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CHAPTER 1

Metric Spaces

In calculus, we learned about the structure of the real line and Rn and continuous
functions on subsets of Rn In this course, we find that the same ideas generalize to
a much broader context.

1.1. Normed Vector Spaces

A natural generalization of Rn with its usual Euclidean distance is the notion
of a vector space with a norm, so that we can discuss convergence.

1.1.1. DEFINITION. If V is a vector space over F ∈ {R,C}, then a norm on V
is a function ‖ · ‖ : V → [0,∞) such that

(1) ‖v‖ = 0 ⇐⇒ v = 0 (positive definite).

(2) ‖λv‖ = |λ| ‖v‖ for all λ ∈ F and v ∈ V (positive homogeneous).

(3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V (triangle inequality).

We say that (V, ‖ · ‖) is a normed vector space. A seminorm satisfies (2) and (3)
and ‖0‖ = 0, but possibly some non-zero vectors have zero norm.

1.1.2. EXAMPLES.
(1) Rn and Cn for n ≥ 1 with the Euclidiean norm. If x = (x1, . . . , xn), then

‖x‖2 =
( n∑
i=1

|xi|2
)1/2

.

Recall that this is an inner product space with 〈x, y〉 = ∑n
i=1 xiyi. Indeed, any

inner product space is a normed vector space with ‖x‖ = 〈x, x〉1/2. The triangle
inequality follows from the Cauchy-Schwarz inequality: |〈x, y〉| ≤ ‖x‖ ‖y‖.

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 2 Re〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y|2 = (‖x‖+ ‖y‖)2.
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2 Metric Spaces

(2) If X ⊂ Rn, let Cb(X) denote the space of bounded continuous functions on X
with supremum norm

‖f‖∞ = sup
x∈X
|f(x)|.

If X is closed and bounded, then the Extreme Value Theorem shows that every
continuous function on X is bounded and attains it maximum modulus. In this
case, we write C(X) for the space of all continuous functions onX with the supre-
mum norm. We will write CR(X) if we want the real vector space of real valued
continuous functions. The norm properties are easy to verify.

(3) For 1 ≤ p <∞, let l(n)p be Cn with the norm

‖x‖p =
( n∑
i=1

|xi|p
)1/p

.

We also define l(n)∞ with norm

‖x‖∞ = max{|x1|, . . . , |xn|}.
Properties (1) and (2) are easy. It is not obvious that the triangle inequality holds
except for p = 1 and p =∞. This will be established below for 1 < p <∞.

(3′) For 1 ≤ p <∞, let lp denote the set of all infinite sequences with coefficients
in C or R, x = (x1, x2, x3, . . . ), for which the series

‖x‖pp =
∑
i≥1

|xi|p <∞.

Likewise we let l∞ denote the vector space of all bounded sequences with

‖x‖ = sup
i≥1
|xi|.

(4) For 1 ≤ p <∞, the Lp norm on C[a, b] is given by

‖f‖p =
(∫ b

a
|f(x)|p dx

)1/p
.

Again it is not obvious that this satisfies the triangle inequality except for p = 1.
For p = 2, this follows because

〈f, g〉 =
∫ b

a
f(x)g(x) dx

is an inner product that yields the 2-norm.

1.1.3. THEOREM (Minkowski’s inequality). For 1 < p < ∞, the triangle
inequality is valid for the Lp norm on C[a, b] and the norm on lp and l(n)p . Equality
holds only when f and g lie in a 1-dimensional subspace.
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PROOF. Let f, g ∈ C[a, b] be non-zero functions (the case of f = 0 or g = 0
is left to the reader). Define A = ‖f‖p and B = ‖g‖p. Note that A > 0 because
|f(x)| > 0 on some interval (c, d) by continuity; and similarly B > 0. So we may
define f0 = f/A and g0 = g/B. Clearly ‖f0‖p = 1 = ‖g0‖p.

Consider the functionϕ(x) = xp on [0,∞). Note thatϕ′′(x) = p(p−1)xp−2 >
0 on (0,∞), and thus ϕ(x) is a strictly convex function, meaning that it curves
upwards, or that for all x1, x2 ∈ [0,∞) and 0 ≤ t ≤ 1,

ϕ(tx1 + (1− t)x2) ≤ tϕ(x1) + (1− t)ϕ(x2);

with equality only when x1 = x2 or t = 0 or t = 1. That is every chord between
distinct points on the curve y = ϕ(x) lies strictly above the curve.

For us, this means that for any x ∈ [a, b] that

(1.1.4)
( A

A+B
|f0(x)|+

B

A+B
|g0(x)|

)p
≤ A

A+B
|f0(x)|p +

B

A+B
|g0(x)|p.

Now we integrate this:

1
(A+B)p

∫ b

a
|f(x) + g(x)|p dx ≤

∫ b

a

(A|f0(x)|+B|g0(x)|
A+B

)p
dx

≤
∫ b

a

A

A+B
|f0(x)|p +

B

A+B
|g0(x)|p dx

=
A

A+B

∫ b

a
|f0(x)|p dx+

B

A+B

∫ b

a
|g0(x)|p dx(1.1.5)

=
A

A+B
‖f0‖pp +

B

A+B
‖g0‖pp

= 1.

Multiplying through by (A+B)p, we get that

‖f + g‖pp ≤ (A+B)p = (‖f‖p + ‖g‖p)p.
This establishes the triangle inequality.

Finally, note that equation(1.1.4) is a strict inequality unless |f0(x)| = |g0(x)|.
If they differ at some x0, then by continuity, they differ on an interval (c, d) con-
taining x0. Thus when we integrate, the inequality will be strict. This shows that
|f0| = |g0|. Also in the first line of equation (1.1.5), the inequality is strict unless
sign(f0(x)) = sign(g0(x)). Again strict inequality at a point leads to strict inequal-
ity on a whole interval, and thus a strict inequality when we integrate. Combining
the two ideas shows that for equality, we require that f0 = g0, or that g = Bf/A.
That is, g is a scalar multiple of f .

The proof for lp and l(n)p is basically the same, but without any concern about
continuity. Suppose that x, y ∈ lp are non-zero. Set A = ‖x‖p and B = ‖y‖p. By
the convexity of ϕ(x) = xp, we obtain that( |xi|+ |yi|

A+B

)p
=
( A

A+B

|xi|
A

+
B

A+B

|yi|
B

)p
≤ A

A+B

( |xi|
A

)p
+

B

A+B

( |yi|
B

)p
.
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Sum from 1 to∞ (or stop at n) and obtain that

1
(A+B)p

∞∑
i=1

|xi + yi|p dx ≤
∞∑
i=1

( |xi|+ |yi|
A+B

)p
≤
∞∑
i=1

A

A+B

( |xi|
A

)p
+

B

A+B

( |yi|
B

)p
=

A

A+B

∞∑
i=1

( |xi|
A

)p
+

B

A+B

∞∑
i=1

( |yi|
A

)p
=

A

A+B

‖x‖pp
Ap

+
B

A+B

‖y‖pp
Bp

= 1.

Thus ‖x + y‖pp ≤ (A + B)p = (‖x‖p + ‖y‖p)p, which is the triangle inequality.
The case of equality is argued in the same manner. �

1.2. Metric spaces

The idea of a metric space generalizes the notion of distance beyond subsets of
Euclidean space. However many ideas such as continuity and completeness extend
naturally to this more general context.

1.2.1. DEFINITION. A metric space (X, d) is a set X together with a distance
function d : X ×X → [0,∞) such that

(1) d(x, y) = 0 ⇐⇒ x = y for x, y ∈ X .

(2) d(x, y) = d(y, x) for x, y ∈ X (symmetry).

(3) d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X (triangle inequality).

Any reasonable function that tries to be a distance will satisfy (2), and generally
verifying (1) is very easy. But the triangle inequality can be tricky, as we saw in the
previous section.

A useful consequence of the triangle inequality, sometimes called the reverse
triangle inequality is

d(x, z) ≥ d(x, y)− d(y, z) for all x, y, z ∈ X.
Try to convince yourself that this is true.

1.2.2. EXAMPLES.
(1) Let (V, ‖·‖) be a normed vector space, and letX ⊂ V . Define d(x, y) = ‖x−y‖
for x, y ∈ X . Then (X, d) is a metric space induced from the norm.
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(2) Let X be a set. The discrete metric is given by

d(x, y) =

{
0 if x = y

1 if x 6= y

(2′) A variant on (2) is the Hamming distance on the collection P(X) of all subsets
of a finite set X given by

ρ(A,B) = |A4B| = |(A ∪B) \ (A ∩B)|,
the cardinality of the symmetric difference between the two sets A,B ∈ P(X).
Convince yourself that this satisfies the triangle inequality.

(3) If X is the sphere Sd, namely the surface of the unit ball in Rd+1, or indeed any
other manifold, the geodesic distance between two points x, y ∈ X is the length of
the shortest path on the surface from x to y. On S2, there is a unique great circle
through x 6= y, namely the intersection of the plane spanned by x and y in R3 with
S2. The shortest path follows the great circle from x to y in the shorter direction.
Since any path from x to y and on to z has to be at least as long as the shortest path
from x to z, the triangle inequality holds.

(4) Let X be a closed subset of Rn; and let H(X) denote the collection of all
non-empty closed bounded subsets of X . If A ∈ H(X) and b ∈ X , let

d(b, A) = inf
a∈A
‖a− b‖ = min

a∈A
‖a− b‖.

The minimum is obtained because f(a) = ‖a − b‖ is continuous on the closed
bounded set A, and so the Extreme Value Theorem guarantees the minimum is
attained. In particular, if b 6∈ A, then d(b, A) > 0. Indeed, if d(b, A) = 0, then
there is a sequence an ∈ A such that ‖b − an‖ → 0. Therefore limn→∞ an = b.
Since A is closed, b ∈ A, contrary to our assumption.

The Hausdorff metric onH(X) is given by

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

Again these supremums are obtained. Note that dH(A,B) < ∞ because A and
B are bounded. If A 6= B, then there is a point in A or B not in the other. For
definiteness, suppose that a ∈ A \B. Then dH(A,B) ≥ d(a,B) > 0.

The symmetry property is obvious.
Let us verify the triangle inequality. Let A,B,C ∈ H(X). Fix a ∈ A, and let

b ∈ B.

d(a,C) = inf
c∈C
‖a− c‖ ≤ inf

c∈C
‖a− b‖+ ‖b− c‖

= ‖a− b‖+ inf
c∈C
‖b− c‖ = ‖a− b‖+ d(b, C)

≤ ‖a− b‖+ dH(B,C).
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Since this is valid for any b ∈ B, it is true if we take the infimum over B;

d(a,C) ≤ inf
b∈B
‖a− b‖+ dH(B,C) = d(a,B) + dH(B,C).

Now take the supremum over all a ∈ A;

sup
a∈A

d(a,C) ≤ sup
a∈A

d(a,B) + dH(B,C) ≤ dH(A,B) + dH(B,C).

Now reverse the role of A and C to obtain

sup
c∈C

d(c, A) ≤ dH(C,B) + dH(B,A) = dH(A,B) + dH(B,C).

Finally taking the maximum of these last two quantities proves the triangle inequal-
ity:

dH(A,C) ≤ dH(A,B) + dH(B,C).

(5) Here is an even crazier example, which we will explore during this course:
the p-adic metric on Q. Fix a prime p. If x 6= 0 ∈ Q, we can factor x = pa rs
where a, r, s ∈ Z and gcd(r, p) = 1 = gcd(s, p) = gcd(r, s). That is, we pull
out all factors of p leaving something relatively prime. We define what is called
a norm by number theorists: |x|p := p−a for x 6= 0 and |0|p = 0. Then define
dp(x, y) = |x− y|p. The function | · |p satisfies

(i) |x|p = 0 if and only if x = 0.

(ii) |xy|p = |x|p |y|p.
(iii) |x± y|p ≤ max{|x|p, |y|p}.

Note that (ii) is easy to check. Now (iii) will follow from the p-adic triangle in-
equality by taking 0 as the intermediate point. Notice that x and y are close if x−y
is divisible by a large positive power of p. For example, the sequence an = pn

converges to 0 in this metric because

dp(an, 0) = |an|p = p−n → 0.

Again it is clear that (1) and (2) hold, so we need to verify the triangle inequal-
ity. In fact, it satisfies the strong triangle inequality:

(1.2.3) dp(x, z) ≤ max
{
dp(x, y), dp(y, z)

}
for x, y, z ∈ Q.

Let us factor x − y = pa rs and y − z = pb tu where r, s, t, u are integers relatively
prime to p, and a, b ∈ Z. First suppose that a < b. Then

x− z = (x− y) + (y − z) = pa
(r
s
+
pb−at
u

)
= pa

(ru+ pb−ast
su

)
.

It is easy to check that ru and su are relatively prime to p, and thus so is ru+pb−ast.
When the fraction is reduced to lowest terms, this remains the case. Therefore,

dp(x, z) = p−a = dp(x, y) = max{p−a, p−b} = max{dp(x, y), dp(y, z)}.
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By symmetry, this also holds when a > b. So consider the case when a = b. Then

x− z = (x− y) + (y − z) = pa
(r
s
+
t

u

)
= pa

(ru+ st

su

)
.

As before, the denominator su is relatively prime to p. However the numerator
ru + st factors as ru + st = pcv for a non-negative integer c and an integer v
relatively prime to p. Therefore x− z = pa+c vsu . Hence

dp(x, z) = p−a−c ≤ p−a = max{dp(x, y), dp(y, z)}.

1.2.4. DEFINITION. If (X, d) is a metric space and Y ⊂ X , then (Y, d) has the
induced metric d(y1, y2) obtained by restricting d to Y × Y .

Two metrics d and d′ on X are called equivalent metrics if there are constants
0 < c ≤ C <∞ so that

cd(x1, x2) ≤ d′(x1, x2) ≤ Cd(x1, x2) for all x1, x2 ∈ X.

1.2.5. EXAMPLE. Let S1 denote the unit circle in C, namely

S1 = {z ∈ C : |z| = 1} = {eiθ : 0 ≤ θ ≤ 2π}.
Let ρ be the geodesic distance around the circle. This is easily seen to be

ρ(eiθ1 , eiθ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}.
Now S1 also has an induced metric d from the Euclidean norm on C. A simple
calculation using trigonometry shows that

d(eiθ1 , eiθ2) =
∣∣eiθ1 − eiθ2

∣∣ = 2 sin 1
2ρ(e

iθ1 , eiθ2).

Now on the interval [0, π/2], the function f(x) = sinx is concave down be-
cause f ′′(x) = − sinx < 0 on (0, π/2). So 2

πx ≤ sinx ≤ x on [0, π/2]. Since
1
2ρ(e

iθ1 , eiθ2) lies in [0, π/2], we deduce that

2
π
ρ(eiθ1 , eiθ2) ≤ d(eiθ1 , eiθ2) ≤ ρ(eiθ1 , eiθ2)

So ρ and d are equivalent metrics on S1.

Exercises
1. (a) Show that the l1 norm satisfies the triangle inequality. When is it an equality?

(b) Show that the l∞ norm satisfies the triangle inequality. When is it equality in l(n)∞ ?

2. Let Cn[a, b] be the vector space of functions on [a, b] with n continuous derivatives.
Prove that ‖f‖Cn = max0≤i≤n supa≤x≤b |f (i)(x)| is a norm.

3. Prove that the unit ball of a normed vector space is convex, i.e. if ‖x‖ ≤ 1 and
‖y‖ ≤ 1, then ‖tx+ (1− t)x‖ ≤ 1 for all 0 < t < 1.

4. If (x, d) is a metric space, prove that
∣∣d(x, y)− d(x, z)∣∣ ≤ d(y, z).
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5. (a) Prove that the l(n)1 and l(n)∞ norms on Rn yield equivalent metrics.
(b) Show that this is not true for l1 and l∞ norms on the subspace V of sequences

which are non-zero on only finitely many coordinates.

6. Define d : [0, 2π)2 → R+ by d(x, y) = min{|x− y|, 2π − |x− y|}.
(a) Prove that this is a metric.
(b) Show that the map f(x) = eix (or (cosx, sinx) in R2) is an isometric map of

([0, 2π), d) onto the unit circle with the geodesic metric.

7. Put a metric ρ on all the words in a dictionary by defining the distance between two
distinct words to be 2−n if the words agree for the first n letters and are different at
the (n+1)st letter. A space is distinct from a letter. E.g., ρ(car, cart) = 2−3 and
ρ(car, call) = 2−2.
(a) Verify that this is a metric.
(b) Suppose that words w1, w2 and w3 are listed in alphabetical order. Find a formula

for ρ(w1, w3) in terms of ρ(w1, w2) and ρ(w2, w3).

8. Let X = 2N =
{
x = (x1, x2, . . . ) : xi ∈ {0, 1}

}
and define

d(x,y) = 2
∑
i≥1

3−i|xi − yi|.

(a) Prove that this is a metric.
(b) Define f : X → [0, 1] by f(x) = d(0,x), where 0 = (0, 0, 0, . . . ). Prove that this

maps X onto the Cantor set and satisfies 1
3d(x,y) ≤ |f(x)− f(y)| ≤ d(x,y) for

x,y ∈ 2N.

9. Let V be a vector space over F ∈ {R,C} with a metric d. Say that d is translation
invariant if d(x + z, y + z) = d(x, y) for all x, y, z ∈ V . Say that d is positive
homogeneous if d(λx, λy) = |λ|d(x, y) for all x, y ∈ V and λ ∈ F. Prove that there
is a norm on V so that d(x, y) = ‖x − y‖ if and only if d is translation invariant and
positive homogeneous.

10. Let X be a closed subset of Rn, and put the Hausdorff metric on H(X). If r > 0 and
A ⊂ X , let Ar = {x ∈ X : d(x,A) ≤ r}. Show that

dH(A,B) = inf{r ≥ 0 : A ⊂ Br and B ⊂ Ar}.
(Note: this is actually a minimum.)

11. A pseudometric onX is a map d : X2 → R+ which is symmetric, satisfies the triangle
inequality and d(x, x) = 0 for x ∈ X .
(a) Let d be a pseudometric on X . Define a relation on X by x ∼ y if d(x, y) = 0.

Prove that this is an equivalence relation.
(b) Define Y to be the set of equivalence classes [x]. Define ρ([x], [y]) = d(x, y).

Show that this is a well-defined metric on Y .
(c) Now suppose that V is a vector space over R with a seminorm ‖ · ‖. Define equiv-

alence classes in the same way as (a). Show that N = [0] is a subspace, and that
the space of equivalence classes is just the quotient vector space Y = V/N . Also
show that the metric on Y comes from a norm.
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1.3. Topology of Metric spaces

In this section, we learn about open and closed sets. In the more general context
of topological spaces, everything is determined by the collection of open sets. In
metric spaces, there is a trade-off between topological notions that only depend on
the open sets and the quantitative aspect that comes from the distance function.

1.3.1. DEFINITION. Let (X, d) be a metric space. The open ball about x ∈ X
of radius r > 0 is

br(x) = {y ∈ X : d(x, y) < r}.
The closed ball about x ∈ X of radius r ≥ 0 is

b̄r(x) = {y ∈ X : d(x, y) ≤ r}.
A subset N ⊂ X is a neighbourhood of x ∈ X if there is some r > 0 so that
br(x) ⊂ N .
A subset U ⊂ X is open if for all x ∈ U , there is an r > 0 so that br(x) ⊂ U .
A set C ⊂ X is closed if its complement Cc := X \ C is open.

1.3.2. PROPOSITION. br(x) is open for r > 0 and b̄r(x) is closed for r ≥ 0.

PROOF. Let y ∈ br(x), say d := d(y, x) < r. We claim that br−d(y) ⊂ br(x).
Indeed, if z ∈ br−d(y), then d(z, y) < r − d; whence

d(x, z) ≤ d(x, y) + d(y, z) < d+ (r − d) = r.

Thus z ∈ br(x).
If y 6∈ b̄r(x), then d := d(y, x) > r. We claim that bd−r(y) ⊂ X \ b̄r(x).

Indeed, if z ∈ bd−r(y), then d(z, y) < d−r; so using the reverse triangle inequality,

d(x, z) ≥ d(x, y)− d(y, z) > d+ (d− r) = r.

Thus z 6∈ b̄r(x). So X \ b̄r(x) is open, and hence b̄r(x) is closed. �

1.3.3. REMARK. Note that a neighbourhood does not need to be open. Indeed
an open set is a set which is a neighbourhood of each of its elements. Some books
use a different convention, but there is good reason to use this terminalogy.

Closed is not the opposite of open. Many sets are neither open nor closed. For
example, in R, the sets (a, b], Q and { 1

n
: n ≥ 0} are neither open nor closed in the

Euclidean metric.
Points are closed sets because {x} = b̄0(x).

1.3.4. EXAMPLES.
(1) U := {(x, y) ∈ R2 : xy > 1} is open in R2. To see this, let us assume
that x > 0 and (x, y) ∈ U , say xy = 1 + ε > 1 (the case x < 0 is basically
the same). Define r = min

{
x
2 ,

y
2 ,

ε
2(x+y)

}
. Suppose that (u, v) ∈ br((x, y)), i.e.
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(u− x)2 + (v − y)2 < r2. Then in particular, u > x− r > 0 and v > y − r > 0.
Thus

uv > (x− r)(y − r) = xy − r(x+ y) + r2 > 1 + ε− ε

2
= 1 +

ε

2
> 1.

Therefore br((x, y)) ⊂ U .

(2) C := {(x, y) ∈ R2 : xy ≥ 1} is closed in R2. To see this, note that U = Cc =
{(x, y) ∈ R2 : xy < 1}. This can be shown to be open as in the previous example.

(3) The entire set X is always open. Also the empty set ∅ is open because there
are no points in the set, and so each point in the set is contained in an open ball.
Therefore X and ∅ are also closed sets.

(4) Let (N, d2) be N with the 2-adic metric coming from (Q, d2). The distance
between any two points is always a power of 2. For n ∈ N and d ≥ 0, the closed
ball b̄2−d(n) = {m ∈ N : 2d|m− n}. (Here a|b means that a divides b in N.) Thus

b̄2−d(n) = {m ∈ N : d2(m,n) ≤ 2−d}
= {m ∈ N : d2(m,n) < 21−d} = b21−d(n).

Thus these closed balls are also open balls. Sets which are both closed and open
are called clopen. The exception is the singleton {n} which is closed but not open.

1.3.5. PROPOSITION. (a) If {Uλ : λ ∈ Λ} is a collection of open sets, then⋃
λ∈Λ

Uλ is open. Likewise if {Cλ : λ ∈ Λ} is a collection of closed sets, then⋂
λ∈Λ

Cλ is closed.
(b) If U1, . . . , Un is a finite collection of open sets, then

⋂n
i=1 Ui is open. Like-

wise if C1, . . . , Cn is a finite collection of closed sets, then
⋃n
i=1 Ci is closed.

PROOF. (a) Let x ∈ U :=
⋃
λ∈Λ

Uλ. Then there is some λ0 ∈ Λ so that
x ∈ Uλ0 . Since Uλ0 is open, there is an r > 0 so that br(x) ⊂ Uλ0 . Therefore
br(x) ⊂ U ; whence U is open.

If Cλ is closed, then Uλ = Ccλ is open. Since

X \
⋂
λ∈Λ

Cλ =
⋃
λ∈Λ

Uλ

is open by the first paragraph, it follows that
⋂
λ∈Λ

Cλ is closed.
(b) Let V =

⋂n
i=1 Ui and let x ∈ V . Then x ∈ Ui for 1 ≤ i ≤ n. Since Ui is

open, there is some ri > 0 so that bri(x) ⊂ Ui. Define r = min{ri : 1 ≤ i ≤ n}.
Then br(x) ⊂ Ui for 1 ≤ i ≤ n; and thus br(x) ⊂ V . Hence V is open.

If Ci are closed, then Ui := Cci is open. Observe that

X \
n⋃
i=1

Ci =
n⋂
i=1

Ui

is open; whence
⋃n
i=1 Ci is closed. �
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1.3.6. DEFINITION. A sequence {xn}n≥1 in a metric space (X, d) converges
to x0 if limn→∞ d(xn, x0) = 0. We write limn→∞ xn = x0. That is, for any
ε > 0, there is an N ∈ N so that d(xn, x0) < ε for all n ≥ N . Symbolically,
∀ε>0 ∃N∈N ∀n≥N d(xn, x0) < ε.

A subsequence of {xn}n≥1 is a sequence {xni}i≥1 where ni < ni+1 ∈ N for
i ≥ 1.

1.3.7. DEFINITION. If (X, d) is a metric space and A ⊂ X , the closure of A,
denoted A, is the smallest closed set containing A.

If there are points an ∈ A such that limn→∞ an = a0, say that a0 is a limit
point of A. Moreover if one can choose the points an to be all distinct, then a0 is
an accumulation point. A point a ∈ A is an isolated point if there is an open set U
such that U ∩A = {a}.

1.3.8. PROPOSITION. Let (X, d) be a metric space. A subset A ⊂ X is closed
if and only if it contains all of its limit points.

PROOF. Suppose that A is closed and that {an}n≥1 ⊂ A is a sequence which
satisfies limn→∞ an = a0. If a0 6∈ A, then it belongs to the open set U = Ac.
Hence there is an r > 0 so that br(a0) ⊂ U . From the definition of limit, there is
an N ∈ N so that d(an, a0) < r for all n ≥ N . This implies that {an : n ≥ N} ⊂
br(a0) ⊂ U , and thus an 6∈ A for n ≥ N . This is a contradiction, whence we must
have a0 ∈ A.

Conversely suppose that A is not closed. Then U = Ac is not open. Therefore
U contains a point a0 so that there is no r > 0 such that br(a0) ⊂ U . This means
that for each n ≥ 1, b1/n(a0) ∩ A is not empty. Pick an ∈ A so that d(an, a0) <
1/n. Then {an}n≥1 ⊂ A and limn→∞ an = a0 6∈ A. This is the contrapositive of
the desired statement. �

We now get a more refined look at limit points.

1.3.9. PROPOSITION. Let (X, d) be a metric space, and let A ⊂ X . Then

A =
⋂
{C : C ⊃ A, C closed}

= {all limit points of A}
= A ∪ {all accumulation points of A}
= {all isolated points of A} ∪ {all accumulation points of A}.

PROOF. By Proposition 1.3.5,
⋂{C : C ⊃ A, C closed} is a closed set. By

definition, it contains A and is contained in any closed set containing A; and thus
it is the smallest closed set containing A, namely A.
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The next three sets clearly each contain in the next. Indeed, each point a ∈ A
is a limit of the constant sequence a, a, a, . . . . But a limit point a0 of A is either an
isolated point of A or for each r > 0, br(a0) ∩ A \ {a0} is non-empty. Choose a
sequence an ∈ A so that 0 < d(an+1, a0) < d(an, a0)/2. Then a0 = limn→∞ an
is an accumulation point. Thus these three sets coincide.

By Proposition 1.3.8, A contains all limit points of A, and in particular all
limit points of A. To finish the cycle, it suffices to show that the set B consisting
of all limit points of A is closed. By Proposition 1.3.8 again, it suffices to show
that B contains all of its limit points. Let bn ∈ B such that limn→∞ bn = b0.
As bn is a limit point of A, we may write bn = limi→∞ an,i for a sequence of
points an,i ∈ A. Pick in so that d(an,in , bn) < 1/n; and set an = an,in . Since
limn→∞ d(an, bn) = 0, it follows that

0 ≤ lim
n→∞

d(an, b0) ≤ lim
n→∞

d(an, bn) + d(bn, b0) = 0.

Therefore b0 is a limit point of A. Hence B is closed and contained in A. Since A
is the smallest closed set containing A, A ⊂ B; and thus they are equal. �

The following consequence is immediate.

1.3.10. COROLLARY. Let (X, d) be a metric space, and let A ⊂ X . Then
A = A.

1.3.11. DEFINITION. The interior of A, written intA, is the largest open set
contained in A.

It is straightforward to check that intA =
⋃{br(a) : r > 0, br(a) ⊂ A}.

Verify this. Then to check your facility with these ideas, show that

intA = (Ac)c =: Ac−c.

1.3.12. EXAMPLE. If (X, d) and (Y, ρ) are metric spaces, we can make the
product space X × Y := {(x, y) : x ∈ X, y ∈ Y } into a metric space with

D
(
(x1, y1), (x2, y2)

)
= max{d(x1, x2), ρ(y1, y2)}.

There are other natural choices for the metric, such as

Dp

(
(x1, y1), (x2, y2)

)
=
(
d(x1, x2)

p + ρ(y1, y2)
p
)1/p

for p ≥ 1, with p = 1 and p = 2 being popular choices. The reader can check that
these metrics are all equivalent to D.

In (X × Y,D), br((x0, y0)) = br(x0) × br(y0). A sequence
(
(xn, yn)

)
n≥1

converges in X × Y to (x0, y0) if and only if lim
n→∞

xn = x0 and lim
n→∞

yn = y0.
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1.4. Continuous functions

The notion of continuity from calculus readily generalizes to functions between
metric spaces. We distinguish between continuity using the ε–δ definition and se-
quential continuity using convergent sequences. It will be a theorem to show that
they coincide.

1.4.1. DEFINITION. Let (X, d) and (Y, ρ) be metric spaces, and let f : X → Y
be a function. Then f is continuous at x0 if for all ε > 0, there is a δ > 0 so that
d(x, x0) < δ implies that ρ(f(x), f(x0)) < ε.

Say that f is continuous if it is continuous at x for every x ∈ X .
Also f is uniformly continuous if for all ε > 0, there is a δ > 0 so that

d(x1, x2) < δ implies that ρ(f(x1), f(x2)) < ε. Note that here, the δ does not
depend on x.

Finally we say that f is sequentially continuous if whenever limn→∞ xn = x0
in X , then limn→∞ f(xn) = f(x0) in Y .

The following result compares the ε–δ definition (1), the topological version of
continuity (2) and the sequential version (3). Recall that if V ⊂ Y , that

f−1(V ) := {x ∈ X : f(x) ∈ V }.

1.4.2. PROPOSITION. Let (X, d) and (Y, ρ) be metric spaces, and let f : X →
Y be a function. The following are equivalent:

(1) f is continuous.

(2) f−1(V ) is open in X for every open set V ⊂ Y .

(3) f is sequentially continuous.

PROOF. (1)⇒ (2). Let V ⊂ Y be open, and fix x0 ∈ f−1(V ). Since f(x0) =:
y0 ∈ V and V is open, there is an ε > 0 so that bε(y0) ⊂ V . By the continuity of
f at x0, there is a δ > 0 so that d(x, x0) < δ implies that ρ(f(x), y0) < ε. That
means that

f(bδ(x0)) ⊂ bε(y0) ⊂ V.
Therefore f−1(V ) contains bδ(x0). Since x0 was an arbitrary point in f−1(V ), it
follows that f−1(V ) is open.

(2) ⇒ (3). Suppose that limn→∞ xn = x0 in X . Given any ε > 0, let V =
bε(f(x0)) be an open ball in Y . By (2), f−1(V ) is open and contains x0. Therefore
there is some δ > 0 so that bδ(x0) ⊂ f−1(V ). Therefore if d(xn, x0) < δ, then
f(xn) ∈ V , i.e. ρ(f(xn), f(x0)) < ε. Since limn→∞ xn = x0, there is some
integer N so that d(xn, x0) < δ provided that n ≥ N . Since ε > 0 was arbitrary,
we conclude that limn→∞ f(xn) = f(x0) in Y .
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(3) ⇒ (1). Suppose that f is not continuous at some x0 ∈ X; i.e. assume
that (1) is false. Then there must be some ε0 > 0 so that no δ > 0 works in the
definition of continuity at x0. Hence for δ = 1

n , there is some xn ∈ b1/n(x0) so
that ρ(f(xn), f(x0)) ≥ ε0. This means that limn→∞ xn = x0 but since f(xn) is
bounded away from f(x0), we see that limn→∞ f(xn) either does not exist or it
exists but if different from f(x0). So f is not sequentially continuous. Thus (3) is
false. Thus ¬(1) implies ¬(3). The contrapositive is that (3) implies (1). �

We collect a few easy ways to build more continuous functions.

1.4.3. PROPOSITION. Let (X, d), (Y, ρ) and (Z, σ) be metric spaces.
(a) The composition of continuous functions is continuous; i.e., if f : X → Y and
g : Y → Z are continuous, then g ◦ f : X → Z is continuous.
(b) If f : X → Y and g : X → Z are continuous functions, then h = (f, g) :
X → Y × Z is continuous.

PROOF. (a) LetW ⊂ Z be open. Since g is continuous, g−1(W ) =: V is open
in Y . Then since f is continuous, f−1(V ) is open in X . Therefore

(g ◦ f)−1(W ) = f−1(g−1(W )) = f−1(V )

is open. Hence g ◦ f is continuous.
(b) Recall from Example 1.3.12 that br((y0, z0)) = br(y0)× br(z0). Thus

h−1(br((y0, z0))) = f−1(br(y0)) ∩ g−1(br(z0))

is open. Every open set V ⊂ Y × Z is a union of balls, and the union of open sets
is open; thus h−1(V ) is open. Therefore h is continuous. �

1.4.4. PROPOSITION. The set of continuous functions on a metric space (X, d)
with values in F ∈ {R,C} is an algebra. That is, sums, products and scalar
multiples of continuous functions are continuous.

PROOF. Let f, g be continuous functions fromX to F. By Proposition 1.4.3(b),
h(x) = (f(x), g(x)) is continuous into F2. Now the maps from F2 to F by
a(s, t) = λs + µt and m(s, t) = st are continuous for any scalars λ, µ ∈ F. By
Proposition 1.4.3(b), a◦h andm◦h are continuous. Now a◦h(x) = λf(x)+µg(x)
and m ◦ h(x) = f(x)g(x). The result follows. �

Some functions preserve the structure of a metric space, or at least some part
of it,

1.4.5. DEFINITION. Let (X, d) and (Y, ρ) be metric spaces, and let f : X → Y
be a function. Say that f is isometric or is an isometry if

ρ(f(x1), f(x2)) = d(x1, x2) for all x1, x2 ∈ X.
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Say that f is Lipschitz if there is a constant C <∞ so that

ρ(f(x1), f(x2)) ≤ Cd(x1, x2) for all x1, x2 ∈ X.
Say that f is biLipschitz if there are constants 0 < c ≤ C <∞ so that

cd(x1, x2) ≤ ρ(f(x1), f(x2)) ≤ Cd(x1, x2) for all x1, x2 ∈ X.
Say that f is a homeomorphism if it is a continuous bijection such that f−1 is

also continuous.

An isometry preserves the distance, and clearly is biLipschitz with c = C = 1.
In particular it is injective. If f is a surjective isometry, then the inverse map is
also an isometry, and in particular f is a homeomorphism. Such a map preserves
all of the structure of the metric space. A bijection which is biLipschitz has an
inverse which is also biLipschitz with constants C−1 and c−1. Again this will be
a homeomorphism. It may stretch or contract the distance a limited amount, but
it preserves a lot of the structure. The original metric d will be equivalent to the
metric σ(x1, x2) = ρ(f(x1), f(x2)).

A homeomorphism preserves open sets. That is, if V is open in Y , then f−1(V )
is open in X because f is continuous; and if U is open in X , then f(U) =
(f−1)−1(U) is open because f−1 is continuous. However it may overstretch or
understretch the metric so that certain quantitative things change.

The following very easy result is left as an exercise.

1.4.6. PROPOSITION. Lipschitz maps are uniformly continuous.

1.4.7. EXAMPLES.
(1) In Example 1.2.5, we discuss two metrics on the circle S1. The geodesic dis-
tance ρ, and the metric d induced by the Euclidean distance in C. These metrics
were shown to be equivalent. It follows that the identity map f : (S1, ρ)→ (S1, d)
given by f(eiθ) = eiθ is a biLipschitz homeomorphism.

(2) Let f : ([0, 1), d)→ (S1, ρ) map the half-open interval onto S1 by f(t) = e2πit.
It is clear that this map is Lipschitz with constant 2π, and it is a bijection. However
it is not a homeomorphism because the sequence tn = n

n+1 has no limit in [0, 1)
while f(tn) has the limit 1 in S1. So f−1 is not continuous at 1. Another way to
see this is that d(0, tn) = tn → 1 while

ρ(f(0), f(tn)) = |1− e−2πi/(n+1)| = 2 sin π
n+1 → 0.

(3) Let X be a convex subset of Rn, and let F : X → Rm be a differentiable
function. If the derivative DF is bounded, then F is Lipschitz. Remember that if
F = (f1, . . . , fm) where fj is the jth coordinate of F , then DF (x) is the n ×m
matrix

[
∂fj
∂xi

]
. We will say thatDF is bounded if each ∂fj

∂xi
is bounded for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Suppose that each coordinate is bounded by a constant C. This
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occurs, for example, when F is C1 and X is closed and bounded by the Extreme
Value Theorem.

We need to estimate ‖F (x1)−F (x2)‖. To do this, let u be a unit vector in Rm
colinear with F (x1)− F (x2). Then

‖F (x1)− F (x2)‖ = |(F (x1)− F (x2)) · u|
Consider the scalar valued function f(x) = F (x) · u =

∑m
j=1 ujfj(x). Note that

∂f

∂xi
(x) =

m∑
j=1

uj
∂fj
∂xi

(x).

Therefore the gradient of f is given by

∇f(x) = u ·DF (x) = [u1 . . . um]


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)


If dij =

∂fj
∂xi

(x), then DF (x) =
[
dji
]
. The Cauchy-Schwarz inequality yields

‖∇f(x)‖2 =

n∑
i=1

( m∑
j=1

ujdji
)2 ≤

n∑
i=1

‖u‖2
m∑
j=1

d2
ji ≤ nmC2.

Since X is convex, we can apply the Mean Value Theorem to f restricted to the
line segment [x1, x2]. We obtain a point ξ ∈ (x1, x2) so that

|f(x1)− f(x2)| =
∣∣(x1 − x2) ·∇f(ξ)

∣∣ ≤ ‖x1 − x2‖
√
nmC.

Hence ‖F (x1)−F (x2)‖ = |f(x1)−f(x2)| ≤
√
nmC‖x1−x2‖; i.e. it is Lipschitz.

(4) Let f : (−π
2 ,

π
2 ) → R by f(x) = tanx. Then f is a continuous bijection.

Moreover, f−1(y) = tan−1(y) is also continuous. Hence f is a homeomorphism.
The derivative f ′(x) = sec2 x blows up as x → ±π

2 . It follows that f is not
Lipschitz. Indeed, if π

2 − ε < x1 < x2 < π
2 , then the Mean Value Theorem

provides some ξ ∈ (x1, x2) so that

f(x2)− f(x1)

x2 − x1
= f ′(ξ) > sec2(π2 − ε) = csc2 ε >

1
ε2 .

On the other hand, (f−1)′ = 1
1+y2 ≤ 1. So f−1 is Lipschitz with constant 1.

1.5. Finite dimensional normed vector spaces

Recall that a normed vector space (V, ‖ · ‖) has an induced metric d(u, v) =
‖u−v‖. If (V, |||·|||) is another norm on V , we say that the two norms are equivalent
if there are constants 0 < c ≤ C <∞ so that

c‖v‖ ≤ |||v||| ≤ C‖v‖ for all v ∈ V.
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It is an easy exercise to see that this is the same as saying that the metrics that they
induce are equivalent.

1.5.1. EXAMPLE. Consider Rn with the Euclidean norm ‖v‖2 =
(∑n

i=1 v
2
i

)1/2

and the l(n)1 norm ‖v‖1 =
∑n

i=1 |vi|. Observe that by the Cauchy-Schwarz inequal-
ity,

‖v‖1 =

n∑
i=1

|vi| · 1 ≤ ‖v‖2 ‖(1, . . . , 1)‖2 =
√
n‖v‖2

On the other hand, by the triangle inequality,

‖v‖2 ≤
n∑
i=1

‖viei‖2 =

n∑
i=1

|vi| = ‖v‖1.

Therefore

‖v‖2 ≤ ‖v‖1 ≤
√
n‖v‖2 for all v ∈ Rn.

Hence these two norms are equivalent. The same argument works for Cn.

1.5.2. THEOREM. If V is a finite dimensional vector space over F ∈ {R,C},
then any two norms on V are equivalent.

PROOF. Since V is finite dimensional, we have that V ' Fn, where n =
dimV . Fix a basis e1, . . . , en for V . Then each v ∈ V has the form v =

∑n
i=1 viei,

with vi ∈ F. Let ‖v‖2 =
(∑n

i=1 |vi|2
)1/2 be the 2-norm. This is the usual Eu-

clidean norm on Fn. It suffice to show that all norms on V are equivalent to ‖ · ‖2.
Let |||·||| be another norm on V . By the triangle inequality,

|||v||| ≤
n∑
i=1

|||viei||| ≤
n∑
i=1

|vi| |||ei|||.

Hence by the Cauchy-Schwarz inequality,

|||v||| ≤
( n∑
i=1

|vi|2
)1/2 ( n∑

i=1

|||ei|||2
)1/2

=: C‖v‖2,

where C =
(∑n

i=1 |||ei|||2
)1/2 is a constant. This shows that |||v||| is a Lipschitz

function on (V, ‖ · ‖2), and in particular it is continuous.
Let S := {v ∈ V : ‖v‖2 = 1} be the unit sphere in V . This is a closed and

bounded set in Fn, so we can apply the Extreme Value Theorem to the continuous
function |||v||| to conclude that it attains its minimum value on S, say

c = |||v0||| = inf
v∈S
|||v|||.
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Since 0 6∈ S, we have that c > 0. Take any non-zero v ∈ V . Then v/‖v‖2 belongs
to S. Hence

c ≤
∣∣∣∣∣∣∣∣∣∣∣∣ v

‖v‖2

∣∣∣∣∣∣∣∣∣∣∣∣ = |||v|||‖v‖2
.

Therefore
c‖v‖2 ≤ |||v||| ≤ C‖v‖2 for all v ∈ V.

Thus these two norms are equivalent. �

1.5.3. COROLLARY. Every vector space norm on Fn is biLipschitz homeomor-
phic to Fn with the Euclidean norm.

Exercises

1. Let (X, d) be a set with the discrete metric.
(a) Describe all open sets and all closed sets.
(b) Describe all convergent sequences.
(c) Describe all accumulation points of X .

2. Let V be an inner product space with norm ‖x‖ = 〈x, x〉1/2. Prove that a linear map
T from (Fn, ‖ · ‖2) into V is an isometry if and only if the set {Tei : 1 ≤ i ≤ n} is an
orthonormal set.

3. (a) If d1 and d2 are equivalent, prove that (X, d1) and (X, d2) have the same open sets.
(b) Is the converse true? Either prove it or provide a detailed counterexample.

4. Let d2 be the 2-adic metric on Q.

(a) Find lim
n→∞

1− (−2)n

3
in (Q, d2), and show that this limit is in the closure of N.

(b) Find the closure of N in (Q, d2). HINT: figure out why (a) works.

5. Let (X, d) be a metric space and let (xn)n≥1 be a sequence in X , and let x0 ∈ X .
(a) If limn→∞ xn = x0, then every subsequence (xni

)i≥1 converges to x0.
(b) If every subsequence (xni

)i≥1 has a subsequence (xnij
)j≥1 which converges to x0,

then (xn)n≥1 converges to x0.

6. Let (X, d) be a metric space, and let Y ⊂ X have the induced metric.
(a) Show that a subset V ⊂ Y is open if and only if there is an open set U in X such

that V = U ∩ Y .
(b) Show that a subset A ⊂ Y is closed if and only if there is a closed set B in X such

that A = B ∩ Y .

7. Given an example of a metric space (X, d), a point x0 and r > 0 so that br(x0) is
properly contained in b̄r(x0).

8. Let (V, ‖ · ‖) be a normed vector space. Let A ⊂ V , x ∈ V and λ ∈ F.
(a) Show that x+A = x+A and x+ int(A) = int(x+A).
(b) Show that λA = λA. When is λ int(A) = int(λA)?.
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9. For this question, let’s write A− instead of Ā. Consider the collection of sets obtained
by repeated application of closure and complement inside (X, d). E.g., A−c−c−,Ac−.
(a) Show that if U is open and B = U−, then B = Bc−c−.
(b) Use (a) to show that starting with a set A, there are at most 14 possible sets, includ-

ing A itself, obtained by repeated use of closure and complement.
(c) Find a bounded subset A ⊂ R with exactly 14 different sets obtained this way.

10. Let (X, d) and (Y, ρ) be a metric spaces. Let f, g : X → Y be continuous functions.
Show that {x ∈ X : f(x) = g(x)} is closed.

11. Let (V, ‖ · ‖) be a normed vector space. Let W be a finite dimensional subspace of V .
(a) Show that for any v ∈ V , there is a point w ∈ W such that ‖v − w‖ = d(v,W ).

HINT: Extreme Value Theorem on some closed bounded subset of W ..
(b) Show that if V is an inner product space, then there is a unique closest point.
(c) Let V = c0, the space of all sequences x = (xn)n≥1 with limn→∞ xn = 0 and

norm ‖x‖∞ = supn≥1 |xn|. Let Wn = {x : xk = 0 for k > n}. Find a point
v ∈ c0 for which there are many closest points in Wn.

12. Suppose that (X, d) is a nonempty metric space.
(a) Fix x0 ∈ X . For each x ∈ X , define fx(y) = d(x, y)− d(x0, y) for y ∈ X . Show

that fx is a bounded continuous function on X .
(b) Show that ‖fx − fy‖∞ = d(x, y) for all x, y ∈ X .
(c) Hence deduce that the map that takes x ∈ X to the function fx is an isometry that

identifies X with a subset of CbR(X).

13. Let X = −N ∪ ⋃n≥0(2n, 2n + 1) and Y = −N ∪ ⋃n≥0[2n, 2n + 1). Show that
there are continuous bijections f : X → Y and g : Y → X , but X and Y are not
homeomorphic.

1.6. Completeness

By analogy to what we know in Rn, we can define the notions of Cauchy se-
quence and completeness in arbitrary metric spaces. Recall that intuitively, Cauchy
sequences behave like convergent sequences, but the definition avoids naming the
limit point.

1.6.1. DEFINITION. Let (X, d) be a metric space. A sequence (xn)n≥1 of
points in X is a Cauchy sequence if for every ε > 0, there is an N ∈ N so that
d(xm, xn) < ε for all m,n ≥ N . In symbols, ∀ε>0 ∃n∈N ∀m,n≥N d(xm, xn) < ε.

A metric space (X, d) is complete if every Cauchy sequence in X converges to
a limit in X . A complete normed vector space is called a Banach space.

This easy proposition confirms the intuition.

1.6.2. PROPOSITION. Convergent sequences are Cauchy sequences.
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PROOF. Suppose that limn→∞ xn = x0 and let ε > 0. Using ε/2, we may find
an integer N so that d(xn, x0) < ε/2 for all n ≥ N . Then if m,n ≥ N , we have

d(xm, xn) ≤ d(xm, x0) + d(x0, xn) <
ε

2
+
ε

2
= ε.

Hence (xn)n≥1 is a Cauchy sequence. �

1.6.3. EXAMPLES.
(1) If X has the discrete topology, a Cauchy sequences is eventually constant. Take
ε = 1 and find N ; then d(xn, xN ) < 1 means that xn = xN for all n ≥ N . So X
is complete.

(2) R and Rn are complete. We will review this soon.

(3) Let X = (−1, 1) with the Euclidean metric d induced from R. Then (X, d) is
not complete because xn = n

n+1 is Cauchy, but has no limit in X .
However, let f(x) = tan(πx/2). Then f is a strictly increasing map of (−1, 1)

onto R, and so it is injective. Define a metric ρ(x, y) = |f(x)− f(y)|. (Check the
triangle inequality!) Suppose that (xn)n≥1 is Cauchy in (X, ρ). Then by definition,
f(xn) is a Cauchy sequence in R. By the completeness of R, this sequence con-
verges, say limn→∞ f(xn) = y. Let x = f−1(y) = 2

π tan−1(y). Now x ∈ (−1, 1)
and ρ(xn, x) = |f(xn) − y| → 0. So limn→∞ xn = x in the ρ metric. Therefore
(X, ρ) is complete.

The identity map from (X, d) to (X, ρ) is a continuous bijection, and the in-
verse map is also continuous (check!). Thus these two spaces are homeomor-
phic. However the map is not biLipschitz. Indeed f ′(x) = π

2 sec2(πx/2) is un-
bounded, so f is not Lipschitz. The map f−1(y) = 2

π tan−1(y) has derivative
f−1′(y) = 2

π(1+y2)
is bounded by 2

π , so f−1 is Lipschitz.

1.6.4. PROPOSITION. Suppose that (X, d) is a complete metric space, and that
Y ⊂ X is a subset with the induced metric. Then (Y, d) is complete if and only if
Y is closed in X .

PROOF. (⇒) Let x ∈ Y . Then there is a sequence (yn)n≥1 in Y with x =
limn→∞ yn. By Proposition 1.6.2, this is a Cauchy sequence. Since Y is complete,
the sequence has a limit in Y , namely x ∈ Y . Thus Y is closed.

(⇐) Let (yn)n≥1 be a Cauchy sequence in Y . Since X is complete, and this
sequence is also Cauchy in X , x = limn→∞ yn exists in X . Because Y is closed,
x ∈ Y . So the sequence converges in Y . Thus Y is complete. �

1.6.5. THEOREM. The normed vector space lp for 1 ≤ p <∞ is complete.

PROOF. Let xn = (xn1, xn2, xn3, . . . ) for n ≥ 1 be a Cauchy sequence in lp.
Given ε > 0, there is an N = N(ε) so that ‖xm−xn‖p < ε for all m,n ≥ N . For
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each j ≥ 1,
|xmj − xnj | ≤ ‖xm − xn‖p.

Therefore the sequence (xnj)n≥1 is a Cauchy sequence in R. As R is complete,
limn→∞ xnj =: xj exists. Let x = (x1, x2, x3, . . . ). This is a sequence, but we do
not yet know that it lies in lp.

Now fix an integer J . Then for all N ≤ m ≤ n,
J∑
j=1

|xnj − xmj |p ≤ ‖xm − xn‖pp < εp.

Keep m fixed and let n → ∞. Since this is a finite sum and each term converges,
we obtain

J∑
j=1

|xj − xmj |p ≤ εp for all m ≥ N.

Now let J →∞ to conclude that

(1.6.6) ‖x− xm‖p =
∞∑
j=1

|xj − xmj |p ≤ εp for all m ≥ N.

In particular, Minkowski’s inequality shows that

‖x‖p ≤ ‖xm‖+ ‖x− xm‖p <∞.
So x ∈ lp. Finally, (1.6.6) shows that x = limm→∞ xm. So lp is complete. �

The case of l∞ will be established in section 1.8 based on the fact that l∞ =
Cb(N), where N has the discrete topology.

1.6.7. DEFINITION. If (V, ‖ · ‖) is a normed vector space, let L(V,F) denote
the vector space of linear maps of V into the scalars, linear functionals , and let V ∗

denote the dual space of V of all continuous linear functionals.

1.6.8. PROPOSITION. Let (V, ‖ · ‖) be a normed vector space, and let ϕ ∈
L(V,F). The following are equivalent:

(1) ϕ is continuous.

(2) ‖ϕ‖∗ := sup{|ϕ(v)| : ‖v‖ ≤ 1} <∞.

(3) ϕ is continuous as v = 0.

PROOF. (2)⇒ (1). If u 6= v ∈ V , set w = u−v
‖u−v‖ and note that

|ϕ(u)− ϕ(v)| = |ϕ(u− v)| = |ϕ(w)| ‖u− v‖ ≤ ‖ϕ‖∗‖u− v‖.
Hence ϕ is Lipschitz, and in particular is continuous.

(1)⇒ (3) is trivial.
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(3)⇒ (2). Assume that (2) fails. Then there are vectors vn ∈ V with ‖vn‖ =
1 and |ϕ(vn)| > n2. Thus 1

nvn → 0 while |ϕ( 1
nvn)| > n diverges. So ϕ is

discontinuous at 0. The result follows. �

1.6.9. THEOREM. Let (V, ‖ · ‖) be a normed vector space. Then (V ∗, ‖ · ‖∗) is
a Banach space.

PROOF. First we show that ‖ · ‖∗ is a norm. Clearly ‖ϕ‖∗ = 0 if and only if
ϕ(v) = 0 for all v ∈ V with ‖v‖ ≤ 1. This forces ϕ = 0 by linearity. Also if
λ ∈ F, then

‖λϕ‖∗ = sup
‖v‖≤1

|λϕ(v)| = |λ| sup
‖v‖≤1

|ϕ(v)| = |λ| ‖ϕ‖∗.

For the triangle inequality, take ϕ,ψ ∈ V ∗.
‖ϕ+ ψ‖∗ = sup

‖v‖≤1
|ϕ(v) + ψ(v)| ≤ sup

‖v‖≤1
|ϕ(v)|+ |ψ(v)|

≤ sup
‖v‖≤1

|ϕ(v)|+ sup
‖v‖≤1

|ψ(v)| = ‖ϕ‖∗ + ‖ψ‖∗.

To establish completeness, let (ϕn)n≥1 be a Cauchy sequence in V ∗. For each
v ∈ V , |ϕm(v)−ϕn(v)| ≤ ‖ϕm−ϕn‖∗ ‖v‖. It follows that (ϕn(v))n≥1 is a Cauchy
sequence in F. Since F is complete, we may define ϕ(v) = limn→∞ ϕn(v). Then

ϕ(λu+ µv) = lim
n→∞

ϕn(λu+ µv)

= lim
n→∞

λϕn(u) + µϕn(v) = λϕ(u) + µϕ(v).

Therefore ϕ is linear. Now let ε > 0 and select N so that if m,n ≥ N , then
‖ϕm − ϕn‖∗ < ε. In particular, if ‖v‖ ≤ 1, we have that |ϕm(v) − ϕn(v)| < ε.
Holding m fixed and letting n → ∞, we obtain that |ϕm(v) − ϕ(v)| ≤ ε. Taking
the supremum over all v with ‖v‖ ≤ 1 yields ‖ϕm − ϕ‖∗ ≤ ε when m ≥ N . In
particular, ‖ϕ‖∗ ≤ ‖ϕm‖∗ + ‖ϕm − ϕ‖∗ < ∞; so ϕ ∈ V ∗. Moreover we have
shown that limm→∞ ϕm = ϕ in (V ∗, ‖ · ‖∗). So V ∗ is complete. �

1.7. Completeness of R and Rn

This is a topic covered in earlier courses, so we will review this quickly. Exactly
how one gets started depends on how we define the real numbers. We will explore
this important issue later.

For now, we will assume that every infinite decimal describes a unique real
number. Of course, some numbers like 1 have two such infinite decimals, namely
1.000 . . . and 0.999 . . . .

Another basic property of R that we need is that it is Archimedean, meaning
that if x ∈ R, x ≥ 0, and x < 10−n for all n ≥ 1, then x = 0. To see this, note
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that since x ≥ 0, it has a decimal expansion x = x0.x1x2x3 . . . where x0 ≥ 0. If
x 6= 0, there is a first non-zero digit in its expansion, say xn ≥ 1. Then x ≥ 10−n.

1.7.1. LEAST UPPER BOUND PRINCIPLE. If S is a non-empty subset of R
which is bounded above (below), then S has a least upper bound (greatest lower
bound).

PROOF. We will deal with the case of the lower bound. The case of the least
upper bound follows from the fact that supS = −(inf−S).

Since S is bounded below, there is a largest integer a0 which is a lower bound.
That is

a0 ≤ s for all s ∈ S and ∃s0 ∈ S such that s0 < a0 + 1.

Think of the point s0 as a witness to the fact that a0 + 1 is not a lower bound. Note
that this is where the fact that S is non-empty is used.

Now consider the numbers a0.0, a0.1, . . . , a0.9. From these, pick the largest
one, say a0.a1, which is a lower bound, and pick si ∈ S to witness that a0.a1+10−1

is not:
a0.a1 ≤ s for all s ∈ S and s1 < a0.a1 + 10−1.

Recursively select an ∈ {0, 1, . . . , 9} so that a0.a1 . . . an is a lower bound for S,
and a0.a1 . . . an + 10−n is not, and sn ∈ S is a witness, so that

a0.a1 . . . an ≤ s for all s ∈ S and sn < a0.a1 . . . an + 10−n.

Let L = a0.a1a2a3 . . . .
We claim that L = infS. First, if s ∈ S, we have a0.a1 . . . an ≤ s for all

n ≥ 1, and so L ≤ s. This follows from the Archimedean property, because if
there were an s ∈ S with s < L, then for some n ≥ 1,

s ≤ L− 10−n < a0.a1 . . . an,

which contradicts our construction. So L is a lower bound. If M > L, then by the
Archimedean property, there is some n ≥ 1 so that

M > L+ 10−n ≥ a0.a1 . . . an + 10−n > sn.

So M is not a lower bound. Hence L = infS. �

1.7.2. COROLLARY. A bounded monotone sequence in R converges.

PROOF. Suppose that (xn)n≥1 is a monotone increasing sequence in R which
is bounded above. By the Least Upper Bound Principle, L = sup{xn : n ≥ 1}
exists. We claim that limn→∞ xn = L. Take any ε > 0. Since L−ε is not an upper
bound for the sequence, there is some N so that L− ε < xN . Hence

L− ε < xN ≤ xn ≤ L for all n ≥ N.
Thus |L− xn| < ε for all n ≥ N . So limn→∞ xn = L. �
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1.7.3. BOLZANO-WEIERSTRASS THEOREM. Every bounded sequence in
R has a convergent subsequence.

PROOF. Let (xn)n≥1 be a sequence of real numbers bounded below by a0 and
bounded above by b0. We use the disection method.

Let y = (a0 + b0)/2. Either there are infinitely many n’s with xn ∈ [a0, y]
or there are infinitely many n’s with xn ∈ [y, b0] or both. If there are infinitely
many in [a0, y], let a1 = a0 and b1 = y. Otherwise set a1 = y and b1 = b0. In
either case, pick n1 so that xn1 ∈ [a1, b1]. Note that a0 ≤ a1 < b1 ≤ b0 and
b1 − a1 = 2−1(b0 − a0).

We will recursively select ak and bk so that ak−1 ≤ ak < bk ≤ bk−1 and
bk − ak = 2−k(b0 − a0) so that there are infinitely many n’s with xn ∈ [ak, bk].
Then pick nk > nk−1 so that xnk ∈ [ak, bk].

We claim that (xnk)k≥1 converges. Note that a0, a1, a2, . . . is a monotone
increasing sequence bounded above by b0. Hence it converges, say to A. Likewise
b0, b1, b2, . . . is a monotone decreasing sequence bounded below by a0, so it also
converges, say to B. However

B −A = lim
k→∞

bk − ak = lim
k→∞

2−k(b0 − a0) = 0.

So B = A. Now ak ≤ xnk ≤ bk. Therefore limk→∞ xnk = A by the Squeeze
Theorem. �

1.7.4. LEMMA. Cauchy sequences are bounded.

PROOF. Let (xn)n≥1 be a Cauchy sequence in (X, d). Let ε = 1, and find N
so that d(xn, xN ) < 1 for n ≥ N . Let

R = max{1, d(xi, xN ) : 1 ≤ i < N}.
Then (xn)n≥1 ⊂ b̄R(xN ). �

1.7.5. THEOREM. R is complete.

PROOF. Let (xn)n≥1 be a Cauchy sequence in R. By the Lemma, this sequence
is bounded. Hence by the Bolzano-Weierstrass Theorem, there is a subsequence
(xnk)k≥1 converging to a limit L. We claim that limn→∞ xn = L.

Let ε > 0 and pick N so that |xn − xm| < ε
2 for all m,n ≥ N . Pick k so large

that nk > N and |L− xnk | < ε
2 . Then for n ≥ N ,

|L− xn| ≤ |L− xnk |+ |xnk − xn| <
ε

2
+
ε

2
= ε.

Therefore limn→∞ xn = L. �
These results are circular. That is, completeness in turn implies the Least Upper

Bound Principle. To see this, let S be a non-empty set bounded below. Repeat the
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proof of Theorem 1.7.1. But instead of claiming that the infinite decimal number
L is a real number, check that xn = a0.a1 . . . an is a Cauchy sequence, and thus
L = limn→∞ xn exists. The rest of the proof is the same.

1.7.6. COROLLARY. Rn is complete.

PROOF. Suppose that xk = (xk1, . . . , xkn), k ≥ 1, is a Cauchy sequence in
Rn. Then for each 1 ≤ i ≤ n, the sequence (xki)k≥1 is Cauchy. Indeed, if ε > 0,
chooseN so that ‖xk−xl‖ < ε for all k, l ≥ N . Then, |xki−xli| ≤ ‖xk−xl‖ < ε
for all k, l ≥ N . So by the completeness of R, limk→∞ xki = yi exists for 1 ≤ i ≤
n. Thus limk→∞ xk = y := (y1, . . . , yn). �

1.7.7. COROLLARY. If V is a normed vector space and M is a finite dimen-
sional subspace, then M is complete and hence closed in V .

PROOF. Let n = dimM . By Corollary 1.5.3, (M, ‖ · ‖) is equivalent to Fn
with the Euclidean norm. Therefore M is complete by Exercise 1.8 (3) and Corol-
lary 1.7.6. In particular, M must be closed in V . �

1.8. Limits of continuous functions

1.8.1. DEFINITION. Let (X, d) and (Y, ρ) be metric spaces. A sequence of
functions fn : X → Y converge uniformly to f if for all ε > 0, there is an N ∈ N
so that

‖f − fn‖∞ = sup
x∈X

ρ(f(x), fn(x)) < ε for all n ≥ N.

In particular, uniform convergence of bounded continuous functions in Cb(X) is
just convergence in the norm ‖f‖∞ = supx∈X |f(x)|.

1.8.2. THEOREM. Let (X, d) and (Y, ρ) be metric spaces. Suppose that fn :
X → Y for n ≥ 1 is a sequence of continuous functions which converge uniformly
to f . Then f is continuous. If Y = F ∈ {R,C} and fn ∈ CbF(X), then f ∈ CbF(X).

PROOF. Fix x0 ∈ X and ε > 0. By uniform convergence, there is an N so that
‖f − fN‖∞ < ε/3. Since fN is continuous, there is a δ > 0 so that d(x, x0) < δ
implies that ρ(fN (x), fN (x0)) < ε/3. Then if d(x, x0) < δ,

ρ(f(x), f(x0)) ≤ ρ(f(x), fN (x)) + ρ(fN (x), fN (x0)) + ρ(fN (x0), f(x0))

< ‖f − fN‖∞ +
ε

3
+ ‖f − fN‖∞ <

ε

3
+
ε

3
+
ε

3
= ε.

Hence f is continuous.
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ForCb(X), it is easy to see that convergence in the supremum norm is precisely
uniform convergence. Using ε = 1 and the corresponding N , we see that

‖f‖∞ ≤ ‖fN‖∞ + ‖f − fN‖∞ ≤ ‖fN‖∞ + 1.

Thus f lies in Cb(X). �

1.8.3. EXAMPLES. It is important to distinguish between uniform convergence
and pointwise convergence. We say that fn converges pointwise to f if

f(x) = lim
n→∞

fn(x) for all x ∈ X.

(1) Let fn(x) = xn in C[0, 1]. Then

f(x) := lim
n→∞

fn(x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

This function is discontinuous. Note that convergence is not uniform because

‖f − fn‖∞ = sup
0≤x<1

xn = 1

for all n ≥ 1.

(2) Let

fn(x) =


n2x if 0 ≤ x ≤ 1

n

n2( 2
n − x) if 1

n ≤ x ≤ 2
n

0 if 2
n ≤ x ≤ 1.

Then f(x) := limn→∞ fn(x) = 0 for all x ∈ [0, 1]. Indeed if x > 0, then x ≥ 2
n

for n ≥ 2
x , and thus fn(x) = 0; and fn(0) = 0 for all n. So the pointwise limit is

continuous. However, this limit is definitely not uniform because

‖f − fn‖∞ = fn(
1
n) = n.

The set of functions {fn : n ≥ 1} is not even bounded!

1.8.4. THEOREM. If (X, d) is a metric space, the normed vector space space
CbF(X) is complete for F ∈ {R,C}.

PROOF. Let (fn)n≥1 be a Cauchy sequence in Cb(X). If ε > 0 is given, there
is an N ∈ N so that ‖fn − fm‖∞ < ε for all m,n ≥ N . For each x ∈ X ,
|fn(x) − fm(x)| ≤ ‖fn − fm‖∞ < ε when m,n ≥ N . Therefore (fn(x))n≥1
is a Cauchy sequence. Since F = R or C is complete, there is a pointwise limit
f(x) := limn→∞ fn(x). Moreover if n ≥ N , by fixing n and letting m→∞,

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε.
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This is valid for all x ∈ X , and thus ‖fn − f‖∞ ≤ ε for all n ≥ N . That is,
fn converges uniformly to f . By Theorem 1.8.2, the limit f is continuous and
bounded, so lies in Cb(X) Therefore, Cb(X) is complete. �

One elementary but very useful test for uniform convergence is the Weierstrass
M-test. This is used, for example, to study the radius of convergence of a power
series.

1.8.5. WEIERSTRASS M-TEST. Suppose that fn ∈ Cb(X) for n ≥ 1 and∑
n≥1 ‖fn‖∞ ≤ M < ∞. Then the series

∑
n≥1 fn converges uniformly to a

function s ∈ CbF(X).

PROOF. The sequence involved is the set of partial sums sn(x) =
∑n

k=1 fk(x).
Let ε > 0. From the convergence of

∑
n≥1 ‖fn‖∞, there is an N ∈ N so that∑

n≥N ‖fn‖∞ < ε. Thus if N ≤ m < n,

‖sn − sm‖∞ =
∥∥∥ n∑
k=m+1

fk(x)
∥∥∥
∞
≤

n∑
k=m+1

‖fk(x)‖∞ < ε.

Hence (sn) is a Cauchy sequence. By the completeness of CbF(X), (sn) converges
uniformly to a function s ∈ CbF(X). �

Exercises

1. Suppose that (V, ‖ · ‖) is a complete normed vector space. Let {xn}n≥1 be a sequence
in V and define a series as the sequence of partial sums sk =

∑k
n=1 xn converges.

(a) Show that if
∑
n≥1 ‖xn‖ <∞, then (sk)k≥1 converges.

(b) Show that if (sk)k≥1 converges, then limn→∞ ‖xn‖ = 0.
(c) Show by example that the converse of both (a) and (b) fail.

2. IfA ⊂ (X, d), say the diameter ofA is diamA = supx,y∈A d(x, y). Show that a metric
space (X, d) is a complete if and only if (†) wheneverAn are nested non-empty closed
sets (An ⊇ An+1) with diam(An)→ 0, then

⋂
n≥1 An is not empty.

3. Let (X, d) and (Y, ρ) be metric spaces, and suppose that f : X → Y is a biLipschitz
homeomorphism.
(a) Show that (xn) is a Cauchy sequence in (X, d) if and only if (f(xn)) is a Cauchy

sequence in (Y, ρ).
(b) Show that (xn) is a convergent sequence in (X, d) if and only if (f(xn)) is a

convergent sequence in (Y, ρ).
(c) Hence show that (X, d) is complete if and only if (Y, ρ) is complete.

4. Show that a sequence (xn)n≥1 in (Q, d2) (the 2-adic metric) is a Cauchy sequence if
and only if d2(xn, xn+1)→ 0.

5. Let X be a closed subset of Rn and consider the Hausdorff metric dH on the space
H(X) of all non-empty closed bounded subsets of X . Prove thatH(X) is complete.
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6. Suppose that fn : X → R are Lipschitz with constant L. Show that if fn converge
pointwise to f , then f is Lipschitz.

7. Let (X, d) be a set X with the discrete metric.
(a) Which functions f : X → R are continuous? Which are uniformly continuous?
(b) Which functions from R to X are continuous? Which are uniformly continuous?

8. Let (X, d) be a complete metric space, and let Y be an open subset of X . Show that
there is a metric ρ on Y which has the same open sets as (Y, d) and is also complete.
HINT: find a continuous function f : (Y, d) → R+ such that f(y) → +∞ as y
approaches Y c. Use this to help define ρ.

9. Let (X, d) and (Y, ρ) be metric spaces. Show that the product space X × Y (see
Example 1.3.12) is complete if and only if both X and Y are complete.

10. Let (X, d) and (Y, ρ) be metric spaces.
(a) Let f : X → Y be uniformly continuous. Show that if (xn)n≥1 is a Cauchy

sequence in X , then (f(xn))n≥1 is Cauchy in Y .
(b) Give an example to show that (a) can fail if f is just continuous.

11. Let V be a normed vector space. Show V is complete if and only if b1(0) is complete.

12. Show thatCb(X,Y ), the space of bounded continuous functions from (X, d) to (Y, ρ),
is complete if and only if Y is complete.



CHAPTER 2

More Metric Topology

2.1. Compactness

The power of the Bolzano-Weierstrass Theorem is that one can extract from
every bounded sequence in Rn, a subsequence which converges. This notion will
be called sequential compactness. A topological version will be introduced using
open sets. It will be what we call compactness. In the metric setting, we will show
that these two notions coincide. The reader who has heard of topological spaces
should be warned that this equivalence does not extend to this greater generality,
where these are different concepts. In that case, it is the topological property which
is more important.

2.1.1. DEFINITION. Let (X, d) be a metric space. An open cover of A ⊂ X is
a collection of open sets {Uλ : λ ∈ Λ} such that A ⊂ ⋃λ∈Λ

Uλ. A subcover is a
subset {Uλ : λ ∈ Λ′}, where Λ′ ⊂ Λ, which is still a cover of A. A finite subcover
is a subcover such that Λ′ is a finite set.

A set A is compact if every open cover has a finite subcover.
A set A is sequentially compact if every sequence (an)n≥1 with all an ∈ A has

a subsequence which converges to a point in A.

2.1.2. EXAMPLES.
(1) Finite sets are compact and sequentially compact.

(2) The Heine-Borel Theorem, which we will review, says that every closed and
bounded subset of Rn is compact.

The Bolzano-Weierstrass theorem shows that a closed, bounded subset of R is
sequentially compact. The same readily applies in Rn. Suppose that we are given
a sequence (an)n≥1 ⊂ A where A ⊂ Rn is closed and bounded. Consider the
first coordinates, which form a bounded seqeunce in R and select a subsequence
so that this coordinate converges. Then consider the second coordinate, and find a
subsequence of this subsequence where the second coordinate converges. Note that
the first coordinate still converges, since a subsequence of a convergent sequence
still converges. Repeat this procedure n times. We arrive at a subsequence in which
every coordinate converges. Thus the vectors converge. Since A is closed, the limit
remains in A. So A is sequentially compact.

29
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(3) LetX be an infinite set with the discrete metric. ThenX is closed and bounded,
because all subsets of X are both open and closed, and X has diameter 1. However
X is not compact or sequentially compact. The open cover consisting of all single-
tons {x} for x ∈ X is an infinite open cover of X , and there is no proper subcover.
So X is not compact. Select a sequence of distinct points (xn)n≥1, xn 6= xm
if m < n. This has no convergent subsequence because the only convergent se-
quences are eventually constant. So the only compact subsets of X are the finite
subsets.

The previous example shows that the converse of the following proposition is
false. Keep it in mind to keep yourself clear on this point.

2.1.3. PROPOSITION. Every compact or sequentially compact subset of a met-
ric space is both closed and bounded.

PROOF. Suppose that A is not bounded in a metric space (X, d). Fix a point
a0 ∈ A and consider {bn(a0) : n ≥ 1}. Then every point of A belongs to⋃
n≥1 bn(a0) since any x ∈ X has d(a0, x) <∞. However since A is unbounded,

there is no finite n so that bn(a0) contains A. Hence there is no finite subcover.
Similarly, we could choose a sequence an ∈ A so that d(an, a0) > n. This

sequence has no convergent subsequence because if n1 < n2 < n3 < . . . and
limi→∞ ani = b, then we arrive at the absurd conclusion:

d(a0, b) = lim
i→∞

d(a0, ani) =∞.

Now suppose that A is not closed, so that b ∈ A \ A. Then b1/n(b) ∩ A 6= ∅,
so we may choose an ∈ A with d(an, b) < 1

n . Clearly limi→∞ an = b, and this
also holds for any subsequence. So no subsequence has a limit in A. Thus A is not
sequentially compact.

Let Un = {x ∈ X : d(x, b) > 1
n}. Then

⋃
n≥1 Un = X \ {b} ⊃ A. However

as noted in the previous paragraph, no Un can contain A, and thus there is no finite
subcover. So A is not compact. �

We need two more definitions.

2.1.4. DEFINITION. Let (X, d) be a metric space. A collection F = {Fλ : λ ∈
Λ} of subsets of X has the finite intersection property (FIP) if every finite subset
Λ′ ⊂ Λ has non-empty intersection

⋂
λ∈Λ′ Fλ 6= ∅.

A set A is totally bounded if for all ε > 0, there is a finite subset F ⊂ X so
that A ⊂ ⋃x∈F bε(x). A finite set F = {x1, . . . , xn} such that A ⊂ ⋃x∈F bε(x) is
called a ε-net for A.

We come to the main result about compact metric spaces.
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2.1.5. BOREL-LEBESGUE THEOREM. Let (X, d) be a metric space. Then
the following are equivalent:

(1) X is compact.

(2) If F = {Fλ : λ ∈ Λ} is a collection of closed sets with the finite inter-
section property, then

⋂
λ∈Λ

Fλ is non-empty.

(3) X is sequentially compact.

(4) X is complete and totally bounded.

PROOF. (1)⇒ (2). Let F = {Fλ : λ ∈ Λ} be a collection of closed sets with
FIP. Define open sets Uλ = F cλ. If

⋂F :=
⋂
λ∈Λ

Fλ is empty, then⋃
λ∈Λ

Uλ =
( ⋂
λ∈Λ

Fλ
)c

= X.

Thus U = {Uλ : λ ∈ Λ} is an open cover of X . By compactness, there is a finite
subcover Uλ1 , . . . , Uλn . So

⋂n
i=1 Fλi =

(⋃n
i=1 Uλi

)c
= ∅. This contradicts FIP.

Hence we must have
⋂F 6= ∅.

(2) ⇒ (3). Let (xn)n≥1 be a sequence in X . Define non-empty closed sets
Fn = {xk : k ≥ n} for n ≥ 1. Note that Fn ⊃ Fn+1. Hence F = {Fn : n ≥ 1}
has FIP because Fn1 ∩ · · · ∩ Fnk = Fmax{n1,...,nk} is non-empty. By (2),

⋂
n≥1 Fn

is non-empty, say x0 is in the intersection. Then br(x0) ∩ Fn 6= ∅ for all r > 0 and
n ≥ 1. Suppose that we have choosen n1, . . . , nk so that d(xnj , x0) <

1
j for 1 ≤

j ≤ k. Then b 1
k+1

(x0) ∩ Fnk+1 6= ∅. Pick nk+1 > nk so that d(xnk+1 , x0) <
1
k+1 .

This recursively selects a subsequence such that limk→∞ xnk = x0. Therefore X
is sequentially compact.

(3) ⇒ (4). Let (xn)n≥1 be a Cauchy sequence in X . By sequential compact-
ness, there is a subsequence (xni)i≥1 such that limi→∞ xni = x0 exists. By the
Cauchy property, the whole sequence converges to x0. Indeed, let ε > 0. Select
I ∈ N so that if i ≥ I , then d(xni , x0) < ε/2. Use the Cauchy property to find
N so that if N ≤ m,n, then d(xn, xm) < ε/2. Pick some i ≥ I so that ni > N .
Then if n ≥ N ,

d(xn, x0) ≤ d(xn, xni) + d(xni , x0) <
ε

2
+
ε

2
= ε.

It follows that limn→∞ xn = x0. So X is complete.
Suppose that X were not totally bounded. Then for some ε > 0, X cannot be

covered by finitely many ε-balls. We claim that we can then select points xn in X
recursively so that d(xm, xn) ≥ ε for all m 6= n. Indeed suppose that x1, . . . , xk
have been selected. SinceX \⋃k

i=1 bε(xi) 6= ∅, pick xk+1 in this set. Then (xn)n≥1
has no convergent subsequences. This contradicts the sequential compactness ofX .
So X is complete and totally bounded.

(4) ⇒ (1). Suppose that (4) holds, but (1) fails; so that there is an open cover
U = {Uλ : λ ∈ Λ} ofX with no finite subcover. Use total boundedness with ε = 1

k
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to select xk1 , . . . , x
k
nk

to be a finite 1
k -net forX . We will choose a sequence yk = xkik

so that Xk :=
⋂k
j=1 b 1

j
(yj) has no finite subcover. Suppose that y1, . . . , yk has this

property. Consider the sets

Xk,i := Xk ∩ b 1
k+1

(xk+1
i ) for 1 ≤ i ≤ nk+1.

If they each had a finite subcover, their union would have a finite subcover. But
nk+1⋃
i=1

Xk,i =

nk+1⋃
i=1

Xk ∩ b 1
k+1

(xk+1
i ) = Xk ∩

nk+1⋃
i=1

b 1
k+1

(xk+1
i ) = Xk ∩X = Xk.

has no such cover. Therefore for some ik+1, Xk,ik+1 =: Xk+1 has no finite sub-
cover. Set yk+1 = xk+1

ik+1
.

Observe that the sequence (yk)k≥1 is Cauchy. Indeed, if ε > 0, choose an
integer N > 2ε−1. If N ≤ m ≤ n, then Xn ⊂ b 1

m
(ym) ∩ b 1

n
(yn) is non-empty,

say x ∈ Xn. Hence

d(ym, yn) ≤ d(ym, x) + d(x, yn) ≤
1
m

+
1
n
≤ 2
N
< ε.

Since X is complete, there is a limit y0 = limn→∞ yn in X . Note that

d(ym, y0) = lim
n→∞

d(ym, yn) ≤ lim
n→∞

1
m

+
1
n
=

1
m
.

Since U is a cover of X , there is some λ0 so that y0 ∈ Uλ0 . Hence there is an r > 0
so that br(y0) ⊂ Uλ0 . Choose m so large that 1

m < r
2 . Then x ∈ Xm ⊂ b1/m(ym)

satisfies

d(x, y0) ≤ d(x, ym) + d(ym, y0) ≤
2
m
< r.

That is,Xm ⊂ Uλ0 does have a finite subcover. This contradicts the assumption that
U has no finite subcover, since that was how the Xk’s were constructed. Therefore
X is compact. �

2.1.6. REMARK. The definition of compactness depends only on the topology,
i.e., the collection of open sets, not on the metric. Likewise the property about
collections of closed sets with FIP depends only on closed sets, which are the com-
plements of open sets. So this property is also topological. The same is true of
sequential compactness, although that is a bit more subtle. We need to show that
we can define convergence for a sequence only using open sets.

Prove the following: a sequence (xn)n≥1 converges to x0 if and only if for each
open set U containing x0, there is an integer N so that xn ∈ U for all n ≥ N .

However the notions of completeness and total boundedness are metric notions.
The real line R is complete but is not totally bounded. But the real line is homeo-
morphic to (0, 1) which is not complete, but is totally bounded. So neither property
is preserved by a homeomorphism. Somehow the two notions are competing and
play off of one another in order to jointly characterize compactness.
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2.1.7. REMARK. We have stated our theorem about compactness of the whole
space (X, d) for simplicity. Suppose that A ⊂ X . There are two slightly different
notions: one is compactness ofA as a subset ofX; and the other is the compactness
of (A, d), thinking of A as a metric space in its own right with the induced metric.
Fortunately these two notions coincide.

A set in X is open if it is a union of balls, and the same is true of open sets
in A. To make things clear, let Br(a) denote the ball in X and let br(a) be the
corresponding ball in A. Then

br(a) = {y ∈ A : d(a, y) < r} = A ∩ {x ∈ X : d(a, x) < r} = A ∩Br(a).
Now suppose that U is open in A, and write U =

⋃{br(a) : br(a) ⊂ U}. Define
V =

⋃{Br(a) : br(a) ⊂ U}. Then V is open in X and

V ∩A =
⋃
{Br(a) ∩A : br(a) ⊂ U} =

⋃
{br(a) : br(a) ⊂ U} = U.

This shows that every open subset of A is the intersection of A with an open subset
of X .

Suppose that (A, d) is compact, and let V = {Vλ : λ ∈ Λ} be a collection of
open sets in X which cover A. Define U = {Uλ := A ∩ Vλ : λ ∈ Λ}. This is an
open cover of (A, d). By compactness, there is a finite subcover Uλ1 , . . . , Uλn . It
follows that Vλ1 , . . . , Vλn is a finite subcover of A in X .

Conversely suppose thatA is a compact subset ofX , and let U = {Uλ : λ ∈ Λ}
be an open cover of (A, d). Construct the open sets Vλ in X so that A ∩ Vλ = Uλ.
Then V = {Vλ : λ ∈ Λ} is an open cover of A in X . By compactness, there is a
finite subcover Vλ1 , . . . , Vλn . Therefore Uλ1 , . . . , Uλn is a finite subcover from U .
Thus (A, d) is compact.

Now let’s deal with subsets of Rn.

2.1.8. HEINE-BOREL THEOREM. A subset A ⊂ Rn is compact if and only
if it is closed and bounded.

PROOF. First proof. If A is compact, then Proposition 2.1.3 shows that A is
closed and bounded. Conversely, if A is closed and bounded, Example 2.1.2(2)
used the Bolzano-Weierstrass Theorem to deduce that A is sequentially compact.
Now the Borel-Lebesgue Theorem 2.1.5 shows that A is compact.

Second proof. Since Rn is complete, A is complete if and only if it is closed.
If A is bounded say by R, then the finite grid{

x = (x1, . . . , xn) : xi ∈ { kpn : k ∈ Z, |k| ≤ Rpn}
}

is a 1
p -net for A. So A is totally bounded. Conversely, if A is unbounded, then no

finite set is a 1-net. ThusA is complete and totally bounded if and only if it is closed
and bounded. Now the Borel-Lebesgue Theorem 2.1.5 shows this is equivalent to
the compactness of A. �
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2.2. More compactness

We continue to collect consequences of compactness, and provide more exam-
ples.

2.2.1. PROPOSITION. LetX be a compact metric space. Then a subset Y ⊂ X
is compact if and only if Y is closed.

PROOF. If Y is compact, then in particular, it is closed by Proposition 2.1.3.
Conversely, suppose that Y is closed., and let U = {Uλ : λ ∈ Λ} be an open cover
of Y . Then U ∪ {Y c}. is an open cover of X . Since X is compact, there is a finite
subcover, say Uλ1 , . . . , Uλn , Y

c. Since Y c does not help to cover Y , it follows that
Uλ1 , . . . , Uλn is a finite subcover of Y . Hence Y is compact. �

2.2.2. DEFINITION. A subset A is dense in X if X ⊂ A. A metric space is
separable if it contains a countable dense subset.

2.2.3. PROPOSITION. Compact metric spaces are separable.

PROOF. IfX is a compact metric space, then it is totally bounded by the Borel-
Lebesgue Theorem 2.1.5. For ε = 1

n , choose a finite 1
n -net xn1 , . . . , x

n
kn

. Then
{xni : n ≥ 1, 1 ≤ i ≤ kn} is a countable dense subset. �

2.2.4. EXAMPLES.
(1) Rn is separable because the set of vectors with coefficients in Q is countable
and dense. Also Cn is separable because it is equivalent as a metric space to R2n.

(2) The space lp, 1 ≤ p <∞, is separable. The subspaces Vn = span{e1, . . . , en}
are each separable by (1). Their union is dense in lp, and the countable union of
countable sets is countable, so lp is separable.

(3) l∞ is not separable. For each subset E ⊂ N, let χE(n) =

{
1 if n ∈ E
0 if n 6∈ E .

Then ‖χE − χF ‖∞ = 1 is E 6= F . The power set P(N) of all subsets of N has
cardinality 2ℵ0 , and so is not countable. No point can be within 0.5 of two of these
elements, and hence a dense subset must be uncountable.

(4) Let X be a set, and let d be the discrete metric. Then a subset Y ⊂ X is dense
if and only if Y = X . Thus X is separable if and only if X is finite or countable.
In particular, R with the discrete metric is not separable.

2.2.5. PROPOSITION. If (X, d) and (Y, ρ) are compact metric spaces, then
X × Y is also compact.
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PROOF. Recall from Example 1.3.12 that we put a metric D on X × Y by
D
(
(x1, y1), (x2, y2)

)
= max{d(x1, x2), ρ(y1, y2)}. By the Borel-Lebesgue Theo-

rem 2.1.5, it suffices to show that X × Y is sequentially compact. Let (xn, yn) for
n ≥ 1 be a sequence in X × Y . Since X is compact, there is a subsequence xni
so that limi→∞ xni = x0 exists. Now consider the sequence (yni)i≥1. Since Y is
compact, there is a subsequence ynij so that limj→∞ ynij = y0 exists. It is still
true that limj→∞ xnij = x0. Hence limj→∞(xnij , ynij ) = (x0, y0) is a convergent
subsequence. Therefore X × Y is sequentially compact, and thus compact. �

2.3. Compactness and Continuity

There is an important connection between compactness and the properties of
continuous functions. The next three results are fundamental.

2.3.1. THEOREM. Let (X, d) and (Y, ρ) be metric spaces. Suppose that X is
compact and f : X → Y is continuous. Then f(X) is compact.

PROOF. Let V = {Vλ : λ ∈ Λ} be an open cover of f(X). By continuity,
Uλ := f−1(Vλ) are open inX . Moreover, since V covers f(X), U = {Uλ : λ ∈ Λ}
covers X . By compactness, X has a finite subcover, say Uλ1 , . . . , Uλn . Therefore

f(X) ⊂
n⋃
i=1

f(Uλi) ⊆
n⋃
i=1

Vλi .

Therefore, this is a finite subcover; whence f(X) is compact. �

Note that f(U) = f(f−1(V )) ⊆ V , and this containment may be proper, since
it omits points in V that are not in the range of f .

The following result is an important special case should be familiar from cal-
culus.

2.3.2. EXTREME VALUE THEOREM. If X is a compact metric space and
f : X → R is continuous, then f is bounded and attains its maximum and minimum
values.

PROOF. By Theorem 2.3.1, f(X) is a compact subset of R. Hence it is closed
and bounded. So f(X) contains its (finite) supremum and infimum. These are the
maximum and minimum values. �

This shows that if X is compact, then ‖f‖∞ = sup |f(x)| is a norm on the
space C(X).
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2.3.3. THEOREM. Let (X, d) and (Y, ρ) be metric spaces. Suppose that X is
compact and f : X → Y is continuous. Then f is uniformly continuous.

PROOF. Let ε > 0 be given. Since f is continuous at x ∈ X , there is a
δx > 0 so that f(bδx(x)) ⊂ bε/2(f(x)). Observe that {bδx/2(x) : x ∈ X}
is an open cover of X . By compactness of X , there is a finite subcover, say
bδx1/2(x1), . . . , bδxn/2(xn). Let δ = min{1

2δxi : 1 ≤ i ≤ n}. Suppose that
x, x′ ∈ X with d(x, x′) < δ. Then there is some i0 so that x ∈ bδxi0 /2(xi0).
Therefore

d(x′, xi0) ≤ d(x′, x) + d(x, xi0) < δ + 1
2δxi0 ≤ δxi0 .

So x, x′ ∈ bδxi0 (xi0). Thus, we see that f(x), f(x′) ∈ bε/2(f(xi0)). Hence

ρ(f(x), f(x′)) ≤ ρ(f(x), f(xi0)) + ρ(f(xi0), f(x
′)) <

ε

2
+
ε

2
= ε.

That is, f is uniformly continuous. �

It was noted in the discussion following Definition 1.4.5 that a biLipschitz bi-
jection between metric spaces is a homeomorphism. However in Example 1.4.7(2),
we showed that a continuous (even Lipschitz) bijection of one metric space onto
another need not be a homeomorphism. The following easy result is a critical ex-
ample where compactness is used to deduce that a bijection is a homeomorphism.

2.3.4. PROPOSITION. Let (X, d) and (Y, ρ) be metric spaces. Suppose that X
is compact and that f : X → Y is a continuous bijection. Then f is a homeomor-
phism.

PROOF. We need to show that f−1 is continuous. Let U be an open subset
of X . Set C = U c. This is a closed subset of the compact space X , and hence is
compact by Proposition 2.2.1. Therefore f(C) is compact by Theorem 2.3.1. Since
f is a bijection, f(U) = f(C)c is the complement of a compact, hence closed, set
f(C). So f(U) is open. Again since f is a bijection (f−1)−1(U) = f(U). This is
open, and hence f−1 is continuous. So f is a homeomorphism. �

Exercises

1. Show that a metric space (X, d) is compact if and only if (‡) whenever An are nested
non-empty closed sets (An ⊇ An+1), then

⋂
n≥1 An is not empty.

2. The Hilbert cube is H = {x = (xn) ∈ `2 : 0 ≤ xn ≤ 1
n , n ≥ 1}. Prove that it is

compact.

3. Prove that a metric space (X, d) is totally bounded if and only if every sequence in X
has a Cauchy subsequence.
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4. Show that the closure Z in (Q, d2), the 2-adic metric, is totally bounded but not com-
plete.

5. Let X be a closed subset of Rn and consider the Hausdorff metric dH on the space
H(X) of all non-empty closed bounded subsets of X . Prove that H(X) is compact if
and only if X is compact.

6. Suppose that (X, d) is a compact metric space, and that f : X → X is an isometry.
Prove that f is surjective.

7. Let (X, d) be a compact metric space. Suppose that f, fn ∈ CR(X) for n ≥ 1 and that
fn ≤ fn+1 for n ≥ 1 and f(x) = lim

n→∞
fn(x) pointwise. Prove that the convergence

is uniform.

8. Let (X, d) be a compact metric space. Suppose that fn : X → R are Lipschitz with
constant L. Show that if fn converge pointwise to f , then the convergence is uniform.

9. (a) If (X, d) is compact, show that U = {f ∈ CR(X) : f(x) > 0 for x ∈ X} is open.
(b) Find the interior of V = {f ∈ CbR(R) : f(x) > 0 for x ∈ X}.

10. A metric space (X, d) is second countable if there is a countable family {Un : n ≥ 1}
of open sets that generates the topology, i.e. each open set V satisfies V =

⋃
Un⊂V Un.

(a) Prove that (X, d) is second countable if and only if it is separable.
(b) Let (X, d) be a separable metric space. Show that every open cover of X has a

countable subcover.

11. Show that a metric space (X, d) is complete if and only if every infinite totally bounded
subset has an accumulation point.

12. (a) Let (X, d) be a compact metric space. Show that X has finite diameter.
(b) Let (Xi, di) for i ≥ 1 be non-empty metric spaces with diameters bounded by D.

Define the product X =
∏
i≥1 Xi to be the set of all sequences x = (x1, x2, . . . )

where xi ∈ Xi. Define a metric on X by δ(x, y) =
∑
i≥1 2−idi(xi, yi). Show that

a sequence in X converges if and only if each coordinate converges in Xi.
(c) Prove that X is compact if and only if each Xi is compact.

13. The Lebesgue number of an open cover U = {Uλ : λ ∈ Λ} of (X, d) is

δ(U) = inf
x∈X

sup{r > 0 : br(x) ⊂ Uλ for some λ ∈ Λ}.

Show that if X is compact and U is an open cover, then δ(U) > 0.

2.4. The Cantor Set, Part I

We quickly review the construction of the Cantor set, which is obtained from
the interval [0, 1] by successively removing the middle third of each segment. That
is, let C0 = [0, 1], and Ci+1 is constructed from Ci by removing the middle third
from each interval in Ci. The first three terms are

C1 = [0, 1
3 ] ∪ [2

3 , 1]
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C2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1]

C3 = [0, 1
27 ] ∪ [ 2

27 ,
1
9 ] ∪ [2

9 ,
7
27 ] ∪ [ 8

27 ,
1
3 ] ∪ [2

3 ,
19
27 ] ∪ [20

27 ,
7
9 ] ∪ [8

9 ,
25
27 ] ∪ 26

27 , 1]

The Cantor set is C =
⋂
n≥0 Cn. This is an intersection of compact subsets of

[0, 1] with FIP, and hence C is not empty. It is a closed subset of a compact set, and
hence is compact.

Each point in C is determined by a binary decision tree; whether to choose
the left or right interval after removing the middle third at each stage. It will be
convenient to label the 2n intervals in Cn by a sequence of 0’s and 2’s of length
n, where 0 indicates the left interval, and 2 indicates the right. For example, C2 =
C00∪C02∪C20∪C22. Proceeding from Cn to Cn+1, an interval Ca1...an splits into
two intervals Ca1...an0 and Ca1...an2. Note that each interval in Cn has length 3−n.

We will show by induction that

Ca1...an = [(0.a1 . . . an)base 3, (0.a1 . . . an)base 3 + 3−n].

Recall that t = (0.a1a2a3 . . . )base 3 =
∑∞

i=1 ai3
−i makes sense for any sequence

with ai ∈ {0, 1, 2}. The number (0.a1 . . . an)base 3 + 3−n can be written as the
ternary number (0.a1 . . . an222 . . . )base 3 ending with an infinite sequence of 2’s.

Our claim is easily verified for the first two levels by inspection. Suppose that
it is true for n. At the next stage, Ca1...an is split into two intervals of length 3−n−1,
one starting with (0.a1 . . . an)base 3 = (0.a1 . . . an0)base 3 and the other beginning
with (0.a1 . . . an)base 3 + 2(3−n−1) = (0.a1 . . . an2)base 3. This establishes the in-
ductive step.

Consider an infinite path in the decision tree given by an infinite sequence
a1a2a3 . . . of 0’s and 2’s. This leads us to⋂

n≥1

Ca1...an =
⋂
n≥1

[(0.a1 . . . an)base 3, (0.a1 . . . an)base 3 + 3−n]

= {(0.a1a2a3 . . . )base 3}.
That is, each infinite path determines a unique point in C. Conversely, each point t
in C is determined by the infinite path obtained by picking the interval containing
t at every stage. It follows that every point in the Cantor set is represented by a
ternary expansion using only 0’s and 2’s. The number of infinite sequences of 0’s
and 2’s is the same as the number of subsets of N, where we identify the infinite
sequence with the set A = {i : ai = 2}. This is a bijection. Since the power set of
N is uncountable, the Cantor set is also uncountable.

Note that C has no interior, because any non-empty open set contains an inter-
val of positive length, say r. But if 3−n < r, it is clear that Cn does not contain
an interval of length r. So intC = ∅. A set A such that A has no interior is called
nowhere dense. Also C has no isolated points. To see this, note that each point in
C is the limit of the left (right) endpoints of each interval Ca1...an containing it. At
least one of these sequences is not eventually constant. So every point in C is an
accumulation point. A closed set with no isolated points is called perfect. Also note
that within the metric space (C, d), the sets Ca1...an are closed and open, because
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C \Ca1...an is the finite union of 2n− 1 closed sets, and thus Ca1...an is open in the
relative topology of C.

In this section, we prove the following remarkable property of the Cantor set.

2.4.1. THEOREM. Let (X, d) be any compact metric space. Then there is a
continuous map of the Cantor set onto X .

PROOF. Since X is compact, it has a finite 1
2 -net. By adding points if neces-

sary, we may suppose for convenience that the number of points is a power of 2,
say x1

1, . . . , x
1
2n(1) . Define a function f1 : C → X by sending C ∩ Ca1...an(1) to

the point x1
j where j =

∑n(1)
i=1

ai
2 2i−1. This function is constant on each interval

Ca1...an(1) .
Now suppose that a function fk : C → X has been defined so that the range is a

finite 2−k net for X , say xk1 , . . . , x
k
2n(k) obtained by sending each interval Ca1...an(k)

to xkj where j = 1 +
∑n(k)

i=1
ai
2 2i−1, and moreover, for k ≥ 2, that

‖fk−1 − fk‖∞ := sup
t∈C

d(fk−1(t), fk(t)) ≤ 21−k.

This is true for f1 because the second condition doesn’t apply.
For each ball b̄2−k(x

k
j ), we select a 2−k−1 net. By adding extra points as

needed, we can ensure that each net has the same number of points, which is a
power of 2, say 2p and set n(k+ 1) = n(k) + p. For each j, fk mapped Ca1...a2n(k)

to xkj . We split Ca1...a2n(k)
into the 2p intervals Ca1...a2n(k)

,a
2n(k)+1

,...,a
2n(k+1) . These

intervals will be mapped by fk+1 to the 2p points in the 2−k−1 net for b̄2−k(x
k
j ).

This ensures that ‖fk − fk+1‖∞ is no more than 2−k, the radius of the balls.
Observe that the functions fk are continuous because they are constant on

clopen sets. Moreover
∑

k≥1 ‖fk − fk+1‖∞ < ∞. So the sequence (fk)k≥1 is
a Cauchy sequence in C(C,X). Now X is compact, and hence is complete; so
C(C,X) is complete. Therefore f(t) = limk→∞ fk(t) converges uniformly to a
continuous function f . More precisely, for any t ∈ C,

d
(
f(t), fk(t)

)
= lim

n→∞
d
(
fn(t), fk(t)

)
≤ lim

n→∞

n−1∑
j=k

d
(
fj+1(t), fj(t)

)
≤
∞∑
j=k

21−j = 22−k.

So ‖f − fk‖∞ ≤ 22−k → 0.
To see that f is surjective, let x ∈ X . Choose a sequence xk = xkj(k) which

converges to x. Then xk is in the range of fk, so there is a point tk ∈ C such that
fk(tk) = xk. Since C is compact, there is a subsequence tki with limit t ∈ C. Now

d
(
f(t), x

)
= lim

i→∞
d
(
f(tki), x

)
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≤ lim
i→∞

d
(
f(tki), fki(tki)

)
+ d
(
xki , x

)
≤ lim

i→∞
‖f − fki‖∞ + d

(
xki , x

)
= 0.

Hence f(t) = x, and f maps C onto X . �

We can parlay this result into something even more surprising.

2.4.2. DEFINITION. A path is a continuous image of [0, 1]. A Peano curve or
space filling curve is a path in Rn, for n ≥ 2, such that the range has interior.

We will prove the existence of Peano curves in a general setting. Various con-
structions inside a square or cube have been discovered. Check out Hilbert’s curve
at Hilbert curve wiki where you can slide the cursor and see the iterative stages in
its construction.

2.4.3. THEOREM. LetX be a compact convex subset of a normed vector space.
Then there is a continuous map of [0, 1] onto X .

PROOF. By Theorem 2.4.1, there is a continuous map f of the Cantor set onto
X . Write [0, 1] \ C =

⋃
n≥1(an, bn), where (an, bn) are the disjoint intervals

removed from [0, 1] to form C. Define g : [0, 1] → X by extending f to be linear
on each (an, bn) and matching up with f at the endpoints:

g(x) =

{
f(x) if x ∈ C
tf(an) + (1− t)f(bn) if x = tan + (1− t)bn, 0 < t < 1

The reason for insisting that X be convex is to ensure that tf(an) + (1− t)f(bn),
which lies on the line segment from f(an) to f(bn), belongs to X . Clearly g maps
[0, 1] onto X . We claim that g is continuous, and hence is the desired map.

Let ε > 0 be given. Since C is compact, f is uniformly continuous by The-
orem 2.3.3. Hence there is a δ1 > 0 so that if x, y ∈ C and |x − y| < δ1, then
‖f(x)− f(y)‖ < ε

3 . The lengths of the intervals in the complement of C tend to 0,
so there are only finitely many with length bn − an ≥ δ1, say for n ∈ F . Let

D = max
{ε

3
, ‖f(bn)− f(an)‖ : n ∈ F

}
and δ =

δ1ε

3D
≤ δ1.

Suppose that x, y ∈ [0, 1] with |x− y| < δ.

case 1. x, y ∈ C. Since δ ≤ δ1, we have ‖g(x)− g(y)‖ = ‖f(x)− f(y)‖ < ε
3 .

case 2. x, y ∈ [an, bn] and n ∈ F . Since g is linear on this segment,

‖g(x)− g(y)‖ = |x− y|
bn − an

‖f(bn)− f(an)‖ <
δ1ε

3D
1
δ1
D =

ε

3
.

http://jsxgraph.org/wiki/index.php/Hilbert_curve
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case 3. x, y ∈ [an, bn] and n 6∈ F . Then bn − an < δ1, so

‖g(x)− g(y)‖ ≤ ‖f(bn)− f(an)‖ <
ε

3
.

case 4. x ∈ (an, bn) and y ∈ C. We may assume that bn ≤ y. (The case y < an is
similar.) Then by the previous cases,

‖g(x)− g(y)‖ ≤ ‖g(x)− g(bn)‖+ ‖f(bn)− f(y)‖ <
ε

3
+
ε

3
< ε.

case 5. x ∈ (an, bn) and y ∈ (am, bm) for n 6= m. By interchanging x and y if
necessary, we may assume that bn < am. Then by the previous cases,

‖g(x)− g(y)‖ ≤ ‖g(x)− g(bn)‖+ ‖f(bn)− f(am)‖+ ‖g(am)− g(y)‖
<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore g is continuous. �

2.4.4. COROLLARY. There are Peano curves with range equal to the unit
square in R2, the unit ball in R3 and the Hilbert cube.

2.5. Compact sets in C(X)

In this section, we will be concerned with C(X) where (X, d) is a compact
metric space. By the Extreme Value Theorem 2.3.2, every function in C(X) attains
its maximum modulus. So the supremum norm makes sense without assumimg
boundedness.

We are interested in compact subsets ofC(X). By Proposition 2.1.3, a compact
subsetK ⊂ C(X) must be closed and bounded. The following examples show that
this is not sufficient, and we need to look for another condition.

2.5.1. EXAMPLES.
(1) Let K = {fn(x) = xn, n ≥ 1} ⊂ C[0, 1]. In Example 1.8.3(1), we observed
that fn converges pointwise to the discontinuous function χ{1}. Any subsequence
will also converge pointwise to this function. Hence no subsequence converges uni-
formly to a continuous limit. It follows that K is closed, and clearly K is bounded
by 1. However this also shows that K is not compact, again because no subse-
quence of (fn)n≥1 converges uniformly.

(2) For n ≥ 2, let gn(x) =


1 if x = 1

n

0 if x = 0, 1
n+1 ,

1
n−1 , 1

piecewise linear in between.
Then ‖gm − gn‖∞ = 1 when m 6= n. So K = {gn : n ≥ 2} has the discrete
metric. In particular, it is closed and bounded but not compact.
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Here is the key new notion that we need.

2.5.2. DEFINITION. A subset F ⊂ C(X) is equicontinuous at x ∈ X if for
every ε > 0, there is a δ > 0 so that whenever d(x′, x) < δ, then |f(x′)−f(x)| < ε
for all f ∈ F . In symbols, ∀ε>0 ∃δ(x)>0 ∀f∈F ∀x′∈bδ(x)(x) |f(x′)− f(x)| < ε.

Say that F ⊂ C(X) is equicontinuous if it is equicontinuous at every x ∈ X .
Say thatF is uniformly equicontinuous if δ does not depend on x; i.e., for every

ε > 0, there is a δ > 0 so that if f ∈ F and d(x1, x2) < δ, then |f(x1)−f(x2)| < ε.
In symbols, ∀ε>0 ∃δ>0 ∀f∈F ∀d(x1,x2)<δ |f(x1)− f(x2)| < ε.

2.5.3. LEMMA. Let (X, d) be a compact metric space. Suppose that K ⊂
C(X) is compact. Then K is uniformly equicontinuous.

PROOF. Let ε > 0 be given. Since K is compact, it has a finite ε
3 -net, say

f1, . . . , fn. Each fi is continuous on X , and hence is uniformly continuous by
Theorem 2.3.3. Therefore there is a δi > 0 so that d(x1, x2) < δi implies that
|f(x1) − f(x2)| < ε

3 . Define δ = min{δ1, . . . , δn}. Suppose that d(x1, x2) < δ
and f ∈ F . Select i so that ‖f − fi‖∞ < ε

3 . Then

|f(x1)− f(x2)| ≤ |f(x1)− fi(x1)|+ |fi(x1)− fi(x2)|+ |fi(x2)− f(x2)|
< ‖f − fi‖∞ +

ε

3
+ ‖fi − f‖∞ <

ε

3
+
ε

3
+
ε

3
= ε.

Therefore K is uniformly equicontinuous. �

The following is proved much like the proof of Theorem 2.3.3.

2.5.4. LEMMA. Let (X, d) be a compact metric space. Suppose thatF ⊂ C(X)
is equicontinuous. Then F is uniformly equicontinuous.

PROOF. Let ε > 0 be given. For each x ∈ X , there is a δx > 0 so that if
d(x′, x) < δx, then |f(x′)− f(x)| < ε

2 for all f ∈ F . The collection

{bδx/2(x) : x ∈ X}
is an open cover of X . By compactness of X , there is a finite subcover, say
bδxi/2(xi) for 1 ≤ i ≤ n. Define δ = min{1

2δxi : 1 ≤ i ≤ n}.
Suppose that y1, y2 ∈ X with d(y1, y2) < δ. Select i so that d(y1, xi) <

1
2δxi .

Then

d(y2, xi) ≤ d(y2, y1) + d(y1, xi) < δ +
1
2
δxi ≤ δxi .

Then if f ∈ F ,

|f(y1)− f(y2)| ≤ |f(y1)− f(xi)|+ |f(xi)− f(y2)| <
ε

2
+
ε

2
= ε.

Therefore F is uniformly equicontinuous. �
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2.5.5. ARZELA-ASCOLI THEOREM. Let (X, d) be a compact metric space.
A subset K ⊂ C(X) is compact if and only if it is closed, bounded and equicontin-
uous.

PROOF. If K is compact, then it is closed and bounded by Proposition 2.1.3,
and uniformly equicontinuous by Lemma 2.5.3.

Conversely, suppose that K is closed, bounded and equicontinuous. Now
C(X) is complete by Theorem 1.8.4. Since K is closed, it is also complete by
Proposition 1.6.4. We will show that K is totally bounded. Then the Borel-
Lebesgue Theorem 2.1.5 will show that K is compact.

Fix an ε > 0. By Lemma 2.5.4, K is uniformly equicontinuous. Hence there
is a δ > 0 so that whenever f ∈ K and x1, x2 ∈ X with d(x1, x2) < δ, then
|f(x1) − f(x2)| < ε

4 . Since X is compact, it has a finite δ-net, say x1, . . . , xn.
Define a linear map T : C(X)→ (Fn, ‖ · ‖∞) by

Tf = (f(x1), . . . , f(xn)).

Note that ‖Tf‖∞ = max{|f(xi)| : 1 ≤ i ≤ n} ≤ ‖f‖∞. Therefore TK is
bounded in Fn. Hence TK is compact, and so TK is totally bounded. Therefore it
has a finite ε

4 -net, say Tf1, . . . , T fm for fj ∈ K.
We claim that f1, . . . , fm is an ε-net for K. Let f ∈ K. Select j so that

‖Tf − Tfj‖∞ < ε
4 . If y ∈ X , pick i so that d(y, xi) < δ. Then

|f(y)− fj(y)| ≤ |f(y)− f(xi)|+ |f(xi)− fj(xi)|+ |fj(xi)− fj(y)|

<
ε

4
+
ε

4
+
ε

4
=

3ε
4
.

Therefore ‖f − fj‖∞ ≤ 3ε
4 < ε. Thus K is totally bounded, and so is compact. �

2.6. Connectedness

The notion of connectedness is introduced to generalize the ideas underlying
the Intermediate Value Theorem.

2.6.1. DEFINITION. A subset A of a metric space is disconnected if there are
disjoint open sets U, V such that A ⊂ U ∪ V and A ∩ U 6= ∅ 6= A ∩ V . A subset
A of a metric space is connected if it is not disconnected; i.e. if U, V are disjoint
open sets such that A ⊂ U ∪ V , then either A ⊂ U or A ⊂ V .

2.6.2. EXAMPLES.
(1) [0, 1] ∪ [2, 3] is disconnected. Take U = (−1, 1.5) and V = (1.5, 4).

(2) Q is disconnected. Take U = (−∞, π) and V = (π,∞).
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2.6.3. REMARK. If X is a metric space which is not connected, then X is the
union of non-empty disjoint open sets U and V . Thus V = U c is closed. Therefore
U and V are clopen sets in X .

2.6.4. THEOREM. [a, b] is connected.

PROOF. Suppose that U, V are disjoint open subsets of R such that [a, b] ⊂
U ∪ V and [a, b] ∩ U 6= ∅ 6= [a, b] ∩ V , Without loss of generality, a ∈ U .
Define c = sup{x : a ≤ x ≤ b, [a, x] ⊂ U}. Choose xn increasing to c so that
[a, xn] ⊂ U . Taking their union, we see that [a, c) ⊂ U . If c ∈ U , then there is an
r > 0 so that (c − r, c + r) ⊂ U ; and then [a, c + r) ⊂ U . This contradicts the
definition of c unless c = b. So either [a, c) ⊂ U and c 6∈ U for some c ≤ b or
[a, b] ⊂ U .

Suppose that c ∈ V . Then there is an r > 0 so that (c−r, c+r) ⊂ V . Therefore
U ∩ V ⊃ (c − r, c), contradicting the fact that they are disjoint. Consequently,
[a, b] ⊂ U . Thus, [a, b] is connected. �

2.6.5. THEOREM. If A is connected and f : A → Y is continuous, then f(A)
is connected.

PROOF. Suppose that U, V are disjoint open subsets of Y such that f(A) ⊂
U ∪ V and f(A) ∩ U 6= ∅ 6= f(A) ∩ V , By continuity, f−1(U) and f−1(V ) are
open in A; and they are disjoint. Also A ⊂ f−1(U) ∪ f−1(V ) and A ∩ f−1(U) 6=
∅ 6= A ∩ f−1(V ). So A is disconnected. This is a contradiction. �

2.6.6. INTERMEDIATE VALUE THEOREM. If X is a connected metric
space, and f : X → R is continuous, then f(X) is an interval (possibly infinite).

PROOF. By Theorem 2.6.5, f(X) is a connected subset of R. Let

a = inf f(X) ∈ R ∪ {−∞} and b = sup f(X) ∈ R ∪ {∞}.

If a < c < b, we must have c ∈ f(X), for otherwise

f(X) =
(
f(X) ∩ (−∞, c)

)
∪
(
f(X) ∩ (c,∞)

)
and both of these intersections must be non-empty. This shows that f(X) is dis-
connected. Therefore (a, b) ⊂ f(X) ⊂ [a, b], and hence f(X) is an interval. �

2.6.7. LEMMA. If Xλ ⊂ Y are connected sets for λ ∈ Λ and x0 ∈
⋂
Xλ, then

X :=
⋃
λ∈Λ

Xλ is connected.
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PROOF. Suppose that U and V are disjoint open sets, and X ⊂ U ∪ V . We
may assume that x0 ∈ U . Then since Xλ is connected, Xλ ⊂ U . Thus X ⊂ U ;
whence X is connected. �

2.6.8. LEMMA. If A ⊂ X is connected, then A is connected.

PROOF. Suppose that U and V are disjoint open sets, and A ⊂ U ∪ V . Then
A ⊂ U∪V , so by connectedness it is contained in one of the open sets, sayA ⊂ U .
ThenA ⊂ U ⊂ V c, the last because V c is closed and contains U . ThusA∩V = ∅,
whence A ⊂ U . So A is connected. �

2.6.9. DEFINITION. If x0 ∈ X , then the connected component of x0 is the
largest connected set containing x0.

2.6.10. EXAMPLES.
(1) Let C be the Cantor set, and let x ∈ C. I will show that the connected com-
ponent of x in C is just {x}. There is a unique sequence a1, a2, . . . in {0, 2}
so that x ∈ Ca1,...an for each n ≥ 1. Now Ca1,...an is clopen in C, and thus
C = Ca1,...an∪̇ (C \ Ca1,...an) is a union of disjoint open sets. Therefore the
connected component of x is contained in Ca1,...an ; and thus it is contained in⋂
n≥1 Ca1,...an = {x}.

(2) Q is totally disconnected. The connected component of r ∈ Q is contained
in (r − π

n , r +
π
n), because Q is contained in the disjoint union of the open sets

(r − π
n , r +

π
n) and (−∞, r − π

n) ∪ (r + π
n ,∞). This holds for all n ≥ 1; so the

component is just their intersection, {r}.

2.6.11. PROPOSITION. The connected component exists and is a closed set.

PROOF. The connected component exists, since the union of all connected sets
containing x0 is connected by Lemma 2.6.7. This is clearly contains all others, so
it is the largest. Moreover this connected component is closed by Lemma 2.6.8. �

An easy way to show that a set X is connected is to construct a path between
any two points in X . For example, any convex subset A of Rn is connected be-
cause if a, b ∈ A, then the line segment [a, b] lies in A. This is connected by The-
orem 2.6.4, and hence A consists of a single connected component. We formalize
this idea.

2.6.12. DEFINITION. X is path connected if for every x, y ∈ X , there is a
path from x to y in X , i.e., there is a continuous function f : [0, 1]→ X such that
f(0) = x and f(1) = y.



46 More Metric Topology

2.6.13. PROPOSITION. Path connected sets are connected.

PROOF. Fix x0 ∈ X . For each y ∈ X , find a continuous map f : [0, 1] → X
such that f(0) = x0 and f(1) = y. By Theorems 2.6.4 and 2.6.5, f([0, 1]) is
connected. Therefore y belongs to the connected component of x0. Hence X is
connected. �

2.6.14. EXAMPLE. Let f(x) =

{
0 if x ≤ 0
sin 1

x if x > 0
.

Let X = G(f) = {(x, f(x) : x ∈ R}. Then X = X ∪L where L = {0}× [−1, 1].
See Figure 2.1. We show that both X and X are connected but not path connected.

6 KEITH CONRAD

graph gives us a connected set for the same reason the deleted infinite broom and deleted
comb space are connected.

Let S denote the topologist’s sine curve. To show S is not path-connected, we’ll show no
path in S links (0, 0) to any other point in S. At first it might seem we could argue as in
the first two examples, using the points in S along the x-axis as a totally disconnected set
analogous to the one in Lemma 3.3, but it does not seem to work; try it!

Suppose there is a path p in S from (0, 0) to a point on the graph of y = sin(1/x) with
x > 0. Let x : R2 ! R be the x-coordinate function, which is continuous. The path p
starts o↵ on the y-axis and at some point has to “jump” onto the graph of sin(1/x), which
is the points in S with positive x-coordinate. Let t0 be the time this happens; precisely, set

(3.1) t0 = inf{t 2 [0, 1] : x(p(t)) > 0}.

For t < t0, x(p(t)) = 0. By continuity of x � p at t0, x(p(t0)) = limt!t�0
x(p(t)) = 0, so

p(t0) = (0, 0). By continuity of p at t0, there is a � > 0 such that

(3.2) t0  t < t0 + � ) ||p(t)|| <
1

2
.

We try to convey this visually in the picture below, where the red circle around (0, 0) = p(t0)
has radius 1/2.

y

x
0

By the definition of t0 as an infimum, for this same � there is a t1 with t0 < t1 < t0 + �
such that a := x(p(t1)) > 0. The image x(p([t0, t1])) is connected and contains 0 = x(p(t0))
and a = x(p(t1)), and every connected subset of R is an interval, so

(3.3) [0, a] ⇢ x(p([t0, t1])).

This contradicts continuity of t 7! x(p(t)) at t0 by the picture above, because the graph of
sin(1/x) is oscillating in and out of the red circle, so the x-values on S inside the circle do
not contain a whole interval like [0, a]. To turn this visual idea into a strict logical argument
we look at where the peaks and troughs occur in S.

Since sin(✓) = 1 if and only if ✓ = (4k +1)⇡2 and sin(✓) = �1 if and only if ✓ = (4k�1)⇡2 ,
where k 2 Z, we have (x, sin(1/x)) = (x, 1) if x = 2/((4k + 1)⇡) and (x, sin(1/x)) = (x,�1)
if x = 2/((4k � 1)⇡) for k 2 Z. Such x-values get arbitrarily close to 0 for large k, so
there are such x-values of both kinds in [0, a]. Therefore by (3.3) we get p(t0) = (⇤, 1) and
p(t00) = (⇤,�1) for some t0 and t00 in [t0, t1] ⇢ [t0, t0 + �). But ||p(t0)|| = ||(⇤, 1)|| > 1/2 and
||p(t00)|| = ||(⇤,�1)|| > 1/2, which both contradict (3.2). ⇤

FIGURE 2.1. The topologists’s sine curve.

Suppose thatX ⊂ U∪V where U and V are disjoint open sets. One set, say U ,
contains (0, 0). So the connected component contains the left x-axis (−∞, 0]×{0}.
It also contains a neighbourhood about (0, 0), and so contains ( 1

nπ , 0) for large n.
The curve {(x, sin 1

x) : x > 0} is path connected and hence connected, so it is also
contained in U . Therefore X is connected. So X is also connected.

Now we show that neither X nor X is path connected. In fact there is no path
from (0, 0) to ( 1

π , 0) inX , which establishes both claims. Suppose g : [0, 1]→ X is
continuous such that g(0) = (0, 0) and g(1) = ( 1

π , 0). Let c = sup{t : g(t) ∈ L}.
Say g(c) = (0, y). By continuity, there is a δ1 > 0 so that if t < c + δ1, then
‖g(t) − (0, y)‖ < 1

2π . Let t1 = c + δ1/2 and g(t1) =
(
x1, sin 1

x1

)
. Now find

δ2 > 0 so that if t < c + δ2, then ‖g(t) − (0, y)‖ < x1
2 . Let t2 = c + δ2/2 and

g(t2) =
(
x2, sin 1

x2

)
. Since g([t2, t1]) is connected, it must contain {(x, sin 1

x) :
x2 ≤ x ≤ x1}. Now x1 <

1
2π , and x2 <

x1
2 , so that 1

x2
− 1

x1
≥ 1

x1
> 2π. So the

function f(x) takes all values in [−1, 1] on this interval. But not all of these values
are within 1

2π of y, contradicting continuity of g.

2.7. The Cantor Set, Part II

Next we consider spaces which are very disconnected like C and Q.
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2.7.1. DEFINITION. X is totally disconnected if every connected component
is a singleton.

The last result of this chapter is an abstract characterization of the Cantor set.

2.7.2. THEOREM. If X is a non-empty compact metric space which is totally
disconnected and perfect, than X is homeomorphic to the Cantor set.

Before starting the main proof, we need the following key lemma.

2.7.3. LEMMA. Let (X, d) be a compact, totally disconnected metric space, and
let ε > 0. Then X has a finite cover consisting of disjoint non-empty clopen sets
of diameter at most ε. If X is perfect, then the cardinality of this partition can be
increased to any larger (finite) number.

PROOF. For x ∈ X , let A = {a ∈ X : d(a, x) ≥ ε/2}. Each a ∈ A is
not in the connected component of x, namely {x}. Hence there are clopen sets
Ua and Va = U ca such that x ∈ Ua and a ∈ Va. Then {Va : a ∈ A} covers A.
Since A is a closed subset of X , it is compact. Therefore there is a finite subcover
Va1 , . . . , Van . Define Wx =

⋂n
i=1 Uai . This is a clopen neighbourhood of x, and

is the complement of V =
⋃n
i=1 Vai , which is a clopen set containing A. Hence

Wx ⊂ bε/2(x). Thus the diameter of Wx is at most ε.
Now {Wx : x ∈ X} is an open cover ofX consisting of clopen sets of diameter

at most ε. Select a finite subcover Wx1 , . . . ,Wxm . Define W ′k =Wxk \
⋃k−1
j=1 Wxj

for 1 ≤ k ≤ m. After discarding any empty sets, this is the desired partition.
If X is perfect, then each non-empty clopen subset W is also perfect, and thus

is not finite. So given two points x, y ∈ W , we can find a clopen set U 3 x such
that y ∈ V := W \ U . Replacing W by U, V increases the size of the partition by
one. Repeat as often as required. �

PROOF OF THEOREM 2.7.2. Using Lemma 2.7.3, partition X into n1 ≥ 2 non-
empty clopen subsets U1, . . . , Un1 of diameter at most 2−1. Then partition C into
the same number of clopen subsets V1, . . . , Vn1 of diameter at most 2−1. In this
case, we can do this using the standard intervals, as C0 and C2 are complementary
clopen subsets of diameter 1/3, and they can be further dissected as necessary to
get n1 sets.

Next we can partition eachUi into finitely many disjoint clopen sets of diameter
at most 2−2. By adding further divisions if required, we may assume that each has
n2 ≥ 2 sets, enumerated Ui1i2 for 1 ≤ ij ≤ nj . Partition each Vi into n2 disjoint
non-empty clopen sets of diameter at most 2−2 called Vi1i2 for 1 ≤ ij ≤ nj .
Recursively repeat this procedure, so that for each k ≥ 1, X is partitioned into
non-empty clopen sets Ui1...ik of diameter at most 2−k where 1 ≤ ij ≤ nj , and
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⋃nk
i=1 Ui1...ik−1i = Ui1...ik−1 . And likewise partition C into non-empty clopen sets

Vi1...ik of diameter at most 2−k where 1 ≤ ij ≤ nj , and
⋃nk
i=1 Vi1...ik−1i = Vi1...ik−1 .

The idea now is to use these partitions as a decision tree to identify individual
points which are the intersection of a decreasing sequence of clopen sets. For each
point x ∈ X , there is a unique choice of a sequence Ui1 , Ui1i2 , . . . , Ui1...ik , . . .
such that x ∈ Ui1...ik for every k ≥ 1 because at each level, X is partitioned into
disjoint sets, so exactly one contains x. The intersection

⋂
k≥1 Ui1...ik = {x} is

a single point because it has diameter 0. Conversely every choice of a decreasing
sequence of these sets,

⋂
k≥1 Ui1...ik is non-empty since it is a decreasing sequence

of closed sets with FIP, and X is compact. Again this intersection has diameter 0,
so is a single point. Let’s call it xi1i2i3.... Exactly the same is true for C for the same
reasons. Denote the corresponding point in C by ci1i2i3....

Define a function f : X → C by f(xi1i2j3...) = ci1i2j3.... By the discussion in
the previous paragraph, this map is a bijection. We need to show that f and f−1 are
continuous. First note that by construction, f(Ui1...ik) = Vi1...ik . So we also have
f−1(Vi1...ik) = Ui1...ik .

To finish the proof, we show that every open set V ⊂ C is given by

(2.7.4) V =
⋃
{Vi1...ik : Vi1...ik ⊂ V }.

Suppose that x ∈ V . Since V is open, there is an r > 0 so that br(x) ⊂ V . Choose
k so that 2−k < r. There is a set Vi1...ik which contains x, and has diameter at most
2−k. Therefore Vi1...ik ⊂ br(x) ⊂ V . It follows that the right hand side of (2.7.4)
contains every point in V , establishing the identity. Now we see that

f−1(V ) =
⋃
{f−1(Vi1...ik) : Vi1...ik ⊂ V } =

⋃
{Ui1...ik : Vi1...ik ⊂ V }

is a union of open sets, and thus is open. Hence f is continuous.
The continuity of f−1 follows similarly, or we can apply Proposition 2.3.4.

Hence X is homeomorphic to C. �

Exercises

1. Consider the Cantor set asC =
⋂
n≥1 Cn as in § 2.4. The setCn is the disjoint union of

2n intervals, say Ik,n for 0 ≤ k < 2n in increasing order. Define a continuous function
fn : Cn → [0, 1] by fn(x) = k2−n for x ∈ Ik,n. Prove that (fn)n≥1 converges
uniformly on C to a continuous monotone function f which maps C onto [0, 1].

2. Prove that C + C = {x+ y : x, y ∈ C} = [0, 2]. HINT: consider Cn + Cn.

3. Let F = {F ∈ C[0, 1] : F (x) =
∫ x

0 f(t) dt, f ∈ C[0, 1], ‖f‖∞ ≤ 1}.
(a) Show that F is bounded and equicontinuous, but not closed.
(b) Show that F = {f ∈ C[0, 1] : f(0) = 0 and Lip(f) ≤ 1}, and this is compact.

HINT: find Fn ∈ F such that Fn( k2n ) = (1− 1
n )f(

k
2n ).

4. Show that the closed unit ball of C[0, 1] is not compact.
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5. A continuous curve γ : [0, 1]→ (V, ‖ · ‖) is rectifiable if
L(γ) = sup

{∑n−1
i=0 ‖γ(ti)− γ(ti+1)‖ : 0 = t0 < ti < ti+1 < tn = 1

}
is finite. Prove that a space filling curve onto the unit square in R2 cannot be rectifiable.
HINT: use a fine grid in the square, and find a lower bound for the length of a curve
that passes near every lattice point.

6. Let fn ∈ CR[a, b] for n ≥ 1. Suppose that they are all Lipschitz with Lipschitz
constant at most 5 and |fn(a)| ≤ 7. Prove that there is a subsequence of (fn)n≥1
which converges uniformly.

7. Let (X, d) be a compact metric space and let F be an equicontinuous family in C(X)
such that Mx := sup{|f(x)| : f ∈ F} <∞ for x ∈ X . Prove that F is bounded.

8. Let F be an equicontinuous family of continuous functions on R such that Mx :=
sup{|f(x)| : f ∈ F} < ∞ for every x ∈ R. Prove that every sequence (fn)n≥1 in F
has a subsequence which converges uniformly on every compact subset of R.

9. Let U be an open subset of a normed vector space V . Prove that U is connected if and
only if it is path connected.
HINT: fix x ∈ U , and show that the set of points in U which are path connected to x
is open, and that the set of points in U which are not path connected to x is also open.

10. Show that the unit interval [0, 1] and the unit circle T are not homeomorphic.
HINT: [0, 1

2 ) ∪ ( 1
2 , 1] is not connected.

11. Show that [0, 1] and the unit square [0, 1]× [0, 1] are not homeomorphic.

12. Let Cn = {z ∈ C : |z − 1
n | = 1 − 1

n} for n ≥ 1. Define X =
⋃
n≥0 Cn. Show that

X and X are path connected. Is there a continuous function from [0, 1] onto X?

13. Consider the curve γ : (0, 1] → C by γ(t) = (1 + t)ei/t. Clearly Ran γ is path
connected. Show that Ran γ is connected but not path connected.

14. Let X = {(x, 0) : 0 ≤ x ≤ 1}∪{( 1
n , y) : n ∈ N, 0 ≤ y ≤ 1}∪{(0, 1)} ⊂ R2. Prove

that X is connected but not path connected; however X is path connected.

15. (a) Let A1 ⊃ A2 ⊃ A3 . . . be a decreasing sequence of connected compact subsets of
(X, d). Prove that

⋂
i≥1 Ai is connected.

(b) Find an example of a decreasing sequence of connected closed subsets of R2 such
that the intersection is not connected.

16. Show that if x, y ∈ C, the Cantor set, then there is a homeomorphism f of C onto
itself such that f(x) = y. Note: this means that being the endpoint of an interval is a
property of the imbedding of C into [0, 1], not a topological property of C.

17. Fix a real number 0 < t < 9. If x ∈ [0, 1), choose the decimal expansion for x,
x = 0.x1x2 . . . , which does not end in all 9’s. Let an(x) = 1

n

∑n
i=1 xi. Define

B = {x ∈ [0, 1) : an(x) ≤ t for all n ≥ 1}. Show that B is closed, nowhere dense
and perfect.



CHAPTER 3

Completeness Revisited

3.1. The Baire Category Theorem

In this section, we prove a result about complete metric spaces which is not
particularly difficult, but has many surprising consequences. We will see some of
them in this course, and you will see several others if you take functional analysis.

3.1.1. DEFINITION. A subset A of a metric space X is nowhere dense if A has
no interior. A set A is first category in X if A =

⋃
n≥1 An and each An is nowhere

dense; i.e., A is a countable union of nowhere dense sets.
Say that B is a residual set in X if Bc is first category.

If A is nowhere dense, then Ac is a dense open set. Thus A is small and its
complement is pervasive within X . One should think of sets of first category sets
as being small as well.

3.1.2. EXAMPLES.
(1) Single points in R are closed and nowhere dense. Thus Q is a countable union
of {r} for r ∈ Q. Hence Q is first category and R \Q is a residual set.

(2) The Cantor set is closed and has no interior in R. So it is nowhere dense even
though it has the same cardinality as R.

3.1.3. BAIRE CATEGORY THEOREM. A non-empty complete metric space
X is not first category; i.e., X is not a countable union of nowhere dense sets.
Indeed, if An are nowhere dense subsets of X , then

⋂
n≥1 An

c is dense in X .

PROOF. Let x ∈ X and r > 0. We will find a point in br(x) \
⋃
n≥1 An. This

will show that
⋂
n≥1 An

c is dense in X .
Since A1 has no interior, V1 := br(x) ∩ A1

c is non-empty and open. Thus
there is a point x1 ∈ X and an 0 < r1 < r/2 so that b̄r1(x1) ⊂ V1. Proceed
recursively. At stage n, we will have x1, . . . , xn and r1, . . . , rn so that ri < r/2i

and b̄ri(xi) ⊂ Vi = bri−1(xi−1) \ Ai for 1 ≤ i ≤ n. Set Vn+1 = brn(xn) \ An+1.
Since An+1 is nowhere dense, this is a non-empty open set. So we may find a

50
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point xn+1 and an rn+1 < r/2n+1 so that b̄rn+1(xn+1) ⊂ Vn+1. This completes the
inductive step.

The balls b̄rn(xn) form a decreasing nested sequence of closed sets. We claim
that the sequence (xn)n≥1 is Cauchy. Indeed, if N ≤ m < n, then xn, xm ∈
b̄rN (xN ) and hence d(xn, xm) ≤ 2rN < 21−Nr. So if ε > 0 is given, choose
N so that 21−Nr < ε. Since X is complete, this sequence has a limit, say
x0 = limn→∞ xn. Hence x0 belongs to

⋂
n≥1 b̄rn(xn). (Alternatively, b̄rn(xn)

is a decreasing nested sequence of closed sets with diameter tending to 0, and thus
they have non-empty intersection {x0} by the completeness of X . See Assign-
ment 3.) Since b̄rn(xn) is disjoint from An, we have x0 ∈

⋂
n≥1 An

c. Moreover,
x0 ∈ V1 ⊂ br(x), so that d(x, x0) < r. Thus

⋂
n≥1 An

c is dense in X . �

3.1.4. DEFINITION. If X is a metric space, a set A ⊂ X is a Gδ set if there are
countably many open sets Un, n ≥ 1, so that A =

⋂
n≥1 Un. A set A ⊂ X is an

Fσ set if there are countably many closed sets Cn, n ≥ 1, so that A =
⋃
n≥1 Cn.

Since the complement of a closed nowhere dense set is a dense open set, the
following corollary is immediate.

3.1.5. COROLLARY. If X is a complete metric space and Un are dense open
sets for n ≥ 1, then

⋂
n≥1 Un is a dense Gδ set.

The Baire Category Theorem is often used using the contrapositive, which can
be formulated as follows. Again the proof is immediate.

3.1.6. COROLLARY. Let X be a complete metric space. Suppose that Cn are
closed sets such that X =

⋃
n≥1 Cn. Then there is some n0 so that Cn0 has non-

empty interior.

3.1.1. Pointwise Limits of Continuous Functions. We have seen in Exam-
ple 1.8.3 that the pointwise limit of continuous functions need not be continuous.
Functions which are pointwise limits of continuous functions are called Baire one
functions. In this short section, we will show that Baire one functions retain some
good properties.

3.1.7. DEFINITION. Let (X, d) be a metric space, and let F be either R or C. If
f : X → F is a function, the oscillation of f at x, ωf (x), is defined in two stages:

ωf (x, δ) = sup
{
|f(y)− f(z)| : y, z ∈ bδ(x)

}
for δ > 0

ωf (x) = inf
δ>0

ωf (x, δ).
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The following easy lemma is left as an exercise.

3.1.8. LEMMA. Let f : X → F. Then f is continuous at x if and only if
ωf (x) = 0.

We need another easy lemma.

3.1.9. LEMMA. Let f : X → F and let ε > 0. Then {x : ωf (x) < ε} is open.

PROOF. Suppose that ωf (x) < ε. Then for some δ > 0, ωf (x, δ) < ε. If
d(x, y) = r < δ, then bδ−r(y) ⊂ bδ(x). Therefore, ωf (y, δ − r) ≤ ωf (x, δ) < ε.
Hence ωf (y) < ε. That is, bδ(x) ⊂ {x : ωf (x) < ε}. So this is an open set. �

The main result of this subsection is the following.

3.1.10. THEOREM. Suppose that fi ∈ C[a, b] converge pointwise to a function
f . Then f is continuous on a residual Gδ set.

PROOF. Observe that the points of continuity of f are

{x : ωf (x) = 0} =
⋂
n≥1

{x : ωf (x) < 1
n} =

( ⋃
n≥1

{x : ωf (x) ≥ 1
n}
)c
.

Since Un = {x : ωf (x) < 1
n} is open by Lemma 3.1.9, the points of continuity

form a Gδ set. The plan is to show that the closed sets An = {x : ωf (x) ≥ 1
n} =

U cn are nowhere dense. Let I be a (small) open interval in [a, b]. We will show that
I contains a point with ωf (x) < 1

n . Hence I 6⊂ An. As I is arbitrary, An has no
interior.

Set ε < 1
3n . For all i, j ≥ 1, set Xi,j = {x ∈ I : |fi(x) − fj(x)| ≤ ε}. By

the continuity of fi − fj , these are closed sets. Define closed sets for n ≥ 1 by
En =

⋂
i,j≥nXi,j . Since fi(x) converges to f(x), there is some N ∈ N so that

|fi(x)− f(x)| < ε
2 for all i ≥ N . Hence if i, j ≥ N , we have |fi(x)− fj(x)| < ε;

and thus x ∈ EN . It follows that I =
⋃
n≥1 En.

Now I is complete, so Corollary 3.1.6 shows that there is some n0 so that En0

has interior, say En0 ⊃ J where J is an open interval. Hence |fi(x)− fn0(x)| ≤ ε
for all i > n0 and x ∈ J . Take the limit as i→∞ to see that |f(x)− fn0(x)| ≤ ε.
Since fn0 is uniformly continuous, there is a δ0 > 0 so that |x − y| < δ0 implies
that |fn0(y) − fn0(x)| < ε. If x ∈ J , let δx = min{δ0/2, d(x, Jc)}. Then if
y, z ∈ bδx(x) ⊂ J , we have d(y, z) < δ0; so

|f(y)− f(z)| ≤ |f(y)− fn0(y)|+ |fn0(y)− fn0(z)|+ |fn0(z)− f(z)|

≤ ε+ ε+ ε = 3ε <
1
n
.
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Therefore ωf (x) ≤ ωf (x, δx) ≤ 3ε < 1
n for all x ∈ J ⊂ I . This shows that An

has no interior; so it is nowhere dense.
Hence

⋃
n≥1 An = {x : ωf (x) > 0} is first category. By the Baire Category

Theorem 3.1.3, {x : ωf (x) = 0} = ⋂n≥1 A
c
n is a dense Gδ set. By Lemma 3.1.8,

this is the set of points of continuity of f . �

3.2. Nowhere Differentiable Functions

Our major application of the Baire Category Theorem will be to show that most
continuous functions on an interval are not differentiable even at a single point.
Such functions are called nowhere differentiable.

We need the following local variant on Lipschitz functions. The reason for
discussing a Lipschitz condition is that these functions are better behaved under
limits than differentiable functions. The easy lemma is a local version of Exam-
ple 1.4.7(3).

3.2.1. DEFINITION. A function f ∈ C(X) is Lipschitz at x for x ∈ X is there
is a constant C so that

|f(x)− f(y)| ≤ Cd(x, y) for all y ∈ X.

3.2.2. LEMMA. If f ∈ C[a, b] is differentiable at x, then it is Lipschitz at x.

PROOF. We are given that f ′(x) = limy→x
f(y)−f(x)

y−x exists. Hence there is a
δ > 0 so that when 0 < |y − x| < δ,∣∣∣∣f(y)− f(x)y − x − f ′(x)

∣∣∣∣ < 1.

If follows that |f(y) − f(x)| ≤
(
|f ′(x)| + 1

)
|y − x| if |y − x| < δ. Now if

|y − x| ≥ δ,

|f(y)− f(x)| ≤ 2‖f‖∞ ≤
(
2‖f‖∞δ−1) |y − x|.

Hence f is Lipschitz at x with constant C = max
{
|f ′(x)|+ 1, 2‖f‖∞δ−1)

}
. �

3.2.3. THEOREM. The set of functions f ∈ C[a, b] which are differentiable at
one or more points is a set of first category. So the set of nowhere differentiable
functions on [a, b] is a residual set, and in particular is dense in C[a, b].

PROOF. For k ≥ 1, let

Ak = {f ∈ C[a, b] : ∃ x ∈ [a, b] s.t. f is Lipschitz at x with constant k}.
Our goal is to show that Ak is closed and nowhere dense.
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First suppose that fn ∈ Ak and fn → f uniformly on [a, b]. For each fn,
there is a point xn ∈ [a, b] so that |fn(y) − fn(xn)| ≤ k|y − xn| for y ∈ [a, b].
The bounded sequence (xn)n≥1 has a convergent subsequence by the Bolzano-
Weierstrass Theorem, say x0 = limi→∞ xni . Then

|f(y)− f(x0)| ≤ |f(y)− fni(y)|+ |fni(y)− fni(xni)|+
+ |fni(xni)− fni(x0)|+ |fni(x0)− f(x0)|

≤ ‖f − fni‖∞ + k|y − xni |+ k|xni − x0|+ ‖fni − f‖∞
= 2‖f − fni‖∞ + k

(
|y − xni |+ |xni − x0|

)
.

Now take the limit as i→∞ to obtain that

|f(y)− f(x0)| ≤ k|y − x0|.
Thus f ∈ Ak. So Ak is closed.

Next we show that Ak has no interior. Take f ∈ Ak and let ε > 0 be given.
The idea is to first find a nice (in this case, piecewise linear) function close to f .
Then we will add to this function a very wild function to obtain a function that does
not have a small local Lipschitz constant anywhere.

Since f is uniformly continuous, there is a δ > 0 so that |x−y| < δ implies that
|f(x) − f(y)| < ε/4. Choose a finite set of points a = x0 < x1 < · · · < xn = b
so that xi+1 − xi < δ for 0 ≤ i < n. Define h to be the piecewise linear function
determined by h(xi) = f(xi) for 1 ≤ i ≤ n. Then if xi < x < xi+1,

|h(x)− f(x)| ≤ |h(x)− h(xi)|+ |h(xi)− f(xi)|+ |f(xi)− f(x)|
< |h(xi+1)− h(xi)|+ 0 +

ε

4
= |f(xi+1)− f(xi)|+

ε

4
<
ε

2
.

Thus ‖h− f‖∞ < ε
2 . (Strict inequality follows from the Extreme Value Theorem.)

Since h is piecewise linear, it is Lipschitz with constantL equal to the maximim
absolute value of the slope on each segment. Let M > 4πε−1(L + k). Define
g = h + ε

2 sinMx. The small function ε
2 sinMx has a big derivative at many

points, and this will ensure that g is not in Ak. Note that

‖g − f‖∞ ≤ ‖g − h‖∞ + ‖h− f‖∞ <
ε

2
‖ sinMx‖∞ +

ε

2
≤ ε.

For any x0 ∈ [a, b], we will show that g is not k-Lipschitz at x0. In any interval
of length 2π/M , the function sinMx will take all values in [−1, 1]. So choose a
point x ∈ [a, b] so that

|x− x0| <
2π
M

and sinMx =

{
+1 if sinMx0 < 0
−1 if sinMx0 ≥ 0.

Then

|g(x)− g(x0)| =
∣∣h(x)− h(x0) +

ε

2
(sinMx− sinMx0)

∣∣
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≥ ε

2

∣∣ sinMx− sinMx0
∣∣− ∣∣h(x)− h(x0)

∣∣
≥ ε

2
− L|x− x0|

≥ ε

2
M

2π
|x− x0| − L|x− x0|

=
(εM

4π
− L

)
|x− x0| > k|x− x0|.

Hence g is not Lipschitz at x0 with constant k. As x0 was arbitrary, g 6∈ Ak. Hence
Ak has no interior.

We have shown that each Ak is nowhere dense. So
⋃
k≥1 Ak is first category.

The complement consists of all functions which are not locally Lipschitz at any
point. By Lemma 3.2.2, this implies in particular that they are nowhere differen-
tiable. Hence the set of nowhere differentiable functions is also a residual set. By
the Baire Category Theorem 3.1.3, the set of nowhere differentiable functions is
dense in C[a, b]. �

3.2.1. Weierstrass’s Nowhere Differentiable Function. This Baire Category
argument is not how people first discovered nowhere differentiable functions. Weier-
strass constructed a whole family of such functions as sums of infinite series. We
will provide one of his examples here.

Define

f(x) =
∑
k≥1

2−k cos(10kπx) =
∑
k≥1

fk(x) for x ∈ R.

Since ‖fk‖∞ = 2−k, the Weierstrass M-test 1.8.5 shows that this series converges
uniformly to a continuous function on R. Moreover each fk is 1-periodic so f has
period 1. Thus we need only consider x ∈ [0, 1].

Let x = 0.x1x2x3 · · · ∈ [0, 1]. For each n ≥ 1, let an = 0.x1x2x3 . . . xn and
bn = an + 10−n. Notice that 10nan is an integer and 10nbn = 10nan + 1; so

fn(an) = 2−n cos(10nπan) = 2−n(−1)10nan

fn(bn) = 2−n cos(10nπbn) = 2−n(−1)10nan+1.

Therefore |fn(an)− fn(bn)| = 21−n.
If k > n, 10kan and 10kbn are both even integers, so that fk(an) = fk(bn). If

1 ≤ k < n, the Mean Value Theorem shows that

|fk(an)− fk(bn)| ≤ ‖f ′k‖∞ (bn − an) = (2−k10kπ)10−n = 2−n5k−nπ.

Therefore

|f(an)− f(bn)| =
∣∣∣ ∞∑
k=1

fk(an)− fk(bn)
∣∣∣

≥ |fn(an)− fn(bn)| −
n−1∑
k=1

|fk(an)− fk(bn)|
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≥ 21−n − 2−nπ
n−1∑
k=1

5k−n

> 2−n(2− π

4
) > 2−n.

It follows that choosing the endpoint yn ∈ {an, bn} judiciously, we can arrange
that |f(yn)− f(x)| > 2−n−1. However |yn − x| ≤ 10−n. Therefore∣∣∣∣f(yn)− f(x)yn − x

∣∣∣∣ > 2−n−1

10−n
=

5n

2
.

This tends to∞, from which we deduce that f is not differentiable at x.

3.3. The Contraction Mapping Principle

This section provides another easy but powerful consequence of completeness.

3.3.1. DEFINITION. Let (X, d) be a metric space. A map T : X → X is a
contraction mapping if it is Lipschitz with a Lipschitz constant c < 1.

A fixed point of a map T : X → X is a point x ∈ X such that Tx = x.

3.3.2. CONTRACTION MAPPING PRINCIPLE. Let (X, d) be a complete
metric space, and let T : X → X be a contraction mapping with Lipschitz constant
c < 1. Then T has a unique fixed point x∗. Moreover, for any x0 ∈ X , the sequence
xn := Tnx converges to x∗, and

d(xn, x∗) ≤ cnd(x0, x∗) ≤
cn

1− cd(x0, Tx0).

PROOF. Start with any point x0 ∈ X and define xn+1 = Txn for n ≥ 0. Then
for n ≥ 1,

d(xn+1, xn) = d(Txn, Txn−1) ≤ cd(xn, xn−1).

By induction, we see that d(xn+1, xn) ≤ cnd(x1, x0).
We claim that (xn)n≥0 is a Cauchy sequence. Indeed, if N ≤ m < n, then by

the triangle inequality,

d(xn, xm) ≤
n−1∑
i=m

d(xi+1, xi) ≤
n−1∑
i=m

cid(x1, x0)

<
∑
i≥N

cid(x1, x0) =
( cN

1− c
)
d(x1, x0).

Given ε > 0, we may choose N so large that cN d(x1,x0)
1−c < ε. Then d(xn, xm) < ε

for all N ≤ m < n, so the sequence is Cauchy.
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Let x∗ = limn→∞ xn, which exists since X is complete. Then

Tx∗ = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗.

Thus x∗ is a fixed point for T . Moreover,

d(xn+1, x∗) = d(Txn, Tx∗) ≤ cd(xn, x∗).
By induction, we again show that d(xn, x∗) ≤ cnd(x0, x∗). From the previous
paragraph with N = 0, we have that d(xn, x0) ≤ 1

1−cd(x1, x0). Letting n → ∞
yields d(x∗, x0) ≤ 1

1−cd(x1, x0). Hence

d(xn, x∗) ≤ cnd(x0, x∗) ≤
cn

1− cd(Tx0, x0).

Suppose that y∗ is a fixed point of T . Then

d(x∗, y∗) = d(Tx∗, T y∗) ≤ cd(x∗, y∗).
Since c < 1, this shows that d(x∗, y∗) = 0; that is, y∗ = x∗. So x∗ is the unique
fixed point. �

3.3.3. EXAMPLES.
(1) The condition c < 1 is required to ensure a fixed point. If S : R → R by
Sx = x + 1, then this is an isometry and has Lipschitz constant c = 1. Clearly it
has no fixed points.

A somewhat more subtle example is T : [1,∞) → [1,∞) by Tx = x + 1
x .

Then

|Tx− Ty| =
∣∣x+

1
x
− y − 1

y

∣∣ = |x− y|(1− 1
xy

)
< |x− y|.

Thus T shrinks the distance between any two pairs of points. However for x, y very
large, this ratio gets arbitrarily close to 1, so the Lipschitz constant is 1. This map
has no fixed point because Tx > x for all x.

(2) Put your calculator in radian mode, and enter an arbitrary number. Repeatedly
compute the cosine by hitting the cos button many times. You will see that fairly
quickly, you get the answer 0.739085133 and if you use a computer with higher
precision, you will get x∗ = 0.73908513321516064 . . . .

This corresponds to the map T : R→ R by Tx = cosx. Whatever the starting
point x0 is, x1 ∈ [−1, 1] and x2 ∈ [cos 1, 1]. The Mean Value Theorem shows that
if x, y ∈ [−1, 1], then there is some θ ∈ (x, y) so that

cosx− cos y
x− y = sin θ ≤ sin 1.

Hence |Tx − Ty| ≤ (sin 1)|x − y| is a contraction mapping with c = sin 1 once
we restrict T to its range, [−1, 1]. Thus by the Contraction Mapping Principle,
there is a unique fixed point. This fixed point is the unique solution to the equation
cosx∗ = x∗. Graph the curves y = cosx and y = x and find the intersection point,
(x∗, x∗).
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(3) Let T : [−1, 1] → [−1, 1] by Tx = 1.8(x − x3). Note that T (±1) =

0. Compute T ′x = 1.8(1 − 3x2). Then T ′x = 0 when x = ±1/
√

3; and
T (±1/

√
3) = ±2

√
3

5 . These are the local max and local min respectively, and
2
√

3 < 5; so T maps [−1, 1] into itself. You can also see by inspection that the
derivative T ′(0) = 1.8 > 1 and |T ′(±1)| = 3.6 > 1. So T is not a contraction
mapping.

Solve for fixed points: Tx = x if and only if x = 1.8x − 1.8x3, which holds
if x(x2 − 4

9) = 0. This has three solutions, x = 0,± 2
3 . Note that T ′(±2

3) = −0.6
while T ′(0) = 1.8.

We will show that: if Tx∗ = x∗ and T is C1 with |T ′(x∗)| < 1, then there is a
(small) interval I = (x∗ − δ, x∗ + δ) so that T : I → I is a contraction mapping.
This is called an attracting fixed point. Use the continuity of T ′ to select an interval
containing x∗ on which max |T ′x| = c < 1. By the Mean Value Theorem, if x ∈ I ,
then there is a point ξ in (x, x∗) so that

|Tx− Tx∗|
|x− x∗|

= |T ′ξ| ≤ c.

Hence |Tx − Tx∗| ≤ c|x − x∗|. So T maps I into itself, and is a contraction
mapping. Thus Tnx converges to x∗ if we start with x ∈ I . This is what occurs in
our example near x∗ = ±2

3 .
Also if if Tx∗ = x∗ and T is C1 with |T ′(x∗)| > 1, then there is a (small)

interval I = (x∗− δ, x∗+ δ) and c > 1 so that for x ∈ I , |Tx−Tx∗| ≥ c|x−x∗|.
This is called a repelling fixed point. You can similarly bound min |T ′x| = c > 1
on some interval I . Another application of MVT shows that |Tx−Tx∗| ≥ c|x−x∗|.
So the points are being pushed away from x∗. This is the case for x∗ = 0.

A useful extension of the contraction Mapping Principle is the following vari-
ant.

3.3.4. COROLLARY. Let (X, d) be a complete metric space, and let T : X →
X . Suppose that there is a positive integer k so that T k is a contraction mapping.
Then T has a unique fixed point x∗. Given any x0 ∈ X , x∗ = limn→∞ Tnx0.

PROOF. Since T k is a contraction, it has a unique fixed point x∗. Observe that

T k(Tx∗) = T (T kx∗) = Tx∗.

Thus Tx∗ is a fixed point of T k. By uniqueness, Tx∗ = x∗. So x∗ is fixed for T .
Given x0 and 0 ≤ i < k, starting with T ix0, repeated application of T k yields x∗.
Thus

lim
n→∞

Tnk+ix0 = lim
n→∞

Tnk(T ix0) = x∗.

Therefore Tnx0 converges to x∗. Conversely, if y∗ is any fixed point of T , then
T ky∗ = y∗ as well. So the fixed point for T is unique. �
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3.3.1. Fractals. Suppose that X is a closed subset of Rn and T1, . . . , Tn are
affine invertible contraction mappings of X with Lipschitz constants ci < 1 for
1 ≤ i ≤ k. (An affine map is a translation of a linear map.) Look for a closed
subset A ⊂ X such that

A = T1A ∪ · · · ∪ TkA.
Since we are using invertible affine mappings, each TiA is similar to A geometri-
cally. If the TiA are almost disjoint (say except for a finite number of points), then
this self-similarity property will be more apparent. A will look like the union of k
smaller copies of A, each of which is a union of k even smaller copies, etc. Such a
figure is called a fractal.

3.3.5. EXAMPLE. Let X = R2 and let

T1x =
x

2
, T2x = (1, 0) +

x

2
and T3x = (1

2 ,
√

3
2 ) +

x

2
.

Let A0 be the solid equilateral triangle with vertices (0, 0), (2, 0) and (1,
√

3).
Define An = T1An−1 ∪ T2An−1 ∪ T3An−1 for n ≥ 1 Then TiA0 is an equilateral
triangle of half the size. SoA1 is the union of three triangles, and looks likeA0 was
divided into four equal triangles and the centre was removed. Likewise, A2 looks
like each solid triangle in A1 had the middle triangle removed from each. In the
limit, it converges to a figure known as Sierpinski’s triangle.

FIGURE 3.1. A0, A1, A2, A3, A4, A5.

The fact that Ti are affine and invertible turns out to be unimportant in terms
of existence of a unique solution. It does, however, produce more symmetrical and
pleasing results.

3.3.6. THEOREM. Let (X, d) be a complete metric space, and let Ti : X → X
be contraction mappings with Lipschitz constants ci < 1 for 1 ≤ i ≤ k. LetH(X)
denote the space of non-empty closed bounded subsets of X with the Hausdorff
metric. Define T : H(X) → H(X) by TA = T1A ∪ · · · ∪ TkA. Then T is a
contraction mapping. It has a unique fixed point A∗, and it satisfies

A∗ = T1A∗ ∪ · · · ∪ TkA∗.
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PROOF. First we show that if Ai, Bi ∈ H(X) for 1 ≤ i ≤ n, then

dH(A1 ∪ · · · ∪An, B1 ∪ · · · ∪Bn) ≤ max
1≤i≤n

dH(Ai, Bi).

Let r be the right hand side. Then Ai ⊂ (Bi)r := {x : d(x,Bi) ≤ r} and similarly
Bi ⊂ (Ai)r. Therefore

A1 ∪ · · · ∪An ⊂ (B1 ∪ · · · ∪Bn)r and (B1 ∪ · · · ∪Bn) ⊂ (A1 ∪ · · · ∪An)r.
That proves the claim.

If A,B ∈ H(X), then

dH(TiA, TiB) = max{sup
a∈A

d(Tia, TiB), sup
b∈B

d(Tib, TiA)}

≤ ci max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

= cidH(A,B).

Let c = max{ci : 1 ≤ i ≤ n}. Then if A,B ∈ H(X), we have

dH(TA, TB) = dH(T1A ∪ · · · ∪ TkA, T1B ∪ · · · ∪ TkB)

≤ max{cidH(A,B)} = cdH(A,B).

Therefore T is a contraction mapping with Lipschitz constant c.
By the Contraction Mapping Principle 3.3.2, T has a unique fixed point A∗. �

3.4. Newton’s Method

Newton’s method is an iterative algorithm for finding zeros of nice functions
that you have probably seen in your calculus class. It is frequently implemented
for computer computation because it converges very quickly. In fact, it converges
quadratically. This means that once you get sufficiently close to the solution, each
iteration essentially doubles the number of significant digits. In fact the precision
of the calculation may become the more serious problem.

3.4.1. DEFINITION. An algorithm for approximating a solution x∗ by a se-
quence (xn)n≥0 converges quadratically if there is a constant C so that

|xn+1 − x∗| ≤ C|xn − x∗|2.

Start with a function f ∈ C2[a, b]. Suppose that there is a point x∗ such that
f(x∗) = 0 and f ′(x∗) 6= 0. You need to start with a point x0 sufficiently close to
x∗. Exactly how close depends on the function, but in some cases, there is a lot of
leeway.
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The idea is to take the tangent line through (x0, f(x0)) and solve for its root,
x1, which is the first step of the algorithm. Repeat, generating a sequence of ap-
proximations. As with any numerical method, it is important to have good error
estimates.

The line through (xn, f(xn)) with slope f ′(xn) is

y = f(xn) + f ′(xn)(x− xn).
The solution to y = 0 is xn+1 given by

xn+1 = xn −
f(xn)

f ′(xn)
.

Define the mapping Tx = x − f(x)
f ′(x) . Observe that Tx∗ = x∗ precisely when

f(x∗) = 0. We won’t have any problem with the denominator being 0 if we are
close to x∗ because f ′ is continuous, and is non-zero at x∗. Compute

T ′x = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2 =

f(x)f ′′(x)
f ′(x)2 .

Notice that T ′(x∗) = 0, and hence T is very contractive near x∗.

3.4.2. NEWTON’S METHOD. Suppose that f ∈ C2 and there is a point x∗
such that f(x∗) = 0 and f ′(x∗) 6= 0. Then there is an r > 0 so that Tx = x− f(x)

f ′(x)
is a contraction mapping on I = [x∗ − r, x∗ + r]. Moreover there is a constant M
so that |xn+1 − x∗| ≤M |xn − x∗|2.

PROOF. Based on the calculations preceding the proof, we can choose r > 0
so that |T ′x| ≤ 1

2 on some interval I = [x∗−r, x∗+r]. This implies that f ′(x) 6= 0
on I . By the Mean Value Theorem, if x, y ∈ I , there is a point ξ ∈ (x, y) so that

|Tx− Ty| = |f ′(ξ)(x− y)| ≤ 1
2 |x− y|.

Thus T is a contraction mapping with Lipschitz constant 1
2 . In particular, if x ∈ I ,

|Tx − x∗| = |Tx − Tx∗| ≤ 1
2 |x − x∗|. So Tx belongs to I; whence TI ⊂ I .

The Contraction Mapping Principle shows that xn = Tnx0 converges to x∗ and
satisfies |xn−x∗| ≤ 2−n|x0−x∗|. This is good, but it isn’t quadratic convergence.

Let A = supx∈I |f ′′(x)| and B = infx∈I |f ′(x)|. We need to apply the MVT
twice. First there is a point ξ ∈ (x∗, xn) so that

f(xn)− f(x∗)
xn − x∗

= f ′(ξ).

So f(xn) = f ′(ξ)(xn − x∗) because f(x∗) = 0. Therefore

xn+1 − x∗ = (xn − x∗) + (xn+1 − xn) =
f(xn)

f ′(ξ)
− f(xn)

f ′(xn)

=
f(xn)(f

′(xn)− f ′(ξ))
f ′(ξ)f ′(xn)

=
(xn − x∗)(f ′(xn)− f ′(ξ))

f ′(xn)
.
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Now apply the MVT a second time to find ζ ∈ (ξ, xn) so that

f ′(xn)− f ′(ξ)
xn − ξ

= f ′′(ζ).

Plugging this back in yields

|xn+1 − x∗| =
∣∣∣∣(xn − x∗)(xn − ξ)f ′′(ζ)f ′(xn)

∣∣∣∣ ≤ A

B
|xn − x∗|2.

This is quadratic convergence with M = A/B. �

3.4.3. EXAMPLE. The favourite example of this algorithm is the computation
of square roots. Let f(x) = x2 − 153. Note that f is smooth and f ′(x) = 2x
is not zero on I = [12, 13]. Indeed, B = inf{|f ′(x)| : x ∈ I} = 24 and A =

sup |f ′′(x)| = 2. The map T is Tx = x − x2−153
2x = 1

2(x + 153
x ). Also T ′x =

f(x)f ′′(x)
f ′(x)2 = x2−153

2x2 . On I , this is bounded by 169−153
2(144) = 1

18 . So T is a contraction.

The constant M = A
B = 1

12 . Thus∣∣xn+1 −
√

153
∣∣ ≤ |xn −√153|2

12
.

Start with x0 = 12.5. we can estimate

12.5−
√

153 =
12.52 − 153
12.5 +

√
153

<
3.25

12.5 + 12
< 0.14.

Hence ∣∣x1 −
√

153
∣∣ < 1

12
(.14)2 < .0017

and ∣∣x2 −
√

153
∣∣ < 1

12
(1.7 10−3)2 < 2.5 10−7.

This is very rapid convergence. The real computational problem is computing 153
xn

to sufficient accuracy.

Exercises

1. Let (X, d) be a complete metric space. If A ⊂ X is a Gδ set, prove that A \ A is first
category.

2. Let (X, d) be a countable complete metric space. Prove that X has isolated points.

3. (a) Show that R2 is not the union of countably many lines.
(b) More generally, show that a complete normed vector space is not the union of

countably many translates of proper closed subspaces.
(c) Show that there is no norm on the vector space C[x] of polynomials in which it is

complete.
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4. (a) Let (X, d) be a metric space, and let f : X → C be a function. Show that the set
of points of continuity of f is a Gδ .

(b) Prove that Q is not a Gδ subset of R. Hence deduce that there is no function on R
which is continuous precisely on Q.

5. Let (X, d) be a compact metric space. Let V be a closed subspace of CR(X) such that
every f ∈ V is Lipschitz. Prove that V is finite dimensional.
HINT: show that An = {f ∈ V : |f(x)− f(y)| ≤ nd(x, y)} has interior for some n.
Hence show that the closed unit ball of V is equicontinuous.

6. Show that the unit cube C = {x ∈ Rd : 0 ≤ xi ≤ 1, 1 ≤ i ≤ d} is not the union of
countably many disjoint non-empty closed sets by the following plan:
Suppose that An are disjoint non-empty closed sets such that C =

⋃
n≥1 An. Define

the boundary of An to be Bn = An \ int(An), (interior w.r.t. to C). Set X = C \⋃
n≥1 int(An) =

⋃
n≥1 Bn. Show that br(x) for x ∈ Bn must intersect some Bm for

m 6= n. What does the Baire Category Theorem say about X =
⋃
n≥1 Bn?

7. A nowhere monotonic function on [0, 1] is not monotonic on any interval. Show that
these functions are a residual subset of C[0, 1].
HINT: LetAn =

{
±f ∈ C[0, 1] : ∃x∈[0,1] s.t.

(
f(t)−f(x)

)
(t−x) ≥ 0 if |t−x| < 1

n

}
.

8. Let f : [1,∞) → R be continuous such that for every x ≥ 1, limn→∞ f(nx) = 0.
Prove that limx→∞ f(x) = 0.

9. (a) Show that | sinx− sin y| < |x− y| for all x 6= y ∈ R.
(b) Show that Tx = sinx is not a contraction mapping on R.
(c) Show that if x0 ∈ R, then xn = Tnx0 converges .
(d) Use the Taylor expansion about x = 0 to show that if x0 = 1, then convergence of

xn is much slower than geometric (i.e. for any c < 1, limn→∞
|xn|
cn = +∞).

10. Let (X, d) be a complete metric space.
(a) Suppose that S and T are both contraction mappings with Lipschitz constant c < 1;

with fixed points be xS and xT respectively. Define d∞(S, T ) = supx∈X d(Sx, Tx).
Prove that d(xS , xT ) ≤ (1− c)−1d∞(S, T ).

(b) Show that if t → Tt for t ∈ [0, 1] is a continuous path of contraction mappings on
X (with respect to d∞) and they have a uniform Lipschitz constant c < 1, then the
map t→ xt to the fixed points xt of Tt is a continuous path in X .

(c) Construct a continuous path of maps Tt : [0, 1]→ [0, 1] consisting of contractions,
but the supremum of the Lipschitz constants is 1.

11. Let T : C[0, 1]→ C[0, 1] be defined by Tf(x) = 1 +
∫ x

0 f(t) dt.
(a) Show that T is not a contraction mapping, but that T 2 is.
(b) Find the fixed point of T .

12. Let A = [aij ] be a linear transformation from l
(n)
1 to itself.

(a) Show that ‖A‖ = max{∑n
i=1 |aij | : 1 ≤ j ≤ n} = max1≤j≤n ‖Tej‖1 is a norm

on the vector space Mn of n× n matrices.
(b) Show that A is a contraction mapping if and only if ‖A‖ < 1.
(c) Suppose ‖I−A‖ < 1. SolveAx = b by finding the fixed point of Tx = x−Ax+b.
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3.5. Metric Completion

In this section, we will show that every metric space sits inside a unique small-
est complete metric space. This will be used soon to discuss the construction of the
real numbers.

3.5.1. DEFINITION. If (X, d) is a metric space, a completion ofX is a complete
metric space (Y, ρ) together with a map J : X → Y which is isometric, i.e.,
ρ(Jx1, Jx2) = d(x1, x2) for all x1, x2 ∈ X , and has dense range, i.e., JX = Y .

We provide two proofs of our main result. The first is slick, but the second is
more informative.

3.5.2. THEOREM. Every metric space has a completion.

FIRST PROOF. Recall from Theorem 1.8.4 that Cb(X) is complete. Fix a point
x0 ∈ X , and for x ∈ X , define a function

fx(y) = d(y, x)− d(y, x0) for y ∈ X.
Note that this function is continuous because d(y, x) and d(y, x0) are Lipschitz
functions of y. By the triangle inequality,

−d(x, x0) ≤ d(y, x)− d(y, x0) ≤ d(x, x0);

so that ‖fx‖∞ ≤ d(x, x0). This is sharp because fx(x0) = d(x, x0). Hence fx
belongs to Cb(X). Define J : X → Cb(X) by Jx = fx for x ∈ X .

Now if x1, x2 ∈ X ,

fx1(y)− fx2(y) = d(y, x1)−d(y, x0)−d(y, x2)+d(y, x0) = d(y, x1)−d(y, x2).

As above, the triangle inequality shows that |fx1(y)− fx2(y)| ≤ d(x1, x2). Taking
y = x2 shows that ‖fx1 − fx2‖∞ = d(x1, x2). Therefore J is an isometry,

Define Y = JX . This is a closed subset of the complete space Cb(X). Hence
it is complete. By construction JX is dense in Y . Thus Y is a completion of X . �

SECOND PROOF. Let C = {(xn)n≥1 : Cauchy sequences in X} be the set of all
Cauchy sequences in X . Let (xn) and (yn) belong to C. By the triangle inequality∣∣d(xn, yn)− d(xm, ym)∣∣ ≤ d(xn, xm) + d(yn, ym).

The right hand side is small if m,n are big enough. So
(
d(xn, yn)

)
n≥1 is a Cauchy

sequence. Therefore we may define a function f : C × C → [0,∞) by

R
(
(xn), (yn)

)
= lim

n→∞
d(xn, yn).



3.5 Metric Completion 65

This is a pseudo-metric: clearly it is symmetric and the triangle inequality is:

R
(
(xn), (zn)

)
= lim

n→∞
d(xn, zn)

≤ lim
n→∞

d(xn, yn) + d(yn, zn)

= R
(
(xn), (yn)

)
+R

(
(yn), (zn)

)
.

By Assignment 1, A3, we obtain a metric space as follows. Put an equivalence
relation on C by setting (xn) ∼ (yn) if R

(
(xn), (yn)

)
= 0. It is easy to see that

this is reflexive: (xn) ∼ (xn), symmetric: (xn) ∼ (yn) implies that (yn) ∼ (xn),
and transitive: (xn) ∼ (yn) and (yn) ∼ (zn) imply that (xn) ∼ (zn). These are the
requirements of an equivalence relation.

Let Y = C/ ∼ denote the set of equivalence classes of C. Put a metric on Y by

ρ([(xn)], [(yn)]) = R
(
(xn), (yn)

)
.

First we show that this is well-defined, meaning that it is independent of the choice
of representatives for the equivalence classes. So suppose that (x′n) ∼ (xn) and
(y′n) ∼ (yn). Then

R
(
(x′n), (y

′
n)
)
= lim

n→∞
d(x′n, y

′
n)

≤ lim
n→∞

d(x′n, xn) + d(xn, yn) + d(yn, y
′
n)

= R
(
(xn), (yn)

)
.

Reversing the roles of the two representatives shows that

R
(
(x′n), (y

′
n)
)
= R

(
(xn), (yn)

)
.

Thus ρ is well defined.
Clearly ρ([(xn)], [(yn)]) = 0 if and only if limn→∞ d(xn, yn) = 0 if and only

if (xn) ∼ (yn) if and only if [(xn)] = [(yn)]. It is also clear that ρ is symmetric.
For the triangle inequality, take [(xn)], [(yn)], [(zn)] ∈ Y . Then

ρ
(
[(xn)], [(zn)]

)
= lim

n→∞
d(xn, zn)

≤ lim
n→∞

d(xn, yn) + d(yn, zn)

= ρ
(
[(xn)], [(yn)]

)
+ ρ
(
[(yn)], [(zn)]

)
.

Therefore ρ is a metric on Y .
Imbed X into Y by Jx = (x, x, x, . . . ). Then

ρ(Jx1, Jx2) = lim
n→∞

d(x, y) = d(x, y).

Thus J is an isometry. To see that JX is dense, let [(xn)] ∈ Y and let ε > 0. Since
(xn) is Cauchy, choose N so that for all m,n ≥ N , d(xm, xn) < ε/2. Then JxN
satisfies

ρ([(xn)], JxN ) = lim
n→∞

d(xn, xN ) ≤ ε/2 < ε.

Therefore JX is dense in Y .
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Finally we show that Y is complete. Let (yk)k≥1 be a Cauchy sequence in Y .
For each k, choose xk ∈ X so that ρ(yk, Jxk) < 2−k. Let y0 = [(xk)]. We claim
that limk→∞ yk = y0. So let ε > 0. By the Cauchy property, there is an integer N
so that if N ≤ m ≤ n, then ρ(ym, yn) < ε/2. Make N bigger if necessary so that
2−N < ε/4. Then for N ≤ m ≤ n

d(xm, xn) = ρ(Jxm, Jxn) ≤ ρ(Jxm, ym) + ρ(ym, yn) + ρ(yn, Jxn)

< 2−m +
ε

2
+ 2−n <

ε

4
+
ε

2
+
ε

4
= ε.

Thus (xn) is a Cauchy sequence in X , so y0 = [(xn)] is a point in Y . Moreover, if
m ≥ N ,

ρ(Jxm, y0) = lim
n→∞

d(xm, xn) ≤ ε.

Since ε > 0 is arbitrary, this shows that limn→∞ Jxn = y0. Finally,

lim
k→∞

ρ(yk, y0) ≤ lim
k→∞

ρ(yk, Jxk) + ρ(Jxk, y0) = 0.

So limk→∞ yk = y0. Thus Y is complete. �
It turns out that this completion is unique. To establish this, we first need a

result of independent interest.

3.5.3. THE EXTENSION THEOREM. Let (X, d) be a metric space with
completion (Y, ρ), and let (Z, σ) be another complete metric space. If f : X → Z
is a uniformly continuous function, then there is a unique (uniformly) continuous
function f̃ : Y → Z such that f̃(Jx) = f(x) for x ∈ X .

PROOF. We first show that if (xn) is a Cauchy sequence in X , then (f(xn)) is
a Cauchy sequence in Z. Let ε > 0. By uniform continuity, there is a δ > 0 so that
d(x, x′) < δ implies that σ(f(x), f(x′)) < ε. Since (xn) is Cauchy, there is an
integer N so that if N ≤ m ≤ n, then d(xm, xn) < δ; thus σ(f(xm), f(xn)) < ε.
This just says that (f(xn)) is Cauchy in Z.

Since Y is a completion of X , each point of Y is a limit of points in JX . So
for y ∈ Y , choose a sequence (xn) in X so that y = limn→∞ Jxn. As (Jxn)
converges, it is a Cauchy sequence. And since J is an isometry, (xn) is Cauchy in
X . By the previous paragraph, we can define

f̃(y) = lim
n→∞

f(xn).

We need to show that f̃ is well defined. That is, if (x′n) is another sequence
in X so that y = limn→∞ Jx′n, we need to show that we assign the same value to
f̃(y). We see that the sequence (Jx1, Jx

′
1, Jx2, Jx

′
2, . . . ) converges to y and thus

is Cauchy. So (x1, x
′
1, x2, x

′
2, . . . ) is a Cauchy sequence in X . Thus by the first

paragraph, (f(x1), f(x
′
1), f(x2), f(x

′
2), . . . ) is a Cauchy sequence in Z. Hence

limn→∞ f(x′n) = limn→∞ f(xn). So f̃ is well defined.
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Next, since (Jx) converges to Jx, we have

f̃(Jx) = lim
n→∞

f(x) = f(x) for x ∈ X.

So f̃ extends f . Finally we show f̃ is uniformly continuous. Let ε > 0. Again,
there is a δ > 0 so that d(x, x′) < δ implies that σ(f(x), f(x′)) < ε. Let y, y′ ∈ Y
with ρ(y1, y2) < δ. Then there are Cauchy sequences (xn) and (x′n) so that y =
limn→∞ Jxn and y′ = limn→∞ Jx′n. So

lim
n→∞

d(xn, x
′
n) = lim

n→∞
ρ(Jxn, Jx

′
n) = ρ(y1, y2) < δ.

Hence there is some integer M so that d(xn, x′n) < δ for n ≥ M . Therefore
σ(f(xn), f(x

′
n)) < ε. Taking limits yields σ(f̃(y), f̃(y′)) ≤ ε. So f̃ is uniformly

continuous. Finally f̃ is unique because it is defined on a dense subset by f̃(Jx) =
f(x), and thus there is at most one way to extend it to be continuous on Y . �

An important consequence of this result is the uniqueness of the metric com-
pletion,

3.5.4. COROLLARY. The metric completion of (X, d) is unique in the sense
that if Ji : X → (Yi, ρi), i = 1, 2, are two metric completions of X , then there is a
unique isometry κ of Y1 onto Y2 such that J2 = κJ1.

PROOF. Define κ0 = J2 : X → Y2. Then κ0 is an isometry, and hence is uni-
formly continuous. By the Extension Theorem 3.5.3, there is a unique continuous
function κ : Y1 → Y2 such that κJ1 = J2. If y, y′ ∈ Y1, choose sequences (xn)
and (x′n) in X so that y = limn→∞ J1xn and y′ = limn→∞ J1x

′
n. Then

ρ2(κy, κy
′) = lim

n→∞
ρ2(κJ1xn, κJ1x

′
n)

= lim
n→∞

ρ2(J2xn, J2x
′
n) = lim

n→∞
d(xn, x

′
n)

= lim
n→∞

ρ1(J1xn, J1x
′
n) = ρ1(y, y

′).

Therefore κ is an isometry.
Since κ is an isometry, it takes Y onto a complete subset of Z, and thus it is

closed. Also κY contains the dense set J2X . Therefore κ is onto. �

3.6. The p-adic Numbers

Let p be a fixed prime number. For x ∈ Q \ {0}, factor x = pa rs where
r, s, p are all relatively prime; and define |x|p = p−a and |0|p = 0. We showed
in Example 1.2.2(5) that dp(x, y) = |x − y|p is a metric on Q. Let Qp denote the
completion of (Q, dp). We will use the Cauchy sequence construction to describe
elements of Qp. For x ∈ Qp, we define |x|p := dp(x, 0), extending the definition
of the norm.
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3.6.1. PROPOSITION. Let x ∈ Qp \ {0}, then |x|p ∈ {pa : a ∈ Z}. If xn ∈ Q
such that x = limn→∞ xn, then |x|p = limn→∞ |xn|p and |xn|p is eventually
constant.

PROOF. Suppose that xn ∈ Q such that x = limn→∞ xn. Then

|x|p = dp(0, x) = lim
n→∞

dp(xn, 0) = lim
n→∞

|xn|p.

For n large, xn 6= 0 so dp(xn, 0) ≥ δ > 0. Now |xn|p ∈ {pa : a ∈ Z} and
{pa : a ∈ Z} = {pa : a ∈ Z} ∪ {0}. So |x|p ∈ {pa : a ∈ Z} ∪ {0}, and is not 0
because x 6= 0. So |x|p = pa0 is an isolated point of {pa : a ∈ Z}∪ {0}, and so for
n sufficiently large, |xn|p = |x|p. �

3.6.2. PROPOSITION. Let x = [(xn)] and y = [(yn)] belong to Qp. Define
x± y = [(xn ± yn)] and xy = [(xnyn))]. This makes Qp into a commutative ring,
and

|xy|p = |x|p |y|p and |x± y|p ≤ max{|x|p, |y|p}.

PROOF. Notice that

dp(xn + yn − xm − ym) ≤ max{dp(xn − xm), dp(yn − ym)}.
Since (xn) and (yn) are Cauchy, so is their sum. Moreover it is easy to see that if
(x′n) ∼ (xn) and (y′n) ∼ (yn) in the sense that

lim
n
dp(xn, x

′
n) = 0 = lim

n
dp(yn, y

′
n),

then (x′n + y′n) ∼ (xn + yn). Therefore addition is well defined. Moreover

|x± y|p = lim |xn ± yn|p ≤ lim max{|xn|p, |yn|p} = max{|x|p, |y|p}.
Similarly, if x 6= 0 6= y, there is an N so that if N ≤ m ≤ n, then

dp(xnyn, xmym) ≤
∣∣(xn − xm)yy + xm(yn − ym)

∣∣
p

≤ max{|xn − xm|p |yn|p, |xm|p |yn − ym|p}
≤ max{|xn − xm|p |y|p, |x|p |yn − ym|p}.

It follows that (xnyn) is a Cauchy sequence. Again it is easy to check that this
multiplication is well defined. For n ≥ M , we have that |xn|p = |x|p and |yn|p =
|y|p. Hence we have that |xnyn| = |xn|p |yn|p = |x|p |y|p. It follows that |xy|p =
|x|p |y|p. It is easy to check that 0x = 0.

Now taking limits of the various ring axioms shows that Qp is a commutative
ring. �

Now we are ready for the main result of this section.

3.6.3. THEOREM. Qp is a topologically complete field containing Q as a dense
subfield.
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PROOF. By construction Qp is a complete metric space, and Q is a dense sub-
set. The definition of addition and multiplication extend the operations on Q. We
need to show that non-zero elements are invertible.

Let 0 6= x = [(xn)] ∈ Qp. Then there is an N so that |xn|p = |x|p 6= 0 for
n ≥ N , Moreover ∣∣∣ 1

xn
− 1
xm

∣∣∣
p
=
|xn − xm|p
|xn|p |xm|p

=
|xn − xm|p
|x|2p

.

It follows that
( 1
xn

)
is a Cauchy sequence, and hence y =

[( 1
xn

)]
∈ Qp. Moreover

xy = [(1)] = 1. Hence Qp is a field. �

3.6.4. PROPOSITION. Zp := Z = {x ∈ Qp : |x|p ≤ 1} is a subring of Qp.

PROOF. Note that by the strong triangle inequality, the set {x ∈ Qp : |x|p ≤ 1}
is closed and contains Z; and hence contains Zp. Conversely, suppose that x ∈ Qp

with |x|p ≤ 1. Select xn ∈ Q so that dp(x, xn) ≤ p−n < 1 for n ≥ 1; so that
x = [(xn)]. Then |xn|p ≤ max{|x|p, |xn − x|p} ≤ 1. Write xn = pan rnsn where
p, rn, sn are relatively prime, and an ≥ 0 (because 1 ≥ |xn|p = p−an). Solve the
modular equation rn + pnbn ≡ 0 (mod sn) for an integer bn, which is possible
because gcd(pn, sn) = 1. Define cn = (rn + pnbn)/sn. Define

x′n = xn + pan+n
bn
sn

= pan
rn + pnbn

sn
= pancn

Then x′n ∈ Z and dp(x′n, xn) = p−an−n converges to 0 as n → ∞; so [(x′n)] =
[(xn)] = x. Hence x = limn→∞ x′n belongs to Z.

Since Z is closed under addition and multiplication, both of which are contin-
uous operations, it follows that Zp is also closed under addition and multiplication.
Thus it is a subring of Qp. �

We now show that every element of Qd has a p-adic expansion which we now
describe,

3.6.5. LEMMA. Let x ∈ Zp. Then there is a unique integer α0 ∈ {0, 1, . . . , p−1}
so that |x−α0|p ≤ 1

p . For each i ≥ 0, there is a unique integer αi ∈ {0, 1, . . . , p−1}
so that

∣∣x−∑n
i=0 αip

i
∣∣
p
≤ 1

pn+1 .

PROOF. Since Z is dense in Zp, choose an integer k so that |x − k|p < 1.
Choose α0 ∈ {0, 1, . . . , p−1} so that k ≡ α0 (mod p). So p|k − α0, and hence
|k − α0|p ≤ 1

p . Then

|x− α0|p ≤ max{|x− k|p, |k − α0|p} ≤
1
p
.
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On the other hand, if β 6≡ k (mod p), then k−β is not a multiple of p, so |k−β|p =
1. Thus

1 = |k − β|p ≤ max{|k − x|p, |x− β|p} ≤ max{1
p
, |x− β|p}.

Hence |x− β|p ≥ 1. So α0 is unique.
Suppose that I have found αi ∈ {0, 1, . . . , p−1} so that

∣∣x−∑n−1
i=0 αip

i
∣∣
p
≤ 1

pn .

Let y = p−n
(
x−∑n−1

i=0 αip
i
)
, and note that

|y|p = pn
∣∣∣x− n−1∑

i=0

αip
i
∣∣∣
p
≤ 1.

By the first paragraph, there is a unique αn ∈ {0, 1, . . . , p−1} so that |y−αn|p ≤ 1
p .

Therefore ∣∣∣x− n∑
i=0

αip
i
∣∣∣
p
= |pn(y − αn)|p ≤

1
pn

1
p
=

1
pn+1 . �

This leads to our p-adic expansion for elements of Qp.

3.6.6. THEOREM. If x ∈ Qp and |x|p = pk, then x has a unique expansion as
an infinite series of the form x =

∑∞
i=−k αip

i where αi ∈ {0, 1, . . . , p−1}.

PROOF. Let y = pkx, so that |y|p = 1. By Lemma 3.6.5, there is a unique
sequence of integers βi ∈ {0, 1, . . . , p− 1} so that

∣∣y − ∑n
i=0 βip

i
∣∣
p
≤ 1

pn+1 .
Multiply by p−k and rename βi = αi−k to get∣∣∣x− n−k∑

i=−k
αip

i
∣∣∣
p
≤ pk

pn+1 .

Letting n→∞ yields the desired convergent series. �
Another consequence of this approach is the compactness of Zp.

3.6.7. PROPOSITION. Zp is compact.

PROOF. Zp is a closed subset of a complete space, and hence is complete. We
claim that it is also totally bounded. Indeed we will show that {0, 1, . . . , pn−1} is
a p−n-net for Zp. Indeed, if x ∈ Zp, it follows from Lemma 3.6.5 that∣∣∣x− n−1∑

i=0

αip
i
∣∣∣
p
≤ 1
pn
.

Moreover k =
∑n−1

i=0 αip
i < pn, so we have a p−n-net. The Borel-Lebesgue

Theorem 2.1.5 shows that Zp is compact. �
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3.7. The Real Numbers

We have not talked about the construction of the real numbers. One approach,
which fits well with our course, is to complete the rationals. Of course, we can’t
use our first proof that embeds Q into Cb(Q) because this presumes the existence
of R. However the Cauchy sequence approach basically works, though again the
way we define the metric presumes the existence of R. Nevertheless we will see
that it does work. There are several other constructions of R which we will also
outline. The more serious issue is whether these various constructions produce the
‘same’ real numbers. This requires more subtlety.

3.7.1. DEFINITION. An ordered field is a field F which contains a subset P of
positive elements satisfying

(i) F = P ∪̇ {0} ∪̇ −P is the disjoint union of the three sets P, {0} and −P.

(ii) If x, y ∈ P, then x+ y and xy are in P.
We say that x < y if y − x ∈ P.

An ordered field has the Least upper bound property (LUBP) if whenever ∅ 6=
S ⊂ F is a nonempty subset which is bounded above (i.e., there is some x ∈ F
so that s ≤ x for every s ∈ S), then there is a y := supS such that y is an upper
bound, and whenever x is another upper bound, then y ≤ x. An ordered field with
the LUBP is called complete.

An ordered field is Archimedean if whenever x ∈ P, there is an n ∈ N so that
1
n < x.

Notice that a complete ordered field has nothing to do with Cauchy sequences.
One can define Cauchy sequences for any ordered field using arbitrary ε ∈ P, but
it turns out that it is a different property from the LUBP.

3.7.2. PROPOSITION. Let F be an ordered field.
(1) Then Q ⊂ F and Q ∩ P = {r ∈ Q : r > 0}.
(2) If F has the LUBP, then F is Archimedean.

(3) If F is Archimedean and x < y, then there is an r ∈ Q so that x < r < y.
(i.e. Q is order dense in F.)

PROOF. (1). 1 ∈ F and 1 6= 0. So either 1 ∈ P or −1 ∈ P; but in either
case, 1 = 12 = (−1)2 belongs to P by (ii) (and thus −1 ∈ −P). For n ∈ N,
n = 1 + · · · + 1 is the sum of n ones. This is positive by repeated application of
(ii). In particular, n never equals 0; so in fact, they are all distinct because n < n+1
for all n ∈ N. Thus −N ⊂ −P. If n ∈ N, then 1

n ∈ F \ {0}. It must be positive,
because if 1

n ∈ −P, then − 1
n ∈ P; so that n(− 1

n) = −1 would be in P. Therefore
if m,n ∈ N, then m

n ∈ P by (ii). So Q ⊂ F and Q ∩ P = Q+.
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(2). Note that F is Archimedean if and only if

J := {x ∈ P : nx < 1 for all n ∈ N}
is empty. If it is non-empty, say x0 ∈ J , then let y = sup J . Take any x ∈ J and
note that x + x0 ∈ J since if n ∈ N, we have 2nx < 1 and 2nx0 < 1, so that
2n(x + x0) < 2. Divide by 2 to get n(x + x0) < 1 for all n ∈ N. Therefore
y− x0 must be a smaller upper bound because x+ x0 ≤ y implies that x ≤ y− x0
for all x ∈ J . This shows that J does not have a least upper bound, which is a
contradiction. So J is empty and F is Archimedean.

(3). If F is Archimedean and x ∈ P, then there is some m ∈ N such that
0 ≤ x ≤ m. If not, then 0 < 1

x < 1
n for all n ∈ N, which contradicts the

Archimedean property. Suppose that x < y. Then by the Archimedean property,
there is an n ∈ N so that 1

n < y − x. If x ∈ P, then for some m ∈ N, 0 ≤ x ≤ m;
and if x ∈ −P, then for somem ∈ N, we have−m ≤ x ≤ 0. In either case, among
the finite set of numbers k

n with |k| ≤ mn, there is a smallest one larger than x, say

k − 1
n
≤ x < k

n
≤ x+

1
n
< y.

Thus Q is order dense in F. �

3.7.3. DEFINITION. An embedding of ordered fields F and K is an order pre-
serving homomorphism γ : F→ K.

In the following result, we sketch the ideas, but some details are left to the
reader to complete.

3.7.4. PROPOSITION. Let F be an Archimedean ordered field, and let K be a
complete ordered field. Then there is an embedding γ : F→ K.

PROOF. Both fields contain a copy of Q as the subfield generated by the iden-
tity element, which we denote by QF and QK. Let γ0 : QF → QK be the identity
homomorphism. For each x ∈ F, define Sx = {r ∈ QF : r < x}. Define

γ(x) = sup γ0(Sx) ∈ K.
Observe that if x, y ∈ F, then

Sx + Sy := {r + s : r ∈ Sx, s ∈ Sy} = Sx+y.

It follows that γ(x)+γ(y) = γ(x+y). If x > 0, then Sx =
(
Q∩(−P∪{0})

)
∪S+

x

where S+
x = {r ∈ QF : 0 < r < x}. Multiplication is a bit more delicate, but one

can check that if x, y ∈ P, then

Sxy =
(
Q∩ (−P∪{0})

)
∪S+

x S
+
y =

(
Q∩ (−P∪{0})

)
∪{rs : r ∈ S+

x , s ∈ S+
y }.

From this, we deduce that γ(x)γ(y) = γ(xy) when x, y > 0. With a bit of work,
one can verify that γ is a homomorphism. �
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3.7.5. THEOREM. There is a unique complete ordered field up to order pre-
serving isomorphism.

PROOF. Let K and L be two complete ordered fields. By Proposition 3.7.2(2),
they are both Archimedean. By Proposition 3.7.4, there is an embedding γ : K →
L and an embedding γ′ : L → K, Then γ′γ : K → K is an order preserving
homomorphism. Since it carries 1 to 1, it must be the identity map on Q. Now for
each x ∈ K, x = supSx. Since γ′γ preserves order,

γ′γ(x) = sup γ′γ(Sx) = supSx = x.

Thus γ′γ = idK. Likewise γγ′ = idL. Therefore γ is an order preserving isomor-
phism; i.e., K is unique up to order preserving isomorphism. �

3.7.6. DEFINITION. The unique complete ordered field is called R, the field of
real numbers.

Now we describe a few methods for constructing R. There are many. We will
be a bit sketchy on some of the details.

3.7.1. Cauchy sequences. We modify the second proof of Theorem 3.5.2 to
complete Q. Start with the set C of all Cauchy sequences in Q and define the
equivalence relation (xn) ∼ (yn) if limn→∞ xn − yn = 0. Let R = C/ ∼ be the
collection of equivalence classes. We embed Q into R by γ(r) = [(r, r, r, . . . )].
Note that these constructions do not require the real numbers.

We make R into a commutative ring by defining

0 = γ(0) and 1 = γ(1)

[(xn)]± [(yn)] = [(xn ± yn)]
[(xn)] [(yn)] = [(xnyn)].

The details to check that this is indeed a commutative ring (R, 0, 1,+, ·) is left
to the reader. This includes associativity of addition and multiplication, and the
distributive law. They are all easy to deduce from the corresponding property of Q.
We leave the issue of inverses until later.

What we can’t do is define a metric on R by taking limits, since these limits
generally do not exist in Q. However we can define the order. If x = [(xn)] 6= 0,
say that x > 0 (i.e. x ∈ P) if there is an integer N so that xn > 0 for all n ≥ N .
Note that this extends the notion of positivity for Q. We need to check that every
non-zero element x is either positive or negative; and that this is a well-defined
notion.

So let x = [(xn)] 6= 0. That means that (xn) does not converge to 0. Thus there
is some ε > 0 in Q and ni →∞ so that |xni | ≥ ε. Use the Cauchy property to find
N so that if N ≤ m ≤ n, then |xn − xm| < ε/2. Now choose n = ni > N . If
xni > ε, then xm > ε/2 for all m ≥ N ; while if xni < −ε, we have xm < −ε/2
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for all m ≥ N . In the first case, x > 0 and in the second case, x < 0. If
(x′n) ∼ (xn), then since limn→∞ x′n − xn = 0, we have |x′n − xn| < ε/4 for
n ≥ N ′. Thus for n ≥ max{N,N ′}, x′n and xn have the same sign. So positivity
is well defined. It is now easy to see that if x, y ∈ P, then x+ y and xy also belong
to P .

Finally consider inverses. By the argument in the previous paragraph, if x =
[(xn)] 6= 0, then for some N , |xn| > ε/2 for all n ≥ N . So we can define
y = [(yn)] where yn = 0 if n < N and yn = x−1

n for n ≥ N . It is routine to check
that (yn) is Cauchy. Moreover xy = [(xnyn)] = 1 since xnyn = 1 for n ≥ N .
Thus every non-zero element of R has an inverse. So R is an ordered field.

Next we show that R is Archimedean. Suppose that x ∈ P. We showed above
that there is some ε > 0 in Q so that xn ≥ ε/2 for all n ≥ N . Choose n ∈ N so
that 1

n <
ε
2 . Then it is easy to see that γ( 1

n) < x. Therefore by Proposition 3.7.2(3),
γ(Q) is order dense in R.

Finally we need to verify the LUBP for R. Let S ⊂ R be a nonempty set
which is bounded above by z ∈ R, and let s ∈ S. Since R is Archimedean, we can
find integers a < s ≤ z < b. Recursively define sequences xn and yn of rational
numbers as follows. Let x1 = a and y1 = b. Suppose that xi and yi have been
defined in Q for 1 ≤ i < n so that γ(xi) is not an upper bound for S and γ(yi) is
an upper bound for S and yi−xi = 21−i(b−a). Let cn = 1

2(xn−1+yn−1). If cn is
an upper bound for S, then let xn = xn−1 and yn = cn; while if cn is not an upper
bound for S, then let xn = cn and yn = yn−1. Let x = [(xn)]. Then x = [(yn)]
because limn→∞ yn − xn = 0. We claim that supS = x.

Let s = [(sn)] ∈ S. If s > x, then by the Archimedean property, s > x+γ( 1
d)

for some d ∈ N. So there is an integer N so that sn > yn + 1
2d for all n ≥ N .

Choose M ≥ N so that 21−M (b− a) < 1
4d . Then for n ≥M

yn = yM +
m∑

i=M+1

(yi − yi−1) > yM −
m∑

i=M+1

21−i(b− a) > yM −
1

4d
.

Therefore for n ≥M , we have sn > yM + 1
4d . This contradicts the fact that γ(yM )

is an upper bound. So no such s exists, and x is an upper bound for S. A similar
argument shows that if w < x, then w is not an upper bound.

The result is a construction of a complete ordered field, which we call R.

3.7.2. Dedekind cuts. A clever construction of R due the Richard Dedekind
uses the following notion. It is perhaps the easiest construction.

3.7.7. DEFINITION. A cut is a proper subset C of Q with no largest element
such that it is downward directed: if r ∈ C and s < r, then s ∈ C. Let R denote
the collection of all cuts.
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We embed Q into R by γ(r) = {s ∈ Q : s < r}. However there are other
cuts, such as C = {r : r < 0 or r2 < 2}.

Order is easily defined: C < D if C ( D and C > D if C ) D. In particular,
C > 0 if and only if 0 ∈ C.

This makes the LUBP very easy. Suppose that S ⊂ R has an upper bound D,
let E =

⋃
C∈S C. It is clear that E is proper since it is contained in D, and it is

downward directed since it is the union of such sets. E cannot contain a largest
element r0 because then there would be a C ∈ S with r0 ∈ C and r0 would also
be the largest element of C. So E is a cut. By construction, C ≤ E for all C ∈ S.
But if F is another upper bound, then C ⊆ F for all C ∈ S, and hence E ⊆ F ; so
E ≤ F . Therefore E = supS.

It remains to define the field operations. Addition is defined by

C +D = {r + s : r ∈ C, s ∈ D}.

Multiplication of two nonnegative numbers is defined by

CD = {r ∈ Q : r < 0} ∪ {rs : r ∈ C, r ≥ 0, s ∈ D, s ≥ 0}.

Now you have to extend the definition to the rest, and verify all of the field laws. It
is a bit tedious, but isn’t difficult.

3.7.3. Infinite decimals. This is an intuitive and familiar construction, but it
is actually more difficult to carry out than the others. However because of its famil-
iarity, it is a good ‘working version’ of the real numbers.

We consider the set of all infinite decimal expansions x = a0.a1a2a3 . . . where
where a0 ∈ Z is an integer and each ai ∈ {0, 1, 2, . . . , 9} for i ≥ 1. While this is
familiar, there are a number of problems. First it seems to depend on being in base
10. Secondly some numbers have two names. Thirdly, defining addition is hard
and multiplication is harder. We will only discuss the bare bones of this approach.

We will interpret this number x = a0.a1a2a3 . . . as a real number lying in
the interval [a0, a0 + 1]. Note that this is a bit different from the standard prac-
tice of writing negative real numbers as the additive inverse of a positive infinite
decimal expansion. So that what we normally call −1.73000 . . . will be written
as (−2).27000 . . . . At this point, we think of the infinite decimal expansion as a
name for the real number x, and it does not imply that there is an infinite convergent
series in the background. Nevertheless, this idea leads us to one important issue:
some numbers have two names. For example, x = 1.000 . . . and y = 0.999 . . .
should both represent the number 1.

We put an equivalence relation on the infinite decimals: let x = a0.a1a2a3 . . .
and y = b0.b1b2b3 . . . ; say x ∼ y if

(1) ai = bi for all i ≥ 0, or

(2) there is some i0 ≥ 0 so that ai = bi for 0 ≤ i < i0, bi0 = ai0 + 1 and
ai = 9 and bi = 0 for i > i0, or
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(3) there is some i0 ≥ 0 so that ai = bi for 0 ≤ i < i0, ai0 = bi0 + 1 and
ai = 0 and bi = 9 for i > i0.

When x ∼ y, we will write x = y. Equivalence relations require three properties:
reflexivity x ∼ x, symmetry x ∼ y means that y ∼ x and transitivity x ∼ y
and y ∼ z mean that x ∼ z. In this case, it isn’t hard to see that the equivalence
class contains either a single infinite decimal which does not end in an infinite
sequence of 0’s or 9’s, or it contains two infinite decimals, one (usually called a
finite decimal) ending in an infinite string of 0’s and a second ending in an infinite
string of 9’s. So it is easy to verify that this is an equivalence relation.

We can define the order by saying that x = a0.a1a2a3 · · · < y = b0.b1b2b3 . . .
if x 6∼ y and there is an integer i0 ≥ 0 so that ai = bi for i < i0 and ai0 < bi0 . We
establish the LUBP using the proof of Theorem 1.7.1.

The tricky bit is to define addition and multiplication. However one can use the
order to help. Using x and y as before, we have that for any n ∈ N

a0.a1a2 . . . an ≤ x ≤ a0.a1a2 . . . an + 10−n

b0.b1b2 . . . bn ≤ y ≤ b0.b1b2 . . . bn + 10−n.

We can add the left and right hand sides because these are rational numbers to get

z = c0.c1c2 . . . cn ≤ x+ y ≤ z + 2 · 10−n.

A similar argument works for multiplication when x, y are nonnegative. Details are
omitted.

A similar construction can be obtained using any other base, for example bi-
nary numbers. Theorem 3.7.5 shows that the field that we obtain is independent
of the construction, and in this case, of the base used. If we use one of the other
contructions of R, it is also straightforward to show that every number has a deci-
mal expansion and that our equivalence relation describes the occasions when two
different decimal expansions represent the same number.

Exercises

1. Show that the completion of a normed vector space is a normed vector space.

2. Show that the completion of (X, d) is compact if and only if X is totally bounded.

3. Consider (C([0, 1], ‖ · ‖1). Let L1(0, 1) denote its completion in this norm.
(a) Show L1(0, 1) is a Banach space.
(b) Show that the Riemann integral J(f) =

∫ 1
0 f(x) dx extends to a continuous func-

tion on L1(0, 1). We will write
∫
f for this extended function.

(c) (i) Show that
∫
sf + tg = s

∫
f + t

∫
g for all f, g ∈ L1(0, 1) and s, t ∈ C.

(ii) Prove that
∣∣ ∫ f ∣∣ ≤ ∫ |f | = ‖f‖1.

(d) Say that f ∈ L1(0, 1) satisfies f ≥ 0 if it is a limit in L1(0, 1) of positive functions
in C[0, 1]. Thus f ≤ g if g − f ≥ 0. Suppose that fn ∈ L1(0, 1), n ≥ 1, is
monotone increasing and supn≥1 ‖fn‖1 < ∞. Prove that lim fn = f exists in
L1(0, 1) and that

∫
lim fn = lim

∫
fn.
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4. Find the p-adic expansion of −1.

5. Show that if p > 2 and x2 ≡ 2 (mod p) has a solution, then 2 has a square root in Zp.

6. Show that an ordered field F is Archimedean if and only if for every x > 0, there is an
n ∈ N so that x < n.

7. Show that C can’t be ordered to be an ordered field. HINT: what about ±i?
8. Let F =

{
p
q

: p, q ∈ R[x], q 6= 0
}

, where q 6= 0 means that q is not the 0 polynomial.
(a) Show that F is a field.
(b) Say that pq > 0 if p and q are non-zero with leading terms anxn and bmxm and

anbm > 0. Show that F is an ordered field.
(c) Show that 0 < 1

x <
1
n for all n ∈ N, so that F is not Archimedean.

(d) Show that N is bounded above but does not have a least upper bound.



CHAPTER 4

Approximation Theory

4.1. Polynomial Approximation

Problem: Given f ∈ C[a, b] and ε > 0, find a polynomial p so that

‖f − p‖∞ = sup
a≤x≤b

|f(x)− p(x)| < ε.

First attempt. Let xi = a+ i(b−a)
n for 0 ≤ i ≤ n. There is a unique polynomial p

of degree at most n such that p(xi) = f(xi) for 0 ≤ i ≤ n, obtained by Lagrange
interpolation. Define

qi(x) =
∏

0≤j≤n
j 6=i

x− xi
xj − xi

and observe that qi(xi) = 1 and qi(xj) = 0 if j 6= i. Then the desired polynomial is
p(x) =

∑n
i=0 f(xi)qi(x). It is unique because if p1 is another polynomial of degree

at most n such that p1(xi) = f(xi) for 0 ≤ i ≤ n, then r(x) = p1(x) − p(x) has
degree at most n and r(xi) = 0 for 0 ≤ i ≤ n. If a polynomial of degree at most n
has n+ 1 zeros, then it is the zero polynomial; thus p1 = p.

This seems like a reasonable approach, but it doesn’t work. A counterexample
was constructed by Carl Runge in 1901.

Second attempt. Taylor polynomials. These work very well for certain very nice
functions like sinx and ex. However in general, a continuous function may have
no derivative.

Even if f is C∞, the radius of convergence of the power series may be too
small. A typical example from calculus is

1
1 + x2 =

∑
n≥0

(−x2)n for |x| < 1.

However this function is defined on the whole real line, but the series diverges if
|x| ≥ 1. (The power series actually makes sense in C, but has a pole at ±i on the
circle of radius 1. That is what causes the problems.)

Another even more troublesome example from calculus is

f(x) =

{
e−1/x2

if x 6= 0
0 if x = 0.

78
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It turns out that this function is C∞ and f (k)(0) = 0 for all n ≥ 0. So the Taylor
series about x = 0 is the zero series. This converges uniformly on R to 0, but only
agrees with f at one point!

4.1.1. WEIERSTRASS APPROXIMATION THEOREM. The polynomials
are dense in C[a, b].

Bernstein’s proof. We will prove the theorem for the unit interval [0, 1]. Con-
sider the terms arising in the binomial theorem:

1 =
(
x+ (1− x)

)n
=

n∑
i=0

(
n

i

)
xi(1− x)n−i =:

n∑
i=0

Pni (x)

where Pni (x) =
(
n
i

)
xi(1 − x)n−i for 0 ≤ i ≤ n. Note that Pni (x) ≥ 0 on [0, 1].

FIGURE 4.1. P 4
i for 0 ≤ i ≤ 4.

Moreover it is easy to check that (Pni )
′(x) = 0 at x = i

n . So Pni has a maximum
at i

n . Bernstein defined a linear map Bn : CR[0, 1]→ R[x] by

(Bnf)(x) =
n∑
i=0

f
(
i
n

)
Pni (x) =

n∑
i=0

f
(
i
n

)(n
i

)
xi(1− x)n−i.

Since Bnf is a linear combination of polynomials of degree n, it follows that this
is a polynomial of degree at most n.

4.1.2. LEMMA. Bn is a positive linear map, i.e.
(1) Bn(sf + tg) = sBnf + tBng for f, g ∈ CR[0, 1] and s, t ∈ R. (linear)

(2) f ≥ 0 implies that Bnf ≥ 0. (positive)

(3) f ≥ g implies Bnf ≥ Bng. (monotone)

(4) |f | ≤ g implies |Bnf | ≤ Bng.

PROOF. (1) is easy. (2) follows because each Pni ≥ 0, so if f ≥ 0, then Bnf
is a sum of positive functions.
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(3) If f ≤ g, then 0 ≤ g − f , so that 0 ≤ Bn(g − f) = Bng − Bnf . Thus
Bnf ≤ Bng.

(4) |f | ≤ g means −g ≤ f ≤ g, and hence −Bng ≤ Bnf ≤ Bng. Since
Bng ≥ 0, we have |Bnf | ≤ Bng. �

4.1.3. LEMMA.
(1) Bn1 = 1.

(2) Bnx = x.

(3) Bnx2 = n−1
n x2 + 1

nx = x2 + x−x2

n . Hence Bnx2 converges uniformly to
x2 as n→∞.

PROOF. (1) follows from the binomial theorem:

Bn1 =

n∑
k=0

1
(
n

k

)
xk(1− x)n−k = 1.

For (2), compute ∂
∂x(x+ y)n in two ways to get

(4.1.4)
n∑
k=0

(
n

k

)
kxk−1yn−k = n(x+ y)n−1.

Multiply equation (4.1.4) by x
n and substitute y = 1− x to get

(4.1.5) Bnx =
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x(x+ (1− x))n−1 = x.

Now for (3), take ∂
∂x of equation (4.1.4) to get

(4.1.6)
n∑
k=0

(
n

k

)
k(k − 1)xk−2yn−k = n(n− 1)(x+ y)n−2.

Multiply equation (4.1.6) by x2

n2 and substitute y = 1− x to get
n∑
k=0

k2−k
n2

(
n

k

)
xk(1−x)n−k = n−1

n
x2(x+ (1−x))n−2 =

n−1
n

x2.(4.1.7)

Now add 1
n times equation(4.1.5) to equation(4.1.7) to get

Bnx
2 =

n∑
k=0

k2

n2

(
n

k

)
xk(1− x)n−k

=
n− 1
n

x2 +
1
n
x = x2 +

x− x2

n
.

Then ‖x2−Bnx2‖∞ = 1
n‖x−x2‖∞ = 1

4n . So Bnx2 converges to x2 uniformly. �
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4.1.8. COROLLARY.
∣∣(Bn(x−a)2

)
(a)
∣∣ ≤ 1

4n for a ∈ [0, 1].

PROOF. Bn(x−a)2 = Bnx
2 − 2aBnx + a2Bn1 = (x−a)2 + 1

n(x−x2).
Substitute x = a to get

(
Bn(x−a)2

)
(a) = 1

n(a−a2) ∈ [0, 1
4n ]. �

PROOF OF WEIERSTRASS’S THEOREM. Fix a function f in CR[0, 1], and let
ε > 0. Since f is uniformly continuous on [0, 1], there is δ > 0 so that

|f(x)− f(a)| ≤ ε if |x− a| ≤ δ, x, a ∈ [0, 1].

Also, if |x− a| ≥ δ for x, a ∈ [0, 1],

|f(x)− f(a)| ≤ 2‖f‖∞ ≤
2‖f‖∞
δ2 (x− a)2.

Therefore for all x, a ∈ [0, 1],

|f(x)− f(a)| ≤ ε+ 2‖f‖∞
δ2 (x− a)2.

Hence if we make a a constant and x the variable, Lemma 4.1.2(4) shows

|Bnf(x)− f(a)| ≤ εBn1 +
2‖f‖∞
δ2 Bn(x− a)2.

Plug in x = a and use Corollary 4.1.8 to get

|Bnf(a)− f(a)| ≤ ε+
2‖f‖∞
δ2

1
4n
.

Now if n ≥ N(ε) :=
⌈

2‖f‖∞
4δ2ε

⌉
, we get

‖Bnf − f‖∞ ≤ 2ε.

Therefore Bnf converges uniformly to f .
If f is a complex valued continuous function, decompose f = g + ih where

g(x) = Re f(x) and h(x) = Im f(x). Find real polynomials pn and qn converging
uniformly to g and h, respectively. Then pn + iqn does the job.

Now consider an arbitrary interval [a, b]. Make a linear change of variables: if
f ∈ C[a, b], define g(t) = f

(
a+ (b− a)t

)
for t ∈ [0, 1]. Since x = a+ (b− a)t,

we have t = x−a
b−a . Find polynomials pn converging uniformly to g on [0, 1]. Let

qn(x) = pn
(
x−a
b−a
)
. Then qn converges uniformly to g

(
x−a
b−a
)
= f(x) on [a, b]. �

4.2. Best Approximation

The question we address in this section is whether there is a best approximation
of degree n, i.e., a closest polynomial in the subspace Pn[a, b] ⊂ C[a, b] of all poly-
nomials of degree at most n. Here Pn[a, b] means the vector space of polynomials
of degree at most n with norm ‖p‖∞ = sup{|p(x)| : a ≤ x ≤ b}. In general, when
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finding approximations in an infinite dimensional space like C[a, b], there need not
be a closest point. However in this case, Pn[a, b] is finite dimensional, so it turns
out that there is a closest one. Also in norms with flat spots on the unit ball, which
happens with the supremum norm, there can sometimes be many closest points. So
we want to know if the closest point is unique.

4.2.1. DEFINITION. The error of approximation for f ∈ C[a, b] is

En(f) = dist(f,Pn[a, b]) := inf{‖f − p‖∞ : deg p ≤ n}.

4.2.2. PROPOSITION. If f ∈ C[a, b] and n ≥ 0, there exists a polynomial p of
degree at most n so that

‖f − p‖∞ = En(f).

PROOF. The closest polynomial in Pn[a, b] is no further from f than 0, namely
‖f‖∞. Hence it must lie in Xn := B‖f‖∞(f)∩Pn[a, b]. The subspace Pn[a, b] has
dimension n+1. Thus by Corollary 1.7.7, Pn[a, b] is complete and hence closed in
C[a, b]. ThereforeXn is a closed and bounded subset of a finite dimensional space.
Hence it is compact by the Heine-Borel Theorem.

Define a function on Xn by D(p) = ‖f − p‖∞. This function is Lipschitz and
thus continuous. By the Extreme Value Theorem, D attains its minimum value. �

4.2.3. EXAMPLES.
(1) Let S = {f ∈ C[0, 1] : f(0) = 0}. This is a closed infinite dimensional
subspace of C[0, 1]. Let 1 denote the constant function. What is dist(1,S)? If
f ∈ S, then

‖1− f‖∞ ≥ |(1− f)(0)| = 1.

On the other hand, if 0 ≤ f ≤ 2 and f(0) = 0, then f ∈ S and ‖1− f‖∞ = 1. So
there are infinitely many closest points, such as x, 3x2−x4, 2 sin2 6πx, xex/2, etc.

(2) Let T = {f ∈ C[0, 1] : f(0) = 0 and
∫ 1

0 f(x) dx = 0}. Again this is a closed
subspace. Let g(x) = x. What is dist(g, T )? If f ∈ T , then

‖g − f‖∞ =

∫ 1

0
‖g − f‖∞ dx ≥

∣∣∣ ∫ 1

0
(g − f)(x) dx

∣∣∣ = x2

2

∣∣∣1
0
=

1
2
.

If this were an equality for some f , it is necessary that g(x) − f(x) = 1
2 for all x.

But then f(x) = x − 1
2 does not vanish at 0, and thus f 6∈ T . So the distance 1

2 is
not attained. Nevertheless, this is the distance to T . Let

hn(x) =

−
(n−2)2

8n x for 0 ≤ x ≤ 4
n+2

x− 1
2 − 1

n for 4
n+2 ≤ x ≤ 1.

Then you can check that hn ∈ T and ‖g − hn‖∞ = 1
2 + 1

n .
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4.2.4. CHEBYCHEV APPROXIMATION THEOREM. If f ∈ CR[a, b], then
there is a unique closed polynomial of degree at most n.

The key notion recognizes a geometric property of the smallest difference.

4.2.5. DEFINITION. A function g ∈ CR[a, b] satisfies equioscillation of degree
n if there are n+ 2 points a ≤ x1 < x2 < · · · < xn+2 ≤ b so that

g(xi) = (−1)i‖g‖∞ or g(xi) = (−1)i+1‖g‖∞ for 1 ≤ i ≤ n+ 2.

FIGURE 4.2. Equioscillation for n = 6.

4.2.6. LEMMA. Suppose that f ∈ CR[a, b] and p ∈ Pn[a, b] such that r = f −p
satisfies equioscillation of degree n. Then ‖f − p‖∞ = En(f).

PROOF. Let a ≤ x1 < x2 < · · · < xn+2 ≤ b so that

r(xi) = (−1)i‖r‖∞ or r(xi) = (−1)i+1‖g‖∞ for 1 ≤ i ≤ n+ 2.

Suppose that q ∈ Pn[a, b] so that f − p− q has smaller norm, i.e.

‖f − p− q‖∞ = ‖r − q‖∞ < ‖r‖∞.

Then |r(xi)−q(xi)| =
∣∣± (−1)i‖r‖∞−q(xi)

∣∣ < ‖r‖∞. Therefore sign(q(xi)) =
sign(r(xi)) for 1 ≤ i ≤ n + 2. Since r changes sign between xi and xi+1, so
does q. By the Intermediate Value Theorem, there are points yi ∈ (xi, xi+1) for
1 ≤ i ≤ n + 1 so that q(yi) = 0. Since q has degree at most n and n + 1 roots,
q = 0. This is a contradiction. So p is a closest point. �

The converse is trickier.

4.2.7. LEMMA. Suppose that f ∈ CR[a, b] and that p ∈ Pn[a, b] satisfies
‖f − p‖∞ = En(f). Then r = f − p satisfies equioscillation of degree n.
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PROOF. If f is a polynomial of degree at most n, then p = f is clearly the
unique closest polynomial. So we may suppose that r 6= 0.

Since r is uniformly continuous, there is a δ > 0 so that |x − y| < δ implies
that |r(x) − r(y)| < 1

2‖r‖∞. Partition [a, b] into intervals of length less than δ.
Let I1,. . . ,Is be those intervals in this partition (in order) on which r attains one
of the values ±‖r‖∞ on Ij (possibly an endpoint). Pick a point xj ∈ Ij so that
r(xj) = ±‖r‖∞. Set εj = sign(r(xj)) ∈ {±1}. Then |f(y)| ≥ 1

2‖r‖∞ on Ij , and
in particular does not change sign. We need to show that (ε1, ε2, . . . , εp) changes
sign at least n+ 1 times, for then we have equioscillation of degree n by choosing
n+ 2 of the xj’s in order with alternating signs.

If there are at most n sign changes, we will construct a closer element of Pn.
Group together all adjacent intervals Ij of the same sign into groupings J1, J2,
. . . , Jt (still in order) where t ≤ n + 1. Pick a point ck between Jk and Jk+1 for
1 ≤ k ≤ n. Then define q(x) =

∏t−1
k=1(x − ck) ∈ Pn. Then q changes its sign at

each ck, and in particular has constant sign on each Jk and alternates sign. Multiply
q by −1 if neccesary so that sign(q) agrees with sign(r) on each Jk. We will show
that subtracting a small multiple of q from r will reduce the norm.

Let L =
⋃s
j=1 Ij and M = [a, b] \ L. Let

m = min{|q(x)| : x ∈ L} and sup{|r(x)| : x ∈M} = ‖r‖∞ − d.
Since q only vanishes on the points ck, which are not in the compact set L, we have
m > 0. Also d > 0 becauseM is the union of those closed intervals in our partition
on which r does not attain its norm. Let ε = d

2‖q‖∞ and consider p1 = p+εq. Then

‖f − p1‖∞ = ‖r − εq‖∞ = max
{

sup
x∈L
|r(x)− εq(x)|, sup

x∈M
|r(x)− εq(x)|

}
≤ max

{
‖r‖∞ − εm, ‖r‖∞ − d+ ε‖q‖∞

}
= max

{
‖r‖∞ − εm, ‖r‖∞ − d

2

}
< ‖r‖∞.

This contradicts p being a closest polynomial, and thus there must have been at
least n+ 1 sign changes, and so r satisfies equioscillation of degree n. �

PROOF OF CHEBYCHEV’S APPROXIMATION THEOREM. By Proposition 4.2.2,
there is a polynomial p ∈ P[a, b] so that ‖f − p‖∞ = En(f) =: d. Suppose that q
also satisfies ‖f − q‖∞ = d. Then∥∥f − p+q

2 ‖∞ =
∥∥f−p

2 + f−q
2 ‖∞ ≤ 1

2‖f − p‖∞ + 1
2‖f − q‖∞ = d.

So p+q
2 is also a closest polynomial. By Lemma 4.2.7, r := f − p+q

2 satisfies
equioscillation of degree n. Let a ≤ x1 < x2 < · · · < xn+2 ≤ b so that

r(xi) = (−1)id or r(xi) = (−1)i+1d for 1 ≤ i ≤ n+ 2.

Therefore

d =
∣∣∣f(xi)− p(xi)+q(xi)

2

∣∣∣
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≤ 1
2

∣∣f(xi)− p(xi)∣∣+ 1
2

∣∣f(xi)− q(xi)∣∣
≤ d

2 + d
2 = d.

This is an equality, and therefore

f(xi)− p(xi) = f(xi)− q(xi) = ±d for 1 ≤ i ≤ n+ 2.

Hence (p− q)(xi) = 0 for 1 ≤ i ≤ n+2. Since p− q has degree at most n and has
n + 2 roots, this means that p = q. Hence p is the unique polynomial in Pn[a, b]
which is closest to f . �

4.3. The Stone-Weierstrass Theorems

In this section, we establish a very general approximation result which explains
when an algebra of continuous functions is dense in CR(X) or C(X).

4.3.1. DEFINITION. Let (X, d) be a compact metric space. A subset A of
C(X) or CR(X) is an algebra if it is a subspace such that if f, g ∈ A, then the
product fg is in A.

A subsetA of CR(X) is a vector lattice if it is a subspace such that if f, g ∈ A,
then f ∨ g := max{f, g} and f ∧ g := min{f, g} belong to A.

A subset A of C(X) or CR(X) separates points if for all x, y ∈ X , x 6= y,
there is an f ∈ A such that f(x) 6= f(y).

A subset A of C(X) or CR(X) vanishes at x0 if f(x0) = 0 for all f ∈ A.

4.3.2. STONE-WEIERSTRASS THEOREM. Let (X, d) be a compact metric
space. Suppose that A ⊂ CR(X) is an algebra which separates points and does
not vanish at any point of X . Then A is dense in CR(X).

A key innovation by Stone was the recognition that the vector lattice property
was very useful.

4.3.3. LEMMA. If A is a subalgebra of CR(X), then A is a closed subalgebra
and a vector lattice.

PROOF. If fn, gn ∈ A and lim fn = f and lim gn = g, then for r, s ∈ R,
rfn + sgn and fngn belong to A and converge to rf + sg and fg, respectively.
Therefore A is a subspace and an algebra.

To show that it is a lattice, it is enough to show that if f ∈ A, then |f | is also in
A. This is because

f ∨ g =
f + g

2
+
|f − g|

2
and f ∧ g =

f + g

2
− |f − g|

2
.
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Let f ∈ A. By Weierstrass’s Theorem, there are polynomials pn(t) which con-
verge uniformly to |t| on [−‖f‖∞, ‖f‖∞]. Say pn(t) =

∑kn
i=0 anit

i. In particular,
pn(0) = an0 → 0. Hence qn(t) = pn(t) − an0 =

∑kn
i=1 anit

i also converges
uniformly to |t| on [−‖f‖∞, ‖f‖∞]. Note that qn(f) =

∑kn
i=1 anif

i belongs to A.
We use qn rather than pn because we do not know that the constants belong to A.
Moreover∥∥qn(f)− |f |∥∥∞ = sup

x∈X

∣∣qn(f(x))− |f(x)|∣∣
≤ sup
|t|≤‖f‖∞

∣∣qn(t)− |t|∣∣ = ∥∥qn − |t|∥∥∞ → 0.

Therefore |f | belongs to A. So A is a vector lattice. �

4.3.4. LEMMA. Suppose that A is a subalgebra of CR(X) which separates
points and doesn’t vanish at any x ∈ X . If x, y are distinct points in X and
r, s ∈ R, then there is an function h ∈ A so that h(x) = r and h(y) = s.

PROOF. As A separates points, there is an f ∈ A so that a = f(x) 6= f(y) = b.
At least one of a, b is non-zero, so we may suppose that b 6= 0.

Case 1. a 6= 0. We look for h in span{f, f2}. Note that∣∣∣∣[a a2

b b2

]∣∣∣∣ = ab2 − ba2 = ab(b− a) =: ∆ 6= 0.

Hence the matrix T =

[
a a2

b b2

]
is invertible. Hence we can solve the linear system

of equations [
a a2

b b2

] [
u
v

]
=

[
r
s

]
.

Indeed, the solution is[
u
v

]
=

[
a a2

b b2

]−1 [
r
s

]
=

1
∆

[
b2 −a2

−b a

] [
r
s

]
=

[
b2r−a2s
ab(b−a)
−br+as
ab(b−a)

]
.

Therefore if we set h = uf + vf2,

h(x) = (uf + vf2)(x) = ua+ va2 = r

h(y) = (uf + vf2)(y) = ub+ vb2 = s.

Case 2. a = 0. Then since A does not vanish at x, there is some g ∈ A such
that g(x) = c 6= 0. Let g(y) = d; and set

h(z) =
r

c
g(z) +

cs− rd
bc

f(z) for z ∈ X.
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Then h ∈ A and

h(x) =
r

c
c+ 0 = r and h(y) =

r

c
d+

cs− rd
bc

b = s. �

PROOF OF THE STONE-WEIERSTRASS THEOREM. By Lemma 4.3.3, A is a
vector lattice. Fix f ∈ CR(X) and ε > 0. Let a ∈ X . For each x ∈ X \ {a}, use
Lemma 4.3.4 to find functions hx ∈ A so that hx(a) = f(a) and hx(x) = f(x).
Let

Ux = {y ∈ X : hx(y) > f(y)− ε} = (hx − f)−1(−ε,∞).

Then Ux is open and contains both a and x. So {Ux : x 6= a} is an open cover of
X . Thus there is a finite subcover Ux1 , . . . , Uxn . Define ga = hx1 ∨ · · · ∨hxn . This
belongs to A, ga(a) = f(a) and

ga(x) ≥ hxi(x) > f(x)− ε for x ∈ Uxi , 1 ≤ i ≤ n.
Therefore ga > f − ε.

Let Va = {y ∈ X : ga(y) < f(y) + ε} = (ga− f)−1(−∞, ε). This is an open
set containing a. Hence {Va : a ∈ X} is an open cover of X . By compactness,
there is a finite subcover Va1 , . . . , Vam . Let g = ga1 ∧ · · · ∧ gam . This belongs to
A. Then g(x) > f(x)− ε since this is true for every ga. Also

g(x) ≤ gaj (x) < f(x) + ε for all x ∈ Vaj , 1 ≤ j ≤ m.
Hence g < f + ε,

Consequently, |g(x) − f(x)| < ε for all x ∈ X , and therefore ‖g − f‖ < ε.
Since A is closed, it must equal CR(X). �

We mention a few of the many applications of this result.

4.3.5. COROLLARY. Let X be a compact subset of Rn. Then the algebra of
polynomials in the coordinates x1, . . . , xn is dense in C(X).

PROOF. First consider the algebraA of polynomials with real coefficientsA =
R[x1, . . . , xn]. Then A is an algebra, it contains the constant function 1, so it does
not vanish at any point. Also x1, . . . , xn separate points in X . Hence by the Stone-
Weierstrass Theorem, A = CR(X).

In the complex case, we can write f = g+ ih where g, h ∈ CR(X). Since both
g, h are uniform limits of polynomials, f is also a uniform limit of polynomials
with complex coefficients. �

4.3.6. COROLLARY. Let X,Y be two compact metric spaces. Then

A =
{
h(x, y) =

n∑
i=1

fi(x)gi(y) : fi ∈ C(X), gi ∈ C(Y )
}

is dense in C(X × Y ).
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PROOF. First consider the real version AR which consists of finite sums of
products of functions in CR(X) and CR(Y ). This is a real algebra. It contains
1, so does not vanish anywhere. It separates points, because CR(X) separates the
X-coordinate and CR(Y ) separates the Y -coordinate. Thus the Stone-Weierstrass
Theorem shows that AR = CR(X × Y ). By taking real and imaginary parts, we
obtain the complex version. �

4.3.1. The complex case. Both corollaries were applicable to the complex
case by taking real and complex parts. However this is not possible to do within all
subalgebras.

4.3.7. EXAMPLE. Let D = {z ∈ C : |z| < 1} be the open unit disc in
the complex plane. Let A(D) =

{
p(z) =

∑n
k=0 akz

k} = C[z] considered as a
subalgebra of C(D). 1 ∈ A(D) so A(D) does not vanish at any point. The function
z separates points. However A(D) 6= C(D).

To see this, observe that

1
2π

∫ 2π

0
p(eit) dt =

n∑
k=0

ak
1

2π

∫ 2π

0
eint dt = a0 = p(0).

By taking uniform limits, this identity extends to all f ∈ A(D). But in C(D), there
is no relationship between f(0) and the restriction of f to the unit circle T. For
example, f(z) = |z| satisfies f(0) = 0 and f(eit) = 1, so that

1
2π

∫ 2π

0
f(eit) dt = 1 6= f(0).

We can also consider A(D) as a subalgebra of C(T). This follows from the
maximum modulus principle which shows that each polynomial attains its supre-
mum on the boundary. This property extends to limits. So the supremum norm
over T is the same norm as the supremum norm over D. Again 1 ∈ A(D) and z
separates points, but still A(D) 6= C(T). Using the integral above, we see that

1
2π

∫ 2π

0
f(eit)eit dt = 0 for all f ∈ A(D).

However the function z̄(eit) = e−it does not belong to A(D) because

1
2π

∫ 2π

0
z̄(eit)eit dt = 1

2π

∫ 2π

0
dt = 1.

4.3.8. DEFINITION. A subalgebra A ⊂ C(X) is self-adjoint if f ∈ A implies
that f̄ ∈ A.
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Since Re f = 1
2(f + f̄) and Im f = 1

2i(f − f̄), a subalgebra is self-adjoint if
and only if it contains the real and imaginary parts of it elements. This was key in
our two corollaries. This generalizes.

4.3.9. THEOREM. Let X be a compact metric space. Let A be a subalgebra
of C(X) which is self-adjoint, separates points, and does not vanish at any point.
Then A is dense in C(X).

PROOF. Let AR = {Re f : f ∈ A}. Since A is self-adjoint, AR is a real
algebra contained in A. It separates points, and does not vanish at any point. By
the real Stone-Weierstrass Theorem, AR = CR(X). Every function f = g + ih
where g = Re f and h = Im f . Since g, h ∈ AR, we have f ∈ A. �

Exercises
1. Let C(n)[a, b] denote the space of functions on [a, b] with n continuous derivatives.

(a) Define ‖f‖C(n) =
n∑
k=0

1
k!‖f (k)‖∞. Show that this norm satisfies

‖fg‖C(n) ≤ ‖f‖C(n)‖g‖C(n) .

HINT: Leibnitz rule for (fg)(k).
(b) Show that the polynomials are dense in C(n)[a, b]. HINT: approximate f (n) first.

2. Let p be the best polynomial approximation of degree n to
√
x on [0, 1]. Show that

q(x) = p(x2) is the best polynomial approximation of degree 2n+ 1 to |x| on [−1, 1].

3. For S ⊂ C[a, b], let En(S) = supf∈S En(f). Let S be the functions in C[0, 1] with
Lipschitz constant 1. Show that En(S) ≥ 1

2n+2 . HINT: consider a piecewise linear
function such that f

(
k
n+1

)
= (−1)k for 0 ≤ k ≤ n+ 1.

4. Show that the real linear span A of {1, sinnx, cosnx : n ≥ 1} is a dense subalgebra
of B = {f ∈ CR[−π, π] : f(−π) = f(π)}.

5. Let X be a compact subset of Rn, and let F = {y1, . . . ,yp} be a finite subset of X .
Show that the set of polynomials in the coordinates x1, . . . , xn which vanish on F is
dense on the ideal I(F ) = {f ∈ CR(X) : f |F = 0}. HINT: build polynomials qi
such that qi(yj) = δij .

6. Let (X, d) be a compact metric space. Let J be an ideal of C(X). Define

Z = Z(J) =
⋂
f∈J f

−1(0).

(a) Let ε > 0 and let Yε = {x : d(x, Z) ≥ ε}. Show that J contains a function f such
that f |Yε = 1. HINT: Find finitely many fi ∈ J so that

∑n
i=1 |fi(x)|2 ≥ 1 for all

x ∈ Yε.
(b) Hence show that J contains the ideal I0(Z) = {f ∈ C(X) : Z ⊂ int(f−1(0))} of

all functions that vanish on a neighbourhood of Z.
(c) Show that J = I(Z) = {f ∈ C(X) : f |Z = 0}.



CHAPTER 5

Differential Equations

Ordinary differential equations or ODEs are equations that relate a function of one
variable to one or more of its derivatives. Partial differential equations or PDEs re-
late functions of several variables to their various partial derivatives. They arise in
many contexts: in physics, chemistry and engineering in modelling various phys-
ical phenomena. In the life sciences modelling various global properties among
populations, such as predator-prey cycles, are governed by differential equations.
In economics and mathematical finance, many processes are governed by differ-
ential equations. In differential geometry and mathematical physics, differential
equations underlie most phenomena that are studied.

In this chapter, we study ODEs not with the idea of learning solution tech-
niques, but rather to understand when we can solve them and what we can say in
general about the behaviour of solutions.

Here is the basic idea:

y′(x) = f(x, y) and y(0) = y0 for x, y ∈ R.

In geometry and physics, one can consider a vector field which puts an arrow at
every point (x, y) with slope f(x, y). A common demonstration of this is to use
iron filings scattered around a magnet. The filings align with the direction of the
magnetic flow. Conversely, looking at the filings (which are the arrows), one can
“see” the flow lines. These flow lines are solutions to the ODE. There is an intuitive
sense that generally there is exactly one solution through each point, except for a
few exceptional points at the boundary of the magnet. This intuition is excellent as
long as the ODE is nice enough.

5.0.1. EXAMPLES.
(1) Consider y′ = f(x) and y(a) = y0. This is easily solved by integration:

y(x) = y0 +

∫ x

a
f(t) dt.

If f is continuous on R, then this has a solution on the whole line. But if f is
defined on a smaller set, say (−1, 1) by f(x) = 1

1−x2 and a = 0, then the solution
will also ‘blow up’ as x tends to ±1,

(2) Consider the ODE y′ = xy. This can be solved by the technique of separation
of variables which involes rearranging things to get all the y’s on one side and all

90
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the x’s on the other:
y′

y
= x.

Integrate to get log y = 1
2x

2 + c. Thus y = Cex
2/2. The constant C is a parameter

determining a whole family of solutions. If we know some point on the curve,
say y(1) = e, then we can solve for C =

√
e. If we change the initial value a

little, this changes C a little, and the new solution is close to the original near the
starting point. However it moves away dramatically as we get further from the
initial position.

(3) Level lines. The equation xy = log y + c, where c is a constant determines a
family of curves, though they are difficult to express in closed form. These curves
are the solutions to a DE obtained by differentiation:

y + xy′ =
y′

y
or y′ =

y2

1− xy .

If c is known, we can see that (0, e−c) lies on the curve. So we could add the initial
value condition: y(0) = e−c.

(4) Some ODEs have no solutions. For example, (y′)2 + 1 = 0.

The question addressed in this chapter is: under what conditions does an ODE
have a solution? When is it unique? How does it change if we vary a parameter?

The following is a key example which illustrates some of the important ideas.

5.0.2. EXAMPLE. We will solve the initial value problem

y′ = 1 + x− y for − 1
2 ≤ x ≤ 1

2

y(0) = 1.

Integrate to get

y(x) = y(0) +
∫ x

0
y′(t) dt

= 1 +

∫ x

0
1 + t− y(t) dt

= 1 + x+ 1
2x

2 −
∫ x

0
y(t) dt.

This changes the differential equation into an integral equation.
Define a map T on C[−1

2 ,
1
2 ] by sending f to the function Tf given by

Tf(x) = 1 + x+ 1
2x

2 −
∫ x

0
f(t) dt.
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The solution of the integral equation is a fixed point of T . Conversely, if

f(x) = Tf(x) = 1 + x+ 1
2x

2 −
∫ x

0
f(t) dt,

then f(0) = 1 and f ′(x) = 1+x−f(x) by the Fundamental Theorem of Calculus.
We compute for x ∈ [− 1

2 ,
1
2 ],

|Tf(x)− Tg(x)| =
∣∣∣ ∫ x

0
f(t)− g(t) dt

∣∣∣ ≤ ∣∣∣ ∫ x

0
|f(t)− g(t)| dt

∣∣∣
≤ |x| ‖f − g‖∞ ≤

1
2
‖f − g‖∞.

Therefore

‖Tf − Tg‖∞ ≤
1
2
‖f − g‖∞.

Hence T is a contraction mapping!
By the Contraction Mapping Principle, T has a unique fixed point f∞ that

will solve our DE. Moreover, we can compute the solution be setting f0(x) = 1,
defining fn+1(x) = Tfn(x) for n ≥ 0, and taking a limit. Then

f1(x) = Tf0(x) = 1 + x+ 1
2x

2 −
∫ x

0
1 dt = 1 + 1

2x
2.

Similarly,

f2(x) = Tf1(x) = 1 + x+ 1
2x

2 −
∫ x

0
1 + 1

2 t
2 dt

= 1 + 1
2x

2 − 1
6x

3.

We can show by induction that

fn(x) = 1 + 1
2x

2 − 1
3!x

3 + 1
4!x

4 − 1
5!x

5 + · · ·+ 1
(n+1)!(−x)n+1.

We obtain the solution

f∞(x) = lim
n→∞

fn(x) = x+
∞∑
k=0

1
k!
(−x)k = x+ e−x.

Note that this solution actually makes sense on the whole real line. Why that
happens is part of the story.

5.1. Reduction to first order

Our plan is to start with a DE, and convert it to the problem of finding a fixed
point of an associated integral operator. Generally this will need to be vector val-
ued.
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5.1.1. DEFINITION. The order of a DE is the highest derivative occuring in
the equation. It is said to be in standard form if the highest derivative can be
expressed as a function of x and the derivatives of lower order. An initial value
problem contains the DE and specifies values at some point for all derivatives of
lower order.

Initial value problem of order n. Let c ∈ [a, b]. Look for a functions f ∈ Cn[a, b]
satisfying:

f (n)(x) = ϕ(x, f(x), f ′(x), . . . , f (n−1)(x)) nth order ODE(5.1.2)

f(c) = γ0

f ′(c) = γ1...
f (n−1)(c) = γn−1,

 initial data.

where ϕ is a real-valued continuous function on [a, b]× Rn.

Reduce this to a first order ODE with values in Rn. In order to proceed as in our
example, we require a first order DE. This can be arranged if we allow functions
with values in Rn. Let F : [a, b]→ Rn by

F (x) = (f(x), f ′(x), . . . , f (n−1)(x)).

This belongs to C([a, b],Rn) and each coordinate is differentiable. Hence

F ′(x) =
(
f ′(x), . . . , f (n−1)(x), ϕ

(
x, f(x), . . . , f (n−1)(x)

))
,

and the initial data become

F (c) = (γ0, γ1, . . . , γn−1) =: Γ.

Define a continuous function Φ from [a, b]× Rn to Rn by

Φ(x, y0, . . . , yn−1) =
(
y1, y2, . . . , yn−1, ϕ(x, y0, . . . , yn−1)

)
.

Then (5.1.2) becomes the first-order vector-valued initial value problem :

F ′(x) = Φ(x, F (x))(5.1.3)

F (c) = Γ.

It is easy to see that a solution of (5.1.2) yields a solution of (5.1.3). Conversely,
suppose (5.1.3) has a solution

F (x) = (f0(x), f1(x), . . . , fn−1(x)).

Then

F ′(x) = (f ′0(x), f
′
1(x), . . . , f

′
n−2(x), f

′
n−1(x))

= Φ(x, f0(x), f1(x), . . . , fn−1(x))

=
(
f1(x), . . . , fn−1(x), ϕ

(
x, f(x), . . . , f (n−1)(x)

))
.
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By identifying each coordinate, we get f ′i(x) = fi+1(x) for 0 ≤ i ≤ n− 2 and

f ′n−1(x) = ϕ(x, f0(x), f1(x), . . . , fn−1(x)).

Thus f1 = f ′0, f2 = f ′1 = f ′′0 , fi+1 = f ′i = f
(i+1)
0 for 0 ≤ i ≤ n− 2 and

f
(n)
0 = f ′n−1 = ϕ(x, f0(x), f

′
0(x), . . . , f

(n−1)
0 (x)).

So f0 is a solution to the ODE. Finally from F (c) = Γ, we get that f (i)0 (c) = γi for
0 ≤ i ≤ n − 1. So the initial value data is satisfied. Therefore f0 is a solution to
(5.1.2).

Convert to an integral equation. We now integrate (5.1.3) to get

F (x) = F (c) +

∫ x

c
F ′(t) dt = Γ +

∫ x

c
Φ(t, F (t)) dt.

Define a map on C([a, b],Rn) by

TF (x) = Γ +

∫ x

c
Φ(t, F (t)) dt.

A solution of (5.1.3) is clearly a fixed point of T . Conversely, by the Fundamental
Theorem of Calculus, a fixed point of T is a solution of (5.1.3). So the problem
(5.1.2) is equivalent to finding the fixed point(s) of the mapping T .

5.1.4. EXAMPLE. We will express the unknown function as y, instead of f(x).
Consider the differential equation(

1 + (y′)2)y(3) = y′′ − xy′y + sinx for − 1 ≤ x ≤ 1

y(0) = 1, y′(0) = 0, y′′(0) = 2.

Rewrite it in standard form as

y(3) =
y′′ − xy′y + sinx

1 + (y′)2 .

Define Γ = (1, 0, 2) and

Φ
(
x, y0, y1, y2

)
=
(
y1, y2,

y2 − xy1y0 + sinx
1 + y2

1

)
.

Then define a mapping T from C([−1, 1],R3) into itself by sending a function
F (x) =

(
f0(x), f1(x), f2(x)

)
to

TF (x) = Γ +

∫ x

0
Φ(t, F (t)) dt

=

(
1 +

∫ x

0
f1(t) dt ,

∫ x

0
f2(t) dt , 2 +

∫ x

0

f2(t)− tf1(t)f0(t) + sin t
1 + f1(t)2 dt

)
.

This converts the differential equation into the integral equation TF = F .



5.2 Global Solutions of ODEs 95

5.2. Global Solutions of ODEs

In this section, we use a modification of the Contraction Mapping Principle to
establish the existence and uniqueness of solutions to a large class of ODEs. To
obtain this, we need a strong condition on the function Φ.

5.2.1. DEFINITION. Let Ω ⊂ Rn. A continuous function Φ = (ϕ1, . . . , ϕn) :
[a, b]×Ω→ Rn is Lipschitz in y = (y1, . . . , yn) if there is a constant L so that

‖Φ(x, y)−Φ(x, z)‖ =
( n∑
i=1

∣∣ϕi(x, y)− ϕi(x, z)∣∣2)1/2
≤ L‖y − z‖

for all x ∈ [a, b] and y, z ∈ Ω.

5.2.2. EXAMPLES.
(1) Let Φ = (ϕ1, . . . , ϕn) be defined on a convex set Ω. Suppose that Φ has
continuous partial derivatives in the y-variables. Recall the gradient ∇yϕi =(
∂ϕi
∂y1

, . . . , ∂ϕi∂yn

)
. Suppose that the derivative is bounded in Ω:

max
1≤i≤n

sup
x∈[a,b]
y∈Ω

‖∇yϕi(x, y)‖ =M <∞.

Then by the Mean Value Theorem, there is a point ξi on [y, z] so that

‖ϕi(x, y)− ϕi(x, z)‖ = ‖∇yϕi(x, ξi) • (y − z)‖ ≤M‖y − z‖.
Therefore ‖Φ(x, y)−Φ(x, z)‖ ≤∑n

i=1 ‖ϕi(x, y)−Φ(x, z)‖ ≤Mn‖y−z‖. If Ω is
compact, thenM <∞ by the Extreme Value Theorem. However if Ω = Rn, this is
quite a stringent condition, since even very nice functions like y2 have unbounded
derivative on the whole line.

(2) One important example where this condition does hold globally on Rn is the
case of linear ODEs in which the function Φ is linear in the y-variables. The
function ϕ has the form

y(n)(x) = ϕ(x, y) =

n−1∑
i=0

ai(x)y
(i)(x) + b(x).

Writing F (x) = (f0(x), f1(x), . . . , fn−1(x)), the DE becomes

F ′(x) =


f ′0(x)
f ′1(x)

...
f ′n−1(x)

 =


0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . .
...

0 0 0 . . . 1
a0(x) a1(x) a2(x) . . . an−1(x)




f0(x)
f1(x)

...
fn−2(x)
fn−1(x)

+


0
0
...
0
b(x)
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= A(x)F (x) +B(x).

Here A(x) is an n×n matrix function of x and B(x) is a vector valued function of
x. The dependence on the y variables is linear. That is, Φ(x, y) = A(x)y +B(x).

Let M = supa≤x≤b
∣∣∑n−1

i=0 ai(x)
2
∣∣1/2. Since this is linear in y, we get (we

write vectors horizontally to save space)

‖Φ(x, y)−Φ(x, z)‖ = ‖A(x)(y − z)‖

=
∥∥(y1−z1, . . . , yn−1−zn−1,

n−1∑
i=0

ai(x)(yi−zi)
)}

≤ ‖y − z‖+M‖y − z‖ = (M + 1)‖y − z‖.
where the Cauchy-Schwarz inequality shows that∣∣∣ n−1∑

i=0

ai(x)(yi−zi)
∣∣∣ ≤ ∣∣∣ n−1∑

i=0

ai(x)
2
∣∣∣1/2∣∣∣ n−1∑

i=0

(yi−zi)2
∣∣∣1/2
≤M‖y − z‖.

Hence Φ is Lipschitz in y.

The following technical estimate is key. The point of the estimates is that they
improve dramatically with repeated application.

5.2.3. LEMMA. Let Φ be a continuous function from [a, b]× Rn into Rn which
is Lipschitz in y with constant L. Let c ∈ [a, b], and

TF (x) = Γ +

∫ x

c
Φ(t, F (t)) dt.

If F,G ∈ C([a, b],Rn) satisfy ‖F (x)−G(x)‖ ≤ M |x−c|k
k! for some k ≥ 0, then

‖TF (x)− TG(x)‖ ≤ LM |x− c|k+1

(k + 1)!
.

Thus, T is Lipschitz; and there is an integer k0 so that T k0 is a contraction map.

PROOF. Compute

‖TF (x)− TG(x)‖ =
∥∥∥Γ +

∫ x

c
Φ(t, F (t)) dt− Γ−

∫ x

c
Φ(t, G(t)) dt

∥∥∥
=
∥∥∥∫ x

c
Φ(t, F (t))−Φ(t, G(t)) dt

∥∥∥
≤
∫ x

c

∥∥Φ(t, F (t))−Φ(t, G(t))
∥∥ dt ≤ ∫ x

c
L
∥∥F (t)−G(t)∥∥ dt

≤ LM

k!

∫ x

c
|t− c|k dt = LM

(k + 1)!
|x− c|k+1.
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Now ‖F (x)−G(x)‖ ≤ ‖F−G‖∞ = ‖F−G‖∞ |x−c|
0

0! . It follows by induction
that

‖T kF (x)− T kG(x)‖ ≤ ‖F −G‖∞L
k|x− c|k

k!
≤ ‖F −G‖∞L

k(b− a)k
k!

.

Thus ‖T kF −T kG‖∞ ≤ Lk(b−a)k
k! |F −G‖∞. This shows that T k is Lipschitz with

constant Ck =
Lk(b−a)k

k! . Observe that

lim
k→∞

Ck+1

Ck
= lim

k→∞
L(b− a)
k + 1

= 0.

By the ratio test, limk→∞Ck = 0. Hence one can choose k0 so that Ck0 < 1.
Therefore T k0 is a contraction mapping. �

5.2.4. GLOBAL PICARD THEOREM. If Φ : [a, b]× Rn → Rn is continuous
and Lipschitz in y, and c ∈ [a, b], then the ODE

F ′(x) = Φ(x, F (x)), F (c) = Γ

has a unique solution on [a, b].

PROOF. We first convert the problem to a fixed point problem with the same
solutions. Let T map C([a, b],Rn) into itself by

TF (x) = Γ +

∫ x

c
Φ(t, F (t)) dt for F ∈ C([a, b],Rn).

By Lemma 5.2.3, there is an integer k0 so that T k0 is a contraction mapping. There-
fore by Corollary 3.3.4, T has a unique fixed point F∗. Thus this is the unique
solution to the ODE. �

Starting with any initial function F0 ∈ C([a, b],Rn), the sequence Fn = T kF0
converges uniformly to the solution. A convenient choice for F0 is the constant
function F0(x) = Γ. In the next section, we will need some specific estimates
using this starting point.

5.3. Local Solutions

The stipulation that Φ has to be Lipschitz over all of Rn is quite restrictive.
However, many functions satisfy a Lipschitz condition in y on a bounded set of the
form [a, b]× bR(Γ) for R <∞. When this is the case, we can run the proof of the
Global Picard Theorem for a while, until the solution escapes the set.
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5.3.1. DEFINITION. Let Ω ⊂ Rn. A continuous function Φ : [a, b]×Ω→ Rn
is locally Lipschitz in y if for every point (x, y) ∈ [a, b]× Ω, there is a neighbour-
hood

(
[x− ε, x+ ε] ∩ [a, b]

)
× bε(y) on which Φ is Lipschitz in y.

5.3.2. LEMMA. Suppose that a continuous function Φ : [a, b] × Ω → Rn is
locally Lipschitz in y and that K ⊂ Ω is compact and convex. Then Φ is Lipschitz
in y on [a, b]×K.

PROOF. Each point (x, y) ∈ [a, b]×K has a convex open neighbourhood Ux,y
on which Φ is Lipschitz in y with constant Lx,y. Since [a, b] ×K is compact and
{Ux,y : (x, y) ∈ [a, b] ×K} is an open cover, there is a finite subcover, say Uxi,yi
for 1 ≤ i ≤ N . Let L = max{Lxi,yi : 1 ≤ i ≤ N}. For any x ∈ [a, b] and
y, z ∈ K, the line segment [y, z] ⊂ K by convexity. Since {x} × [y, z] is covered
by our finite subcover, there is a sequence y = y0, y1,. . . ,yp = z on [y, z] so that
{x} × [yi, yi+1] is covered by a single set from the subcover. Therefore

‖Φ(x, y)−Φ(x, z)‖ ≤
p−1∑
i=0

‖Φ(x, yi)−Φ(x, yi+1)‖

≤
p−1∑
i=0

L‖yi − yi+1‖ = L‖y − z‖.

Thus Φ is Lipschitz in y on [a, b]×K. �

The main example is the case in which Φ has continuous partial first derivatives
in the y variables. This is Example 5.2.2(1).

In the following local version of the Picard theorem, one requires a local Lips-
chitz condition. However it is important to note that the interval on which a solution
is obtained is not dependent on the Lipschitz constant. For convenience, we start
at the left endpoint a, rather than some arbitrary point c. But this makes no real
difference. Also the argument works in the negative direction equally well.

5.3.3. LOCAL PICARD THEOREM. Suppose that Φ : [a, b] × bR(Γ) → Rn
is continuous and locally Lipschitz in y. Then the DE

F ′(x) = Φ(x, F (x)), F (a) = Γ

has a unique solution on the interval [a, a+ h], where h = min{b− a,R/‖Φ‖∞}.

PROOF. As for the Global Picard Theorem, we define a map T . However it will
only be defined on C([a, a + h], bR(Γ)), those vector valued continuous functions
on [a, a+h] with values in bR(Γ), because it is only in this range that Φ is defined.
This is a closed subset of the complete normed space C([a, a+ h],Rn), and thus it
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is complete. Set

TF (x) = Γ +

∫ x

a
Φ(t, F (t)) dt.

Observe that

‖TF (x)− Γ‖ ≤
∫ x

a
‖Φ(t, F (t))‖ dt ≤ ‖Φ‖∞ |x− a| ≤ ‖Φ‖∞ h ≤ R.

Therefore TF ∈ C([a, a+ h], bR(Γ)).
C([a, a + h], bR(Γ)) is a complete metric space and so the Contraction Map-

ping Principle is applicable. Now the proof of Lemma 5.2.3 works as before. It
follows that there is some k0 so that T k0 is a contraction mapping. Hence by Corol-
lary 3.3.4, T has a unique fixed point F∗, and that this is a solution of the ODE.

Uniqueness of a local solution to the ODE requires a bit more care. Suppose
that there is a solution G on a smaller interval [a, a + k] for 0 < k ≤ h. We can
then restrict the mapping T to the smaller domain C([a, a + k], bR(Γ)). Again it
has a unique fixed point, and this must be F∗|[a,a+k]. Hence G = F∗|[a,a+k]. �

5.3.4. EXAMPLE. Consider the DE

y′ = y2, y(0) = 1, 0 ≤ x ≤ 2.

The function Φ(x, y) = y2 is not Lipschitz globally because ϕ′(y) = 2y is un-
bounded. However since it isC1, the derivative is bounded on [0, 2]×[1−R, 1+R]
with constant sup|y−1|≤R |Φ′(y)| = 2R + 2. Also sup|y−1|≤R |Φ(y)| = (R + 1)2.
By the Local Picard Theorem, this has a unique solution on [0, h] where

h = min
{

2,
R

(R+ 1)2

}
=

R

(R+ 1)2 .

If we pick R = 1 (which is optimal), then we get a solution on [0, 1
4 ].

We can solve this DE by separation of variables. Rewrite it as
y′

y2 = 1. Then

by integration, we get

x =

∫ x

0
1 dt =

∫ x

0

y′(t) dt
y(t)2 = − 1

y(t)

∣∣∣∣x
0
= 1− 1

y(x)
.

Therefore, y(x) = 1
1−x .

This is a solution on the interval [0, 1). However it ‘blows up’ at x = 1. So the
solution does not extend to all of [0, 2]. But this is definitely better than our solution
on [0, 1

4 ]. This can be improved by starting at x = 1
4 and applying the Local Picard

Theorem again. The next result explains why a repeated application of this idea
will succeed.
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Again we consider the initial condition at x = a for convenience. However
it works just as well with any initial point c in both directions with appropriate
rewording.

5.3.5. CONTINUATION THEOREM. Suppose that Φ : [a, b] × Rn → Rn is
continuous and locally Lipschitz in y. Consider the DE

(‡) F ′(x) = Φ(x, F (x)), F (a) = Γ.

Then either

(1) the DE has a unique solution F∗(x) on [a, b]; or

(2) there is a c ∈ (a, b] so that the DE has a unique solution F∗(x) on [a, c)
and limx→c− ‖F∗(x)‖ = +∞.

PROOF. Let c := sup{d ∈ [a, b] : (‡) has a solution on [a, d]}. The Local
Picard Theorem shows that there is a unique solution on [a, a+ h] for some h > 0,
so c > a. Also no solution F0 can extend to include c if c < b, for in that case, we
can apply the Local Picard Theorem with initial data F (c) = F0(c) and extend the
solution to an interval [c, c+ h].

Next we show that if Fi(x) is a solution on [a, di] with d1 < d2, then F2|[a,d1] =
F1. If this were false, then

inf{x ∈ [a, d1] : F2(x) 6= F1(x)} = d < d1.

Let Γ1 = F1(d) = F2(d). Apply the Local Picard Theorem with initial data
F (d) = Γ1 to obtain a unique solution on [d, d + h1]. By uniqueness, we have
F2(x) = F1(x) on [a,min{d + h1, d1}], contradicting the definition of d. Thus
F2|[a,d1] = F1. Therefore, there is a unique solution F∗(x) of (‡) defined on [a, c)
by combining the solutions for d < c.

If limx→c− ‖F∗(x)‖ = +∞, then we satisfy part (2) of the theorem; and if the
solution extends to include b, we have part (1). The remaining possibility is that the
solution does not extend to include c, but

lim inf
x→c−

‖F∗(x)‖ <∞.

In this last case, choose xn → c− such that ‖F∗(xn)‖ ≤ K for n ≥ 1.
Since Φ is locally Lipschitz in y, it is Lipschitz in y on D = [a, b] × b2K+1(0)
by Lemma 5.3.2. Let

M = sup
(x,y)∈D

‖Φ(x, y)‖ and δ =

{
min{ b−c2 , K+1

2M } if c < b
K+1
2M if c = b.

Choose N so that xN > c − δ. Let ΓN = F∗(xN ). Apply the Local Picard The-
orem to the DE (†) F ′(x) = Φ(x, F (x)) and F (xN ) = ΓN . Since bK+1(ΓN ) ⊂
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b2K+1(0), we obtain a unique solution on [xN , xN + h] where

h = min
{
b− xN ,

K + 1
M

}
and

K + 1
M

≥ 2δ.

Thus either the solution extends to include b or it extends to [xN , xN + 2δ] ⊃
[xN , c + δ]. In either case, the solution extends beyond [a, c), contrary to our
hypothesis. Hence it must be the case that limx→c− ‖F∗(x)‖ = +∞. �

5.3.6. REMARKS.
(1) The solution obtained in the Continuation Theorem is called the maximal con-
tinuation of the solution to the DE.

(2) Like the Local Picard Theorem, the Continuation Theorem works in both direc-
tions by symmetry.

(3) If the DE is defined on R×Rn, one may have to restrict the x-domain as well as
the y domain to get a local Lipschitz condition. One can restrict to [−R,R]×bR(0)
to apply the Local Picard Theorem and the Continuation Theorem, and then piece
the unique solutions together as in the proof above.

5.3.7. EXAMPLE. Not all solutions of differential equations blow up in the
manner of the previous theorem. Consider this DE which was cooked up to have
f(x) = sin 1

x as a solution.

x4y′′ + 2x3y′ + y = 0 and y( 2
π ) = 1, y′( 2

π ) = 0 for x ∈ R.

This looks like a reasonably nice linear DE. However it is not in standard form, and
the leading coefficient x4 vanishes at x = 0. In standard form, it becomes

y′′ = −2y′

x
− y

x4 and Φ(x, y0, y1) =
(
y1,−

2y1

x
− y0

x4

)
.

The function Φ is discontinuous at x = 0, so we cannot expect any solution to
include 0 in the domain. On the other hand, Φ satisfies a global Lipschitz condition
on [ε,∞)× R2 because

∇yΦ =

[
0 1
− 1
x4 − 2

x

]
is clearly bounded for x ≥ ε. Therefore the Global Picard Theorem shows that this
has a unique solution on [ε,∞). The uniqueness ensures that these solutions agree
on the intersection, and so we can continue the solution to (0,∞).

The reader can check that f(x) = sin 1
x is a solution. Clearly this does not

extend beyond (0,∞). Since f ′(x) = −1
x2 cos 1

x , the solution to the first order
vector valued DE is

F (x) =
(
f(x), f ′(x)

)
=
(

sin
1
x
,− 1

x2 cos
1
x

)
.



102 Differential Equations

Look at the points xn = 2
(2n+1)π . Then F (xn) = ((−1)n, 0). Thus

lim inf
x→0+

‖F (x)‖ ≤ 1 <∞.

This does not contradict the Continuation Theorem because Φ is not defined at
x = 0.

5.4. Existence without Uniqueness

5.4.1. EXAMPLE. Consider the differential equation

y′ = y2/3, y(0) = 0, x ∈ R.

The function Φ(x, y) = y2/3 is not Lipschitz because ∂Φ

∂y = 2
3y
−1/3 blows up at

y = 0. Hence the Picard Theorems do not apply.
We can try to solve it using separation of variables and integration to get:

3y1/3 = x+ c.

Then c = y(0) = 0, and hence y = x3/27. By inspection, one can see that
f(x) = 0 is a solution. This is a second solution valid on the whole real line.
Hence the solution is not unique.

In fact, there are infinitely many solutions. For any b ≤ 0 ≤ a, the function

f(x) =


(x−b)3

27 if x ≤ b
0 if b ≤ x ≤ a
(x−a)3

27 if x ≥ a.
is a solution.

Note that as long as y is bounded away from 0, there is a Lipschitz condition on
Φ. So any non-zero initial value for y(c) will yield a solution by the Local Picard
Theorem and the Continuation Theorem. What will happen is that this solution
will be a cubic that will continue in both directions. But in one direction, it will
eventually hit the x-axis tangentially. At that point, the solution may run along the
axis for a while before continuing as a cubic on the other side of the axis. So the
uniqueness of the continuation works until we hit the axis, where Φ is fails to be
locally Lipschitz.

It turns out that only continuity of the function Φ is necessary to ensure the
existence of a solution on a small interval. However the proof is more sophisticated,
and relies on the Arzela–Ascoli Theorem 2.5.5.

5.4.2. PEANO’S THEOREM. Let Γ ∈ Rn and Φ : D = [a, b] × bR(Γ) → Rn
be continuous. Then the DE

F ′(x) = Φ(x, F (x)), f(a) = Γ for a ≤ x ≤ b
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has a solution on [a, a+ h], where h = min{b− a,R/‖Φ‖∞}.

PROOF. As in Picard’s proof, we convert the problem to finding a fixed point
for the map T , where

TF (x) = Γ +

∫ x

a
Φ(t, F (t)) dt.

Pick N so that 1
N < h. For each n ≥ N , define a function Fn(x) on [a, a+ h] by:

Fn(x) =


Γ for a ≤ x ≤ a+ 1

n

Γ +

∫ x−1/n

a
Φ(t, Fn(t)) dt for a+ 1

n ≤ x ≤ a+ h.

It appears that this definition depends on knowing Fn to define Fn, but actually,
it is defined as the constant on [a, a + 1

n ]. Then the integral makes sense for x in
[a+ 1

n , a+
2
n ]. OnceFn is defined there, the integral will make sense on [a+ 2

n , a+
3
n ]

as long as Fn(x) ∈ bR(Γ). This follows from

‖Fn(x)− Γ‖ ≤
∫ x−1/n

a
‖Φ(t, Fn(t))‖ dt ≤ ‖Φ‖∞(h− 1

n) ≤ R.

Therefore Φ(t, Fn(t)) is defined for a ≤ t ≤ a+h. So one proceeds in this manner,
step by step, to define Fn on [a, a+ h].

Next we calculate for a ≤ x ≤ a+ 1
n ,

‖TFn(x)− Fn(x)‖ =
∥∥∥Γ +

∫ x

a
Φ(t, Fn(t)) dt− Γ

∥∥∥
≤
∫ x

a
‖Φ(t, Fn(t))‖ dt ≤ ‖Φ‖∞(x− a) ≤ 1

n‖Φ‖∞.

Then for a+ 1
n ≤ x ≤ a+ h,

‖TFn(x)− Fn(x)‖ =
∥∥∥∫ x

x− 1
n

Φ(t, Fn(t)) dt
∥∥∥

≤
∫ x

x− 1
n

‖Φ(t, Fn(t))‖ dt ≤ 1
n‖Φ‖∞.

Therefore ‖TFn − Fn‖∞ ≤ 1
n‖Φ‖∞.

Next we show that {Fn : n ≥ N} is equicontinuous. Given ε > 0, take
δ = ε/‖Φ‖∞. If a ≤ x1 < x2 ≤ a+ h and |x2 − x1| < δ, then

‖Fn(x2)− Fn(x1)‖ ≤
∫ x2− 1

n

x1− 1
n

‖Φ(t, Fn(t))‖ dt

≤ ‖Φ‖∞|(x1− 1
n)− (x2− 1

n)| < ‖Φ‖∞δ = ε.

The family of functions {Fn : n ≥ 1} is bounded by ‖Γ‖+R and equicontinu-
ous. Therefore we may apply the Arzela–Ascoli Theorem to deduce that its closure



104 Differential Equations

is compact. Here we have a family of vector valued functions. However each of the
n coordinate functiona are closed, bounded and equicontinuous. So the set is itself
compact.

Hence we can extract a subsequence Fni which converges uniformly on [a, a+
h] to a function F (x). We will show that F is a fixed point of T , and hence a
solution of the DE. Compute

‖F (x)−TF (x)‖ ≤ ‖F (x)−Fni(x)‖+‖Fni(x)−TFni(x)‖+‖TFni(x)−TF (x)‖

≤ ‖F−Fni‖∞+
‖Φ‖∞
ni

+

∫ a+h

a

∥∥Φ(t, F (t))−Φ(t, Fni(t))
∥∥ dt.

Since D is compact, Φ is uniformly continuous on D. For ε > 0, there is
a δ > 0 so that ‖y − z‖ < δ implies that ‖Φ(x, y) − Φ(x, z)‖ < ε/h for all
x ∈ [a, a+ h]. Choose ni so large that

‖F − Fni‖∞ < min{δ, ε} and ‖Φ‖∞ < niε.

Then

‖F (x)− TF (x)‖ < ε+ ε+

∫ a+h

a
ε/h dt = 3ε.

The left side is constant, and the right side can be made arbitrarily small. Hence
TF = F is a solution. �

5.5. Stability of DEs

Many DEs are designed to model behaviour in a perfect environment. In real
life, there are often things which interfere with the process. For example, some
physical actions are hypothesized to happen in a vacuum. When they occur in air,
there is a component of friction from passing by air particles. In economics, there
is often a significant noise component.

It is important to understand how a solution changes under such perturbations.
The famous quote about a butterfly in the Amazon jungle affecting weather in
Canada is a very long-term effect. Even under the ideal conditions, small changes
in the initial conditions can have a dramatic effect far in the future. What we are
concerned with here are local issues: how does the solution change nearby? Does
a small change in the DE or in the initial conditions result in a small change in the
solution? The short answer is yes if the initial DE is locally Lipschitz.

5.5.1. PERTURBATION THEOREM. Let Φ : D = [a, b] × bR(Γ) → Rn
satisfy a Lipschitz condition in y with constant L. Suppose that Ψ : D → Rn is
another continuous function on D such that

‖Ψ−Φ‖∞ = sup
(x,y)∈D

‖Ψ(x, y)−Φ(x, y)‖ ≤ ε.
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(The function Ψ is not assumed to be Lipschitz.) Suppose that F and G are solu-
tions of the differential equations

F ′(x) = Φ(x, F (x)), F (a) = Γ

and
G(x)′ = Ψ(x,G(x)), G(a) = ∆

such that (x, F (x)) and (x,G(x)) belong toD for a ≤ x ≤ b. Define δ := ‖∆−Γ‖.
Then, for all x ∈ [a, b],

‖G(x)− F (x)‖ ≤ δeL|x−a| + ε

L
(eL|x−a| − 1).

Thus
‖G− F‖∞ ≤ δeL|b−a| +

ε

L
(eL|b−a| − 1).

PROOF. Define

τ(x) = ‖G(x)− F (x)‖ =
(n−1∑
i=0

(
gi(x)− fi(x)

)2
)1/2

.

In particular, τ(c) = ‖∆− Γ‖ = δ. Then by the Cauchy–Schwarz inequality,

2τ(x)τ ′(x) = (τ(x)2)′ =
n−1∑
i=0

2
(
gi(x)− fi(x)

)(
g′i(x)− f ′i(x)

)
≤ 2
(n−1∑
i=0

(
gi(x)− fi(x)

)2
)1/2(n−1∑

i=0

(
g′i(x)− f ′i(x)

)2
)1/2

= 2τ(x)‖G′(x)− F ′(x)‖.
Also

‖G′(x)− F ′(x)‖ = ‖Ψ(x,G(x))−Φ(x, F (x))‖
≤ ‖Ψ(x,G(x))−Φ(x,G(x))‖+ ‖Φ(x,G(x))−Φ(x, F (x))‖
≤ ε+ L‖G(x)− F (x)‖ = ε+ Lτ(x).

Therefore if τ(x) 6= 0, we get

τ ′(x) ≤ ‖G′(x)− F ′(x)‖ ≤ ε+ Lτ(x).

Consider x ∈ [a, b]. In the inequality above, we needed to divide by τ(x).
However it clearly is not a problem for us if τ(x) = 0 because this will improve
our estimates. Define

d = sup{a ≤ t ≤ x : τ(t) = 0} ∪ {a}.
If d = x, then τ(x) = 0. Otherwise

x− a ≥ x− d =

∫ x

d
dt ≥

∫ x

d

τ ′(t)
ε+ Lτ(t)

dt
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=
1
L

log(ε+ Lτ)
∣∣∣x
d
=

1
L

log
(Lτ(x) + ε

Lτ(d) + ε

)
.

Therefore
Lτ(x) + ε

Lτ(d) + ε
≤ eL|x−a| or Lτ(x) + ε ≤ eL|x−a|(Lτ(d) + ε).

Now τ(d) ≤ τ(a) = δ. Thus by solving for τ(x), we get

‖G(x)− F (x)‖ = τ(x) ≤ δeL|x−a| + ε

L
(eL|x−a| − 1).

The last statement is straightforward. �
An important consequence of this result is that the solution of a DE with Lips-

chitz condition is a continuous function of the initial conditions. For simplicity, we
take c = a, but it is readily modified for other points.

5.5.2. COROLLARY. Suppose that Φ satisfies a local Lipschitz condition in y
on [a, b]× Rn. Then the solution FΓ of

F ′(x) = Φ(x, F (x)), F (a) = Γ

is a continuous function of Γ.

PROOF. Fix R > 0 and let L be the Lipschitz constant in y on D = [a, b] ×
bR+1(Γ) and let M = sup(x,y)∈D ‖Φ(x, y)‖. Assume that ‖∆ − Γ‖ < 1. Then
bR(∆) ⊂ bR+1(Γ). Then applying the Local Picard Theorem with either initial
condition f(a) = Γ or F (a) = ∆, we obtain a unique solution FΓ or F∆ on [a, a+h]
where h = min{b− a, RM } and the solution graphs remain in D.

Therefore we may apply the Perturbation theorem with Ψ = Φ in the Pertur-
bation Theorem (so that ε = 0) to show that

‖F∆(x)− FΓ(x)‖ ≤ ‖∆− Γ‖eL|x−a| and ‖F∆ − FΓ‖∞ ≤ ‖∆− Γ‖eLh.
Thus the solution depends continuously on the initial conditions. �

The Perturbation Theorem can be interpreted as a stability result. If the DE
and initial data are measured empirically, then this theorem assures us that the
approximate solution based on the measurements remains reasonably accurate.

5.5.3. EXAMPLE. The DE y′′+y = 0, y(0) = 0, y′(0) = 1 for x ∈ [−π, π] has
unique solution f(x) = sinx. The associated function Φ(x, y0, y1) = (y1,−y0)
has global Lipschitz constant 1. Consider

y′′ + y = e(x, y, y′) y(0) = 0 and y′(0) = 1 for x ∈ [−π, π],
where e(x, y, y′) is a small function bounded by ε; and let g(x) be the solution. By
the Perturbation Theorem, since δ = 0, we get∥∥(g(x)− sinx, g′(x)− cosx

)∥∥ ≤ ε(e|x| − 1).
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Exercises

1. Consider the DE: y′ = 1 + xy and y(0) = 0 for x ∈ [−b, b], where b > 0.
(a) Reduce this to finding the fixed point of a mapping T . Show that when b = 1, the

map T is a contraction mapping.
(b) Prove that the DE has a unique solution on [−b, b] for any b > 0. Hence deduce

that there is a unique solution on the whole line R.
(c) Let f0(x) = 1 and compute fn(x) = Tnf0 by induction. Prove directly (rather

than by quoting a theorem) that the sequence fn converges uniformly on [−b, b].
2. Consider the linear DE y′′ − x−1y′ + x−2y = 0 for x ∈ [1, 3].

(a) Show that this DE has a unique solution for each choice of initial values Γ =
(y(1), y′(1)) ∈ R2.

(b) Check that y = x is a solution. Find a solution of the form f(x) = xg(x) by
showing that g′ satisfies a 1st order DE, and solving it.

(c) Show that the set of solutions that you obtain is a 2-dimensional vector space that
contains all possible solutions.

3. Consider the DE: y′′ = (1 + (y′)2)3/2 and y(0) = 0, y′(0) = 0.
(a) Convert this to a first order vector valued DE. Show that it satisfies a local Lipschitz

condition, and find an h > 0 so that a solution exists on [−h, h].
(b) Show that f(x) = 1−

√
1− x2 is the unique solution on (−1, 1).

(c) This solution does not continue further, yet |f(x)| ≤ 1. Why does this not contra-
dict the Continuation Theorem?

4. Suppose that Φ and Ψ are Lipschitz functions defined on [a, b] × R. Let f and g
be solutions of f ′ = Φ(x, f(x)) and g′ = Ψ(x, g(x)), respectively. Suppose that
f(a) ≤ g(a) and Φ(x, y) ≤ Ψ(x, y) for all (x, y) ∈ [a, b]×R. Show that f(x) ≤ g(x)
for all x ∈ [a, b]. HINT: If f(x) = g(x), what about f ′(x) and g′(x)?

5. Consider the DE: y′ = x2 + y2 and y(0) = 0.
(a) Show that this DE satisfies a local Lipschitz condition but not a global one.
(b) Integrate the inequality y′ ≥ 1 + y2 for x ≥ 1 to prove that the solution must go

off to infinity in a finite time.

6. Show that the set of all solutions on [a, a+h] to the DE of Peano’s Theorem is closed,
bounded, and equicontinuous; and thus is compact.

7. Let γ ∈ R and let Φ be a continuous real-valued function on [a, b] × [γ − R, γ + R].
Consider the DE y′(x) = Φ(x, y) and y(a) = γ. Then Peano’s Theorem guarantees a
solution on [a, a+ h] for some h > 0.
(a) If f and g are both solutions on [a, a+ h], show that f ∨ g(x) = max{f(x), g(x)}

and f ∧ g(x) = min{f(x), g(x)} are also solutions.
HINT: Verify the DE in U = {x : f(x) > g(x)}, V = {x : f(x) < g(x)}, and
X = {x : f(x) = g(x)} separately.

(b) Prove that the set of all solutions on [a, a+ h] has a largest and smallest solution.
HINT: use Exercise (6). Find a countable dense subset {fn} of the set of solutions.
Let gk = max{f1, . . . , fk} for k ≥ 1. Show that gk converges to the maximal
solution fmax.
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8. Prove Gronwall’s inequality: suppose that u ∈ C[0, b] satisfies u ≥ 0 and there are
non-negative constants C and K so that

u(x) ≤ C +K

∫ x

0
u(t) dt for 0 ≤ x ≤ b.

Prove u(x) ≤ CeKx for x ∈ [0, b].
HINT: let v(x) denote the RHS, derive a differential inequality, and integrate.
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