxq dx “ sup

ně1

ż n`1

1
fpxq dx ď

8
ÿ

n“1

fpnq ă 8.

Thus by the Monotone Convergence Theorem, the integral exists. Similarly if the
integral exists,

8
ÿ

k“2

fpkq “ sup
ně1

n`1
ÿ

k“2

fpkq ď

ż 8

1
fpxq dx ă 8.

Therefore
8
ř

k“2
fpkq converges. Adding one term at the beginning does not affect

convergence. Finally the estimates are part of the proof. ■
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9.2.4. EXAMPLE. Consider
8
ř

n“1

1
nα for α ą 0. The function fpxq “ x´α is

monotone decreasing, so we can apply the integral test.

ż 8

1
x´α dx “

$

’

’

’

&

’

’

’

%

x1´α

1´α

ˇ

ˇ

8

1 “ `8 if 0 ă α ă 1

lnx
ˇ

ˇ

8

1 “ `8 if α “ 1

x1´α

1´α

ˇ

ˇ

8

1 “
1

α´1 if α ą 1.

Thus the series converges when α ą 1. For example,
8
ř

n“1

1
n2 and

8
ř

n“1

1
n3{2 converge

and
8
ř

n“1

1
?
n

diverges.

9.2.5. EXAMPLE. Consider
8
ř

n“2

1
n lnnpln lnnq2 . The function fpxq “ 1

x lnx pln lnxq2

is monotone decreasing on r3,8q. We need to start at 3 because ln ln e “ 0. Hence
we can apply the integral test. Substitute u “ ln lnx. Then du “ 1

x lnx dx. Hence
ż 8

3

1
x lnxpln lnxq2

dx “

ż 8

ln ln 3
u´2 du “ ´

1
u

ˇ

ˇ

ˇ

8

ln ln 3
“

1
ln ln 3

ă 8.

Thus the series converges.

9.2.6. EXAMPLE. Consider the harmonic series again:
8
ř

n“1

1
n . The argument in

the proof of the integral test shows that
n`1
ÿ

k“2

1
k
ď

ż n`1

1

1
x
dx “ lnn`1 ď

n
ÿ

k“1

1
k
.

The difference
n
ř

k“1

1
k ´ lnn`1 can be seen to be the sum of the areas of the regions

Ak “ tpx, yq : k ď x ď k ` 1, lnx ď y ď ln ku

from 1 to n. Imagine translating these regions to regionsBk in the column between
x “ 0 and x “ 1. They are disjoint because Bk Ă r0, 1s ˆ r 1

k`1 ,
1
k s. Thus the

total area of
Ť

kě1 Bk is less than 1. Because of the slope of y “ 1
x , it looks to

be approximately half of the area. The limiting area exists by the Comparison test,

since the areas |Ak| “ |Bk| ă
1
k ´

1
k`1 and

8
ř

k“1

1
k ´

1
k`1 “ 1 is a telescoping

sum. The limiting value is known as Euler’s constant, which has been determined
numerically as

γ “ 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 . . .
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Thus

lim
nÑ8

n
ÿ

k“1

1
k
´ lnn “ lim

nÑ8

n
ÿ

k“1

1
k
´ lnn`1 “ γ.

So for large n,
n
ř

k“1

1
k « lnn` γ. It is unknown whether γ is irrational.

9.2.7. RATIO TEST. Suppose that a series
8
ř

n“1
an of non-zero terms satisfies

lim
nÑ8

an`1

an
“ r exists. If |r| ă 1, then the series converges. If |r| ą 1, then the

series diverges.

PROOF. If |r| ă 1, pick |r| ă R ă 1. There is an N so that if n ě N ,
ˇ

ˇ

ˇ

an`1

an

ˇ

ˇ

ˇ
ď R.

Therefore
|aN`k| ď Rk|aN | or k ě 1.

Since the geometric series
ř

kě0
|aN |R

k converges, the Comparison test shows that

8
ř

n“N

an converges. Thus
8
ř

n“1
an converges.

If |r| ą R ą 1, there is an N so that
ˇ

ˇ

ˇ

an`1

an

ˇ

ˇ

ˇ
ě R or |an`1| ě R|an|.

In this case, |an| is increasing, so does not go to 0. Hence the series diverges. ■

9.2.8. REMARK. If lim
nÑ8

an`1

an
“ 1, nothing can be said. For example if an “

n´α, we have lim
nÑ8

an`1

an
“ 1. The series converges for α ą 1 and diverges

otherwise.

The following test is harder to use than the ratio test, but it is more powerful.

9.2.9. ROOT TEST. Given a series
8
ř

n“1
an, define r “ lim supnÑ8 |an|

1{n. If

r ă 1, the series converges; and if r ą 1, the series diverges.

PROOF. If r ă R ă 1, find N so that |an|1{n ď R for all n ě N . That

is, |an| ď Rn and
ř

něN

Rn is a convergent geometric series. Therefore
8
ř

n“1
an
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converges by the Comparison test. On the other hand, if r ą 1, there are infinitely
many terms ani so that |ani | ě 1. Thus the series diverges. ■

Here is one more test that sometimes helps.

9.2.10. CAUCHY’S CONDENSATION TEST. Suppose that an is a monotone

decreasing sequence. Then
8
ř

n“1
an converges if and only if

8
ř

k“0
2ka2k converges

PROOF. Note that

2k`1´1
ÿ

n“2k
an ď 2ka2k and

2k`1
ÿ

n“2k`1

an ě 2ka2k`1 .

Therefore
8
ÿ

n“1

an “
8
ÿ

k“0

2k`1´1
ÿ

n“2k
an ď

8
ÿ

k“0

2ka2k

and

2
8
ÿ

n“1

an “ 2a1 `

8
ÿ

k“0

2
2k`1
ÿ

n“2k`1

an ě 2a1 `

8
ÿ

k“0

2k`1a2k`1 ě

8
ÿ

k“0

2ka2k .

Thus one series converges if and only if the other does by the Comparison test. ■

9.2.11. EXAMPLE. Consider
8
ř

n“1

n!
nn

. With an “
n!
nn

, compute

lim
nÑ8

an`1

an
“ lim

nÑ8

pn` 1q!
pn` 1qn`1

nn

n!
“ lim

nÑ8

pn` 1qnn

pn` 1qn`1

“ lim
nÑ8

´ n

n` 1

¯n
“

1
e
ă 1.

Therefore this series converges by the ratio test.

9.2.12. EXAMPLE. Consider
8
ř

n“1

xn

n!
. Compute

lim
nÑ8

an`1

an
“ lim

nÑ8

xn`1

pn` 1q!
n!
xn
“ lim

nÑ8

x

n` 1
“ 0.

Therefore this series converges by the ratio test for all values of x.
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9.2.13. EXAMPLE. Consider
8
ř

n“1

np

pn
for p ą 1. Use the root test.

lim sup
nÑ8

´np

pn

¯1{n
“

1
p

`

lim sup
nÑ8

n1{n
˘p
“

1
p
ă 1.

Here we use the fact that lim
nÑ8

lnn1{n “ lim
nÑ8

lnn
n “ 0 so that lim

nÑ8
n1{n “ 1.

Therefore this series converges by the root test

9.2.14. EXAMPLE. Consider
8
ř

n“1

1
nplnnqa

for a ą 0. Use Cauchy’s condensa-

tion test.
8
ÿ

k“0

2ka2k “

8
ÿ

k“0

2k
1

2kpk ln 2qa
“

8
ÿ

k“0

1
pk ln 2qa

.

We have already analyzed this sum, and it converges if and only if a ą 1.

Now consider
8
ř

n“1

1
n lnnpln lnnqa

. Set bn “
1

n lnnpln lnnqa
. Then

8
ÿ

k“0

2kb2k “

8
ÿ

k“0

2k
1

2kpk ln 2qplnpk ln 2qqa
“

1
ln 2

8
ÿ

k“0

1
kpln k ` ln 2qa

.

By the previous example, this converges if and only of a ą 1 as well.

9.2.15. EXAMPLE. Consider
8
ř

n“1

1
pln lnnqlnn

. Use Cauchy’s condensation test.

8
ÿ

k“0

2ka2k “

8
ÿ

k“0

2k
1

pln k ` ln ln 2qk ln 2 .

Now apply the root test.

lim sup
kÑ8

´

2k
1

pln k ` ln ln 2qk ln 2

¯1{k
“ lim sup

kÑ8

2
pln k ` ln ln 2qln 2 “ 0.

Therefore this series converges by Cauchy’s condensation test and the root test.

9.3. Absolute and Conditional Convergence

9.3.1. DEFINITION. A series
8
ř

n“1
an converges absolutely if

8
ř

n“1
|an| ă 8.

A series which converges, but does not converge absolutely, is said to converge
conditionally.

By comparing an with |an|, the Comparison test shows that absolutely conver-
gent series converge.
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9.3.2. ALTERNATING SERIES TEST. If an is monotone decreasing and

lim
nÑ8

an “ 0, then
8
ř

n“1
p´1qnan converges, say to L. Moreover

s2n`1 ď L ď s2n for n ě 0.

Thus |L´ sn| ď |an`1|.

PROOF. Observe that s2n`1 “ s2n ´ a2n`1 ď s2n. Moreover

s2n`2 “ s2n ´ pa2n`1 ´ a2n`2q ď s2n

and
s2n´1 ď s2n´1 ` pa2n ´ a2n`1q “ s2n`1

for all n ě 1. That is

s1 ď s3 ď s5 ¨ ¨ ¨ ď s2n`1 ď s2n ď ¨ ¨ ¨ ď s4 ď s2.

The sequence ts2n´1u is monotone increasing, and bounded above. Therefore it
converges, say to L, by the Monotone Convergence Theorem. Likewise ts2nu is
monotone decreasing, and bounded below; and thus converges, say to M , also by
the Monotone Convergence Theorem. Finally

M ´ L “ lim
nÑ8

s2n ´ s2n`1 “ lim
nÑ8

´a2n`1 “ 0.

Therefore
8
ř

n“1
p´1qnan converges. Finally, |L´ sn| ď |sn`1 ´ sn| “ |an`1|. ■

9.3.3. EXAMPLE. The alternating series test shows that
8
ř

n“1

p´1qn`1

n
con-

verges. This is known as the alternating harmonic series. However we know that
8
ř

n“1

1
n

diverges. So this series converges conditionally, but not absolutely.

9.3.4. DEFINITION. A rearrangement of the series
8
ř

n“1
an is another series with

the same terms in a different order, so there is a permutation π of N (a bijection of

N onto itself) so that the new series is
8
ř

n“1
aπpnq.

9.3.5. EXAMPLE. Consider a rearrangement of the alternating harmonic series:

1´ 1
2 ´

1
4 `

1
3 ´

1
6 ´

1
8 `

1
5 ´

1
10 ´

1
12 ` . . .

Here we take the positive terms in order, and the negative terms in order, but take
twice as many negative terms as positive terms at each stage. We can group the
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terms as follows

p1´ 1
2q´

1
4 `p

1
3 ´

1
6q´

1
8 `p

1
5 ´

1
10q´

1
12 `¨ ¨ ¨ “

1
2
`

1´ 1
2 `

1
3 ´

1
4 `

1
5 ´

1
6 ` . . .

˘

From this, we can deduce that this rearrangement converges, but to a different limit,
half of the value of the original limit.

9.3.6. THEOREM. If
8
ř

n“1
an is absolutely convergent, then every rearrangement

converges to the same value.

PROOF. Let L “
8
ř

k“1
ak and M “

8
ř

k“1
|ak| ă 8. Therefore given ε ą 0, there

is an N so that
N
ÿ

k“1

|ak| ąM ´
ε

2
and so

8
ÿ

k“N`1

|ak| ă
ε

2
.

Hence if n ě N ,

|L´ sn| “ lim
mÑ8

|sm ´ sn| ď lim
mÑ8

m
ÿ

k“n`1

|ak| ď
8
ÿ

k“N`1

|ak| ă
ε

2
.

Let π be a permutation of N, and let K “ maxtπ´1p1q, π´2p2q, . . . , π´1pNqu.
Suppose that m ě K. Then tπpiq : 1 ď i ď mu “ t1, 2, . . . , Nu Y Sm for some
subset Sm Ă ti : i ą Nu. Hence

ˇ

ˇ

ˇ

m
ÿ

i“1

aπpiq ´ L
ˇ

ˇ

ˇ
“ |sN `

ÿ

iPSm

ai ´ L|

ď |sN ´ L| `
ÿ

iPSm

|ai|

ă
ε

2
`

8
ÿ

k“N`1

|ak| ă ε.

Since ε ą 0 is arbitrary,
ř8

i“1 aπpiq “ L. ■

9.3.7. EXAMPLE. Consider
8
ř

n“1

p´1qn`1

n2 . Now
8
ř

n“1

1
n2 ă 8 by the integral

test, and therefore our series converges absolutely. Therefore
8
ÿ

n“1

p´1qn`1

n2 “
ÿ

n odd

1
n2 ´

ÿ

n even

1
n2 “

ÿ

ně1

1
n2 ´ 2

ÿ

n even

1
n2

“
ÿ

ně1

1
n2 ´ 2

ÿ

ně1

1
p2nq2

“
1
2

ÿ

ně1

1
n2 .
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It is known that
ř

ně1

1
n2 “

π2

6
. See Appendix A.9. Therefore

8
ř

n“1

p´1qn`1

n2 “
π2

12
.

Now we see what happens with rearrangements of conditionally convergent
series.

9.3.8. LEMMA. If
8
ř

n“1
an is a convergent series, let b1, b2, . . . be the non-

negative terms of the series and let c1, c2, . . . be the negative terms of the series, in
the order that they appear.

p1q If the series converges absolutely, then
ř

iě1
bi and

ř

iě1
ci converge abso-

lutely.

p2q If the series converges conditionally, then
ř

iě1
bi and

ř

iě1
ci both diverge.

PROOF. If
8
ř

n“1
an converges absolutely, let xn “ maxtam, 0u. Then 0 ď xn ď

an, so that
8
ř

n“1
xn converges absolutely. However this series is just the series

8
ř

i“1
bi

together with some extraneous 0 terms. Hence
ř

iě1
bi converges absolutely. Sim-

ilarly,
ř

iě1
ci converges absolutely. Conversely if both

ř

iě1
bi and

ř

iě1
ci converge

absolutely, then
ÿ

ně1

|an| “
ÿ

iě1

bi `
ÿ

iě1

|ci| ă 8.

Thus
8
ř

n“1
an converges absolutely.

Suppose that
ř

iě1
bi “ B converges absolutely but

ř

iě1
ci diverges to´8. There-

fore for any M ą 0, there is an J so that if j ě J , then
j
ř

i“1
ci ă ´M ´B. Pick N

so that cJ “ aN . Then for n ě N , there is some j ě J so that

sn “
n
ÿ

k“1

ak “

n´j
ÿ

i“1

bi `

j
ÿ

i“1

ci ă B ´M ´B “ ´M.

Since M is arbitrary,
8
ř

n“1
an diverges to ´8. Similarly, if

ř

iě1
bi diverges and

ř

iě1
ci

converges absolutely, then
8
ř

n“1
an diverges to `8.
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Therefore, either both
ř

iě1
bi and

ř

iě1
ci converge absolutely or both diverge. By

the first paragraph, conditionally convergent series are in the second situation. ■

9.3.9. REARRANGEMENT THEOREM. If
8
ř

n“1
an is conditionally convergent

and L P R, then there is a rearrangement of the series which converges to L.

PROOF. By the lemma,
ř

iě1
bi “ `8 and

ř

iě1
ci “ ´8. Since the series con-

verges,
0 “ lim

nÑ8
an “ lim

iÑ8
bi “ lim

iÑ8
ci.

Choose m0 ě 1 to be the least positive integer so that
m0
ř

i“1
bi ą L. Then choose the

least n1 so that
m0
ř

i“1
bi `

n1
ř

i“1
ci ă L. Since

m0
ř

i“1
bi `

n1´1
ř

i“1
ci ě L, we have

L´ cn1 ď

m0
ÿ

i“1

bi `
n1
ÿ

i“1

ci ă L.

Now pick the least m1 ą m0 so that
m1
ř

i“1
bi `

n1
ř

i“1
ci ą L. As before

L ă
m1
ÿ

i“1

bi `
n1
ÿ

i“1

ci ď L` bm1 .

Proceed recursively choosing the least integers nj`1 ą nj so that

L´ cnj`1 ď

mj
ÿ

i“1

bi `

nj`1
ÿ

i“1

ci ă L.

and mj`1 ą mj so that

L ă

mj`1
ÿ

i“1

bi `

nj`1
ÿ

i“1

ci ď L` bmj`1 .

Our rearrangement is

b1, . . . , bm0 , c1, . . . , cn1 , bm0`1, . . . , bm1 , cn1`1, . . . , cn2 , . . .

By construction, the partial sums in the range rmj ` nj ,mj ` nj`1s lie in the
interval rL´ cnj`1 , L` bmj s and partial sums in the range rmj ` nj`1,mj`1s lie
in rL ´ cnj`1 , L ` bmj`1s. Because the terms tend to 0, given any ε ą 0, there is
a K so that if i ě K, then bi ă ε and |ci| ă ε. Once both mj and nj are greater
than K, all of the partial sums beyond mj ` nj lie in pL´ ε, L` εq. That is, this
rearrangement converges to L. ■



9.4 Dirichlet’s Test 167

9.4. Dirichlet’s Test

We prove one more convergence test.

9.4.1. SUMMATION BY PARTS LEMMA. Let pxiq and pyiq be sequences.

Define Xn “
n
ř

i“1
xi and Yn “

n
ř

i“1
yi. Then

n
ÿ

i“1

xiYi `Xiyi`1 “ XnYn`1.

PROOF. In the second line, there is a telescoping sum.
n
ÿ

i“1

xiYi `Xiyi`1 “

n
ÿ

i“1

pXi ´Xi´1qYi `XipYi`1 ´ Yiq

“

n
ÿ

i“1

XiYi`1 ´Xi´1Yi

“ XnYn`1 ´X0Y1 “ XnYn`1. ■

9.4.2. DEFINITION. A series
8
ř

i“1
ai has bounded partial sums if there is a con-

stant M so that
ˇ

ˇ

ˇ

n
ř

i“1
ai

ˇ

ˇ

ˇ
ďM for all n ě 1.

9.4.3. DIRICHLET’S TEST. Let
8
ř

i“1
ai be a series with bounded partial sums.

Suppose that pbiq is a monotone decreasing sequence with lim
iÑ8

bi “ 0. Then
8
ř

i“1
aibi converges.

PROOF. Define Xn “
n
ř

i“1
ai, Y0 “ 0, Yn “ bn and yn “ Yn ´ Yn´1 “ bn for

n ě 1. Then by the Summation by parts Lemma,
n
ÿ

i“1

aibi “
n
ÿ

i“1

aiYi “ XnYn`1 ´

n
ÿ

i“1

Xiyi`1.

By assumption, |Xn| ďM and thus

lim
nÑ8

|XnYn`1| ď lim
nÑ8

Mbn`1 “ 0.



168 Series

The series
8
ř

i“1
yi “

8
ř

i“1
bi ´ bi´1 “ b1 is absolutely convergent. Therefore

8
ÿ

i“1

|Xi|yi`1 ďM
8
ÿ

i“1

yi`1 ă 8,

and hence
8
ř

i“1
Xiyi`1 converges absolutely. Hence

8
ÿ

i“1

aibi “ lim
nÑ8

n
ÿ

i“1

aibi

“ lim
nÑ8

XnYn`1 ´

8
ÿ

i“1

Xiyi`1 “ ´

8
ÿ

i“1

Xiyi`1.

Thus this series converges. ■

9.4.4. EXAMPLE. Consider
8
ř

n“1

sinnθ
n

. If θ is an integer multiple of π, the

sum is 0. Also this series is 2π-periodic and an odd function, so that it suffices to
consider θ P p0, πq. Now we use the fact that eiθ “ cos θ ` i sin θ.
ˇ

ˇ

ˇ

n
ÿ

k“1

sin kθ
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Im

n
ÿ

k“1

eikθ
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Im

´eipn`1qθ ´ eiθ

eiθ ´ 1

¯ˇ

ˇ

ˇ
ď

2
|eiθ ´ 1|

“
1

sin θ{2
.

Thus
8
ř

n“1
sinnθ has bounded partial sums. The series bn “ 1

n decreases monotone-

ly to zero. Therefore by Dirichlet’s test,
8
ř

n“1

sinnθ
n

converges for all values of θ.

Since the proof of Dirichlet’s test works by comparing the given series with an
absolutely convergent one, it might be surprising that this series converges condi-
tionally if θ is not an integer multiple of π. Suppose first that θ P p0, π2 s. Notice
that for any k, if distpkθ, πZq ď θ

2 , then distpkθ, πZq ě θ
2 . Hence

| sinp2k ´ 1qθ|
2k ´ 1

`
| sinp2kqθ|

2k
ě

sin θ{2
2k

.

Therefore
8
ÿ

n“1

| sinnθ|
n

“

8
ÿ

k“1

| sinp2k ´ 1qθ|
2k ´ 1

`
| sinp2kqθ|

2k
ě sinpθ{2q

8
ÿ

k“1

1
2k
“ `8

Thus this series is not absolutely convergent.
Similarly if θ P pπ2 , πq, if distpkθ, πZq ď π´θ

2 , then distpkθ, πZq ě π´θ
2 . This

also yields a conditionally convergent series.

Using Fourier series, one can show that the series converges to
π ´ θ

2
if θ is

not an integer multiple of π.
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Exercises for Chapter 9

1. Decide which of the following series converge absolutely, converge condition-
ally or diverge.

(a)
8
ř

n“1

?
n` 1´

?
n

na
(b)

8
ř

n“1
p1´ n

?
nqn

(c)
8
ř

n“1

p´1qn arctanpnq
n

(d)
8
ř

n“1
p´1qn

n42

pn` 1q!

(e)
8
ř

n“1

1
n1`1{n

(f)
8
ř

n“1

´ n

n` 1

¯n2

(g)
8
ř

n“2

cosnθ
logn

(h)
8
ř

n“3

p´1qn
?
nplognq2

(i)
8
ř

n“1

p´1qn

p2` p´1qnqn
(j)

8
ř

n“2

1
plnnqln lnn

2. It is known that
8
ř

n“1

1
n4 “

π4

90
. Use this fact to compute

8
ř

n“1

p´1qn

n4 .

3. Suppose that an ď bn ď cn for all n ě 1. If
8
ř

n“1
an and

8
ř

n“1
cn converge, does

8
ř

n“1
bn converge? Prove it or provide a counterexample.

4. Suppose that
8
ř

n“1
an “ A exists and pbnq is a monotone sequence with limit B.

Prove that
8
ř

n“1
anbn converges. HINT: Find a way to apply Dirichlet’s test.

5. Define an infinite product
8
ź

i“1

1` ai as

lim
nÑ8

n
ź

i“1

1` ai “ lim
nÑ8

p1` a1qp1` a2q ¨ ¨ ¨ p1` anq

when this limit exists.
(a) Let ai ě 0. Prove that

8
ź

i“1

1` ai converges if and only if
8
ř

i“1
ai converges.

HINT: take logs.

(b) Let 0 ď ai ă 1. Prove that
8
ź

i“1

1´ ai ą 0 if and only if
8
ř

i“1
ai converges.



CHAPTER 10

Limits of Functions

10.1. Taylor Polynomials

In this section, we examine whether we can use higher derivatives to get a better
approximation to a function by analogy with the tangent line.

10.1.1. DEFINITION. If fpxq has n derivatives at a, the Taylor polynomial of
degree n for f at a is

Pn,apxq “ fpaq ` f 1paqpx´ aq `
f2paq

2
px´ aq2 ` ¨ ¨ ¨ `

f pnqpaq

n!
px´ aqn

“

n
ÿ

k“0

f pkqpaq

k!
px´ aqk.

First we see that this polynomial has the same derivatives at a as f does up to
the nth order.

10.1.2. LEMMA. P pkq
n,apaq “ f pkqpaq for 0 ď k ď n.

PROOF. It is straightforward to check that

dk

dxk
px´ aql “

$

’

&

’

%

0 if l ă k

k! if l “ k

lpl ´ 1q ¨ ¨ ¨ pl ` 1´ kqpx´ aql´k if l ą k

whence

dk

dxk
px´ aql

ˇ

ˇ

ˇ

x“a
“

$

’

&

’

%

0 if l ă k

k! if l “ k

0 if l ą k.

.

Therefore P pkq
n,apaq “

f pkqpaq

k!
k! “ f pkqpaq. ■

In order to decide if the Taylor polynomial is a good approximation to fpxq
other than just as one approaches a, we introduce the error function

Rn,apxq :“ fpxq ´ Pn,apxq.

170
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Taylor’s Theorem is a higher order Mean Value Theorem.

10.1.3. TAYLOR’S THEOREM. Suppose that fpxq has n ` 1 derivatives on
ra, bs. Then there is an x0 P pa, bq so that

Rn,apbq “ fpbq ´ Pn,apbq “
f pn`1qpx0qpb´ aq

n`1

pn` 1q!
.

PROOF. For each t P ra, bs, let Pn,tpxq “
řn

k“0
f pkqptq

k! px ´ tqk be the Taylor
polynomial for f about t. Set

Rptq “ fpbq ´ Pn,tpbq “ fpbq ´
n
ÿ

k“0

f pkqptq

k!
pb´ tqk.

Note that Rpaq “ Rn,apbq and Rpbq “ 0. The following computation involves a
telescoping sum.

R1ptq “ ´
n
ÿ

k“0

f pk`1qptq

k!
pb´ tqk ´

f pkqptq

k!
kpb´ tqk´1

“ ´

n
ÿ

k“0

f pk`1qptq

k!
pb´ tqk `

n
ÿ

k“1

f pkqptq

pk ´ 1q!
pb´ tqk´1

“ ´

n`1
ÿ

k“1

f pkqptq

pk ´ 1q!
pb´ tqk´1 `

n
ÿ

k“1

f pkqptq

pk ´ 1q!
pb´ tqk´1

“ ´
f pn`1qptq

n!
pb´ tqn

Now let Gptq “ Rptq ´
´ b´ t

b´ a

¯n`1
Rpaq. Then Gpaq “ Rpaq ´ Rpaq “ 0

and Gpbq “ Rpbq ´ 0 “ 0. By Rolle’s Theorem, there is an x0 P pa, bq so that

0 “ G1px0q “ ´
f pn`1qpx0qpb´ x0q

n

n!
´
pn` 1qpb´ x0q

n

pb´ aqn`1 Rpaq.

Solve for Rpaq:

Rn,apbq “ Rnpaq “
f pn`1qpx0qpb´ aq

n`1

pn` 1q!
. ■

10.1.4. COROLLARY. If f P Cn`1ra, bs, then |Rn,apxq| ď C|x ´ a|n`1. And
if qpxq is a polynomial of degree at most n so that |fpxq ´ qpxq| ď C 1|x ´ a|n`1

for some contant C 1, then qpxq “ Pn,apxq.
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PROOF. By hypothesis, f pn`1q is continuous on ra, bs. By the Extreme Value
Theorem, max

aďxďb
|fpxq| “ M ă 8. By Taylor’s Theorem (with x in place of b),

C “ M
pn`1q! works.

Now if qpxq is another polynomial of degree at most n satisfying a similar
inequality, then

|qpxq ´ Pn,apxq| ď |qpxq ´ fpxq| ` |fpxq ´ Pn,apxq| ď pC
1 ` cq|x´ a|n`1.

Write qpxq “ b0 ` b1px ´ aq ` b2px ´ aq2 ` ¨ ¨ ¨ ` bnpx ´ aqn. Let k be the
smallest integer at which the coefficients differ from the coefficients of Pn,apxq,
namely ck :“ 1

k!f
pkqpaq.. Then qpxq ´Pn,apxq “ px´ aq

kpbk ´ ckq ` ¨ ¨ ¨ ` pbn´

cnqpx´ aq
n´kq. Thus

lim
xÑa

|qpxq ´ Pn,apxq|

|x´ a|n`1 “ lim
xÑa

|pbk ´ ckq ` ¨ ¨ ¨ ` pbn ´ cnqpx´ aq
n´k|

|x´ a|n`1´k
“ `8.

This contradicts the estimate above. Hence qpxq “ Pn,apxq. ■

10.1.5. EXAMPLE. Let fpxq “ ex and a “ 0. Then f pnqpxq “ ex for all

n ě 1. So f pnqp0q “ 1. Therefore Pn,0pxq “
n
ř

k“0

xk

k!
. For any x P R, Taylor’s

Theorem provides an x0 between 0 and x so that
ˇ

ˇ

ˇ
ex ´

n
ÿ

k“0

xk

k!

ˇ

ˇ

ˇ
“
|f pn`1qpx0q||x|

n`1

pn` 1q!
ď

maxtex, 1u|x|n`1

pn` 1q!
.

Now lim
nÑ8

|x|n`1

pn` 1q!
“ 0 because for |x| ď N and n “ 2N ` k,

|x|n

n!
“
|x|2N

p2Nq!
|x|

2N ` 1
. . .

|x|

2N ` k
ă
|x|2N

p2Nq!
1
2k
Ñ 0.

Therefore this sum converges to ex as nÑ8, so that

ex “
8
ÿ

k“0

xn

n!
and e “

8
ÿ

k“0

1
n!
.

If we take n “ 13, we get
ˇ

ˇe ´
ř13

k“0
1
n!

ˇ

ˇ ă e
14! ă 4 ¨ 10´11, which yields 10

decimals accuracy.
This is a poor way to find ex if x is large, and even for x “ 1. Notice that

ˇ

ˇe1{16 ´

10
ÿ

k“0

1
n!24k

ˇ

ˇ ă
e1{16

11!244 “ ε ă 1.6 ¨ 10´21.

Set a “
ř10

k“0
1

n!24k . Then e1{16 ´ ε ă a ă e1{16, so that

e ą a16 “
``

pa2q2
˘2˘2

ą pe1{16 ´ εq16 ą e´ 16e15{16ε ą e´ 7 ¨ 10´20.



10.1 Taylor Polynomials 173

This has the same number of computations, but has 19 decimals of accuracy.

10.1.6. EXAMPLE. Let fpxq “ sinx, gpxq “ cosx and a “ 0. The derivatives
are periodic:

f 1pxq “ cosx and g1pxq “ ´ sinx

f p2qpxq “ ´ sinx and gp2qpxq “ ´ cosx

f p2nqpxq “ p´1qn sinx and gp2nqpxq “ p´1qn cosx

f p2n`1qpxq “ p´1qn cosx and gp2n`1qpxq “ p´1qn`1 sinx.

So f p2nqp0q “ 0 “ gp2n`1qp0q; and f p2n`1qp0q “ p´1qn “ gp2nqp0q. The Taylor
polynomials for sinx are P2n´1,0pxq “ P2n,0pxq where

P2n,0pxq “ x´
x3

3!
`
x5

5!
´ ¨ ¨ ¨ ` p´1qn´1 x2n´1

p2n´ 1q!
“

n´1
ÿ

k“0

p´1qk
x2k`1

p2k ` 1q!
.

Likewise the Taylor polynomials for cosx are Q2n,0pxq “ Q2n`1,0pxq where

Q2n`1,0pxq “ 1´
x2

2!
`
x4

4!
´ ¨ ¨ ¨ ` p´1qn

x2n

p2nq!
“

n
ÿ

k“0

p´1qk
x2k

p2kq!
.

By Taylor’s Theorem, the remainders have the form

R2n,0pxq “ sinx´ P2n,0pxq “
f p2n`1qpx0qx

2n`1

p2n` 1q!
“ p´1qn`1 cosx0

x2n`1

p2n` 1q!
.

Therefore |R2n,0pxq| ď
|x|2n`1

p2n`1q! . As in the previous example, we know that this
converges to 0. Therefore

sinx “ x´
x3

3!
`
x5

5!
´
x7

7!
` ¨ ¨ ¨ “

8
ÿ

k“0

p´1qk
x2k`1

p2k ` 1q!
.

Convergence is slow for a while if x is large, so you should always use trig identities
to manipulate things so that x is small. For example, if x is 1˝, which is π

180 in
radians, then

sin π
180 «

π
180 ´

π3

6p180q3 `
π5

120p180q5 ´
π7

7!p180q7 `
π9

9!p180q9

with an error of at most π11

11!p180q11 ă 5 ¨ 10´22. The real issue will be computing
powers of π.

Similarly, the error for cosx is given as

cosx´Q2n`1,0 “
f p2n`2qpx0qx

2n`2

p2n` 2q!
“ p´1qn`1 cosx0

x2n`2

p2n` 2q!
.
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Thus | cosx´Q2n`1,0| ď
|x|2n`2

p2n`2q! . Again we conclude that the error tends to 0 for
any value of x. Thus

cosx “ 1´
x2

2!
`
x4

4!
´
x6

6!
`
x8

8!
´ ¨ ¨ ¨ “

8
ÿ

k“0

p´1qk
x2k

p2kq!
.

If we take fpxq “ sinx and a “ π{6, then

P3,π{6pxq “
1
2
`

?
3

2
px´

π

6
q ´

1
2

1
2
px´

π

6
q2 ´

?
3

2
1
6
px´

π

6
q3.

This is a better starting point if you want to estimate sinp31˝q “ sin
`

π
6 `

π
180

˘

.

10.1.7. EXAMPLE. These examples give a false impression about how well
Taylor polynomials work. Consider fpxq “ tan´1pxq. The derivatives get progres-
sively more complicated. But there is a way around the problem. Note that f is an
odd function, and

f 1pxq “
1

1` x2 “ 1´ x2 ` x4 ´ x6 ` x8 ´ ¨ ¨ ¨ “

8
ÿ

k“0

p´1qkx2k.

This is a geometric series, and it converges when |x| ă 1, and diverges if |x| ě 1.
Let

Qpxq “
n
ÿ

k“0

p´1qkx2k “
1´ p´1qn`1x2n`2

1´ p´x2q
“

1` p´1qnx2n`2

1` x2 .

Therefore

|f 1pxq ´Qpxq| “
|x|2n`2

1` x2 ď |x|
2n`2.

By Corollary 10.1.4, Qpxq is the 2n` 1st Taylor polynomial of f 1pxq at a “ 0.
It follows immediately from the definition that if Pn,apxq is the nth Taylor

polynomial for fpxq, then P 1
n,apxq is the Taylor polynomial for f 1pxq of degree

n´ 1. Since fpxq “ 0, it follows that

P2n`2,0 “

n
ÿ

k“0

p´1qk

2k ` 1
x2k`1 “ x´

1
3
x3 `

1
5
x5 ´ ¨ ¨ ¨ `

p´1qn

2n` 1
x2n`1.

Rather than applying Taylor’s estimate for the error, which we can’t do easily since
we don’t know the higher derivatives, we instead apply the Mean Value Theorem
to fpxq ´ P2n`2,0pxq on r0, xs. There is an x0 P p0, xq so that

|fpxq ´ P2n`2,0pxq|

|x|
“
|pfpxq ´ P2n`2,0pxqq ´ pfp0q ´ P2n`2,0p0qq|

|x|

“ |f 1px0q ´ P
1
2n`2,0px0q| “ |f

1px0q ´Qpx0q| ă |x|
2n`2.
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For example, tan´1p 1
10q “

1
10 ´

1
3000 `

1
500000 ´

1
70000000 is within 1

9¨109 . In your
homework, you will be asked to verify that

π

4
“ 4 tan´1 1

5
´ tan´1 1

239
.

Using this, you can get a formula for π.
The function tan´1pxq is defined on the whole real line, but the Taylor polyno-

mials only approximate fpxq when |x| ă 1. This is fairly typical behaviour.

10.1.8. DEFINITION Big O and little o Notation.. We say that fpxq is Opgq
as x Ñ a if there is a constant C so that |fpxq| ď C|gpxq| for x P pa ´ δ, a ` δq.

We write fpxq “ Opgpxqq. Also fpxq is opgq as xÑ a if lim
xÑa

fpxq

gpxq
“ 0. We write

fpxq “ opgpxqq.

Normally gpxq will go to 0 as xÑ a, and f “ Opgq means that it goes to 0 at
the same rate or faster. And f “ opgq means that f goes to 0 faster than g.

It is not hard to show that if fi “ Opgiq near x “ a, then f1f2 “ Opg1g2q and
f1 ` f2 “ Opmaxtg1, g2u. Sometimes division is possible if the denominator is

closely related to the numerator. For example
Oppx´ aqnq

px´ aqk
“ Oppx´ aqn´kq.

The Corollary 10.1.4 says that fpxq “ Pn,apxq `Oppx´ aq
n`1q.

10.1.9. EXAMPLE. Let fpxq “ tanx and a “ 0. This is another function
whose derivatives get complicated quickly. Note that f is odd, so that f p2nqp0q “ 0
for n ě 1.

f 1pxq “ sec2 x and f 1p0q “ 1

f2pxq “ 2 sec2 x tanx and f2p0q “ 0

f p3qpxq “ 4 sec2 x tan2 x` 2 sec4 x and f p3qp0q “ 2

f p4qpxq “ 8 sec2 x tan3 x` 16 sec4 x tanx and f p4qp0q “ 0

f p5qpxq “ 16 sec2 x tan4 x` 88 sec4 x tan2 x` 16 sec6 x and f p5qp0q “ 16.

Therefore P5,0pxq “ P6,0pxq “ x` 1
3x

3 ´ 2
15x

5.
We will illustrate how to use big O arithmetic to find the Taylor polynomials.

tanx “
sinx
cosx

“
x´ 1

3x
3 ` 1

120x
5 ´ 1

7!x
7 `Opx9q

1´ 1
2x

2 ` 1
24x

4 ´ 1
720x

6 `Opx8q

In order to invert the expression for cosx, we find the polynomial which multiplies
it to get 1`Opx8q, which can be done by long division. We get
`

1´ 1
2x

2` 1
24x

4´ 1
720x

6`Opx8q
˘`

1` 1
2x

2` 5
24x

4` 61
720x

6`Opx8q
˘

“ 1`Opx8q.
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Therefore

tanx “
`

x´ 1
3x

3 ` 1
120x

5 ´ 1
7!x

7 `Opx9q
˘`

1` 1
2x

2 ` 5
24x

4 ` 61
720x

6 `Opx8q
˘

“ x` 1
3x

3 ` 2
15x

5 ` 17
315x

7 `Opx9q.

Note that when doing the multiplication, we only need to keep track of terms of
order at most 7 (since 8 never occurs). By Corollary 10.1.4, we have

P8,0pxq “ x`
1
3
x3 `

2
15
x5 `

17
315

x7.

10.1.10. EXAMPLE. Compute lim
xÑ0

cot2 x´ 1
x2 .

lim
xÑ0

cot2 x´
1
x2 “ lim

xÑ0

1
tan2 x

´
1
x2

“ lim
xÑ0

1
px` 1

3x
3 `Opx5qq2

´
1
x2

“ lim
xÑ0

1
x2 ` 2

3x
4 `Opx6q

´
1
x2

“ lim
xÑ0

1´ p1` 2
3x

2 `Opx4qq

x2p1` 2
3x

2 `Opx4qq

“ lim
xÑ0

´ 2
3 `Opx

2q

1` 2
3x

2 `Opx4q
“ ´

2
3
.

10.1.11. EXAMPLE. Compute lim
xÑ0

p1` xq1{x ´ e

x
.

First p1` xq1{x “ e
lnp1`xq

x . We know that eu “ 1` u` 1
2u

2 `Opu3q. We find the
Taylor polynomial for fpxq “ lnp1`xq at a “ 0. Then fp0q “ 0, f 1pxq “ 1

1`x and
f 1p0q “ 1 and f2pxq “ ´1

p1`xq2 and f2p0q “ ´1. So lnp1`xq “ x´ 1
2x

2`Opx3q,

and thus
lnp1` xq

x
“ 1´ 1

2x`Opx
2q. Therefore

p1` xq1{x “ e
lnp1`xq

x “ ee´ 1
2x`Opx2q

“ e
`

1` p´
1
2
x`Opx2qq `O

`

p´
1
2
x`Opx2qq2

˘˘

“ ep1´
1
2
x`Opx2qq “ e´

e

2
x`Opx2q.

Consequently.

lim
xÑ0

p1` xq1{x ´ e

x
“ lim

xÑ0

pe´ e
2x`Opx

2qq ´ e

x
“ lim

xÑ0
´
e

2
`Opxq “ ´

e

2
.

These two limits are much easier with Taylor polynomials than by L’Hôpital’s rule.
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10.1.12. EXAMPLE. Consider fpxq “

#

e´1{x2
if x ‰ 0

0 if x “ 0
. This is a rather

strange example. Observe that for n ě 1, with the substitution u “ ´1{x2,

lim
xÑ0

fpxq

x2n “ lim
xÑ0

e´1{x2

x2n “ lim
uÑ´8

euun “ 0.

Therefore fpxq “ opx2nq as x Ñ 0. By Corollary 10.1.4, P2n´1,0pxq “ 0. In
particular, we have that f pnqp0q “ 0 for all n ě 0. The function fpxq is extremely
flat at x “ 0.

Notice that the Taylor series
8
ř

n“0

f pnqp0q

n! xn “
8
ř

n“0
0xn “ 0 converges quickly

for all x P R. However the sum equals fpxq only at the point x “ 0.

10.2. Uniform limits

In the section on Taylor polynomials, we were sometimes able to show that
the infinite series of functions converges to our function. Exactly how this happens
can be delicate, and like the previous section, it is better when the estimates for
convergence are uniform over the domain. Note that in the ε–N version, there is an
interchange of when x and δ are determined.

10.2.1. DEFINITION. Suppose that f, fn : ra, bs Ñ R are functions.
We say that fn converges pointwise to a function fpxq if for each x P ra, bs,

lim
nÑ8

fnpxq “ fpxq. This means that for any ε ą 0 and x P ra, bs, there is an N so

that if n ě N , then |fnpxq ´ fpxq| ă ε.
We say that fn converges uniformly to a function fpxq if

lim
nÑ8

sup
aďxďb

|fnpxq ´ fpxq| “ 0.

This means that for any ε ą 0, there is an N so that if x P ra, bs and n ě N , then
|fnpxq ´ fpxq| ă ε.

10.2.2. EXAMPLE. Let fnpxq “ xn for x P r0, 1s. Then

lim
nÑ8

xn “ fpxq “

#

0 if 0 ď x ă 1
1 if x “ 1.

So fn converge pointwise to f . The convergence is not uniform because

sup
0ďxď1

|fnpxq ´ fpxq| “ sup
0ďxă1

xn “ 1

for every n ě 1. Notice that each fnpxq is continuous, but the limit function is not.
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10.2.3. EXAMPLE. Let fnpxq “ 1
n sinnx on r0, 2πs. Then

max
0ďxď2π

|fnpxq| “
1
n
.

Therefore fnpxq Ñ 0 uniformly on r0, 2πs. So f “ 0 is the uniform limit. However
f 1
npxq “ cosnx, and }f 1

n ´ f 1}8 “ 1 for all n ě 1. Hence the derivatives of a
uniformly convergent sequence need not be well-behaved.

10.2.4. EXAMPLE. Let fnpxq “

$

’

&

’

%

n2x if 0 ď x ď 1
n

n2p 2
n ´ xq if 1

n ď x ď 2
n

0 if 2
n ď x ď 1.

for n ě 2.

Then fn are continuous, and

lim
nÑ8

fnpxq “

#

0 if x “ 0
0 if x ą 0 because x ą 2

n for large n.

Therefore fn converges pointwise to fpxq “ 0. This limit is continuous. Neverthe-
less,

sup
0ďxď1

|fnpxq ´ fpxq| “ sup
0ďxď1

fnpxq “ fnp
1
nq “ n.

Therefore the convergence is not uniform.

Now consider lim
nÑ8

ż 1

0
fnpxq dx. The integral computes the area of a triangle

of height n and base 2
n . Thus

ż 1

0
fnptq dt “

1
2
pnq

2
n
“ 1.

Therefore

lim
nÑ8

ż 1

0
fnpxq dx “ 1 ‰ 0 “

ż 1

0
fpxq dx

Thus the limit of the integrals is not equal to the integral of the limit.

An easy variation is gnpxq “

$

’

&

’

%

n3x if 0 ď x ď 1
n

n3p 2
n ´ xq if 1

n ď x ď 2
n

0 if 2
n ď x ď 1.

for n ě 2. This

sequence still converges pointwise to f “ 0, but now the integrals diverge.

The advantage of uniform convergence is explained in the next result.

10.2.5. THEOREM. Suppose that fn : ra, bs Ñ R are continuous functions
which converge uniformly to a function fpxq. Then f is continuous.
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PROOF. Let ε ą 0. Pick N so that sup
aďxďb

|fnpxq ´ fpxq| ď
ε

3
. Since fn

is continuous on a closed bounded interval, it is uniformly continuous by Theo-
rem 4.6.3. Thus there is some δ ą 0 so that x, y P ra, bs and |x ´ y| ă δ implies
|fnpxq ´ fnpyq| ă

ε
3 . Compute

|fpxq ´ fpyq| “ |fpxq ´ fnpxq ` fnpxq ´ fnpyq ` fnpyq ´ fpyq|

ď |fpxq ´ fnpxq| ` |fnpxq ´ fnpyq| ` |fnpyq ´ fpyq|

ă
ε

3
`
ε

3
`
ε

3
“ ε.

Therefore fpxq is (uniformly) continuous. ■

10.2.6. EXAMPLE. We shows in Example 10.1.5 that ex “
8
ř

k“0

1
k!x

k. This

is pointwise convergence of the partial sums fnpxq “
n
ř

k“0

1
k!x

k. But in fact, we

showed more. We had estimates from Taylor’s Theorem

|ex ´ fnpxq| “
ˇ

ˇ

ˇ
ex ´

n
ÿ

k“0

1
k!
xk
ˇ

ˇ

ˇ
ď

e|x|n`1

pn` 1q!
.

The convergence is not uniform on p´8,8q because the terms 1
k!x

k are not uni-
formly small if x can be arbitrarily large. However if we restrict the domain to
r´R,Rs for any R, we obtain

sup
|x|ďR

|ex ´ fnpxq| ď
eRn`1

pn` 1q!
Ñ 0

as n Ñ 8. Thus the convergence is uniform on r´R,Rs. Frequently this is the
best one can do on an unbounded domain.

10.2.7. EXAMPLE. Let fnpxq “
řn

k“0p´1qkx2k for x P p´1, 1q. We can sum
this geometric series as in Example 10.1.7 to get

fnpxq “
1` p´1qnx2n`2

1` x2 .

This converges pointwise to fpxq “
1

1` x2 .

sup
´1ăxă1

|fnpxq ´ fpxq| “ sup
´1ăxă1

|x|2n`2

1` x2 “
1
2
.

This does not go to 0, so the convergence is not uniform. However, if 0 ă r ă 1,
and we restrict our domain to r´r, rs, then

sup
´rďxďr

|fnpxq ´ fpxq| “ sup
´rďxďr

|x|2n`2

1` x2 ď r2n`2 Ñ 0.
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Therefore the convergence is uniform on r´r, rs. Frequently this is the best one
can do on an open domain.

10.3. Norm and Completeness

10.3.1. DEFINITION. Define the uniform norm on Cra, bs by

}f}8 “ sup
aďxďb

|fpxq| “ max
aďxďb

|fpxq|.

Note that the supremum is a maximum by the Extreme Value Theorem, and
thus this is a finite value. The properties that make it a norm are contained in the
following proposition. The proof is left as an exercise for the reader.

10.3.2. PROPOSITION. The uniform norm is a function from Cra, bs into
r0,8q such that for f, g P Cra, bs,

p1q }f}8 “ 0 if and only if f “ 0 ppositive definiteq;

p2q }tf}8 “ |t| }f}8 for all t P R ppositive homogeneousq;

p3q }f ` g}8 ď }f}8 ` }g}8 ptriangle inequalityq.

10.3.3. OBSERVATION. If pfnq is a sequence of functions in Cra, bs, then
fnpxq converges uniformly to fpxq on ra, bs if and only if lim

nÑ8
}fn ´ f}8 “ 0.

The quantity }f ´ g}8 is a distance function that satisfies the triangle inequality
and measures uniform convergence.

10.3.4. DEFINITION. A sequence pfnqně1 in Cra, bs is a Cauchy sequence if
for all ε ą 0, there is an N so that if N ď n ă m, then }fn ´ fm}8 ă ε.

10.3.5. THEOREM. Cra, bs is complete. That is, every Cauchy sequence pfnq
of functions in Cra, bs converges.

PROOF. Let pfnqně1 be a Cauchy sequence in Cra, bs. Then for each x P
ra, bs, the scalar sequence pfnpxqq is a Cauchy sequence of real numbers since
given ε ą 0, use the N provided and observe that

|fnpxq ´ fmpxq| ď }fn ´ fm}8 ă ε for N ď n ă m.

Therefore

fpxq :“ lim
nÑ8

fnpxq



10.4 Uniform convergence and integration 181

exists as a pointwise limit. Moreover, from the estimate above,

}f ´ fn}8 “ sup
xPra,bs

|fpxq ´ fnpxq| ď lim sup
mÑ8

}fm ´ fn}8 ď ε for N ď n.

That means that fn converges uniformly to f . By Theorem 10.2.5, f is continuous.
Thus fn converges to f in Cra, bs. Therefore Cra, bs is complete. ■

10.4. Uniform convergence and integration

Now we explore the relationship between uniform convergence and integration.
Since integration is defined as a limiting procedure using Riemann sums, the inter-
change of limits and integrals is the interchange of two limits. This is something
that always needs careful consideration.

We saw in Example 10.2.4 that if a sequence converges pointwise to f , their

integrals may not converge to
ż 1

0
fptq dt.

10.4.1. INTEGRAL CONVERGENCE THEOREM. Suppose that pfnq is a
sequence of (continuous) functions in Cra, bs which converges uniformly to fpxq.

Then Fnpxq “

ż x

a
fnptq dt converges uniformly to F pxq “

ż x

a
fptq dt.

PROOF. We compute

|Fnpxq ´ F pxq| “
ˇ

ˇ

ˇ

ż x

a
fnptq ´ fptq dt

ˇ

ˇ

ˇ
ď

ż x

a
|fnptq ´ fptq| dt

ď |x´ a| }fn ´ f}8 ď pb´ aq}fn ´ f}8.

Therefore }Fn ´ F }8 ď pb´ aq}fn ´ f}8, which goes to 0 as nÑ 8. Thus Fn

converges uniformly to F . ■

10.4.2. COROLLARY. Suppose that pfnq is a sequence of continuous functions
on ra, bs which converges uniformly to fpxq. Then

lim
nÑ8

ż b

a
fnpxq dx “

ż b

a
fpxq dx

We saw in Example 10.2.3 that the derivatives of a uniformly convergent se-
quence need not converge. However if we control the derivatives, we can apply the
Integral Convergence Theorem.
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10.4.3. COROLLARY. Suppose that fn are C1 functions on ra, bs such that
f 1
npxq converges uniformly to a function gpxq. If there is a point c P ra, bs so that

lim
nÑ8

fnpcq “ γ exists, then fn converges uniformly to Gpxq “ γ `

ż x

c
gptq dt.

PROOF. By the FTC, fnpxq “ fnpcq `

ż x

c
f 1
nptq dt. By the Integral Conver-

gence Theorem,
ż x

c
f 1
nptq dt converges uniformly to

ż x

c
gptq dt. Therefore fnpxq

converges uniformly to γ `
ż x

c
gptq dt “ Gpxq. ■

One useful consequence of this is the following.

10.4.4. COROLLARY. Suppose that fnpxq are C1 functions on ra, bs such that
fnpxq converges uniformly to fpxq and f 1

npxq converges uniformly to gpxq. Then f
is differentiable and f 1 “ g.

10.5. Series of functions

10.5.1. DEFINITION. A series of functions
8
ř

n“1
fnpxq in Cra, bs converges uni-

formly on ra, bs if the sequence of partial sums snpxq “
n
ř

k“1
fkpxq converges uni-

formly.

A handy tool for verifying uniform convergence of series is the following test.

10.5.2. WEIERSTRASS M-TEST. Suppose that fn P Cra, bs and there are

constants Mn ě }fn}8 such that
ř

ně1
Mn ă 8. Then

8
ř

n“1
fnpxq converges uni-

formly.

PROOF. For each x P ra, bs,
ř

ně1
|fnpxq| ď

ř

ně1
Mn ă 8. Therefore this series

converges absolutely to a function fpxq pointwise. Moreover

}f ´ sn}8 “ sup
aďxďb

|fpxq ´ snpxq| “ max
aďxďb

ˇ

ˇ

ˇ

8
ÿ

k“n`1

fkpxq
ˇ

ˇ

ˇ

ď

8
ÿ

k“n`1

}fn}8 ď
8
ÿ

k“n`1

Mk.
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The right hand side converges to 0 as n Ñ 8. Therefore snpxq converges uni-
formly to fpxq. ■

10.5.3. EXAMPLE. Let’s take another look at Example 10.1.7. Consider the

series
8
ř

n“0
p´x2qn. This is a geometric series, and it converges if and only if |x| ă 1.

In this case, the sum is
8
ÿ

n“0

p´x2qn “
1

1´ p´x2q
“

1
1` x2 .

Now sup|x|ă1 |p´x
2qn| “ 1 for each n ě 0. Thus this convergence is not uniform

on p´1, 1q.
We fix some r P p0, 1q. Then

}p´x2qn}Cr´r,rs “ max
|x|ďr

|p´x2qn| “ r2n.

Since
8
ř

n“0
r2n “

1
1´ r2 ă 8, the Weierstrass M-test applies to show that the series

8
ř

n“0
p´x2qn converges uniformly on r´r, rs to

1
1` x2 .

Let

Fnpxq “

ż x

0

n
ÿ

k“0

p´t2qk dt “
n
ÿ

k“0

p´1qkx2k`1

2k ` 1
.

By the Integral Convergence Theorem, this sequence of functions converges uni-
formly on r´r, rs to

F pxq “

ż x

0

1
1` t2

dt “ tan´1pxq.

Therefore

tan´1pxq “
8
ÿ

n“0

p´1qnx2n`1

2n` 1
for |x| ă 1.

The convergence is uniform on r´r, rs for each r ă 1, so this convergence is valid

pointwise on p´1, 1q. At x “ ˘1, we have the series ˘
8
ř

n“0

p´1qn

2n`1 . This converges

by the Alternating series test. Indeed, this is an alternating series for every value of
x P r´1, 1s. The error estimate from the Alternating series test shows that

ˇ

ˇ

ˇ
tan´1pxq ´

n
ÿ

k“0

p´1qkx2k`1

2k ` 1

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

p´1qn`1x2n`3

2k ` 3

ˇ

ˇ

ˇ
ď

1
2n` 3

.

This shows that

} tan´1pxq ´ snpxq}Cr´1,1s ď
1

2n` 3
.
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So the Taylor series for tan´1pxq converges uniformly on r´1, 1s even though the
series for its derivative does not. However it converges very slowly at x “ 1. The
famous conditionally convergent series

π

4
“

8
ÿ

n“0

p´1qn

2n` 1
“ 1´ 1

3 `
1
5 ´

1
7 ´

1
9 ` . . .

is correct, but of limited use.

10.5.4. EXAMPLE. Weierstrass’s Nowhere Differentiable Function. There exist
continuous functions that are not differentiable at any point. It is not easy to write
one down. One of the first examples is due to Weierstrass. Define

fpxq “
ÿ

kě1

2´k cosp10kπxq “
ÿ

kě1

fkpxq for x P R.

Since }fk}8 “ 2´k, the Weierstrass M-test shows that this series converges uni-
formly to a continuous function on R. Moreover each fk is 1-periodic, so f has
period 1. Thus we need only consider x P r0, 1s.

FIGURE 10.1. Weierstrass Nowhere differentiable function

Let x “ 0.x1x2x3 ¨ ¨ ¨ P r0, 1s. For each n ě 1, let an “ 0.x1x2x3 . . . xn and
bn “ an ` 10´n. Notice that 10nan is an integer and 10nbn “ 10nan ` 1; so

fnpanq “ 2´n cosp10nπanq “ 2´np´1q10nan

fnpbnq “ 2´n cosp10nπbnq “ 2´np´1q10nan`1.

Therefore |fnpanq ´ fnpbnq| “ 21´n.
If k ą n, 10kan and 10kbn are both even integers, so that fkpanq “ fkpbnq. If

1 ď k ă n, the Mean Value Theorem shows that

|fkpanq ´ fkpbnq| ď }f
1
k}8 pbn ´ anq “ p2

´k10kπq10´n “ 2´n5k´nπ.
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Therefore

|fpanq ´ fpbnq| “
ˇ

ˇ

ˇ

8
ÿ

k“1

fkpanq ´ fkpbnq
ˇ

ˇ

ˇ

ě |fnpanq ´ fnpbnq| ´
n´1
ÿ

k“1

|fkpanq ´ fkpbnq|

ě 21´n ´ 2´nπ
n´1
ÿ

k“1

5k´n

ą 2´np2´
π

4
q ą 2´n.

It follows that choosing the endpoint yn P tan, bnu judiciously, we can arrange
that |fpynq ´ fpxq| ą 2´n´1. However |yn ´ x| ď 10´n. Therefore

ˇ

ˇ

ˇ

ˇ

fpynq ´ fpxq

yn ´ x

ˇ

ˇ

ˇ

ˇ

ą
2´n´1

10´n
“

5n

2
.

This tends to8, from which we deduce that f is not differentiable at x.

10.6. Power series

In this section, we study a special kind of series of functions that plays a central
role in Taylor series.

10.6.1. DEFINITION. A power series about x “ x0 is a series of functions of

the form
8
ř

n“0
anpx´ x0q

n.

The first important result about power series is that convergence occurs in an
interval centred at x0 that can be explicitly computed. Note that the theorem does
not say what happens at the endpoints of this interval.

10.6.2. HADAMARD’S THEOREM. Given a power series,
8
ř

n“0
anpx ´ x0q

n,

define

α “ lim sup
nÑ8

|an|
1{n and R “

$

’

&

’

%

`8 if α “ 0
1
α if 0 ă α ă 8.

0 if α “ `8
Then

p1q The series converges absolutely for each x such that |x´ x0| ă R.

p2q The series diverges for all x such that |x´ x0| ą R.
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p3q If 0 ď r ă R, the series converges uniformly on rx0 ´ r, x0 ` rs.

PROOF. We use the root test:

lim sup
nÑ8

ˇ

ˇanpx´ x0q
n
ˇ

ˇ

1{n
“ α|x´ x0|.

Therefore this converges absolutely if α|x ´ x0| ă 1, or |x ´ x0| ă R; and
it diverges if α|x ´ x0| ą 1, or |x ´ x0| ą R. Endpoints have to be checked
separately.

If 0 ď r ă R , then sup|x´x0|ďr |anpx ´ x0q|
n “ |an|r

n. By (1), we have
ř

ně0
|an|r

n ă 8. Thus by the Weierstrass M-test, the series converges uniformly

on rx0 ´ r, x0 ` rs. ■

10.6.3. DEFINITION. The valueR in Hadamard’s Theorem is called the radius
of convergence of the power series.

10.6.4. EXAMPLE. Consider the series
ř

ně0

xn

2nna
for a ą 0. Then

lim sup
nÑ8

ˇ

ˇ

ˇ

1
2nna

ˇ

ˇ

ˇ

1{n
“

1
2

lim sup
nÑ8

´ 1
n1{n

¯a
“

1
2
.

Therefore the radius of converges is R “ 2. So the series converges on p´2, 2q and
diverges if |x| ą 2.

We check the endpoints separately. For x “ 2, we get the series
ř

ně0

1
na

. This

converges absolutely if a ą 1 and diverges if a ď 1. Now consider x “ ´2.

We get the series
ř

ně0

p´1qn

na
. This converges absolutely if a ą 1 and converges

conditionally by the Alternating series test if 0 ă a ď 1. So we see that the series
can converge at both endpoints, or one endpoint.

10.6.5. EXAMPLE. In Example 10.5.3, we saw that the power series
ř

ně0
p´x2qn

converges on p´1, 1q to
1

1` x2 , and diverges for |x| ě 1. So this series has radius

of convergence 1, and fails to converge at either endpoint. However the series
8
ř

n“0

p´1qnx2n`1

2n` 1
also has radius of convergence 1, and converges on r´1, 1s to

tan´1pxq. In fact the convergence is uniform on r´1, 1s.

10.6.6. EXAMPLE. In Examples 10.1.5 and 10.2.6, we saw that the power se-

ries
ř

ně0

xn

n!
converges absolutely for all x P R. Thus the radius of convergence is
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8. We also showed that convergence is uniform on r´r, rs for any r ă 8, but does
not converge uniformly on the whole real line.

10.6.7. EXAMPLE. Consider the power series
ř

ně0
n!xn. By the ratio test, we

have

lim
nÑ8

ˇ

ˇ

ˇ

pn` 1q!xn`1

n!xn

ˇ

ˇ

ˇ
“ lim

nÑ8
pn` 1q|x| “

#

`8 if x ‰ 0
0 if x “ 0.

Thus the series diverges if x ‰ 0. So the radius of convergence is 0.

10.6.8. EXAMPLE. Consider the power series
ř

ně0

x2n

2n
. Then

α “ lim sup
nÑ8

ˇ

ˇ

ˇ

1
2n

ˇ

ˇ

ˇ

1{2n
“

1
?

2
and R “

?
2.

You could also use the ratio test here.

10.7. Differentiation and integration of power series

While the derivative of a series is often not the series of derivatives, things work
out well for power series.

10.7.1. THEOREM. Term by term differentiation of power series.
Suppose that fpxq “

ř

ně0
anpx ´ x0q

n has a radius of convergence R ą 0. Then

gpxq “
ř

ně0
nanpx´ x0q

n´1 has a radius of convergence R; and f 1pxq “ gpxq for

|x´ x0| ă R.

PROOF. The radius of convergence for the derived series is given by the recip-
rocal of

α “ lim sup
nÑ8

|nan|
1

n´1 “ lim sup
nÑ8

n
1

n´1 lim sup
nÑ8

`

|an|
1{n

˘
n

n´1 “
1
R
.

Thus the radius of convergence is also R. We see that sN pxq “
N
ř

n“0
anpx ´ x0q

n

converges uniformly to fpxq and s1
N pxq “

N
ř

n“1
nanpx ´ x0q

n´1 converges uni-

formly to gpxq on rx0 ´ r, x0 ` rs for 0 ă r ă R. By Corollary 10.4.4 to the Inte-
gral convergence theorem, f is differentiable and f 1pxq “ gpxq on rx0´ r, x0` rs
for 0 ă r ă R. Therefore f 1pxq “ gpxq on px0 ´R, x0 `Rq. ■
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The following consequence for integration is immediate.

10.7.2. COROLLARY. Term by term integration of power series.
Suppose that fpxq “

ř

ně0
anpx ´ x0q

n has a radius of convergence R ą 0. Then

F pxq “
ř

ně0

an
n` 1

px´ x0q
n`1 has a radius of convergence R; and

F pxq “

ż x

x0

fptq dt for |x´ x0| ă R.

We also obtain the following more powerful consequence.

10.7.3. COROLLARY. Suppose that fpxq “
ř

ně0
anpx ´ x0q

n has a radius of

convergence R ą 0. Then f is C8 on px0´R, x0`Rq. Moreover an “
f pnqpx0q

n!
for n ě 0.

PROOF. This follows from repeated application of term by term differentiation,
so that f has derivatives of all orders. The constant term in the series for f pnqpxq is
n!an “ f pnqpx0q. ■

10.7.4. EXAMPLE. Let fpxq “
ř

ně0

xn

n!
. We have already shown that fpxq “

ex, but we establish this here in a different way. By the ratio test,

lim
nÑ8

xn`1

pn`1q!
xn

n!
“ lim

nÑ8

x

n` 1
“ 0.

Therefore this converges for all x P R and so R “ 8. The derivative is

f 1pxq “
ÿ

ně1

nxn´1

n!
“

ÿ

ně1

xn´1

pn´ 1q!
“

ÿ

ně0

xn

n!
“ fpxq.

Hence as long as fpxq ‰ 0 (which by continuity includes an interval around 0
where fp0q “ 1,

1 “
f 1pxq

fpxq
“

d

dx

`

ln fpxq
˘

.

Integrating, we obtain

x “

ż x

0
1 dt “

ż x

0

d

dx

`

ln fptq
˘

dt “ ln fptq
ˇ

ˇ

ˇ

x

0
“ ln fpxq.

Exponentiating, we have fpxq “ ex on an interval around 0.
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Now let gpxq “ e´xfpxq for x P R. Then

g1pxq “ ´e´xfpxq ` exf 1pxq “ e´xpf 1pxq ´ fpxqq “ 0.

Therefore gpxq is constant and gp0q “ 1, so that fpxq “ ex everywhere.

10.7.5. EXAMPLE. Let fpxq “
8
ř

n“1
n2xn. Since lim supnÑ8pn

2q1{n “ 1, we

have R “ 1. Evidently the series diverges at x “ ˘1, but it converges on p´1, 1q.

Now
fpxq

x
“

8
ř

n“0
pn` 1q2xn. Integrate:

gpxq “

ż x

0

fptq

t
dt “

8
ÿ

n“0

pn` 1qxn`1

is also valid on p´1, 1q. Similarly
gpxq

x
“

8
ř

n“0
pn ` 1qxn. Integrating again, we

can sum a geometric series

hpxq “

ż x

0

gptq

t
dt “

8
ÿ

n“0

xn`1 “
x

1´ x
.

Therefore
gpxq

x
“ h1pxq “

p1´ xq ` x
p1´ xq2

“
1

p1´ xq2
.

Therefore gpxq “
x

p1´ xq2
and

fpxq

x
“ g1pxq “

p1´ xq2 ` 2x
p1´ xq3

“
1` x
p1´ xq3

.

So finally we have fpxq “
xp1` xq
p1´ xq3

on p´1, 1q.

We can plug in values of x to get interesting sums. Take x “ ˘1
2 :

8
ÿ

n“1

n2

2n
“ fp 1

2q “

1
2

3
2

1
8

“ 6 and
8
ÿ

n“1

p´1q2n2

2n
“ fp´1

2q “
´1

4
27
8

“
´2
27
.

We need the following observation about the uniqueness of a power series for
a function.

10.7.6. PROPOSITION. If two convergent power series
ř

ně0
anpx ´ x0q

n and
ř

ně0
bnpx´x0q

n agree on px0´ r, x0` rq for some r ą 0, then bn “ an for n ě 0.

That is, the power series for a function is unique (if it has one).
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PROOF. Let fpxq “
ř

ně0
anpx ´ x0q

n and gpxq “
ř

ně0
bnpx ´ x0q

n. If they

agree on an interval around x0, then all of their derivatives agree on the interval as
well. Hence by Corollary 10.7.3,

an “
f pnqpx0q

n!
“
gpnqpx0q

n!
“ bn for n ě 0.

Thus the power series for fpxq is unique. ■

10.7.7. EXAMPLE. Let α ‰ 0 be any real number. Look for a power series
for fpxq “ p1 ` xqα near x “ 0. Then f 1pxq “ αp1 ` xqα´1; and therefore
αfpxq “ p1 ` xqf 1pxq. Suppose that there is a power series fpxq “

ř

ně0
anx

n

valid on p´r, rq for some r ą 0. Then f 1pxq “
ř

ně1
nanx

n´1. Therefore

α
ÿ

ně0

anx
n “ p1` xq

ÿ

ně1

nanx
n´1 “ a1 `

ÿ

ně1

pnan ` pn` 1qan`1qx
n.

By Proposition 10.7.6, the coefficients are equal:

αa0 “ a1 and αan “ nan ` pn` 1qan`1 for n ě 1.

Now a0 “ fp0q “ 1. Thus

a1 “ α and an`1 “
α´ n

n` 1
an for n ě 1.

The next few terms are

a2 “
αpα´ 1q

2
, a3 “

αpα´ 1qpα´ 2q
6

, a4 “
αpα´ 1qpα´ 2qpα´ 3q

24
.

The pattern, which is readily verified by induction, is

an “
αpα´ 1q ¨ ¨ ¨ pα` 1´ nq

n!
“:

ˆ

α

n

˙

.

We call this a binomial coefficient by analogy with the positive integer case.
Let’s verify that this is correct. Define gpxq “

ř

ně0

`

α
n

˘

xn. By the ratio test, we

have

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

`

α
n`1

˘

xn`1
`

α
n

˘

xn

ˇ

ˇ

ˇ

ˇ

“ lim
nÑ8

|pα´ nqx|

n` 1
“ |x|.
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Therefore the series converges for |x| ă 1 and diverges for |x| ą 1. Term by term
differentiation shows that

g1pxq “
ÿ

ně1

ˆ

α

n

˙

nxn´1 “
ÿ

ně0

pn` 1q
ˆ

α

n` 1

˙

xn

“
ÿ

ně0

pn` 1q
αpα´ 1q ¨ ¨ ¨ pα´ nq

pn` 1q!
xn

“
ÿ

ně0

pα´ nq
αpα´ 1q ¨ ¨ ¨ pα` 1´ nq

n!
xn

“ α
ÿ

ně0

ˆ

α

n

˙

xn ´ x
ÿ

ně1

ˆ

α

n

˙

nxn´1 “ αgpxq ´ xg1pxq.

Hence p1` xqg1pxq “ αgpxq.

Now we have gp0q “ 1 and
g1pxq

gpxq
“

α

1` x
. Integrating with |x| ă 1,

ln gpxq “
ż x

0

g1ptq

gptq
dt “

ż x

0

α

1` t
dt “ α ln |1` t|

ˇ

ˇ

ˇ

x

0
“ α lnp1` xq.

Therefore gpxq “ p1` xqα. That is,

p1` xqα “
ÿ

ně0

ˆ

α

n

˙

xn for |x| ă 1 and α ‰ 0.

10.8. Abel’s Theorem

In this section, we show that if the power series converges at an endpoint, then
it takes the right value there.

10.8.1. ABEL’S THEOREM. Suppose that fpxq “
ř

ně0
anpx´x0q

n has radius

of convergence 0 ă R ă 8. If
ř

ně0
anR

n converges, then the series converges

uniformly on rx0, x0 `Rs and
ÿ

ně0

anR
n “ lim

xÑpx0`Rq´
fpxq.

Similarly if
ř

ně0
anp´Rq

n converges, then the series converges uniformly on the

interval rx0 ´R, x0s and
ÿ

ně0

anp´Rq
n “ lim

xÑpx0´Rq`
fpxq.
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PROOF. Let bn “ anR
n. Then

ř

ně0
bn converges. Given ε ą 0, there is an

N so that if N ď n ă m, then
ˇ

ˇ

ˇ

m
ř

i“n`1
bi

ˇ

ˇ

ˇ
ă ε. Fix x1 P rx0, x0 ` Rq. Then

cn “
´

x1´x0
R

¯n
converges monotonely to 0. Using the Summation by parts lemma,

we have
ˇ

ˇ

ˇ

m
ÿ

i“n`1

aipx1 ´ x0q
n
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

m
ÿ

i“n`1

bici

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
cm

m
ÿ

i“n`1

bi `
m
ÿ

i“n`1

bi

m´1
ÿ

j“i

cj ´ cj`1

ˇ

ˇ

ˇ

ď cm

ˇ

ˇ

ˇ

m
ÿ

i“n`1

bi

ˇ

ˇ

ˇ
`

m´1
ÿ

j“n

cj ´ cj`1

ˇ

ˇ

ˇ

j
ÿ

i“n`1

bi

ˇ

ˇ

ˇ

ă εpcm `
m´1
ÿ

j“n

cj ´ cj`1q “ cnε ď ε.

Therefore

sup
x0ďxďx0`R

ˇ

ˇ

ˇ

m
ÿ

i“n`1

aipx1 ´ x0q
n
ˇ

ˇ

ˇ
ď ε for all N ď n ă m.

That is, the series is uniformly Cauchy, so converges uniformly. Therefore the limit
function fpxq is continuous on rx0, x0 `Rs. Thus

ÿ

ně0

anR
n “ fpx0 `Rq “ lim

xÑpx0`Rq´
fpxq.

The other case follows by symmetry. ■

10.8.2. EXAMPLE. Consider the alternating harmonic series
8
ř

n“1

p´1qn`1

n
.

This is a limiting case of the power series fpxq “
8
ř

n“1

xn

n
. This series has radius of

convergence 1 because lim
nÑ8

1
n1{n

“ 1. The series fails to converge at x “ 1, but

does converge at x “ ´1 by the alternating series test. So Abel’s Theorem applies
to say that the limit function is continuous, and is the uniform limit of the partial
sums on r´1, 0s.

Using term by term differentiation, we have

f 1pxq “
ÿ

ně1

xn´1 “
ÿ

ně0

xn “
1

1´ x
.

Since fp0q “ 0, we have

fpxq “

ż x

0

1
1´ t

dt “ ´ lnp1´ xq.
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By Abel’s Theorem,

8
ÿ

n“1

p´1qn`1

n
“ ´fp´1q “ ln 2.

Exercises for Chapter 10

1. Use Taylor polynomials to compute these limits, not L’Hôpital’s Rule.

(a) lim
xÑ0

ex ` e´x ´ 2
x2 .

(b) lim
xÑ0

sinhx´ sinx
x3 .

(c) lim
xÑ0

´sinx
x

¯1{x2

. HINT: Use a 3rd order polynomial for sinpxq at x “ 0

and a 2nd order polynomial for lnpxq at x “ 1.

2. (a) Verify that 4 tan´1p 1
5q ´ tan´1p 1

239q “
π

4
.

(b) Use (a) and Taylor polynomials to calculate π to 6 decimals of accuracy
with error estimates.

3. (a) Find the Taylor polynomials Pn,1pxq for fpxq “ lnx about a “ 1, and give
the error estimates.

(b) Compare the errors for the following methods for computing ln 2. Which is
best?
(i) Pn,1p2q (ii) ´Pn,1p.5q (iii) Pn,1p

4
3q ´ Pn,1p

2
3q.

4. Let fpxq “ p1` xq´1{2.
(a) Find a formula for f pkqpxq. Hence show that

f pkqp0q
k!

“

ˆ–1
2
k

˙

:“
–1

2p
–1

2 ´ 1q ¨ ¨ ¨ p–1
2 ` 1´ kq

k!
“
p´1qk

4k

ˆ

2k
k

˙

(b) Find the Taylor polynomial Pn,0pxq for f , and give the error estimate.
(c) Show that

?
2 “ 1.4fp´.02q. Use this to compute

?
2 to 6 decimal places

with error estimates.

5. Let fnpxq “ xne´nx for x ě 0 and n ě 1. Find lim
nÑ8

fnpxq. Is this limit

uniform on r0,8q?

6. Let fnpxq “
x

1` nx2 for x P R and n ě 1. Find lim
nÑ8

fnpxq. Is this limit

uniform on R?



194 Limits of Functions

7. Let fn and gn be continuous functions on ra, bs for n ě 1. Suppose that fn
converges uniformly to f and gn converges uniformly to g on ra, bs. Prove that
fngn converges uniformly to fg on ra, bs.

8. Let fnpxq “
x2

p1` x2qn
for x P R, and let skpxq “

k
ř

n“0
fnpxq.

(a) Find lim
kÑ8

skpxq.

(b) For which values a ă b does this series converge uniformly on ra, bs?

9. For n ě 1, define functions fn on r0,8q by

fnpxq “

$

’

&

’

%

e´x for 0 ď x ď n

e´2npen ` n´ xq for n ď x ď n` en

0 for x ě n` en.

(a) Find the pointwise limit f of fn. Show that the convergence is uniform on
r0,8q.

(b) Compute
ż 8

0
fpxq dx and lim

nÑ8

ż 8

0
fnpxq dx.

(c) Why does this not contradict Integral Convergence Theorem?

10. (a) Suppose that f : RÑ R is uniformly continuous. Let fnpxq “ fpx`1{nq.
Prove that fn converges uniformly to f on R.

(b) Does this remain true if f is just continuous? Prove it or provide a coun-
terexample.

11. For which values of x ě 1 does the expression xx
xx

..
.

make sense?
To tackle this, define f1pxq “ x and fn`1pxq “ xfnpxq for x ě 1 and n ě 1.
(a) Show that fn`1pxq ě fnpxq for all n ě 1.
(b) When Lpxq “ lim

nÑ8
fnpxq exists, find an equation for Lpxq.

Use it to find an upper bound for x.
(c) For these values of x, show by induction that fnpxq is bounded above by e

for all n ě 1. What can you conclude?
(d) What happens for larger x?

12. Find the radius of convergence for the following series, and evaluate the func-
tion.

(a) fpxq “
8
ř

n“0
pn2 ` nqxn (b) gpxq “

8
ř

n“0

x2n`1

p2n` 1q!

(c) hpxq “
8
ř

n“2

p´1qnxn

n2 ´ n
(d) Evaluate

8
ř

n“2

p´1qn

n2 ´ n
. Justify!

13. Suppose that fpxq “
8
ř

j“0
ajx

j and gpxq “
8
ř

k“0
bkx

k have positive radii of con-
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vergence R1 and R2 respectively. Let cn “
n
ř

j“0
ajbn´j for n ě 0; and let

R “ mintR1, R2u.

(a) Define hpxq “
8
ř

n“0
cnx

n. Prove that hpxq “ fpxqgpxq on p´R,Rq.

(b) Give an example where h has radius of convergence strictly greater than R.



CHAPTER 11

Differential Equations

11.1. Examples of DEs

11.1.1. DEFINITION. A first order DE is a relation between the independent
variable x, a function ypxq and its derivative y1pxq of the form fpx, y, y1q “ 0. It is
in standard form if y1 “ gpx, yq.

An nth order DE has the form fpx, y, y1, . . . , ypnqq “ 0. It is in standard form
if ypnq “ gpx, y, y1, . . . , ypn´1qq.

11.1.2. EXAMPLE. Consider x` yy1 “ 0. In standard form, we have y1 “ ´
x

y
provided that y1pxq ‰ 0. By inspection, we can notice that

d

dx
px2 ` y2q “ 2px` yy1q “ 0.

Therefore x2 ` y2 “ c is constant. Clearly we need c ě 0. So the solution curves
appear to be circles of radius

?
c and centre p0, 0q. However a circle does not yield

a function ypxq, but rather there are two values of y for most x. To get a function,
we have two solutions for each c ą 0, namely

ypxq “
a

c´ x2 and ypxq “ ´
a

c´ x2 for |x| ă
?
c.

Note that y1p˘
?
cq is not defined, so that the endpoints are not part of the solution.

This provides two one parameter families of solutions.
The usual way to decide which of these various solutions is applicable is to

provide extra data, known as initial value conditions. A DE of order n requires
n pieces of data, often the values at some point a of ypaq, . . . yn´1qpaq, but other
choices arise.

Suppose that in this case, we are told that yp0q “ r P R. Then we can deter-
mine the solution as

ypxq “
a

r2 ´ x2 if r ą 0 and ypxq “ ´
a

r2 ´ x2 if r ă 0.

11.1.3. EXAMPLE. Consider y1 “ fpxq and ypaq “ γ. By the FTC, this has a
unique solution

ypxq “ γ `

ż x

a
fptq dt.

196
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11.1.4. EXAMPLE. Radioactive decay. A radioactive element will decay (i.e.,
lose an electron to become a more stable isotope) at a rate proportional to the
amount of radioactive material. Suppose that ρptq is the amount of material at
time t for t ě t0 and that ρpt0q “ ρ0 is known. We interpret the first sentence as
saying that there is a constant k ą 0 (unknown so far) so that

ρ1ptq “ ´kρptq.

In this case, we can separate variables, getting all of the ρ’s on one side and x’s on
the other:

ρ1

ρ
“ ´k.

Therefore

kpt0 ´ tq “

ż t

t0

´k ds “

ż t

t0

ρ1psq

ρ
psq ds “ ln ρpsq

ˇ

ˇ

ˇ

t

t0
“ ln

ρptq

ρpt0q
.

Hence
ρptq “ ρpt0qe

´kpt´t0q.

This is called exponential decay.
The half life of uranium 235 is 4.5 billion years, and uranium 238 has a half

life of 700 million years. Radio carbon or carbon 14, has a half life of 5730 ˘ 40
years. It is created all of the time in the atmosphere and incorporated into plant
material until the plant dies. Animals eat plants and take in carbon 14 as well. The
percentage of material at the time of death is predictable, so one can date the age
of ancient plants and animals based on measurement of the current percentage of
carbon 14. For carbon 14, the constant k can be determined from

1
2
“ e´5730k or k “

ln 2
5730

« 1.21 ¨ 10´4

if time is measured in years.

11.1.5. EXAMPLE. Consider a DE y1 “ fpx, yq where f is homogeneous of
order 0, meaning that fptx, tyq “ fpx, yq for all t ‰ 0. To solve this, we make a
substitution z “

y

x
or y “ xz. Then

y1 “ z ` xz1 “ fpx, yq “ fp1, yxq “ fp1, zq.

Again we can separate variable

z1

fp1, zq ´ z
“

1
x
.

You can now integrate and solve for z.
For a specific example of this type, consider

px` yq ` px´ yqy1 “ 0 where fpx, yq “
x` y

y ´ x
“

1` z
z ´ 1

.
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Thus
1
x
“

z1

1`z
z´1 ´ z

“
pz ´ 1qz1

1` 2z ´ z2 .

Integrating, we obtain

ln |x| ` c “ ´
1
2

ln |z2 ´ 2z ´ 1|

Exponentiating, we obtain

x2pz2 ´ 2z ´ 1q “ C.

Replacing z by
y

x
again, we get

C “ y2 ´ 2xy ´ x2 “ py ´ xq2 ´ 2x2.

The parameter C yields a family of hyperbolae which are asymptotic to the lines
y “ p1˘

?
2qx. The blue lines are for positive values of C and the red for negative

values.

x
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FIGURE 11.1. Solution curves

11.1.6. EXAMPLE. Pursuit curves. A rabbit R starts at pa, 0q and runs up the
line x “ a with speed ρ m/s. A dog D starts at p0, 0q and runs straight at the rabbit
at speed kρ, where k ě 1. Find the path of the dog. How long does it take him to
catch the rabbit? If k “ 1, how close does the dog get?

Let the dog’s path be γptq “ pxptq, yptqq. So γp0q “ p0, 0q. The rabbit’s
position at time t is pa, ρtq. Thus at time t the slope of the dog’s trajectory is

dy

dx
“
ρt´ y

a´ x
.
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Using the arc length formula, we see that at time t, the dog has travelled a distance
of

kρt “

ż xptq

0

c

1`
`

dy
dx

¯2
dx

Solving the first equation for t and writing p for dy
dx , we get ρt “ pa´ xqp` y. So

1
k

ż x

0

a

1` p2 dx “ ρt “ pa´ xqp` y.

Differentiating with respect to x yields

1
k

a

1` p2 “ pa´ xqp1 ´ p` p “ pa´ xqp1.

At time t “ 0, we have yp0q “ 0 and pp0q “ y1p0q “ 0. The latter is because the
initial direction of the dog is along the x-axis.

Rewrite the DE as
1

kpa´ xq
“

p1

a

1` p2
and pp0q “ 0.

Integrating, we find

´
1
k

lnpa´ xq ` c “ sinh´1ppq.

Plugging in the initial datum pp0q “ 0 “ xp0q, we get

0 “ sinh´1p0q “ ´
1
k

ln a` c or c “
ln a
k
.

Thus

ppxq “ sinh
´ ln a

a´x

k

¯

“
1
2

´

` a

a´ x

˘1{k
´
` a

a´ x

˘´1{k
¯

“
1
2

´

`

1´ x
a

˘´1{k
´
`

1´ x
a

˘1{k
¯

.

Finally we integrate to get y. First we deal with k ą 1.

ypxq “ yp0q `
ż x

0
ppxq dx

“
1
2

ż x

0

`

1´ u
a

˘´1{k
´
`

1´ u
a

˘1{k
du

“
´ka

2pk ´ 1q
`

1´ u
a

˘1´ 1
k `

ka

2pk ` 1q
`

1´ u
a

˘1` 1
k

ˇ

ˇ

ˇ

x

0

“
´ka

2pk ´ 1q
`

1´ x
a

˘1´ 1
k `

ka

2pk ` 1q
`

1´ x
a

˘1` 1
k `

ka

k2 ´ 1
.
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While this is complicated, we are interested in when the dog catches the rabbit,
which occurs when x “ a. At this point, ypaq “ ka

k2´1 . The rabbit covers this

distance in ka
ρpk2´1q

seconds. So the dog runs k2a
k2´1 metres.

Now consider the case k “ 1. Then

ypxq “ yp0q `
ż x

0
ppxq dx “

1
2

ż x

0

`

1´ u
a

˘´1
´
`

1´ u
a

˘

du

“ ´
a

2
ln
`

1´ u
a

˘

´
u

2
`
u2

4a

ˇ

ˇ

ˇ

x

0

“
x2

4a
´
x

2
´
a

2
ln
`

1´ x
a

˘

.

Thus

lim
xÑa´

ypxq “ `8.

Finally we compute

distpD,Rq2 “ pa´ xq2 ` pρt´ yq2 “ pa´ xq2 ` pa´ xq2p2

“ pa´ xq2
´

1`
1
4

´

`

1´ x
a

˘´1
´
`

1´ x
a

˘

¯2¯

“ pa´ xq2
´1

4

´

`

1´ x
a

˘´1
`
`

1´ x
a

˘

¯2¯

.

Therefore

distpD,Rq “
1
2
pa´ xq

´

`

1´ x
a

˘´1
`
`

1´ x
a

˘

¯

“
a

2
`

1
2a
pa´ xq2.

Therefore, in the limit, the dog approaches within a
2 metres of the rabbit.

11.2. First Order Linear DEs

In the remaining sections, we consider a special class of DEs called linear DEs.

11.2.1. DEFINITION. A linear DE of order n has the form

ypnq “ a0pxqy ` p1pxqy
1 ` . . . pn´1pxqy

pn´1q ` qpxq

“

n´1
ÿ

i“0

pipxqy
piq ` qpxq

where p0, . . . , pn´1 and q are in Cra, bs. The DE is called linear because the equa-
tion is linear in y and its derivatives, although it is not linear in x. The function
qpxq is called the forcing term. If q “ 0, the DE is homogeneous. The initial data
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requires n pieces of information. Normally it is given as

ypaq “ γ0

y1paq “ γ1

...

ypn´1qpaq “ γn´1.

11.2.2 First order linear DEs. In this section, we study DEs of the form

y1 “ ppxqy ` qpxq and ypaq “ γ.

First solve the homogeneous DE with no forcing term: y1 “ ppxqy. Thus

y1

y
“ ppxq

ln y “
ż

ppxq dx` c “: P pxq ` c.

y “ CeP pxq.

Here C is an arbitrary constant. It can be a negative number, even though it comes
from the previous line, so that it appears C “ ec should be positive. Evaluating this
at x “ a yields γ “ CeP paq, so C “ e´P paqγ.

This exhibits one solution. Why is it unique? If ypxq is a solution, compute
`

e´P pxqy
˘1
“ e´P pxqy1 ´ e´P pxqppxqy “ e´P pxq

`

y1 ´ ppxqy
˘

“ 0.

Therefore e´P pxqy is constant, and so y “ CeP pxq.
Now let y be a solution to the original DE with forcing term. As above, com-

pute
`

e´P pxqy
˘1
“ e´P pxqpy1 ´ ppxqyq “ e´P pxqqpxq.

Thus

e´P pxqy “

ż

e´P pxqqpxq dx` c.

Therefore

y “ eP pxq
´

ż

e´P pxqqpxq dx` c
¯

“ eP pxq

ż

e´P pxqqpxq dx` ceP pxq.

In other words, the general solution to the original DE is the sum of a particular

solution yppxq “ eP pxq

ż

e´P pxqqpxq dx and an arbitrary solution ceP pxq of the

homogeneous solution. If there is also an initial condition ypaq “ γ, then we can
determine the constant c as

c “ e´P paqpγ ´ yppaqq.
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Suppose that y1pxq and y2pxq are solutions to this DE with initial data. Define
ypxq “ y1pxq ´ y2pxq. Then

y1 “ y1
1 ´ y

1
2 “ ppxqy1 ` qpxq ´ ppxqy2 ´ qpxq “ ppxqy

and

ypaq “ y1paq ´ y2paq “ γ ´ γ “ 0.

From the analysis of the homogeneous case, we see that y “ 0 is the unique solu-
tion. Hence y1 “ y2. This shows that the inhomogeneous DE with initial data also
has a unique solution.

11.2.3. EXAMPLE. Consider xy1 ´ 3y “ x6 and yp1q “ 1. Rewrite this in
standard form as y1 “ 3

xy ` x
5. Then

P pxq “

ż

3
x
dx “ 3 lnx` c or eP pxq “ Cx3.

The forcing term yields a particular solution

yppxq “ eP pxq

ż

e´P pxqqpxq dx “ x3
ż

x´3x5 dx “ x3`1
3x

3 ` c
˘

“ 1
3x

6 ` cx3.

Now 1 “ yp1q “ 1
3 ` c. Therefore the solution is ypxq “ 1

3px
6 ` 2x3q.

11.2.4. EXAMPLE. Falling bodies. Near the surface of the earth, gravitation
exerts a force F “ ´mg in a vertical direction on a particle of mass m. Newton’s
Law says that F “ ma, where a is the acceleration of the particle. Thus if yptq
represents the vertical position of the particle, then v “ y1ptq is the velocity and the
acceleration is y2 “ ´g. Suppose the body is dropped from a height H with initial
velocity 0. Then the initial data is yp0q “ H and y1p0q “ 0. Integrate twice:

y1ptq “

ż t

0
y2psq ds “

ż t

0
´g ds “ ´gt

yptq ´H “

ż t

0
y1psq ds “ ´

ż t

0
gs ds “ ´

g

2
t2.

That is, yptq “ H´ g
2 t

2. Notice that we can eliminate t to find a direct relationship
the distance fallen, d “ H ´ yptq “ g

2 t
2, and velocity, v “ y1ptq “ ´gt, to get the

formula v “
?

2gd.
However if the body is falling through air, the air adds resistance proportional

to the velocity:

y2 “ ´g ´ cy1.
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Substitute v “ y1 to get a first order linear DE in v: v1 “ ´g ´ cv. Therefore

´v1

g ` cv
“ 1

´
1
c

ln |g ` cv| “
ż

´v1ptq

g ` cvptq
dt “

ż

dt “ t` c.

g ` cv “ c2e
´ct.

Thus v “ g
c pc2e

´ct ´ 1q. Since vp0q “ 0, we get v “ g
c pe

´ct ´ 1q. The quantity

lim
tÑ8

vptq “ lim
tÑ8

g

c
pe´ct ´ 1q “ ´

g

c

is called the terminal velocity.
A skydiver, when spread out wide, reaches a terminal velocity of about 55 m/s.

Once the parachute is opened, the drag reduces the velocity to about 5 or 6 m/s.

11.3. Second Order Linear DEs

In this section, we consider DEs of the form

y2 “ p0pxqy ` p1pxqy
1 ` qpxq and ypaq “ γ0, y

1paq “ γ1.

The following lemma and its corollaries explain why these equations are called
linear.

11.3.1. LEMMA. Suppose that y1 and y2 are solutions of

y2 “ p0pxqy ` p1pxqy
1 ` qipxq for j “ 1, 2.

Then if ci P R, y “ c1y1 ` c2y2 is a solution of

y2 “ p0pxqy ` p1pxqy
1 ` c1q1pxq ` c2q2pxq.

PROOF. This is a straightforward calculation.

y2 “ c1y
2
1 ` c2y

2
2

“ c1

´

p0pxqy ` p1pxqy
1 ` q1pxq

¯

` c2

´

p0pxqy ` p1pxqy
1 ` q2pxq

¯

“ p0pxqpc1y1 ` c2y2q ` p1pxqpc1y1 ` c2y2q
1 `

`

c1q1pxq ` c2q2pxq
˘

. ■

11.3.2. COROLLARY. Suppose that y1 and y2 are solutions of the homoge-
neous DE y2 “ p0pxqy ` p1pxqy

1 for a ď x ď b. Then c1y1 ` c2y2 is also a
solution for ci P R. Thus the set of solutions is a subspace of Cra, bs.
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PROOF. A subspace of the vector space Cra, bs is a subset containing y “ 0
with the property that it is closed under taking linear combinations. Now y “ 0 is
always a solution of any homogeneous linear DE. Lemma 11.3.1 shows that if y1
and y2 are solutions, then so is c1y1 ` c2y2. A simple induction argument shows
that you can take linear combinations of more solutions. ■

11.3.3. REMARK. Second order linear homogeneous DEs always have a 2-
dimensional space of solutions. When combined with the initial conditions ypaq “
γ0 and y1paq “ γ1, there is a unique solution. We do not establish existence of
solutions here, but we will prove uniqueness in section 11.5. Thus if we manage to
exhibit two linearly independent solutions, then we know that they span the entire
solution space.

11.3.4. COROLLARY. Suppose that yp is a solution of

y2 “ p0pxqy ` p1pxqy
1 ` qpxq.

Then every solution has the form y “ yp ` yh where yh is a solution of the homo-
geneous DE y2 “ p0pxqy ` p1pxqy

1.

PROOF. If y is another solution of the DE, then Lemma 11.3.1 shows that y´yp
is a solution of the homogeneous equation. It also shows that if yh is a solution of
the homogeneous equation, then y “ yp ` yh is a solution of our DE. ■

11.3.5 Reduction of order. There is no formula for solving a second order linear
DE. However if one can find a single non-trivial solution of the homogeneous DE,
the situation is quite different.

Suppose that y1 is a solution of y2 “ p0pxqy ` p1pxqy
1. Look for a solution of

the form y “ cpxqy1pxq.

y “ cy1

y1 “ cy1
1 ` c

1y1

y2 “ cy2
1 ` 2c1y1

1 ` c
2y1

Therefore

0 “ y2 ´ p1y
1 ´ p0y “ cpy2

1 ´ p1y
1
1 ´ p0y1q ` c

1p2y1
1 ´ p1y1q ` c

2y1

“ c1p2y1
1 ´ p1y1q ` c

2y1.

This is a first order separable DE in c1. So let z “ c1. We have

z1

z
“ ´

2y1
1 ´ p1y1

y1
“ ´2

y1
1
y1
` p1.
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Integrating we obtain

ln |z| “ ´2 ln |y1pxq| `

ż

p1pxq dx.

If we set P pxq ` c “
ş

p1pxq dx, we obtain

c1 “ z “ Cy1pxq
´2eP pxq.

Thus

cpxq “

ż

eP pxq

y1pxq2
dx.

This yields a second solution y2 “ cpxqy1.

11.3.6. EXAMPLE. Consider x2y2 ` xy1 ´ y “ 0. In standard form, we have
y2 “ x´2y ´ x´1y. We observe (by inspection) that y1 “ x is a solution. Then
p1pxq “ ´

1
x , so P pxq “ ´ lnx. We get

cpxq “ C

ż

x´1

x2 dx “
´C

2x2 .

So y2pxq “
´C
2x2 y1pxq “

´C

2x
. Thus we can choose C so that y2 “

1
x

. If you plug
this in, we see

x2y2
2 ` xy

1
2 ´ y2 “ x2

´ 2
x3

¯

` x
´

´1
x2

¯

´
1
x
“ 0.

Thus the general homogeneous solution is

ypxq “ c1x`
c2

x
.

11.3.7 Variation of parameters. Once we have two linearly independent solu-
tions y1 and y2 for the homogeneous DE, there is a method to solve the DE with
forcing term.

y2 “ p0pxqy ` p1pxqy
1 ` qpxq.

We search for a function of the form y “ c1y1 ` c2y2 where ci are unknown
functions. Then

y1 “ pc1y
1
1 ` c2y

1
2q ` pc

1
1y1 ` c

1
2y2q.

At this stage, we specify c1
1y1 ` c1

2y2 “ 0. We will have to satisfy this equation.
Then

y2 “ pc1y
2
1 ` c2y

2
2q ` pc

1
1y

1
1 ` c

1
2y

1
2q.

Therefore

y2 ´ p1pxqy
1 ´ p0pxqy

“ c1py
2
1´p1pxqy

1
1´p0pxqy1q`c2py

2
2´p1pxqy

1
2´p0pxqy2q`pc

1
1y

1
1`c

1
2y

1
2q

“ c1
1y

1
1 ` c

1
2y

1
2.
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Hence we want c1
1y

1
1 ` c

1
2y

1
2 “ qpxq. This leaves us with a linear system of DEs to

solve:

c1
1y1 ` c

1
2y2 “ 0

c1
1y

1
1 ` c

1
2y

1
2 “ qpxq.

We rewrite this as
„

y1 y2
y1

1 y1
2

ȷ „

c1
1
c1

2

ȷ

“

„

0
qpxq

ȷ

.

Such a 2ˆ 2 linear system is easy to solve for the unknowns c1
1 and c1

2. Let

W pxq “ det
„

y1 y2
y1

1 y1
2

ȷ

“ y1y
1
2 ´ y

1
1y2.

This is called the Wronskian. The solution is
„

c1
1
c1

2

ȷ

“
1

W pxq

„

y1
2 ´y2

´y1
1 y1

ȷ „

0
qpxq

ȷ

“

„

´y2qpxq{W pxq
y1qpxq{W pxq

ȷ

.

Therefore a solution of the DE is given by

ypxq “ ´y1pxq

ż

y2qpxq

W pxq
dx` y2pxq

ż

y1qpxq

W pxq
dx.

11.3.8. EXAMPLE. Consider y2 “ x´2y´x´1y`ex with boundary conditions
yp1q “ 2` e and y1p1q “ 2. We saw in Example 11.3.6 that y1 “ x and y2 “ x´1

are solutions to the homogeneous DE. The Wronskian is

W pxq “ xp´x´2q ´ 1x´1 “ ´2x´1.

Thus

ypxq “ ´x

ż

x´1ex

´2x´1 dx`
1
x

ż

xex

´2x´1 dx

“
x

2

ż

ex dx´
1

2x

ż

x2ex dx

“ 1
2xe

x ` c1x´
1

2x
px2 ´ 2x` 2qex ` c2x

´1

“

´

1´
1
x

¯

ex ` c1y1 ` c2y2.

You can check by hand that this is indeed the solution. Now if we apply the bound-
ary conditions, we have

0` c1 ` c2 “ 2` e

and

y1p1q “
´

1´
1
x
`

1
x2

¯

ex ` c1 ´
c2

x2

ˇ

ˇ

ˇ

x“1
“ e` c1 ´ c2 “ 2.
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Thus c1 “ 2 and c2 “ e. The solution is

ypxq “
´

1´
1
x

¯

ex ` 2x`
e

x
.

11.4. Linear DEs with constant coefficients

A linear DE has constant coefficients if p0pxq “ a0 and p1pxq “ a1 are con-
stants.

y2 “ a0y ` a1y
1 ` qpxq.

We first deal with the homogeneous case. Consider the quadratic polynomial

pptq “ t2 ´ a1t´ a0.

11.4.1 Two distinct real roots. Suppose that pptq “ pt ´ r1qpt ´ r2q where
r1 ‰ r2 P R. We define a linear map D : C1ra, bs Ñ Cra, bs by Df “ f 1. Then
define L by

Lpyq :“ y2 ´ a1y
1 ´ a0y “ pD

2 ´ a1D ´ a0Iqy

where If “ f is the identity map. The idea is to factor

D2 ´ a1D ´ a0I “ pD ´ r1IqpD ´ r2Iq.

We can solve the homogeneous DE by solving pD´r1Iqy “ 0 and pD´r2Iqy “ 0.
Note that y1

1 “ r1y1 implies that y1pxq “ cer1x. Thus

y2
1 ´ a1y

1
1 ´ a0y1 “ cer1xpr2

1 ´ a1r1 ´ a0q “ 0.

Similarly y1
2 “ r2y2 implies that y2pxq “ cer2x; and this is also a solution of the

homogeneous DE. Since y1 and y2 are not linearly dependent, they span the set of
solutions for the homogeneous DE. The most general solution is

y “ c1e
r1x ` c2e

r2x.

11.4.2 Double real root. Suppose that pptq “ pt ´ rq2 “ t2 ´ 2rt ` r2. Again
we see that y1 “ erx is a solution. To find another one, we look for a solution of
the form y “ cpxqy1pxq. Then

0 “ y2 ´ 2ry1 ` r2y “ pc2y1 ` 2c1y1
1 ` cy

2
1q ´ 2rpc1y1 ` cy

1
1q ` r

2cy1

“ c2y1 ` 2c1py1
1 ´ ry1q ` cpy

2
1 ´ 2ry1

1 ` r
2y1q

“ erxc2.

Therefore c2 “ 0, and thus cpxq “ c1x` c0. So the general solution is

ypxq “ c1xe
rx ` c0e

rx

This forms a two dimensional subspace of solutions.
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11.4.3 Complex roots. Suppose that pptq “ t2´2rt`pr2`s2q for s ą 0. Then
the roots of pptq are r ˘ is. The first case suggests that ypxq “ epr˘isqx should

be solutions, but these are not real functions. However
eisx ` e´isx

2
“ cos sx

and
eisx ´ e´isx

2i
“ sin sx are real functions. Compute for y1 “ erx sin sx, that

y1
1 “ erxpr sin sx ` s cos sxq and y2

1 “ erxpr2 sin sx ` 2rs cos sx ´ s2 sin sxq.
Thus

y2
1´2ry1

1`pr
2`s2qy1“e

rxpr2 sin sx`2rs cos sx´s2 sin sxq

´2rerxpr sin sx`s cos sxq`r2erx sin sx

“erx sin sxpr2´s2´2r2`r2q`erx cos sxp2rs´2rsq“0.

Similarly, y2 “ erx cos sx is a solution. Thus the general solution has the form

y “ c1e
rx sin sx` c2e

rx cos sx.

Sometimes it is more useful to write this as

y “ cerx cospsx´ φq

where c “
b

c2
1 ` c

2
2 and sinφ “ c1

c and cosφ “ c2
c .

11.4.4. REMARK. The method for solving a homogeneous DE with constant
coefficients of higher order works in a similar manner.

11.4.5. EXAMPLE. Consider y2 ` y “ cscx and ypπ2 q “ y1pπ2 q “ 0 on p0, πq.
The homogeneous DE has linearly independent solutions y1 “ cosx and y2 “

sinx. We use the variation of parameters method to find the solution with the
forcing term. The Wronskian is W pxq “ cos2 x´ p´ sin2 xq “ 1. Therefore

ypxq “ ´ cosx
ż

sinx cscx dx` sinx
ż

cosx cscx dx

“ ´x cosx` sinx ln sinx` c1 cosx` c2 sinx.

Thus

y1 “ ´ cosx` x sinx` cosx ln sinx´ cosx´ c1 sinx` c2 cosx
“ x sinx` cosx ln sinx´ c1 sinx` c2 cosx.

Plugging in x “ π
2 , we obtain

c2 “ 0
π
2 ´ c1 “ 0.

Therefore the solution is ypxq “
`

π
2 ´ x

˘

cosx` sinx ln sinx on p0, πq.
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11.4.6 Undetermined coefficients. When the forcing term for a linear DE with
constant coefficients is an exponential, sine, cosine or polynomial, it is often possi-
ble to ‘guess’ a particular solution using the method of undetermined coefficients.
It works because the derivatives have a similar form. Consider the DE

y2 ´ a1y
1 ´ a0y “ ebx.

Set ypxq “ cebx. Then

y2 ´ a1y
1 ´ a0y “ cpb2 ´ a1b´ a0qe

bt “ cppbqebt.

Therefore taking y “
1
ppbq

ebt yields a particular solution. The general solution is

obtained by adding the general solution to the homogeneous equation. This fails to
work if b is a root of pptq. But you can still use variation of parameters here.

11.4.7. EXAMPLE. In this example, we consider an extremely common form
of motion, damped harmonic oscillation. We consider a weight such as a trolley
attached to a stiff spring. When the trolley is moved away from the equilibrium
position, Hooke’s law states that the force of the spring acting on the trolley to
return it to equilibrium is proportional to the distance from equilibrium. In addi-
tion, we consider a damping force from friction, which is generally assumed to be
proportional to velocity.

We choose coordinates so that equilibrium occurs at x “ 0 and that the position
of the trolley at time t is xptq. Then Newton’s law F “ ma leads to

mx2 “ ´kx´ dx1.

The negative signs are chosen so that we may assume that k and d are positive,
and both forces try to restore the trolley to equilibrium. Let’s also suppose that at
time t “ 0, the trolley is moved to a position x “ x0 and x1p0q “ 0. This is a
homogeneous second order linear DE. We set pptq “ mt2 ` dt ` k. It has roots
´d`

?
d2 ´ 4mk

2m
. We split the analysis of the solution into three cases:

Case 1. d2 ą 4mk. In this case the two roots are real and negative, say r1 and r2.
The general solution is

xptq “ c1e
r1t ` c2e

r2t.

At t “ 0, we have xp0q “ c1 ` c2 “ x0 and x1p0q “ r1c1 ` r2c2 “ 0. This system
of two linear equations in the unknowns c1 and c2 has solution

c1 “
r2

r2 ´ r1
x0 and c2 “

´r1

r2 ´ r1
x0.

Therefore
xptq “

x0

r2 ´ r1
pr2e

r1t ´ r1e
r2tq.

In this case, the trolley just returns asymptotically to equilibrium. This is known as
an overdamped system.
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Case 2. d2 “ 4mk. Then p has a double real root r “ ´d
2m “ ´

b

k
m ă 0. The

analysis is similar: the general solution is

xptq “ c1e
rt ` c2te

rt.

At t “ 0, we have xp0q “ c1 “ x0 and x1p0q “ rc1 ` c2 “ 0. This system has

solution c1 “ x0 and c2 “ ´rx0 “
dx0

2m
“

b

k
mx0. Therefore

xptq “ x0
`

1`
b

k
m t

˘

e´
?

k{mt.

Thus

x1ptq “ ´
kx0

m
e´
?

k{mt ă 0.

So in this case, the trolley also returns asymptotically to equilibrium.

Case 3. d2 ă 4mk. This is the most interesting case, and explains the name os-
cillator. Here p has two complex roots: r ˘ is where r “ ´d

2m ă 0 and s “
1

2m

?
4km´ d2. The general solution is

xptq “ cert cospst´ φq “ ce´dt{2m cospst´ φq.

The initial conditions yield x0 “ xp0q “ c cosφ and

0 “ x1p0q “ cp´
d

2m
cosφ` s sinφq.

Thus tanφ “ d
2ms “

d?
4mk´d2 and c “ x0 secφ “ x0

b

4km
4mk´d2 . The solution

oscillates above and below the equilibrium with period
2π
s
“

4πm
?

4km´ d2
. The

damping factor e´dt{2m shows that the trolley approaches equilibrium asymptoti-
cally.

Now let’s suppose we are in Case 3, and that there is another forcing term
which is periodic, such as f cosωt. Then the DE becomes

mx2 ` dx1 ` kx “ f cosωt.

This is a candidate for the technique of undetermined coefficients. Try for a solution
y “ a cosωt` b sinωt. Then

y1 “ ´aω sinωt` bω cosωt and y2 “ ´aω2 cosωt´ bω2 sinωt.

Thus

my2 ` dy1 ` ky “ p´maω2`dbω`kaq cosωt` p´mbω2´daω`kbq sinωt
“ f cosωt.

This yields the linear system
„

k ´mω2 dω
´dω k ´mω2

ȷ „

a
b

ȷ

“

„

f
0

ȷ

.



11.5 Uniqueness of solutions for 2nd order linear DEs 211

We get

y “ fpk´mω2q

pk´mω2q2`d2ω2 cosωt` fdω
pk´mω2q2`d2ω2 sinωt` ce´dt{2m cospst´ φq.

Now we solve for c andφ to satisfy the initial conditions. What we want to point out
does not depend on the exact constants. Notice that over time, the homogeneous
part of the solution is damped out, while the periodic motion from the external
force continues unabated. An example of this behaviour is a child on a swing.
The pumping action is a periodic force. The initial start is a bit irregular, but the
pumping action quickly becomes dominant. As long as the pumping continues, the
swing will move back and forth in a regular motion.

11.5. Uniqueness of solutions for 2nd order linear DEs

We will not establish a general existence theorem for linear DEs. A more
general result known as Picard’s Theorem is generally taught is a theoretical DE
course or in a good real analysis course. We can prove uniqueness though.

11.5.1. GRONWALL’S INEQUALITY. Suppose that a differentiable function
fpxq satisfies f 1pxq ď Cfpxq on ra, bs for some constant C. Then

fpxq ď fpaqeCpx´aq for a ď x ď b.

PROOF. Let gpxq “ fpxqe´Cx. Then

g1pxq “ e´Cxpf 1pxq ´ Cfpxqq ď 0 for a ď x ď b.

Therefore g is a decreasing function on ra, bs. Thus,

fpxqe´Cx ď fpaqe´Ca or fpxq ď fpaqeCpx´aq. ■

11.5.2. THEOREM. The DE y2 “ p0pxqy`p1pxqy
1` qpxq with ypaq “ γ0 and

y1paq “ γ1 has at most one solution.

PROOF. Suppose that y1 and y2 are two solutions. Then by Lemma 11.3.1,
y “ y1 ´ y2 satisfies y2 “ p0pxqy ` p1pxqy

1 and ypaq “ y1paq “ 0. Define
spxq “ y2 ` py1q2; so that s ě 0 and spaq “ 0. Compute

s1pxq “ 2yy1 ` 2y1y2 “ 2y1py ` y2q

“ 2y1py ` p0pxqy ` p1pxqy
1q

“ 2p1pxqpy
1q2 ` 2p1` p0pxqqyy

1

ď 2|p1pxq|py
1q2 ` p1` |p0pxq|qpy

2 ` py1q2q.
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The last inequality uses the AMGM inequality |2yy1| ď y2 ` py1q2. Let

C “ maxt2|p1pxq|, 1` |p0pxq| : a ď x ď bu.

Then s1pxq ď Cspxq. By Gronwall’s inequality, spxq ď spaqeCpx´aq “ 0. There-
fore s “ 0 and hence y “ 0. That is, y1 “ y2; the solution is unique. ■

11.5.3. COROLLARY. If the homogeneous linear DE y2 “ p0pxqy ` p1pxqy
1

has two solutions y1 and y2 such that py1paq, y
1
1paqq and py2paq, y

1
2paqq are linearly

independent, then every solution of the DE is a linear combination of y1 and y2. So
the vector space of solutions is at most 2 dimensional.

PROOF. Let y0 be a solution of the homogeneous DE. Since py1paq, y
1
1paqq and

py2paq, y
1
2paqq are linearly independent, they span R2. Therefore there are constants

c1 and c2 so that

py0paq, y
1
0paqq “ c1py1paq, y

1
1paqq ` c2py2paq, y

1
2paqq.

Then by Lemma 11.3.1, y3 “ c1y1 ` c2y2 satisfies

y2
3 “ p0pxqy3 ` p1pxqy

1
3 and y3paq “ ypaq, y1

3paq “ y1paq.

By Theorem 11.5.2, this DE has a unique solution, and thus y0 “ y3 “ c1y1`c2y2.
Therefore every solution is a linear combination of y1 and y2. ■

Exercises for Chapter 11

1. (a) Solve the DE px2 ´ y2qy1 ´ 2xy “ 0.
(b) Sketch the set of solution curves.
(c) If p1, 2q is a point on the solution curve, find the solution.

2. (a) Solve the DE p1` x2qy1 ` 2xy “ 0.
(b) Solve the DE p1` x2qy1 ` 2xy “ cotx.

3. (a) Consider the DE y1 ` ppxqy “ qpxqya where a R t0, 1u is a real number.
Set z “ y1´a. Turn this DE into a linear DE in z.

(b) Use this to solve xy2y1 ` y3 “ x cosx.

4. A function defined on R satisfies the DE f 1pxq “ 2xfpxq ` 4x and fp0q “ 1.
Assume that fpxq has a power series about x “ 0 and solve for the Taylor
coefficients.

5. Torricelli’s Law for fluid flowing out the bottom of a tank states that the velocity
is calculated as if the fluid dropped from the surface of the water. A hemispher-
ical container of radius R is completely full of water. A small round hole of
radius r at the bottom is unplugged. (You can ignore the small difference in the
height caused by the hole.)
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(a) Use Newtonian mechanics to deduce how long it takes a drop of water to
fall distance h from a position of rest, and use this to compute the velocity
at that point.

(b) Compute the volume V phq in the bowl when the water depth is h.
(c) How long does it take the bowl to empty?

HINT: compute dV
dt in two ways. Get a DE in h.

6. Consider the homogeneous linear DE y2 ` ppxqy1 ` qpxqy “ 0. Suppose that
y1 and y2 are two solutions on ra, bs.
(a) Find a first order DE satisfied by the Wronskian W pxq and solve it.
(b) Prove that if the vectors py1pcq, y

1
1pcqq and py2pcq, y

1
2pcqq are linearly inde-

pendent for some c P ra, bs, then W pxq never vanishes. Hence show that
py1pxq, y

1
1pxqq and py2pxq, y

1
2pxqq are linearly independent vectors for every

x P ra, bs.
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A.1. Equivalence Relations

We introduce a basic mathematical construction known as an equivalence re-
lation. Equivalence relations occur frequently in mathematics and have appeared
occasionally in these notes.

A.1.1. DEFINITION. Let X be a set, and let R be a subset of X ˆ X . Then
R is a relation on X . Let us write x „ y if px, yq P R. We say that R or „ is an
equivalence relation if it is

p1q (reflexive) x „ x for all x P X .

p2q (symmetric) if x „ y for x, y P X , then y „ x.

p3q (transitive) if x „ y and y „ z for y x, y, z P X , then x „ z.

If „ is an equivalence relation on X and x P X , then the equivalence class rxs
is the set ty P X : y „ xu. By X{„ we mean the collection of all equivalence
classes.

A.1.2. EXAMPLES.

(1) Equality is an equivalence relation on any set. Verify this.

(2) Consider the integers Z. Say that m ” n pmod 12q if 12 divides m´ n. Note
that 12 divides n ´ n “ 0 for any n, and thus n ” n pmod 12q. So it is reflexive.
Also if 12 divides m´n, then it divides n´m “ ´pm´nq. So m ” n pmod 12q
implies that n ” m pmod 12q (i.e., symmetry). Finally, if l ” m pmod 12q and
m ” n pmod 12q, then we may write l ´m “ 12a and m ´ n “ 12b for certain
integers a, b. Thus l ´ n “ pl ´mq ` pm ´ nq “ 12pa ` bq is also a multiple of
12. Therefore, l ” n pmod 12q, which is transitivity.

There are twelve equivalence classes rrs for 0 ď r ă 12 determined by the
remainder r obtained when n is divided by 12. So rrs “ t12a` r : a P Zu.

(3) Consider the set R with the relation x ď y. This relation is reflexive (x ď x)
and transitive x ď y and y ď z implies x ď z. However, it is antisymmetric: x ď y
and y ď x both occur if and only if x “ y. This is not an equivalence relation.

When dealing with functions defined on equivalence classes, we often define
the function on an equivalence class in terms of a representative. In order for the
function to be well defined, that is, for the definition of the function to make sense,
we must check that we get same value regardless of which representative is used.

214
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A.1.3. EXAMPLES.
(1) Consider the set of real numbers R. Say that x ” y pmod 2πq if x ´ y is an
integer multiple of 2π. Verify that this is an equivalence relation. Define a function
fprxsq “ pcosx, sinxq. We are really defining a function F pxq “ pcosx, sinxq on
R and asserting that F pxq “ F pyq when x ” y pmod 2πq. Indeed, we then have
y “ x` 2πn for some n P Z. As sin and cos are 2π-periodic, we have

F pyq “ pcos y, sin yq

“ pcospx` 2πnq, sinpx` 2πnqq

“ pcosx, sinxq “ F pxq.

It follows that the function fprxsq “ F pxq yields the same answer for every y P rxs.
So f is well defined. One can imagine the function f as wrapping the real line
around the circle infinitely often, matching up equivalent points.

(2) Consider R modulo 2π again, and look at fprxsq “ ex. Then 0 ” 2π pmod 2πq
but e0 “ 1 ‰ e2π. So f is not well defined on equivalence classes.

(3) Now consider Example A.1.2(2). We wish to define multiplication modulo 12
by rnsrms “ rnms. To check that this is well defined, consider two representatives
n1, n2 P rns and two representatives m1,m2 P rms. Then there are integers a and
b so that n2 “ n1 ` 12a and m2 “ m1 ` 12b. Then

n2m2 “ pn1 ` 12aqpm1 ` 12bq

“ n1m1 ` 12pam1 ` n1b` 12abq.

Therefore, n2m2 ” n1m1 pmod 12q. Consequently, multiplication modulo 12 is
well defined.

A.2. A Construction of R

Our description of the real numbers as the set of all infinite decimals modulo
the issue with terminal 9’s versus terminal 0’s, (which is an equivalence relation!),
was a bit problematic because the rules for addition and multiplication were very
hard to formulate. Now that you have read Chapter 2, we can introduce a superior
method for constructing the reals. The idea is to start with the rational numbers, Q,
and complete it.

Let C denote the set of all Cauchy sequences of rational numbers. Note that in
the definitions of Cauchy sequence and limit, there is no harm in using only rational
numbers for ε. Put an equivalence relation on C by pxnq „ pynq if lim

nÑ8
xn ´ yn “

0. The three properties of an equivalence relation are very easy to check. Let
R “ C{ „ be the set of equivalence classes. We define an imbedding J of Q into
R by Jprq “ rpr, r, r, r, . . . qs, the equivalence class of the constant sequence.
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Next we define addition, multiplication and order.
‚ rpxnqs ` rpynqs “ rpxn ` ynqs.

‚ rpxnqs ¨ rpynqs “ rpxnynqs.

‚ If rpxnqs ‰ rpynqs, say rpxnqs ă rpynqs if there is some N so that xn ă
yn for all n ě N .

We need to verify that these notions are well defined. Suppose that px1
nq „ pxnq

and py1
nq „ pynq. Then

lim
nÑ8

px1
n ` y

1
nq ´ pxn ` ynq “ lim

nÑ8
x1
n ´ xn ` lim

nÑ8
y1
n ´ yn “ 0.

Hence px1
n ` y

1
nq „ pxn ` ynq, and thus addition is well defined. Similarly

lim
nÑ8

px1
ny

1
nq ´ pxnynq “ lim

nÑ8
px1

n ´ xnqy
1
n ` lim

nÑ8
xnpy

1
n ´ ynq “ 0.

This uses that Cauchy sequences are bounded by Proposition 2.6.3.
The order is a bit more delicate. If rpxnqs ‰ rpynqs, then xn´yn does not con-

verge to 0. Thus there is some ε ą 0 so that |xni ´ yni | ě ε for some subsequence.
Use ε{3 in the definition of Cauchy sequence to obtain N so that for N ď m ď n,

|xn ´ xm| ă
ε

3
and |yn ´ ym| ă

ε

3
.

Then choose some ni ě N , and for definiteness, suppose that xni ´ yni ě ε. (The
other case is similar.) Then for n ě N ,

xn ´ yn “ pxni ´ yniq ´ pxni ´ xnq ´ pyn ´ yni ě ε´
ε

3
´
ε

3
“
ε

3
.

Hence rpynqs ă rpxnqs. Now take equivalent sequences px1
nq and py1

nq. Then

lim infx1
n ´ y

1
n “ lim infpx1

n ´ xnq ` pxn ´ ynq ` py
1
n ´ ynq ě 0`

ε

3
` 0 “

ε

3
.

This shows that order is well defined. Moreover, we see that exactly one of

rpxnqs ă rpynqs, rpxnqs “ rpynqs or rpxnqs ą rpynqs

holds. You should check that rpxnqs ă rpynqs and rpynqs ă rpznqs implies that
rpxnqs ă rpznqs.

Next observe that the embedding J : Q Ñ R preserves the ordered field
properties:

Jprq ` Jpsq “ Jpr ` sq and Jprq ¨ Jpsq “ Jprsq for r, s P Q,

and r ă s implies that Jprq ă Jpsq. We let 0 “ Jp0q and 1 “ Jp1q.
It is straightforward to verify all of the field operations. We give two examples.

The distributive law follows from the corresponding property for Q:
`

rpxnqs ` rpynqs
˘

¨ rpznqs “ rpxn ` ynqs ¨ rpznqs “
“`

pxn ` ynqznq
˘‰

“ rpxnzn ` ynznqs “ rpxnznqs ` rpynznqs

“ rpxnqs ¨ rpznqs ` rpynqs ¨ rpznqs.
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Multiplicative inverses take a bit of work. If rpxnqs ‰ 0, then there is some ε0
so that |xn| ě ε0 for n ě N . Let yn “ 0 for n ă N and yn “ x´1

n for n ě N . We
have to show that this is Cauchy. Choose N1 ě N so that if N1 ď m ď n, then
|xn ´ xm| ă εε2

0. Then

|yn ´ ym| “
ˇ

ˇ

ˇ

1
xn
´

1
xm

ˇ

ˇ

ˇ
“
|xm ´ xn|

|xnxm|
ă
εε2

0

ε2
0
“ ε.

Thus pynq P R and rpxnqs ¨ rpynqs “ 1.
We leave the straightforward verification of the other properties of an ordered

field to the interested reader.
There is more work to be done. The ordered field R is Archimedean: if

rpxnqs ą 0, then there is an r P Q so that 0 ă Jprq ă rpxnqs. This follows be-
cause we showed that lim infxn ě ε ą 0 for some rational ε, and so any 0 ă r ă ε
will work. If we like, we can take r “ 1

k for k P N sufficiently large. This also
implies that that if rpxnqs P R, then there is an integer k P N so that rpxnqs ă Jpkq.
Indeed, if rpxnqs ď 0, then k “ 1 suffices. If x “ rpxnqs ą 0, then x´1 ą 0. By
the Archimedean property, Jp 1

k q ă x´1 for some k P N, and thus x ă Jpkq.
We need to verify the Least Upper Bound Property for R. Let S Ă R be

a nonempty set which is bounded above by z P R, and let s P S. Since R is
Archimedean, we can find integers a, b so that a ă s ď z ă b. Recursively define
sequences xn and yn of rational numbers as follows. Let x1 “ a and y1 “ b.
Suppose that xi and yi have been defined in Q for 1 ď i ă n so that Jpxiq is not an
upper bound for S and Jpyiq is an upper bound for S and yi ´ xi “ 21´ipb ´ aq.
Let cn “ 1

2pxn´1 ` yn´1q. If cn is an upper bound for S, then let xn “ xn´1 and
yn “ cn; while if cn is not an upper bound for S, then let xn “ cn and yn “ yn´1.
Let x “ rpxnqs. Then x “ rpynqs because limnÑ8 yn ´ xn “ 0. We claim that
supS “ x.

Let s “ rpsnqs P S. If s ą x, then by the Archimedean property, s ą x`Jp 1
k q

for some k P N. So there is an integer N so that sn ą yn `
1

2k for all n ě N .
Choose M ě N so that 21´M pb´ aq ă 1

4k . Then for n ěM

yn “ yM `

m
ÿ

i“M`1

pyi ´ yi´1q ă yM `

m
ÿ

i“M`1

21´ipb´ aq ă yM `
1

4k
.

Therefore for n ě M , we have sn ą yM ` 1
4k ; and hence s ě JpyM q ` Jp 1

4k q.
This contradicts the fact that JpyM q is an upper bound for S . So no such s exists,
and x is an upper bound for S. A similar argument shows that if z ă x, then z is
not an upper bound.

It follows that R is an ordered field with the Least Upper Bound Property.
This is exactly the property of R that we used to establish the various versions of
completeness. We call this field the real numbers, R. It is a subtle point that there
is only one such field with these properties. This issue will not be addressed here.
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A.3. Cardinality

Cardinality is the notion that measures the size of a set in the crudest of ways—
by counting the numbers of elements. Obviously, the number of elements in a set
could be 0, 1, 2, 3, 4, or some other finite number. Or a set can have infinitely
many elements. Perhaps surprisingly, not all infinite sets have the same cardinality.
For our purposes, infinite sets have two possible sizes: countable and uncountable
(the uncountable ones are larger). The most important ideas to understand are what
countable means and what distinguishes countable sets from those with larger car-
dinality.

A.3.1. DEFINITION. Two sets A and B have the same cardinality if there is a
bijection f from A onto B. We write |A| “ |B| in this case. Similarly, we say that
the cardinality of A is less than that of B (|A| ď |B|) if there is an injection f from
A into B.

The definition says simply that if all of the elements of A can be paired, one-
to-one, with all of the elements of B, then A and B have the same size. If A fits
inside B in a one-to-one manner, then A is smaller than B. One of the subtleties
that we address later is whether |A| ď |B| and |B| ď |A|mean that |A| “ |B|. The
answer is yes, but this is not obvious for infinite sets.

A.3.2. EXAMPLES.
(1) The cardinality of any finite set is the number of elements, and this number
belongs to N0 “ t0, 1, 2, 3, 4, . . . u. Set theorists go to some trouble to define the
natural numbers too. But we will take for granted that the reader is familiar with
the notion of a finite set.

(2) Most sets encountered in analysis are infinite, meaning that they are not finite.
The sets of natural numbers N, integers Z, rational numbers Q, and real numbers
R are all infinite. Moreover, we have the natural containments N Ă Z Ă Q Ă R.
So |N| ď |Z| ď |Q| ď |R|. Notice that the integers can be written as a list
0, 1,´1, 2,´2, 3,´3, . . . . This amounts to defining a bijection f : NÑ Z by

fpnq “

#

p1´ nq{2 if n is odd
n{2 if n is even.

Therefore, |N| “ |Z|.

A.3.3. DEFINITION. A set A is a countable set is it is finite or if |A| “ |N|.
The cardinal |N| is denoted by ℵ0. This is the first letter of the Hebrew alphabet,
aleph, with subscript zero. It is pronounced aleph nought.

An infinite set that is not countable is called an uncountable set.
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Equivalently, A is countable and infinite if the elements of A may be listed
as a1, a2, a3, . . . . Indeed, the list itself determines a bijection from N to A by
fpkq “ ak. It is a basic fact that countable sets are the smallest infinite sets.

Notice that two uncountable sets could have different cardinalities.

A.3.4. LEMMA. Every infinite subset of N is countable. Moreover, if A is an
infinite set such that |A| ď |N|, then |A| “ |N|.

PROOF. Any nonempty subset X of N has a smallest element. Indeed, as
X is nonempty, it contains an integer n. Consider the elements of the finite set
t1, 2, . . . , nu in order and pick the first one that belongs toX—that is, the smallest.

Let B be an infinite subset of N. List the elements of B in increasing order as
b1 ă b2 ă b3 ă . . . . This is done by choosing the smallest element b1, then the
smallest of the remaining set Bztb1u, then the smallest of Bztb1, b2u and so on.
The result is an infinite list of elements of B in increasing order. It must include
every element b P B because tn P B : n ď bu is finite, containing say k elements.
Then bk “ b. As noted before the proof, this implies that |B| “ |N|.

Now consider a set A with |A| ď |N|. By definition, there is a injection f of
A into N. Let B “ fpAq. Note that f is a bijection of A onto B. Then B is an
infinite subset of N. So |A| “ |B| “ |N|. ■

A.3.5. PROPOSITION. The countable union of countable sets is countable.

PROOF. By the previous lemma, we may assume that there is a countably in-
finite collection of sets A1, A2, A3, . . . that are each countably infinite. Write the
elements of Ai as a list ai,1, ai,2, ai,3, . . . . Then we may write A “

Ť

iě1 Ai as a
list as follows:

a1,1, a1,2, a2,1, a1,3, a2,2, a3,1, a1,4, a2,3, a3,2, a4,1, . . . ,

where the elements ai,j are written so that i` j is monotone increasing, and within
the set of pairs pi, jq with i` j “ n, the terms are written with the i’s in increasing
order. See Figure 12.1. Thus A is countable. ■

A.3.6. COROLLARY. The set Q of rational numbers is countable.

PROOF. The set Z ˆ N “ tpi, jq : i P Z, j P Nu is the disjoint union of
the sets Ai “ tpi, jq : j P Nu for i P Z. Each Ai is evidently countable. By
Example A.3.2(2), Z is countable. Hence ZˆN is the countable union of countable
sets, and thus is countable by Proposition A.3.5.

Define a map from Q into ZˆN by fprq “ pa, bq if r “ a{b, where a and b are
integers with no common factor and b ą 0. These conditions uniquely determine
the pair pa, bq for each rational r, and so f is a function. Clearly, f is injective
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a1,1

a2,1

a3,1

a4,1

a5,1

a1,2 a1,3 a1,4 a1,5

FIGURE 12.1. The set Nˆ N is countable.

since r is recovered from pa, bq by division. Therefore, f is an injection of Q into
a countable set. Hence Q is an infinite set with |Q| ď |N|. So Q is countable by
Lemma A.3.4. ■

A.3.7. COROLLARY. If A and B are countable, then A ˆ B is countable.
Hence Zn is countable for all n ě 1.

PROOF. First A ˆ B “
Ť

bPB A ˆ tbu is a countable union of countable sets,
and thus is countable. In particular, Z2 is countable. By induction, Zn is countable
for each n ě 1. ■

There are infinite sets that are not countable.

A.3.8. THEOREM. The set R of real numbers is uncountable.

PROOF. The proof uses a diagonalization argument due to Cantor. Suppose
to the contrary that R is countable. Then all real numbers may be written as a list
x1, x2, x3, . . . . Express each xi as an infinite decimal, which we write as xi “
xi0.xi1xi2xi3 . . . , where xi0 is any integer and xik is an integer from 0 to 9 for each
k ě 1. Our goal is to write down another real number that does not appear in this
(supposedly exhaustive) list. Let a0 “ 0 and define ak “ 7 if xik P t0, 1, 2, 3, 4u
and ak “ 2 if xik P t5, 6, 7, 8, 9u. Define a real number a “ a0.a1a2a3 . . . .

Since a is a real number, it must appear somewhere in this list, say a “ xk.
However, the kth decimal place ak of a and xk,k of xk differ by at least 3. This
cannot be accounted for by the fact that certain real numbers have two decimal
expansions, one ending in zeros and the other ending in nines because this changes
any digit by no more than 1 (counting 9 and 0 as being within 1). So a ‰ xk, and
hence a does not occur in this list. It follows that there is no list containing all real
numbers, and thus R is uncountable. ■

We conclude with the result promised in the start of this section.
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A.3.9. SCHROEDER–BERNSTEIN THEOREM. If A and B are sets with
|A| ď |B| and |B| ď |A|, then |A| “ |B|.

PROOF. The proof is surprisingly simple. Since |A| ď |B|, there is an injection
f mapping A into B. Likewise, as |B| ď |A|, there is an injection g mapping B
into A. Let B1 “ BzfpAq. Recursively define Ai “ gpBiq and Bi`1 “ fpAiq for
i ě 1. Define A0 “ Az

Ť

iě1 Ai and B0 “ Bz
Ť

iě1 Bi. We will show that the
actions of f and g fit the scheme of Figure 12.2.

B B1 B2 B3 · · · B0

A A1 A2 A3 · · · A0

g g g

f f
g f

FIGURE 12.2. Schematic of action of f and g on A and B.

First we show that theBi’s are disjoint. Clearly eachBi for i ě 2 is in the range
of f and hence does not intersect B1. Suppose that 1 ă i ă j. Then pfgqi´1 is an
injection ofB into itself that carriesBk ontoBk`i´1 for every k ě 1. In particular,
B1 is mapped onto Bi and Bj´i`1 is mapped onto Bj . Since B1 X Bj´i`1 “ ∅
and pfgqi´1 is one-to-one, it follows that Bi XBj “ ∅.

By construction, g´1 is a bijection of each Ai onto Bi for i ě 1. We claim that
f maps A0 onto B0. Observe that f maps Ai onto Bi`1 for each i ě 1. Thus the
remainder of A, namely A0, is mapped onto the remainder of the image. Thus

fpA0q “ fpAqz
ď

iě1

fpAiq “ pBzB1qz
ď

iě1

Bi`1 “ Bz
ď

iě1

Bi “ B0.

This means that the function

hpaq “

#

g´1paq if a P
Ť

iě1 Ai

fpaq if a P A0

is a bijection between A and B. Therefore |A| “ |B|. ■

A.4. e is transcendental

We first establish a relatively easy fact.

A.4.1. THEOREM. e is irrational.
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PROOF. We use the formula e “
ř8

k“0
1
k! . Suppose that e “ p

q where p, q P N.
Then q ě 2 since 2 ă e ă 3. We have that

ppq ´ 1q! “ q!e “
q
ÿ

k“0

q!
k!
`

8
ÿ

k“q`1

q!
k!

is an integer. Therefore we have an integer
8
ÿ

k“q`1

q!
k!
“

1
q ` 1

`
1

pq ` 1qpq ` 2q
`

1
pq ` 1qpq ` 2qpq ` 3q

` . . .

ă

8
ÿ

k“1

1
pq ` 1qk

“

1
q`1

1´ 1
q`1

“
1
q
ă 1.

Hence this “integer” lies in p0, 1q, which is absurd. Therefore e is irrational. ■

A.4.2. DEFINITION. A real number α is algebraic if there is a polynomial ppxq
with integer coefficients with α as a root. A real number is transcendental if it is
not algebraic.

A.4.3. PROPOSITION. The set of algebraic numbers is countable.

PROOF. First count the number of polynomials with integer coefficients of de-
gree n. Such a polynomial has n`1 coefficients, which we can associate to a point
in Zn`1, (or more precisely Zn ˆ pZzt0uq since the leading coefficient an ‰ 0,)
which is countable by Corollary A.3.7. Each polynomial has n roots, so the set of
roots is countable. Finally we take the union over all n, and the countable union of
countable sets is countable. Thus the set of algebraic numbers is countable. ■

The following proof is tricky and pulls several functions out of thin air.

A.4.4. THEOREM. e is transcendental.

PROOF. Suppose that e is algebraic. Then there are integers c0, . . . , cn so that

cne
n ` cn´1e

n´1 ` ¨ ¨ ¨ ` c1e` c0 “ 0.

We may suppose that cn ‰ 0 ‰ c0 because we can factor out an x if c0 “ 0. Let
p be a prime which is much larger than maxtn, |c0|u to be specified more precisely
later. Define a polynomial fpxq of degree r “ pn` 1qp´ 1 by

fpxq “
1

pp´ 1q!
xp´1p1´ xqpp2´ xqp ¨ ¨ ¨ pn´ xqp “

pn`1qp´1
ÿ

k“p´1

ak
pp´ 1q!

xk

“
pn!qp

pp´ 1q!
xp´1 `

ap
pp´ 1q!

xp `
ap`1

pp´ 1q!
xp`1 ` ¨ ¨ ¨ `

p´1qn

pp´ 1q!
xpn`1qp´1.
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Note that each ak is an integer; and ap´1 “ n! and apn`1qp´1 “ p´1qn.
Claim: If l ě p and j P Z, then f plqpjq is an integer multiple of p. Indeed,

since f is a polynomial, and l ě p, dl

dxl

`

pn!qp

pp´1q!x
p´1

˘

“ 0 and

dl

dxl

´ ak
pp´ 1q!

xk
¯

“ pak
kpk ´ 1q . . . pk ` 1´ pq . . . pk ` 1´ lq

p!

“ pak

ˆ

k

p

˙

pk ´ pq . . . pk ` 1´ lq.

This is a product of integers including p; so is a multiple of p.
Claim: If 0 ď l ď p ´ 1 and 0 ď j ď n, then f plqpjq “ 0 except for

f pp´1qp0q “ pn!qp; and pn!qp is an integer but is not a multiple of p. For each
1 ď j ď n, the factor pj ´ xqp has a zero of order p, and so f plqpxq has a zero of
order p ´ l ě 1; and hence f plqpjq “ 0. At j “ 0, a similar argument shows that
f plqp0q “ 0 for 0 ď l ď p´ 2. Finally, f pp´1qpxq “ pn!qp` higher order terms, so
f pp´1qp0q “ pn!qp. Since n ă p, this has no factor of p.

Now we define two more functions.

F pxq “ fpxq ` f 1pxq ` f p2qpxq ` ¨ ¨ ¨ ` f prqpxq “
8
ÿ

k“0

f pkqpxq

and Gpxq “ e´xF pxq. Then

G1pxq “ e´xpF 1pxq ´ F pxqq

“ e´x
´

8
ÿ

k“0

f pk`1qpxq ´
8
ÿ

k“0

f pkqpxq
¯

“ ´e´xfpxq.

Apply the MVT on r0, ks for 1 ď k ď n and find points xk P p0, kq so that

Gpkq ´Gp0q
k

“ G1pxkq “ ´e
´xkfpxkq.

Multiply by ckkek to get

ckF pkq ´ cke
kF p0q “ ´kckek´xkfpxkq

and sum from 1 to n
n
ÿ

k“1

ckF pkq ´
`

n
ÿ

k“1

cke
k
˘

F p0q “ ´
n
ÿ

k“1

kcke
k´xkfpxkq.

Now we observe that
řn

k“1 cke
k “ ´c0 by hypothesis, and by the two claims

above, the LHS is a sum of integers and all but one is a multiple of p,
n
ÿ

k“0

ckF pkq ” c0pn!qp ı 0 pmod pq.
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In particular, this is a non-zero integer—and hence is at least 1 in absolute value.
Now we make some estimates to show that the RHS is too small for p sufficiently
large, reaching a contradiction.

Using the formula for fpxq, we get the crude estimate max
0ďxďn

|fpxq| ď
pnn`1qp

pp´ 1q!
.

Therefore

|RHS| ď
´

n
ÿ

k“1

k|ck|e
k
¯

pnn`1qp

pp´ 1q!
.

The bound has the form
ABp

pp´ 1q!
for constants A and B. However

lim
pÑ8

ABp

pp´ 1q!
“ 0.

Thus we can choose a prime p large enough that |RHS| ă 1. Therefore e is not
algebraic, and so is transcendental. ■

A.5. π is irrational

Here is another off-the-wall irrationality proof. It implies that π is irrational.
The argument will need to use a trig function in order to encapsulate the value π
somehow. It is much in the same spirit as the previous proof.

A.5.1. THEOREM. π2 is irrational.

PROOF. Suppose that π2 “ a
b where a, b P N. Since lim

nÑ8

πan

n!
“ 0, we

choose an n so that 0 ă
πan

n!
ă 1. Let fpxq “

xnp1´ xqn

n!
. Then 0 ă fpxq ă 1

n!

if 0 ă x ă 1. Also

fpxq “
1
n!
xn

n
ÿ

k“0

ˆ

n

k

˙

p´1qkxk “
2n
ÿ

k“n

ck
n!
xk

where ck P Z are integers and cn “ 1. Compute

f pkqp0q “ 0 if 0 ď k ď n´ 1 and k ą 2n

f pnqp0q “ n!
cn
n!
“ 1 if k “ n

f pkqp0q “ k!
ck
n!
“ kpk ´ 1q ¨ ¨ ¨ pn` 1qck if n` 1 ď k ď 2n.

In particular, f pkqp0q is always an integer. Notice that fp1´ xq “ fpxq, and hence
f pkqp1´ xq “ p´1qkf pkqpxq, Therefore, f pkqp1q is also always an integer.



A.6 Stirling’s Formula 225

Define another polynomial

F pxq “ bn
`

π2nfpxq ´ π2n´2f p2qpxq ` ¨ ¨ ¨ ` p´1qnf p2nqpxq
˘

“ bn
n
ÿ

k“0

p´1qkπ2n´2kf p2kqpxq.

Since π2 “ a
b by assumption, bnπ2n´2k are integers. Also by the previous para-

graph, F p0q and F p1q are integers. Compute

π2F pxq`F 2pxq“bn
n
ÿ

k“0

p´1qkπ2n`2´2kf p2kqpxq`bn
n
ÿ

k“0

p´1qkπ2n´2kf p2k`2qpxq

“ bn
n
ÿ

k“0

p´1qkπ2n`2´2kf p2kqpxq´bn
n`1
ÿ

l“1

p´1qlπ2n`2´2lf p2lqpxq

“ bnπ2n`2fpxq “ anπ2fpxq.

Now we introduce some trig functions. Define

Gpxq “ F 1pxq sinπx´ πF pxq cosπx.

Then

G1pxq “ F 2pxq sinπx` πF 1pxq cosπx´ πF 1pxq cosπx` π2F pxq sinπx

“ pF 2pxq ` π2F pxqq sinπx “ anπ2fpxq sinπx.

Now Gp0q “ ´πF p0q and Gp1q “ πF p1q. Therefore

Gp1q ´Gp0q
π

“ ´F p0q ´ F p1q P Z.

The MVT provides an x0 P p0, 1q so that Gp1q ´Gp0q “ G1px0q. Hence

| ´ F p0q ´ F p1q| “
|Gp1q ´Gp0q|

π
“
|G1px0q|

π
“ anπ|fpx0q sinπx0| ą 0

and anπ|fpx0q sinπx0| ă
anπ
n! ă 1. This is an integer in p0, 1q, which is a contra-

diction. Therefore π2 is irrational. ■

A.6. Stirling’s Formula

In this section, we derive an asymptotic formula for n! known as Stirling’s for-

mula. It is based on approximating the integral of fpxq “ lnx, An “

ż n

1
lnx dx,

for n ě 2. Since the second derivative f2pxq “ ´ 1
x2 ă 0, the curve fpxq is curving

downwards or concave. This means that the (red) line segments from pk ´ 1, ln kq
and pk, ln kq lies below the curve for 2 ď k ď n. Hence the sum of the areas of
these trapezoids provides a lower bound for the integral. On the other hand, the
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tangent line through pk´ 1
2 , lnpk´

1
2qq lies above the curve. We use them to bound

the area from above.

 

FIGURE 12.3. Approximate
ż n

1
lnx dx

The lower bound is

An ą

n
ÿ

k“2

ln k ´ 1` ln k
2

“

n´1
ÿ

k“2

ln k `
1
2

lnn “ lnn!´
1
2

lnn “: Bn

Now

An “

ż n

1
lnx dx “ x lnx´ x

ˇ

ˇ

ˇ

n

1
“ n lnn´ pn´ 1q.

Define the error to be

En “ An ´Bn “ n lnn´ pn´ 1q ´ lnn!` 1
2 lnn

“ pn` 1
2q lnn´ pn´1q ´ lnn!.

Therefore
lnn! “ pn` 1

2q lnn´ n` p1´ Enq.

Exponentiating yields

n! “ e1´Ennn
?
ne´n.

Now we consider the upper bound. The tangent line through pk´ 1
2 , lnpk´

1
2qq

from k ´ 1 to k has average height lnpk ´ 1
2q. Hence the upper bound is

An ă

n
ÿ

k“2

lnpk ´ 1
2q “: Cn.
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Thus using lnp1` xq ă x, as fpxq lies below the tangent line through p1, 0q,

En ă Cn ´Bn “
1
2

n
ÿ

k“2

2 lnpk ´ 1
2q ´ pln k ´ 1` ln kq

“
1
2

n
ÿ

k“2

ln
k2 ´ k ` 1

4
k2 ´ k

“
1
2

n
ÿ

k“2

ln
´

1`
1

4pk ´ 1qk

¯

ă
1
2

n
ÿ

k“2

1
4pk ´ 1qk

“
1
8

n
ÿ

k“2

1
k ´ 1

´
1
k

“
1
8
`

1´
1
n

˘

ă
1
8
.

This yields the Stirling inequality

e7{8
´

n
e

¯n?
n ă n! ă e

´

n
e

¯n?
n.

However we can do better by computing E :“ lim
nÑ8

En. Note that En is
monotone increasing and bounded above, so that the limit exists by the Monotone
Convergence Theorem. We know that

e1´E “ lim
nÑ8

n!en

nn
?
n
.

Set bn “
n!en

nn
?
n

. Compute

b2
n

b2n
“
pn!q2e2n

n2n`1
p2nq2n` 1

2

p2nq!e2n “

c

2
n

p2nn!q2

p2nq!

“

c

2
n

22 ¨ 42 ¨ 62 ¨ ¨ ¨ p2nq2

1 ¨ 2 ¨ 3 ¨ 4 ¨ ¨ ¨ p2n´ 1qp2nq

“

c

2
n

2 ¨ 4 ¨ 6 ¨ ¨ ¨ p2nq
1 ¨ 3 ¨ 5 ¨ ¨ ¨ p2n´ 1q

“

c

2p2n` 1q
n

d

22 ¨ 42 ¨ 62 ¨ ¨ ¨ p2nq2

1 ¨ 32 ¨ 52 ¨ ¨ ¨ p2n´ 1q2p2n` 1q

By the Wallis product formula, we obtain

e1´E “ lim
nÑ8

b2
n

b2n
“ 2

c

π

2
“
?

2π.

Therefore we have established:

A.6.1. STIRLING’S FORMULA. lim
nÑ8

n!
nne´n

?
2πn

“ 1.
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A.7.
ş8

0
sinx
x dx

There are many different ways to compute the integral in the title. None of them
are easy, and many would not be considered elementary from the point of view of
first year calculus. This one draws inspiration from the theory of Fourier seres, but
we hide this by proving the necessary results without their real motivation. That
makes the proof seem artificial. In fact, every method for this integral has some
sort of trick. The first lemma is an easy result about the Dirichlet kernel.

A.7.1. LEMMA.
ż π

0

sinpn` 1
2qx

sin x
2

dx “ π.

PROOF. Let fpxq “

$

’

&

’

%

2n` 1 if x “ 0
sinpn` 1

2qx

sin x
2

if 0 ă x ď π
. This function is continu-

ous because

lim
xÑ0

sinpn` 1
2qx

sin x
2

“ 2n` 1.

We use the identity 2 sinx cos y “ sinpx` yq ´ sinpx´ yq in the following calcu-
lation.

sin
x

2

´

1` 2
n
ÿ

k“1

cos ku
¯

“ sin
x

2
`

n
ÿ

k“1

2 sin
x

2
cos ku

“ sin
x

2
`

n
ÿ

k“1

sinpk ` 1
2qx´ sinpk ´ 1

2qx

“ sinpn` 1
2qx.

Therefore fpxq “ 1` 2
řn

k“1 cos ku for 0 ă x ď π and also at x “ 0.
Now we can integrate

ż π

0

sinpn` 1
2qx

sin x
2

dx “

ż π

0
1` 2

n
ÿ

k“1

cos ku dx “ π. ■

A.7.2. LEMMA. Define gpxq “
1
x
´

1
2 sin x

2
for 0 ă x ď π. Then gpxq and

g1pxq extend to be continuous at x “ 0.
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PROOF. The argument using the Taylor expansion sinx “ x ´ 1
6x

3 ` Opx5q

near x “ 0 is straightforward.

lim
xÑ0

gpxq “ lim
xÑ0

1
x
´

1
2 sin x

2
“ lim

xÑ0

2 sin x
2 ´ x

2x sin x
2

“ lim
xÑ0

2p 1
2x´

1
48x

3 `Opx5qq ´ x

2xp 1
2x`Opx

3q

“ lim
xÑ0

´ 1
24x

3 `Opx5q

x2 `Opx4q
“ lim

xÑ0

´ 1
24x`Opx

3q

1`Opx2q
“ 0.

So g extends to be continuous at x “ 0. We have

g1pxq “ ´
1
x2 `

cos x
2

4 sin2 x
2

“
x2 cos x

2 ´ 4 sin2 x
2

4x2 sin2 x
2

.

Therefore, since cosx “ 1´ 1
2x

2 `Opx4q near x “ 0,

lim
xÑ0

g1pxq “ lim
xÑ0

x2 cos x
2 ´ 4 sin2 x

2

4x2 sin2 x
2

“ lim
xÑ0

x2p1´ 1
8x

2 `Opx4qq ´ 4p 1
2x´

1
48x

3 `Opx5qq2

4x2p 1
2x´

1
48x

3 `Opx5qq2

“ lim
xÑ0

x2 ´ 1
8x

4 `Opx6q ´ 4p 1
4x

2 ´ 1
48x

4 `Opx6qq

4x2p 1
4x

2 ´ 1
48x

4 `Opx6qq

“ lim
xÑ0

´ 1
24x

4 `Opx6q

x4 ´ 1
48x

6 `Opx8qq
“ lim

xÑ0

´ 1
24 `Opx

2q

1`Opx2q
“ ´

1
24
.

Thus g1 extends to be continuous at x “ 0 by setting g1p0q “ ´ 1
24 . ■

The following is a special case of the Riemann-Lebesgue Lemma.

A.7.3. LEMMA. If gpxq is C1 on r0, πs, then lim
tÑ8

ż π

0
gpxq sinptxq dx “ 0.

PROOF. Integrating by parts yields
ˇ

ˇ

ˇ

ż π

0
gpxq sinptxq dx

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
´ gpxq

1
t

cosptxq `
1
t

ż π

0
g1pxq cosptxq dx

ˇ

ˇ

ˇ

ď
1
t
p2}g}8 ` }g1}8q.

Clearly this goes to 0 as tÑ8. ■

A.7.4. REMARK. It is easy to show that every continuous function can be ap-
proximated by a C1 function uniformly with ε. So an easy argument upgrades this
lemma to continuous functions. That would mean that we did not have to show
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that gpxq was differentiable in the previous lemma. Also one can easily replace the
interval r0, πs with ra, bs without change.

A.7.5. THEOREM.
ż 8

0

sinx
x

dx “
π

2
.

PROOF. In Example 8.1.7, we showed that the improper integral
ż 8

0

sinx
x

dx “ lim
bÑ8

ż b

0

sinx
x

dx

exists. Using gpxq “
1
x
´

1
2 sin x

2
, we see that

ż π

0
gpxq sinpn` 1

2qx dx “

ż π

0

sinpn` 1
2qx

x
dx´

ż π

0

sinpn` 1
2qx

2 sin x
2

dx

“

ż pn`
1
2 qπ

0

sinx
x

dx´
π

2
.

We used a change of variables for the first integral and Lemma A.7.1 for the second.
By Lemma A.7.3, the LHS tends to 0. Since the improper integral exists,

ż 8

0

sinx
x

dx “ lim
nÑ8

ż pn` 1
2 qπ

0

sinx
x

dx

“
π

2
` lim

nÑ8

ż π

0
gpxq sinpn` 1

2qx dx “
π

2
. ■

A.8. Isoperimetric inequality

A famous problem from the time of the ancient Greeks is to determine the
closed curve of given perimeter which encloses the largest area. The Greeks be-
lieved that the answer was a circle, but could not prove it. There are now a variety
of proofs and generalizations to higher dimensions. Here we give a proof based on
calculus.

First notice that any closed curve that has a chance to encircle the largest area
must be convex. Thus if we arrange the figure so that the x-coordinates run from
a to b and back, in the counterclockwise direction, then the first part of the curve
must be a convex function, and the second part is a concave function. We showed
in Part I, Theorem 5.6.5 and Corollary 5.6.6, that a convex function has a left de-
rivative everywhere and it is monotone increasing. Similarly the concave part has
a monotone decreasing left derivative. This isn’t quite enough to be piecewise C1,
however monotone functions are Riemann integrable. So with a bit of care, Green’s
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Theorem 8.5.3 is still valid. Indeed, convex curves fall under the special case for
the first part of that proof. So our proof of the isoperimetric inequality is actually
valid in general.

A.8.1. ISOPERIMETRIC INEQUALITY. Let γ be a piecewise C1 closed
curve of arc length 2π. Then the area enclosed by γ is at most π, and this occurs
only when γ is a circle.

PROOF. We parameterize the curve by arc length s. Then γpsq “ pxpsq, ypsqq
for 0 ď s ď 2π and

ˇ

ˇ

ˇ

dγ

ds

ˇ

ˇ

ˇ

2
“ x1psq2 ` y1psq2 “ 1.

We can reposition the curve by translation and rotation (which does not affect arc
length or area) so that γp0q and γpπq lie on the x-axis with xpπq ă xp0q. So
yp0q “ ypπq “ 0. The discussion above shows that γpr0, πsq lies above the axis,
and γprπ, 2πsq lies below. Note that if 0 ď s ď π, we have x1psq ď 0 and ypsq ě 0;
while for π ď x ď 2π, we have x1psq ě 0 and ypsq ď 0. So ´ypsqx1psq ě 0 for
all s. By Green’s Theorem 8.5.3, the area enclosed by γ is

A “

ż 2π

0
´ypsqx1psq ds “

ż 2π

0
|ypsqx1psq| ds.

Recall that ab ď 1
2pa

2 ` b2q, a special case of the AMGM inequality. Thus

A “

ż 2π

0
|ypsqx1psq| ds ď

ż 2π

0

1
2pypsq

2 ` x1psq2q ds “
1
2

ż 2π

0
ypsq2 ` 1´ y1psq2 ds.

Define upsq “
ypsq

sin s
. Observe that

lim
sÑ0

ypsq

sin s
“ lim

sÑ0

ypsq

s

s

sin s
“ y1p0q

and

lim
sÑπ

ypsq

sin s
“ lim

hÑ0

ypπ ` hq

h

h

sinπ ` h
“ ´y1pπq.

Thus u is continuous on r0, 2πs, and differentiable except possibly at 0, π and 2π.
Then ypsq “ upsq sin s and y1psq “ upsq cos s` u1psq sin s. Therefore

A ď
1
2

ż 2π

0
upsq2 sin2 s` 1´

`

upsq cos s` u1psq sin s
˘2
ds

“
1
2

ż 2π

0

´

upsq2psin2 s´ cos2 sq ´ 2upsqu1psq sin s cos s
¯

` 1´u1psq2 sin2 s ds

“ ´
1
2
upsq2 sin s cos s

ˇ

ˇ

ˇ

2π

0
`

1
2

ż 2π

0
1´ u1psq2 sin2 s ds

ď 0` π “ π.
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Equality holds in the last inequality only if u1psq “ 0 everywhere, so that u is
constant, which yields ypsq “ c sin s. The AMGM inequality is an equality only if
|x1psq| “ |ypsq|, so that x1psq “ ´c sin s because ypsqx1psq ď 0. Hence xpsq “
c cos s` d. Our initial choices show that c ą 0. Also

1 “ x1psq2 ` y1psq2 “ c2 sin2 s` c2 cos2 s “ c2.

So c “ 1. That is, γpsq “ pd, 0q ` pcos s, sin sq for 0 ď s ď 2π. This is a circle of
radius 1 and area π. ■

A.9. Euler’s sum

We will establish the famous formula of Euler:
ř

ně1

1
n2 “

π2

6
and some related

formulae. The arguments use knowledge of the complex numbers including de
Moivre’s Theorem:

pcos θ ` i sin θqn “ cosnθ ` i sinnθ for θ P R and n P N.

A.9.1. LEMMA.
n
ř

k“1
cot2

`

kπ
2n`1

˘

“
np2n´ 1q

3
.

PROOF. By de Moivre’s Theorem,

cosp2n` 1qθ ` i sinp2n` 1qθ “ pcos θ ` i sin θq2n`1

“ sin2n`1 θpcot θ ` iq2n`1

“ sin2n`1 θ
2n`1
ÿ

k“0

ˆ

2n` 1
k

˙

ik cot2n`1´k .

Taking imaginary parts and dividing by sin2n`1 θ yields

sinp2n` 1qθ
sin2n`1 θ

“

ˆ

2n` 1
1

˙

cot2n θ ´
ˆ

2n` 1
3

˙

cot2n´2 θ ` ¨ ¨ ¨ ` p´1qn

“

n
ÿ

m“0

p´1qm
ˆ

2n` 1
2m` 1

˙

cot2n´2m θ “ Pnpcot2 θq

where we define the polynomial

Pnpxq “
n
ÿ

m“0

p´1qm
`2n`1

2m`1

˘

xn´m “
`2n`1

1

˘

xn´
`2n`1

3

˘

xn´1`
`2n`1

5

˘

xn´2` . . . .

Then

Pn

`

cot2 kπ
2n`1

˘

“
sin kπ

sin2n`1 kπ
2n`1

“ 0 for 1 ď k ď n.
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Since degPn “ n, this is a complete list of the roots of Pn. Because Pnpxq “
`2n`1

1

˘

xn ´
`2n`1

3

˘

xn´1 ` . . . , the sum of the roots is

m
ÿ

k“1

cot2
`

kπ
2n`1

˘

“

`2n`1
3

˘

`2n`1
1

˘ “
p2n` 1qp2nqp2n´ 1q

6p2n` 1q
“
np2n´ 1q

3
. ■

A.9.2. EULER’S THEOREM.
ř

ně1

1
n2 “

π2

6
.

PROOF. For 0 ă x ă π
2 , we have sinx ă x ă tanx. Therefore

cot2 x ă
1
x2 ă csc2 x “ 1` cot2 x.

Therefore
n
ÿ

k“1

cot2
`

kπ
2n`1

˘

ă

n
ÿ

k“1

`2n` 1
kπ

˘2
“
p2n` 1q2

π2

n
ÿ

k“1

1
k2 ă n`

n
ÿ

k“1

cot2
`

kπ
2n`1

˘

.

Applying Lemma A.9.1, we obtain

np2n´ 1q
3

π2

p2n` 1q2
ă

n
ÿ

k“1

1
k2 ă

´

n`
np2n´ 1q

3

¯ π2

p2n` 1q2
.

Simplifying we get

π2

6
2np2n´ 1q
p2n` 1q2

ă

n
ÿ

k“1

1
k2 ă

π2

6
4npn` 2q
p2n` 1q2

.

Now let nÑ8 and apply the squeeze theorem to get
8
ř

k“1

1
k2 “

π2

6
. ■

Now we will push this a bit harder to compute
8
ř

k“1

1
k4 . We first need a formula

for the sum of the squares of the roots of a polynomial.

A.9.3. LEMMA. If ppxq“axxn`an´1x
n´1`. . .`a0 “ an

śn
k“1px´ rkq, then

n
ÿ

k“1

r2
k “

´an´1

an

¯2
´ 2

´an´2

an

¯

.

PROOF. Expanding the first few terms of the product, we get
n
ź

k“1

px´ rkq “ xn ´
´

n
ÿ

k“1

rk

¯

xn´1 `

´

ÿ

1ďjăkďn

rjrk

¯

xn´2 ` ¨ ¨ ¨ ` p´1qn
n
ź

k“1

rk.
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Hence
n
ÿ

k“1

rk “
´an´1

an
and

ÿ

1ďjăkďn

rjrk “
an´2

an
.

Therefore
n
ÿ

k“1

r2
k “

´

n
ÿ

k“1

rk

¯2
´ 2

ÿ

1ďjăkďn

rjrk “
´an´1

an

¯2
´ 2

´an´2

an

¯

.
■

A.9.4. LEMMA.
n
ř

k“1
cot4

`

kπ
2n`1

˘

“
8

45
n4 `Opn3q.

PROOF. We use the polynomial Pnpxq from Lemma A.9.1 and apply the pre-
ceding Lemma.
n
ÿ

k“1

cot4
` kπ

2n` 1
˘

“

ˆ

`2n`1
3

˘

`2n`1
1

˘

˙2

´ 2

`2n`1
5

˘

`2n`1
1

˘

“
pn2p2n´ 1q2

9
´

2p2n` 1qp2nqp2n´ 1qp2n´ 2qp2n´ 3q
120p2n` 1q

“
pnp2n´ 1q

45
p5p2n2 ´ nq ´ 3p2n2 ´ 5n` 3qq

“
pnp2n´ 1q

45
p4n2 ` 10n´ 9q “

8
45
n4 ` lower order terms.

The lower order terms are bounded by a multiple of n3 for large n, so the sum
equals 8

45n
4 `Opn3q. ■

A.9.5. THEOREM.
ř

ně1

1
n4 “

π4

90
.

PROOF. Again we use the inequality cot2 x ă
1
x2 ă 1` cot2 x. Thus

cot4 x ă
1
x4 ă p1` cot2 xq2.

Therefore
n
ÿ

k“1

cot4
`

kπ
2n`1

˘

ă

n
ÿ

k“1

`2n` 1
kπ

˘4
ă

n
ÿ

k“1

´

1` cot2
`

kπ
2n`1

¯2

“

n
ÿ

k“1

cot4
`

kπ
2n`1

˘

` 2
n
ÿ

k“1

cot2
`

kπ
2n`1

˘

` n.
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By Lemma A.9.4 and Lemma A.9.1,

π4

p2n` 1q4

´ 8
45
n4 `Opn3q

¯

ă

n
ÿ

k“1

1
k4 ă

π4

p2n` 1q4

´ 8
45
n4 `Opn3q

¯

.

Simplifying, we get
n
ÿ

k“1

1
k4 “

π4

90
`Op 1

nq.

Letting n go to infinity, we obtain
8
ř

k“1

1
k4 “

π4

90
. ■

There are other ways to get these identities. Once you learn about Fourier
series, easier proofs will be available.

There is a general formula
8
ř

k“1

1
k2n “

p2πq2n|B2n|

2p2nq!
where the Bn are the

Bernoulli numbers. They are given by B0 “ 1 and Bn “ ´
n´1
ř

k“0

`

n
k

˘

Bk
n`1´k . Thus

B1 “ ´
1
2 , B2n`1 “ 0 for n ě 1, B2 “

1
6 , B4 “

´1
30 , B6 “

1
42 , B8 “

´1
30 , . . . . Also

1 “
´

B0 `
B1

1!
x`

B2

2!
x2 `

B3

3!
x3 ` . . .

¯´

1`
1
2!
x`

1
3!
x2 `

1
4!
x3 ` . . .

¯

.

A.10. The Gamma function

The gamma function is a continuous (in fact, C8) function which behaves like
the factorial function. It arises naturally in various places in classical analysis.

Γpxq “

ż 8

0
tx´1e´t dt for x ą 0.

The integand is positive, so this improper integral is defined as long as it is bounded
above. We establish this in two steps. Fix x ą 0.

ż 1

0
tx´1e´t dt ď

ż 1

0
tx´1 dt “

tx

x

ˇ

ˇ

ˇ

t“1

t“0
“

1
x
ă 8.

Since lim
tÑ8

tx´1

et{2 “ 0, Mx “ suptě1
tx´1

et{2 ă 8 by the Extreme Value Theorem.
Therefore

ż 8

1
tx´1e´t dt ď

ż 8

1
Mxe

´t{2 dt “ ´2Mxe
´t{2

ˇ

ˇ

ˇ

t“8

t“1
“

2Mx
?
e
ă 8.

Therefore Γpxq is defined for all x ą 0.
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CLAIM: Γpx` 1q “ xΓpxq. Let ε ą 0 and R ą 0 large. Integrate by parts:
ż R

ε
txe´t dt “ ´txe´t

ˇ

ˇ

ˇ

R

ε
`

ż R

ε
xtx´1e´t dt

“ εe´ε ´Rxe´R ` x

ż R

ε
tx´1e´t dt.

Now let εÑ 0` and RÑ `8 and we get

Γpx` 1q “ xΓpxq ` lim
εÑ0`

εe´ε ´ lim
RÑ8

Rxe´R “ xΓpxq.

CLAIM: Γpn` 1q “ n! for n P N0.

Γp1q “
ż 8

0
e´t dt “ ´e´t

ˇ

ˇ

ˇ

8

0
“ 1.

The claim is now established by induction. It is true for n “ 0. If it is true for
n´ 1, then Γpnq “ pn´ 1q!. Thus Γpn` 1q “ nΓpnq “ n!. This establishes the
induction step.

CLAIM: Γp 1
2q “

?
π. Substitute t “ u2 and dt “ 2u du to get

Γpxq “

ż 8

0
tx´1e´t dt “

ż 8

0
u2x´2e´u2

2u du “ 2
ż 8

0
u2x´1e´u2

du.

In particular, Γp 1
2q “ 2

ż 8

0
e´u2

du. The trick for this integral is to square it and

consider this as an integral over the first quadrant Q. Then use polar coordinates
and the fact (compare with area in polar coordinates) that du dv “ r drdθ.

Γp 1
2q

2 “ 4
ż 8

0
e´u2

du

ż 8

0
e´v2

dv “ 4
żż

Q
e´u2´v2

du dv

“ 4
ż π{2

0

ż 8

0
e´r2

r dr dθ “ 4
π

2
`

´ 1
2e

´r2˘
ˇ

ˇ

ˇ

8

0
“ π.

By symmetry, we also have
ż 8

´8

e´u2
du “ 2

ż 8

0
e´u2

du “
?
π.

VOLUMES OF SPHERES. Let the unit ball in Rn be Bn. The surface of the ball
Bn is called Sn´1, or the n ´ 1-sphere. The notation reflects the fact that Sn´1 is
an n´1-dimensional object. Observe that

πn{2 “

´

ż 8

´8

e´u2
du

¯n
“

ż

¨ ¨ ¨

ż

Rn

e´pu2
1`u2

2`¨¨¨`u2
nq du1 du2 . . . dun.

We employ the spherical shell method to compute this integral. Observe that on
the sphere rSn´1 of radius r, the function e´pu2

1`u2
2`¨¨¨`u2

nq takes the constant value
e´r2

. Thus integrating over rSn´1 will yield e´r2
times the n´ 1-dimensional
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volume of rSn´1. This must be rn´1 times the n´1-dimensional volume |Sn´1| of
Sn´1. Now integrate with respect to r from 0 to8 to obtain the integral over Rn.

πn{2 “

ż 8

0
rn´1e´r2

|Sn´1| dr “
1
2 Γpn2 q|Sn´1|.

Therefore the sphere Sn´1 has n´1-dimensional volume
2πn{2

Γpn2 q
.

So the circumference of a circle of radius r is r
2π2{2

Γp 2
2q
“ 2πr. The sphere of

radius r has area

r2 2π3{2

Γpn3 2q
“

2π3{2

1
2 Γp 1

2q
r2 “ 4πr2.

The 3-sphere S3 has volume and the 4-sphere has 4-dimensional volume

|S3| “
2π4{2

Γp 4
2q
“

2π2

1!
“ 2π2 and |S4| “

2π5{2

Γp 5
2q
“

2π5{2

3
2

1
2 Γp 1

2q
“ 8

3π
2.

We compute the n-volume of BnpRq of radius R by the spherical shell technique:

|BnpRq| “

ż R

0
rn´1|Sn´1| dr “

2πn{2

nΓpn2 q
Rn.
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e, 37
e is irrational, 221
kth derivative, 74
nth order DE, 196

Abel’s theorem, 191
absolute convergence, 162
aleph nought (ℵ0), 218
algebraic, 222
alternating harmonic series, 163
alternating series test, 163
and, 1
antiderivative, 106
antisymmetric, 214
Archimedean, 217
asymptote, 41

Bernouilli’s inequality, 40
Bernoulli numbers, 235
bijective, 29
Bolzano-Weierstrass Theorem, 22
bounded above, 18
bounded below, 18
bounded partial sums, 167

Cantor, 220
Cantor function, 54
Cantor set, 55
cardinality, 218
catenary, 140
Cauchy criterion for series, 156
Cauchy sequence, 23
Cauchy sequence of functions, 180
Cauchy’s condensation test, 161
Cauchy’s mean value theorem, 82
centre of mass, 137
centroid, 137
Chain Rule, 64
closed, 26
closed curve, 147
closed interval, 26
codomain, 29
common refinement, 94
comparison test, 157
complete, 24
Completeness Theorem, 24

composition, 29
concave, 74
conditional convergence, 162
continuous function, 45
contrapositive, 2
converge, 13
converge conditionally, 162
convergent series, 155
converges absolutely, 162
converges pointwise, 177
converges uniformly, 177
converse, 2
convex, 74
countable, 53
countable set, 218
counterexample, 3
cycloid, 154

damped harmonic oscillation, 209
Darboux’s Theorem, 82
de Moivre’s Theorem, 232
DE, unique solution, 211
diagonalization, 220
differentiable, 60
differentiable at x0, 60
Dirichlet kernel, 228
Dirichlet’s test, 167
discontinuous, 45
divergent series, 155
domain, 29

epicycloid, 149
equivalence class, 214
equivalence relation, 214
Euler’s constant, 159
Euler’s theorem, 233
even, 32
eventually periodic, 4
exponential function, 38
Extreme Value Theorem, 48

Falling bodies, 202
Fermat’s Principle, 69
Fermat’s Theorem, 68
first order DE, 196
for all, 2

239
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forcing term, 200
formula, 2
function, 29
Fundamental Theorem of Calculus, 105
Fundamental Theorem of Calculus II, 106

gamma function, 235
generalized geometric mean–arithmetic

mean inequality, 81
geometric series, 155
greatest lower bound, 18
Green’s Theorem, 147
Gronwall’s inequality, 211

Hadamard’s theorem, 185
harmonic oscillator, 209
harmonic series, 133, 155
homogeneous linear DE, 200
hyperbolic trig functions, 73

implication, 2
improper integral, 134
improper integrals, 131
increasing sequence, 20
infimum, 18
initial value conditions, 196
injective, 29
integral convergence theorem, 181
integral test, 158
integration by substitution, 114
Intermediate Value Theorem, 49
inverse function, 29
Inverse trig functions., 53
isoperimetric inequality, 231

Jensen’s inequality, 80
jump discontinuity, 52

L’Hôpital’s rule, 83
least upper bound, 18
Least Upper Bound Principle, 19
left derivative, 79
limit from the left, 30
limit from the right, 30
limit of a function, 29
limit points, 26
linear DE of order n, 200
linear DE, constant coefficients, 207
Lipschitz, 46
Lipschitz constant, 46
local maximum, 68
local minimum, 68

lower sum, 94

maximum, 68
Mean Value Theorem, 70
mesh, 94
minimum, 68
modus ponens, 2
Monotone Convergence Theorem, 20
monotone increasing, 20

natural logarithm, 37
negation, 1
Newton’s method, 86
norm, 180
not, 1

oblique asymptote, 42
one-to-one, 29
one-to-one and onto, 29
onto, 29
open, 26
open interval, 26
or, 1
order dense, 11
ordered field, 11

Pappus’s Theorem, 138
parameter, 146
partial fractions, 125
partition, 94
piecewise C1, 147
piecewise monotone, 101
pigeonhole principle, 4
point of inflection, 76
positive definite, 180
positive homogeneous, 180
power series, 185
principal value, 132
Principle of Induction, 6
proof by contradiction, 5
proof by induction, 6
Pursuit curves, 198

quantifiers, 2

Radioactive decay, 197
radius of convergence, 186
range, 29
ratio test, 160
rearrangement, 163
rearrangement theorem, 166
recursion formulae, 118
refines, 94
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relation, 214
rhombic dodecahedron, 139
Riemann sum, 95
Riemann’s condition, 97
Riemann-Lebesgue Lemma, 229
right derivative, 79
Rolle’s Theorem, 69
root test, 160

Schroeder–Bernstein Theorem, 221
secant, 60
Secant Lemma, 78
second derivative, 74
second derivative test, 75
series, 155
Snell’s Law, 69
Squeeze Theorem, 14
Squeeze Theorem for Functions, 30
standard form, 196
statements, 1
Stirling inequality, 227
Stirling’s formula, 227
strictly convex, 74
strictly increasing sequence, 20
subsequence, 21
summable, 155
summation by parts lemma, 167
supremum, 18
surjective, 29

tangent line, 61
tautology, 2
Taylor polynomial, 170
Taylor’s Theorem, 171
term by term differentiation, power series,

187
term by term integration, power series, 188
there exists, 3
Thomae’s function, 46
total order, 11
transcendental, 222
triangle inequality, 12, 180
truth tables, 2

uncountable set, 218
undetermined coefficients, 209
uniform convergence, series of functions,

182
uniform norm, 180
uniformly continuous, 56
upper bound, 18
upper sum, 94

variation of parameters, 205

Wallis product formula, 120
Weierstrass M-test, 182
Weierstrass’s Nowhere Differentiable

Function, 184
Wronskian, 206


	Preface
	Chapter 1. The Logic of Proofs
	1.1. The Language of Mathematics
	1.2. Proofs
	Exercises for Chapter 1

	Chapter 2. The Real Numbers and Limits
	2.1. The real numbers
	2.2. Limits
	2.3. Least upper bound Principle
	2.4. Monotone Sequences
	2.5. Subsequences
	2.6. Completeness
	2.7. Some Topology
	Exercises for Chapter 2

	Chapter 3. Functions
	3.1. Limits of functions
	3.2. The natural logarithm
	3.3. The exponential function
	Exercises for Chapter 3

	Chapter 4. Continuity
	4.1. Continuous functions
	4.2. Properties of Continuous Functions
	4.3. Extreme Value Theorem
	4.4. Intermediate Value Theorem
	4.5. Monotone Functions
	4.6. Uniform Continuity
	Exercises for Chapter 4

	Chapter 5. Differentiation
	5.1. The derivative
	5.2. Differentiation Rules
	5.3. Maxima and Minima
	5.4. Mean Value Theorem
	5.5. Convexity and the second derivative
	5.6. Convexity and Jensen's Inequality
	5.7. L'Hôpital's Rule
	5.8. Newton's Method
	Exercises for Chapter 5

	Chapter 6. The Riemann Integral
	6.1. Archimedes
	6.2. The Riemann Integral
	6.3. Basic Properties of the Integral
	6.4. Riemann integrable functions
	6.5. More integrable functions
	6.6. Fundamental Theorem of Calculus
	Exercises for Chapter 6

	Chapter 7. Techniques of Integration
	7.1. Simple observations
	7.2. Integration by Parts
	7.3. Integration by Substitution
	7.4. Integral Recursion Formulae
	7.5. Partial Fractions
	7.6. Rationalization Tricks
	Exercises for Chapter 7

	Chapter 8. Other Aspects of Integration
	8.1. Improper integrals
	8.2. Volumes
	8.3. Arc length
	8.4. Polar coordinates
	8.5. Parametric equations
	Exercises for Chapter 8

	Chapter 9. Series
	9.1. Convergence of series
	9.2. Tests for Convergence
	9.3. Absolute and Conditional Convergence
	9.4. Dirichlet's Test
	Exercises for Chapter 9

	Chapter 10. Limits of Functions
	10.1. Taylor Polynomials
	10.2. Uniform limits
	10.3. Norm and Completeness
	10.4. Uniform convergence and integration
	10.5. Series of functions
	10.6. Power series
	10.7. Differentiation and integration of power series
	10.8. Abel's Theorem
	Exercises for Chapter 10

	Chapter 11. Differential Equations
	11.1. Examples of DEs
	11.2. First Order Linear DEs
	11.3. Second Order Linear DEs
	11.4. Linear DEs with constant coefficients
	11.5. Uniqueness of solutions for 2nd order linear DEs
	Exercises for Chapter 11

	Appendices
	A.1. Equivalence Relations
	A.2. A Construction of R
	A.3. Cardinality
	A.4. e is transcendental
	A.5.  is irrational
	A.6. Stirling's Formula
	A.7. 0sinxx dx
	A.8. Isoperimetric inequality
	A.9. Euler's sum
	A.10. The Gamma function

	Index

