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CHAPTER 1

Metric Spaces

In calculus, we learned about the structure of the real line and R™ and continuous
functions on subsets of R™ In this course, we find that the same ideas generalize to
a much broader context.

1.1. Normed Vector Spaces

A natural generalization of R™ with its usual Euclidean distance is the notion
of a vector space with a norm, so that we can discuss convergence.

1.1.1. DEFINITION. If V is a vector space over F € {R, C}, then a norm on V'
is a function || - || : V' — [0, c0) such that

() ||v[|=0 <= v=0 (positive definite).
(2) ||Av|| = |\l ||v|| forall A € Fand v € V' (positive homogeneous).
(3) [Jlu+v|| < |Jul| + ||v]| for all u,v € V' (triangle inequality).

We say that (V|| - ||) is a normed vector space. A seminorm satisfies (2) and (3)
and ||0]| = 0, but possibly some non-zero vectors have zero norm.

1.1.2. EXAMPLES.
(1) R™ and C" for n > 1 with the Euclidiean norm. If x = (x4, ..., z,), then

lzlla = (Y lea?) 2.
=1

Recall that this is an inner product space with (x,y) = > ", ;y;. Indeed, any
inner product space is a normed vector space with ||z|| = (z,z)!/2. The triangle
inequality follows from the Cauchy-Schwarz inequality: |(x,y)| < ||z ||y]|-

lz+ylI* = (z+y,x+y) = (z,2) + (z,9) + (¥, 2) + (4, 9)
= [lz|* + 2Re(z, y) + [lyl*
< lz|* + 2l lyll + ly* = (=l + llyl)>.
1



2 Metric Spaces

(2) If X C R™, let C*(X) denote the space of bounded continuous functions on X
with supremum norm

[ lloc = sup [f()].
zeX

If X is closed and bounded, then the Extreme Value Theorem shows that every
continuous function on X is bounded and attains it maximum modulus. In this
case, we write C'(X) for the space of all continuous functions on X with the supre-
mum norm. We will write Cr(X) if we want the real vector space of real valued
continuous functions. The norm properties are easy to verify.

(3)For 1 < p < o0, let lz(,n) be C™ with the norm
Izl = (D l=il?) 7.
i=1

We also define zS.? with norm

|z]|co = max{|zi],...,|zn|}

Properties (1) and (2) are easy. It is not obvious that the triangle inequality holds
except for p = 1 and p = oco. This will be established below for 1 < p < oo.

(3) For1 < p < o0, let l,, denote the set of all infinite sequences with coefficients
inCorR, z = (z1, 22, 23,...), for which the series

2]l = |ilP < co.

i>1
Likewise we let [, denote the vector space of all bounded sequences with

||| = sup |z;].
i>1

(4) For 1 < p < oo, the LP norm on Ca, b] is given by

o= ( [ pas)”

Again it is not obvious that this satisfies the triangle inequality except for p = 1.
For p = 2, this follows because

b
mmzjf@mmm

is an inner product that yields the 2-norm.

1.1.3. THEOREM (Minkowski’s inequality). For 1 < p < oo, the triangle

inequality is valid for the LP norm on C'a, b] and the norm on l, and ll(,n). Equality

holds only when f and g lie in a 1-dimensional subspace.
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PROOF. Let f,g € Cla,b] be non-zero functions (the case of f = 0org =0
is left to the reader). Define A = || f||, and B = ||g||,. Note that A > 0 because
| f(z)| > 0 on some interval (c, d) by continuity; and similarly B > 0. So we may

define fo = f/A and go = g/B. Clearly || foll, = 1 = [|goll,-

Consider the function ¢(x) = 2P on [0, 00). Note that ¢ (x) = p(p—1)zP~2 >
0 on (0,00), and thus ¢(x) is a strictly convex function, meaning that it curves
upwards, or that for all z}, 2z, € [0,00) and 0 < ¢ < 1,

p(tey + (1 = t)xa) <to(zr) + (1= t)p(z2);
with equality only when 1 = z; or £ = O or ¢t = 1. That is every chord between
distinct points on the curve y = p(x) lies strictly above the curve.
For us, this means that for any x € [a, b] that

P » B
114 (op @+ oslan@]) < oslho@P + osla@l.
Now we integrate this:

b b x x)|\P
(AqLIB)P/ |f(x)+g(x)|pdx§/ (A|f0( lig@o( )|) d

boA
< p
< | g+

- P )P
(1.1.5) A+B/a | fo(z)] dw+A+B/ lgo()[P dz

A
p
= 5 lfollp +

=1.
Multiplying through by (A + B)P, we get that

1F+ 9l < (A+B)P = (I £llp + llgllp)”-

This establishes the triangle inequality.

Finally, note that equation(1.1.4) is a strict inequality unless | fo(x)| = |go(z)].
If they differ at some ¢, then by continuity, they differ on an interval (¢, d) con-
taining xo. Thus when we integrate, the inequality will be strict. This shows that
| fol = |go|- Also in the first line of equation (1.1.5), the inequality is strict unless
sign(fo(x)) = sign(go(x)). Again strict inequality at a point leads to strict inequal-
ity on a whole interval, and thus a strict inequality when we integrate. Combining
the two ideas shows that for equality, we require that fo = go, or that g = Bf/A.
That is, g is a scalar multiple of f.

p
gl dr

p
Tl

The proof for [, and l](,n) is basically the same, but without any concern about
continuity. Suppose that ,y € [, are non-zero. Set A = ||z||, and B = ||y||,. By
the convexity of p(z) = aP, we obtain that

) = (a5 a t s 8) <mrs(a) *ars(5)
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Sum from 1 to co (or stop at n) and obtain that

A+B Z | + P d < Z <|~”1/‘;|1jrrllgyz )

A rlm\e B (lyil\P
< j4d]
_;A+B< 1) *1s(s)
A Sylzle | B (luilye
_A+BZZ_:< ) +A+B;<A)
A qzlb . B |l
A+B Ar A+B Bp

Thus ||z + y||h < (A+ B)? = (||z]|, + ||lyll»)P, which is the triangle inequality.
The case of equality is argued in the same manner. |

1.2. Metric spaces

The idea of a metric space generalizes the notion of distance beyond subsets of
Euclidean space. However many ideas such as continuity and completeness extend
naturally to this more general context.

1.2.1. DEFINITION. A metric space (X, d) is a set X together with a distance
function d : X x X — [0, 00) such that

(1) d(z,y) =0 <= z =y forx,y € X.
(2) d(z,y) = d(y,z) forz,y € X  (symmetry).
(3) d(z,z) < d(z,y) +d(y,z) forz,y,z € X  (triangle inequality).

Any reasonable function that tries to be a distance will satisfy (2), and generally
verifying (1) is very easy. But the triangle inequality can be tricky, as we saw in the
previous section.

A useful consequence of the triangle inequality, sometimes called the reverse
triangle inequality is

d(z,z) > d(xz,y) —d(y,z) forall z,y,z¢€ X.
Try to convince yourself that this is true.
1.2.2. EXAMPLES.

(1) Let (V,||-||) be a normed vector space, and let X C V. Define d(z,y) = ||z—y||
for z,y € X. Then (X, d) is a metric space induced from the norm.
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(2) Let X be a set. The discrete metric is given by

d(z,y) = 0 if z=y9
W= 1 if v#y

(2) A variant on (2) is the Hamming distance on the collection P (X) of all subsets
of a finite set X given by

p(A,B) = [ADB| = [(AUB)\ (AN B)|

the cardinality of the symmetric difference between the two sets A, B € P(X).
Convince yourself that this satisfies the triangle inequality.

(3) If X is the sphere S, namely the surface of the unit ball in R**!, or indeed any
other manifold, the geodesic distance between two points z,y € X is the length of
the shortest path on the surface from z to y. On S2, there is a unique great circle
through x # y, namely the intersection of the plane spanned by z and y in R? with
S>. The shortest path follows the great circle from x to y in the shorter direction.
Since any path from x to y and on to z has to be at least as long as the shortest path
from z to z, the triangle inequality holds.

(4) Let X be a closed subset of R™; and let #(X) denote the collection of all
non-empty closed bounded subsets of X. If A € H(X) and b € X, let

d(b, A) = inf ||a — b|| = min|ja — b]].
acA acA

The minimum is obtained because f(a) = ||a — b|| is continuous on the closed
bounded set A, and so the Extreme Value Theorem guarantees the minimum is
attained. In particular, if b & A, then d(b, A) > 0. Indeed, if d(b, A) = 0, then
there is a sequence a,, € A such that ||b — a,|| — 0. Therefore lim,,_,~ a,, = b.
Since A is closed, b € A, contrary to our assumption.

The Hausdorff metric on H(X) is given by

dr(A,B) = max{ SIEJB d(a, B), sgg d(b, A)}

Again these supremums are obtained. Note that dy (A, B) < oo because A and
B are bounded. If A # B, then there is a point in A or B not in the other. For
definiteness, suppose that a € A\ B. Then dy (A, B) > d(a, B) > 0.

The symmetry property is obvious.

Let us verify the triangle inequality. Let A, B,C' € H(X). Fix a € A, and let
be B.

A(a,C) = inf Jla — e < inf fla—b]| + b — |
= fla— bl + inf [lb = ]| = la — b] + d(b, C)
< Jla—bl| + du (B, C).
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Since this is valid for any b € B, it is true if we take the infimum over B;

d(a,C) < b1n£||a - b” +dH(B,C) = d(a7B) +dH(BaC)
€

Now take the supremum over all a € A;
sup d(a,C) < supd(a,B)+dy(B,C) <dg(A,B) +dy(B,C).
acA acA
Now reverse the role of A and C to obtain
sup d(C, A) < dH(C, B) + dH(B, A) = dH(A, B) + dH(B, C)
ceC
Finally taking the maximum of these last two quantities proves the triangle inequal-
ity:
dH(A, C) < dH(A, B) + dH(B, C)

(5) Here is an even crazier example, which we will explore during this course:
the p-adic metric on Q. Fix a prime p. If x # 0 € Q, we can factor v = p*%
where a,r,s € Z and ged(r,p) = 1 = ged(s,p) = ged(r, s). That is, we pull
out all factors of p leaving something relatively prime. We define what is called
a norm by number theorists: |z|, := p~® for x # 0 and |0[, = 0. Then define
dp(z,y) = |x — y|p. The function | - |, satisfies

(i) |z|, = 0if and only if z = 0.
(i) [zylp = |2lp |ylp-
(i) |z £ ylp < max{|z|p, [ylp}-
Note that (ii) is easy to check. Now (iii) will follow from the p-adic triangle in-
equality by taking O as the intermediate point. Notice that x and y are close if x —y

is divisible by a large positive power of p. For example, the sequence a,, = p"
converges to 0 in this metric because

dp(an,0) = |ayl, =p~ " — 0.

Again it is clear that (1) and (2) hold, so we need to verify the triangle inequal-
ity. In fact, it satisfies the strong triangle inequality:

(1.2.3) dp(z, 2) < max {dp(z,y), dp(y,2)} for wz,y,z€Q.

Letus factorx —y = p*L andy — 2 = pb% where r, s, t, u are integers relatively
prime to p, and a, b € Z. First suppose that a < b. Then

b—a b—a
r t U+ st
fC*ZZ(ﬂf*y)+(y*Z)=p“(f+p )Zp“<7p )
s U su

It is easy to check that ru and su are relatively prime to p, and thus so is ru+p®~%st.
When the fraction is reduced to lowest terms, this remains the case. Therefore,

dp(z,2) = p~* = dp(z,y) = max{p~*,p~°} = max{dy(z,y),dp(y, 2) }-
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By symmetry, this also holds when a > b. So consider the case when a = b. Then

r t ru + st
w—ZZ(w—y)Jr(y—Z):p“(erf)=p“( )
s u su
As before, the denominator su is relatively prime to p. However the numerator
ru + st factors as ru + st = p°v for a non-negative integer ¢ and an integer v

3 3 — patcv
relatively prime to p. Therefore x — z = p®™“_~. Hence

dp(z,2) =p ¢ < p~* = max{d,(z,y),d,(y, 2)}.

1.2.4. DEFINITION. If (X, d) is a metric space and Y C X, then (Y, d) has the
induced metric d(y;, y») obtained by restricting dto Y x Y.

Two metrics d and d’ on X are called equivalent metrics if there are constants
0 < e <C < oosothat

cd(xy, 1) < d'(x1,12) < Cd(x1,22) forall my, 72, € X.

1.2.5. EXAMPLE. Let S! denote the unit circle in C, namely
Sl={zeC:|z|=1}={e?:0< 6 <2n}.

Let p be the geodesic distance around the circle. This is easily seen to be
p(e %) = min{|0 — 6,],27 — |0; — 62|}

Now S! also has an induced metric d from the Euclidean norm on C. A simple
calculation using trigonometry shows that

d(ew] , 61‘02) = ‘ew] — ewz} = 2sin %p(ew‘,ewz).

Now on the interval [0, 7/2], the function f(z) = sinz is concave down be-
cause f”(z) = —sinz < 0 on (0,7/2). So 2z < sinz < z on [0,7/2]. Since
1p(e®1, e lies in [0, 7/2], we deduce that

2 6 b i0, _i0 i0, 0
— < d 01 102 < 0 eyl
2 o6, e) < d(e, %) < ple™, ¢%)

So p and d are equivalent metrics on S'.

Exercises

1. (a) Show that the /| norm satisfies the triangle inequality. When is it an equality?
(b) Show that the [, norm satisfies the triangle inequality. When is it equality in l((;;') ?

2. Let C™[a,b] be the vector space of functions on [a, b] with n continuous derivatives.
Prove that || fcn = maXo<i<n SUP,<,<p |f®(z)| is a norm.

3. Prove that the unit ball of a normed vector space is convex, i.e. if ||z|| < 1 and
lyll < 1,then |tz + (1 —t)z| < 1forall0 <t < 1.

4. If (z,d) is a metric space, prove that |d(z,y) — d(z,z)| < d(y, z).
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(a) Prove that the li") and zé@.” norms on R” yield equivalent metrics.
(b) Show that this is not true for /; and [, norms on the subspace V' of sequences
which are non-zero on only finitely many coordinates.

Define d : [0,27)? — R, by d(z,y) = min{|z — y|,27 — |z — y|}.

(a) Prove that this is a metric.

(b) Show that the map f(z) = e* (or (cosz,sinz) in R?) is an isometric map of
([0,27), d) onto the unit circle with the geodesic metric.

Put a metric p on all the words in a dictionary by defining the distance between two

distinct words to be 27" if the words agree for the first n letters and are different at

the (n+ 1)st letter. A space is distinct from a letter. E.g., p(car,cart) = 273 and

p(car, call) =272,

(a) Verity that this is a metric.

(b) Suppose that words w, w, and wj are listed in alphabetical order. Find a formula
for p(wy,w3) in terms of p(w;, w;) and p(w,, ws).

Let X =2V = {x = (21,22,...) : x; € {0, 1} } and define
d(x,y) = 223%\1‘1' — Yil-

i>1
(a) Prove that this is a metric.
(b) Define f : X — [0,1] by f(x) = d(0,x), where 0 = (0, 0,0, ...). Prove that this
maps X onto the Cantor set and satisfies 1d(x,y) < |f(x) — f(y)| < d(x,y) for
x,y € 2N,

Let V' be a vector space over F € {R,C} with a metric d. Say that d is translation
invariant if d(xz + z,y + 2) = d(x,y) for all x,y,z € V. Say that d is positive
homogeneous if d(Az, A\y) = |A|d(z,y) for all z,y € V and A € F. Prove that there
is a norm on V so that d(z,y) = ||« — y|| if and only if d is translation invariant and
positive homogeneous.

Let X be a closed subset of R™, and put the Hausdorff metric on #(X). If » > 0 and
Ac X,let A, ={z € X :d(x, A) <r}. Show that

dy(A,B)=inf{r >0: AC B,and B C A, }.
(Note: this is actually a minimum.)

A pseudometric on X isamap d : X> — R, which is symmetric, satisfies the triangle

inequality and d(x,z) = 0 forz € X.

(a) Let d be a pseudometric on X. Define a relation on X by z ~ y if d(x,y) = 0.
Prove that this is an equivalence relation.

(b) Define Y to be the set of equivalence classes [z]. Define p([z], [y]) = d(z,y).
Show that this is a well-defined metric on Y.

(c) Now suppose that V' is a vector space over R with a seminorm || - ||. Define equiv-
alence classes in the same way as (a). Show that N = [0] is a subspace, and that
the space of equivalence classes is just the quotient vector space Y = V/N. Also
show that the metric on Y comes from a norm.



1.3 Topology of Metric spaces 9

1.3. Topology of Metric spaces

In this section, we learn about open and closed sets. In the more general context
of topological spaces, everything is determined by the collection of open sets. In
metric spaces, there is a trade-off between topological notions that only depend on
the open sets and the quantitative aspect that comes from the distance function.

1.3.1. DEFINITION. Let (X, d) be a metric space. The open ball about x € X
of radius r > 0 is
be(z) ={y € X :d(x,y) <r}.
The closed ball about x € X of radius r > O is
br(z) ={y € X :d(z,y) <r}.
A subset N C X is a neighbourhood of x € X if there is some r» > 0 so that
by(x) C N.
A subset U C X is open if for all z € U, there is an r > 0 so that b, (z) C U.
A set C C X is closed if its complement C° := X \ C'is open.

1.3.2. PROPOSITION. b,.(z) is open for r > 0 and b, (z) is closed for r > 0.

PROOF. Lety € b,(x), say d := d(y,x) < r. We claim that b,_4(y) C b.(z).
Indeed, if z € b,_4(y), then d(z,y) < r — d; whence

d(z,z) <d(z,y)+d(y,z) <d+ (r—d)=r.
Thus z € b.(z).

If y ¢ b.(z), then d := d(y,x) > r. We claim that by_,(y) C X \ b.(z).
Indeed, if z € by_,(y), then d(z,y) < d—r; so using the reverse triangle inequality,

d(z,z) > d(z,y) —d(y,z) >d+ (d—r) =r.
Thus z & b,(x). So X \ b,(z) is open, and hence b,.(z) is closed. [

1.3.3. REMARK. Note that a neighbourhood does not need to be open. Indeed
an open set is a set which is a neighbourhood of each of its elements. Some books
use a different convention, but there is good reason to use this terminalogy.

Closed is not the opposite of open. Many sets are neither open nor closed. For
example, in R, the sets (a,b], Q and {1 : n > 0} are neither open nor closed in the
Euclidean metric.

Points are closed sets because {2} = bo(z).

1.3.4. EXAMPLES.

() U := {(z,y) € R* : xy > 1} is open in R?. To see this, let us assume
that z > 0 and (=, ) e U, say xy = 1+ > 1 (the case z < 0 is basically
the same). Define r = min {3, §, 5.5 }- Suppose that (u,v) € b((z,y)), i.e.
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(u — x)? + (v — )% < r2. Then in particular, u >z —7 > 0andv >y —r > 0.
Thus

w > (x—7r)(y—7r)=ay —r(z+y)+r’> 1—|—5—%=1+%> 1.
Therefore b, ((z,y)) C U.

() C := {(z,y) € R*: 2y > 1} is closed in R2. To see this, note that U = C° =
{(z,y) € R? : xy < 1}. This can be shown to be open as in the previous example.

(3) The entire set X is always open. Also the empty set () is open because there
are no points in the set, and so each point in the set is contained in an open ball.
Therefore X and () are also closed sets.

(4) Let (N,d») be N with the 2-adic metric coming from (Q, d,). The distance
between any two points is always a power of 2. For n € N and d > 0, the closed
ball by—a(n) = {m € N : 2%|m — n}. (Here a|b means that a divides b in N.) Thus

by-a(n) = {m € N: dy(m,n) <27}
={m e N:dy(m,n) < 21_d} = byi-a(n).

Thus these closed balls are also open balls. Sets which are both closed and open
are called clopen. The exception is the singleton {n} which is closed but not open.

1.3.5. PROPOSITION. (a) If {Uy : A € A} is a collection of open sets, then
Uxea Un is open. Likewise if {Cy : X\ € A} is a collection of closed sets, then
Mxca Ch is closed.

(1) If Uy, ..., Uy, is a finite collection of open sets, then (., U; is open. Like-
wise if Cy, ..., Cy, is a finite collection of closed sets, then | J;—_, C; is closed.

PROOF. (a) Let x € U := U/\eA U,. Then there is some \g € A so that
x € Uy,. Since Uy, is open, there is an r > 0 so that b,.(x) C U),. Therefore
br(z) C U; whence U is open.

If C) is closed, then Uy = C¥ is open. Since

X\ =
AEA AEA

is open by the first paragraph, it follows that (], ., C\ is closed.

(b) Let V = ﬂ?zl U;andletx € V. Thenz € U; for 1 < i < n. Since U; is
open, there is some 7; > 0 so that b, (x) C U;. Define r = min{r; : 1 <i < n}.
Then b, (z) C U; for 1 < i < n;and thus b,(z) C V. Hence V is open.

If C; are closed, then U; := C¥ is open. Observe that

x\|Ja=Nu
i=1

i=1

is open; whence | J-_, C; is closed. [
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1.3.6. DEFINITION. A sequence {z,},>1 in a metric space (X, d) converges
to xq if limy, o0 d(xy, zg) = 0. We write lim,,_,oc ©, = xo. That is, for any
e > 0, there is an N € N so that d(z,,z0) < € forall n > N. Symbolically,
Ves0 Inen Vo> d(zn, 20) < €.

A subsequence of {zy}n>1 is a sequence {z,, };>1 where n; < n;4; € N for
i > 1.

1.3.7. DEFINITION. If (X, d) is a metric space and A C X, the closure of A,
denoted A, is the smallest closed set containing A.

If there are points a,, € A such that lim,,_,o, a,, = ayp, say that ag is a limit
point of A. Moreover if one can choose the points a,, to be all distinct, then ay is

an accumulation point. A point a € A is an isolated point if there is an open set U
such that U N A = {a}.

1.3.8. PROPOSITION. Let (X,d) be a metric space. A subset A C X is closed
if and only if it contains all of its limit points.

PROOF. Suppose that A is closed and that {a,, },,>1 C A is a sequence which
satisfies lim,, o, a, = ag. If a9 & A, then it belongs to the open set U = A°€.
Hence there is an r > 0 so that b, (ag) C U. From the definition of limit, there is
an N € N so that d(ay, ap) < r for all n > N. This implies that {a, : n > N} C
br(ap) C U, and thus a,, ¢ A for n > N. This is a contradiction, whence we must
have ay € A.

Conversely suppose that A is not closed. Then U = A€ is not open. Therefore
U contains a point ag so that there is no » > 0 such that b,(ap) C U. This means
that for each n > 1, by /,,(ap) N A is not empty. Pick a,, € A so that d(an, ap) <
1/n. Then {ay}n>1 C A and limy,,—,o0 an, = ag ¢ A. This is the contrapositive of
the desired statement. |

We now get a more refined look at limit points.
1.3.9. PROPOSITION. Let (X,d) be a metric space, and let A C X. Then

A= ﬂ{C :C D A, C closed}
= {all limit points of A}
= A U {all accumulation points of A}
= {all isolated points of A} U {all accumulation points of A}.

PROOF. By Proposition 1.3.5, ({C : C D A, C closed} is a closed set. By
definition, it contains A and is contained in any closed set containing A; and thus
it is the smallest closed set containing A, namely A.
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The next three sets clearly each contain in the next. Indeed, each point a € A
is a limit of the constant sequence a, a, a, . . . . But a limit point ag of A is either an
isolated point of A or for each » > 0, b,(ap) N A \ {ap} is non-empty. Choose a
sequence a,, € A sothat 0 < d(an+1,a0) < d(an,ap)/2. Then ap = lim,,_,~ ap,
is an accumulation point. Thus these three sets coincide.

By Proposition 1.3.8, A contains all limit points of A, and in particular all
limit points of A. To finish the cycle, it suffices to show that the set B consisting
of all limit points of A is closed. By Proposition 1.3.8 again, it suffices to show
that B contains all of its limit points. Let b, € B such that lim, o b, = bo.
As by, is a limit point of A, we may write b,, = lim;_, a,; for a sequence of
points a,,; € A. Pick i, so that d(ay,,b,) < 1/n; and set a,, = ay;,. Since
lim,,_, o d(ay, by,) = 0, it follows that

0 < lim d(ap,bo) < lim d(ay,by) + d(by,by) = 0.
n—oo n—oo
Therefore by is a limit point of A. Hence B is closed and contained in A. Since A
is the smallest closed set containing A, A C B; and thus they are equal. |

The following consequence is immediate.

1.3.10. COROLLARY. Let (X,d) be a metric space, and let A C X. Then
A=A

1.3.11. DEFINITION. The interior of A, written int A, is the largest open set
contained in A.

It is straightforward to check that int A = |J{b.(a) : 7 > 0, b.(a) C A}.
Verify this. Then to check your facility with these ideas, show that
int A = (A¢)¢ =: A“€.

1.3.12. EXAMPLE. If (X,d) and (Y, p) are metric spaces, we can make the
product space X x Y = {(z,y) : x € X,y € Y} into a metric space with

D((z1,m), (x2,42)) = max{d(x1,22), p(y1,2)}-

There are other natural choices for the metric, such as

Dp((xl, Y1), (:cz,yz)) = (d(fm,xz)p + P(?/l,yz)p)]/p

for p > 1, with p = 1 and p = 2 being popular choices. The reader can check that
these metrics are all equivalent to D.
In (X X KD>’ br((‘TanO)) - b,«(.’L‘()) X br(yO)' A sequence ((xnvyn))n>1
converges in X x Y to (xg, 7o) if and only if lim x, = 29 and lim y, = yo.
n—oo n—oo
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1.4. Continuous functions

The notion of continuity from calculus readily generalizes to functions between
metric spaces. We distinguish between continuity using the e—9 definition and se-
quential continuity using convergent sequences. It will be a theorem to show that
they coincide.

1.4.1. DEFINITION. Let (X,d)and (Y, p) be metric spaces, andlet f : X — Y
be a function. Then f is continuous at x if for all € > 0, there is a 6 > 0 so that
d(z, ) < & implies that p(f(z), f(z0)) < €.

Say that f is continuous if it is continuous at x for every z € X.

Also f is uniformly continuous if for all € > 0, there is a § > 0 so that
d(x1,z2) < 0 implies that p(f(xy), f(z2)) < e. Note that here, the § does not
depend on x.

Finally we say that f is sequentially continuous if whenever lim,,_,~c , = xg
in X, then lim,, 0 f(2y,) = f(z0)inY.

The following result compares the e—§ definition (1), the topological version of
continuity (2) and the sequential version (3). Recall thatif V' C Y, that

V) ={zeX: flx)eV}.

1.4.2. PROPOSITION. Let (X,d) and (Y, p) be metric spaces, and let f : X —
Y be a function. The following are equivalent:

(1) f is continuous.
(2) f~YV) is open in X for every open setV C Y.

(3) f is sequentially continuous.

PROOF. (1) = (2). LetV C Y beopen, and fixzg € f~' (V). Since f(xq) =:
yo € V and V is open, there is an € > 0 so that b.(yo) C V. By the continuity of
f at zo, there is a § > 0 so that d(z, xo) < J implies that p(f(x),y0) < €. That
means that

f(bs(20)) C be(yo) C V-

Therefore f~1(V) contains bs(x¢). Since zo was an arbitrary point in f~!1(V), it
follows that f~!(V) is open.

(2) = (3). Suppose that lim,, oo €, = xg in X. Given any ¢ > 0, let V =
be(f(z0)) be an open ball in Y. By (2), f~!(V/) is open and contains z¢. Therefore
there is some § > 0 so that bs(z9) C f~'(V). Therefore if d(x,,9) < J, then
f(zn) € V,ie. p(f(xyn), f(zo)) < e. Since limy, o0 x,, = ¢, there is some
integer N so that d(z,, o) < ¢ provided that n > N. Since ¢ > 0 was arbitrary,
we conclude that lim,, o f(2,) = f(z9) in Y.
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(3) = (1). Suppose that f is not continuous at some zp € X; i.e. assume
that (1) is false. Then there must be some g9 > 0 so that no § > 0 works in the
definition of continuity at 9. Hence for § = %, there is some x,, € b; /n(azo) SO
that p(f(xy), f(x0)) > €o. This means that lim,,_, x,, = x¢ but since f(zy) is
bounded away from f(zp), we see that lim,,_,, f(x,) either does not exist or it
exists but if different from f(z). So f is not sequentially continuous. Thus (3) is
false. Thus —(1) implies —(3). The contrapositive is that (3) implies (1). |

We collect a few easy ways to build more continuous functions.

1.4.3. PROPOSITION. Let (X,d), (Y, p) and (Z, o) be metric spaces.

(a) The composition of continuous functions is continuous; i.e., if f : X — Y and
g Y — Z are continuous, then g o f : X — Z is continuous.

M Iff:X —Yand g: X — Z are continuous functions, then h = (f,g) :
X —'Y X Z is continuous.

PROOF. (a) Let W C Z be open. Since g is continuous, g~ ! (W) =: V is open
in Y. Then since f is continuous, (V) is open in X. Therefore

(go /)T W) =fHg~' (W) = fF1(V)

is open. Hence g o f is continuous.
(b) Recall from Example 1.3.12 that b, ((yo, 20)) = br(yo) X br(20). Thus

R (br (0. 20))) = [~ (br(90)) N 9" (br(0))

is open. Every openset V. C Y X Z is a union of balls, and the union of open sets
is open; thus h~! (V) is open. Therefore h is continuous. |

1.4.4. PROPOSITION. The set of continuous functions on a metric space (X, d)
with values in F € {R,C} is an algebra. That is, sums, products and scalar
multiples of continuous functions are continuous.

PROOF. Let f, g be continuous functions from X to F. By Proposition 1.4.3(b),
h(z) = (f(z),g(x)) is continuous into F2. Now the maps from F? to F by
a(s,t) = As + ut and m(s,t) = st are continuous for any scalars A\, u € F. By
Proposition 1.4.3(b), aoh and moh are continuous. Now aoh(x) = \f(x)+pg(zx)
and m o h(xz) = f(x)g(x). The result follows. [

Some functions preserve the structure of a metric space, or at least some part

of it,

1.4.5. DEFINITION. Let (X, d) and (Y, p) be metric spaces, andlet f : X — Y
be a function. Say that f is isometric or is an isometry if

p(f(x1), f(z2)) = d(z1,22) forall zy,2, € X.
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Say that f is Lipschitz if there is a constant C' < oo so that
p(f(x1), f(x2)) < Cd(zy,22) forall zy,z; € X.
Say that f is biLipschitz if there are constants 0 < ¢ < C' < oo so that
cd(zy,m) < p(f(x1), f(22)) < Cd(z1,22) forall zy,27 € X.

Say that f is a homeomorphism if it is a continuous bijection such that f~! is
also continuous.

An isometry preserves the distance, and clearly is biLipschitz withc = C = 1.
In particular it is injective. If f is a surjective isometry, then the inverse map is
also an isometry, and in particular f is a homeomorphism. Such a map preserves
all of the structure of the metric space. A bijection which is biLipschitz has an
inverse which is also biLipschitz with constants C~! and ¢~!. Again this will be
a homeomorphism. It may stretch or contract the distance a limited amount, but
it preserves a lot of the structure. The original metric d will be equivalent to the
metric o (1, 2) = p(f(z1), f(22)).

A homeomorphism preserves open sets. That s, if V is openin Y, then f~1(V)
is open in X because f is continuous; and if U is open in X, then f(U) =
(f~H~Y(U) is open because f~! is continuous. However it may overstretch or
understretch the metric so that certain quantitative things change.

The following very easy result is left as an exercise.

1.4.6. PROPOSITION. Lipschitz maps are uniformly continuous.

1.4.7. EXAMPLES.

(1) In Example 1.2.5, we discuss two metrics on the circle S!. The geodesic dis-
tance p, and the metric d induced by the Euclidean distance in C. These metrics
were shown to be equivalent. It follows that the identity map f : (S', p) — (S!,d)
given by f(e?) = € is a biLipschitz homeomorphism.

(2)Let f : ([0,1),d) — (S', p) map the half-open interval onto S' by f(t) = e>™,
It is clear that this map is Lipschitz with constant 27, and it is a bijection. However
it is not a homeomorphism because the sequence ¢, = ;% has no limit in [0, 1)
while f(t,) has the limit 1 in S'. So f~! is not continuous at 1. Another way to
see this is that d(0, t,) = t,, — 1 while

p(£(0), f(ta)) = |1 — e 2™/ D] = 25in 70 — 0.

(3) Let X be a convex subset of R™, and let F' : X — R™ be a differentiable
function. If the derivative DF' is bounded, then F'is Lipschitz. Remember that if
F = (fi,..., fm) where f; is the jth coordinate of F', then DF'(x) is the n x m

matrix [g—iﬂ . We will say that D F' is bounded if each % isboundedforl < <n
and 1 < j < m. Suppose that each coordinate is bounded by a constant C. This
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occurs, for example, when F is C' and X is closed and bounded by the Extreme
Value Theorem.

We need to estimate || F'(z1) — F(x7)||. To do this, let u be a unit vector in R™
colinear with F'(z1) — F'(z;). Then

[F (1) = F(z2)|| = [(F(21) = F(22)) - ul
Consider the scalar valued function f(z) = F(x) - u = 37" u; fj(x). Note that

o) = D)

ox;
=1
Therefore the gradient of f is given by

d )
@ e

Vi(@)=u-DF(z)=[ul ... up] : . :
Ofm Ofm
o (z) . a{;n (x)

If d; %( ), then DF () = [dj;]. The Cauchy-Schwarz inequality yields

ij = Bn
va ||2 Z ZU] 54 < Z HUH Zdzz < nmC’z.

=1 j=1
Since X is convex, we can apply the Mean Value Theorem to f restricted to the
line segment [z, x2]. We obtain a point £ € (x, z2) so that

(1) = f(@2)] = [(w1 = 22) - V(&) < |21 — 2] v/nmC.

Hence ||F(21) = F(22)|| = [f(21) = f(22)| < v/nmC|lz: -

(4 Let f : (=5,5) — Rby f(z) = tanz. Then f is a continuous bijection.
Moreover, f~!(y) = tan~!(y) is also continuous. Hence f is a homeomorphism.
The derivative f'(z) = sec®z blows up as * — +3. It follows that f is not
Lipschitz. Indeed, if 7 — & < x; < x2 < 7, then the Mean Value Theorem
provides some £ € (7, .’Eg) so that

f(x2) — f(x1)

Xy — I
On the other hand, (f~1) =

1
= f'(¢) > sec’(% —¢) = csc’e > =

= + > < 1. So f~!is Lipschitz with constant 1.

1.5. Finite dimensional normed vector spaces

Recall that a normed vector space (V, | - ||) has an induced metric d(u,v) =
|lu—v]||. If (V. ]|-]|) is another norm on V', we say that the two norms are equivalent
if there are constants 0 < ¢ < C' < 0o so that

cllv]| < vl < C|lv|| forall v e V.
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It is an easy exercise to see that this is the same as saying that the metrics that they
induce are equivalent.

1.5.1. EXAMPLE. Consider R" with the Euclidean norm [|v||> = (> 7, v7) 12

i=1 "4
and the lgn) norm |[v|; = Y, |vi|. Observe that by the Cauchy-Schwarz inequal-
ity,

n
ol =Y foil - 1 < Jloll2 I(1, -, Dll2 = Vallol2
i=1

On the other hand, by the triangle inequality,

n n
vllz < llvieilla = > vil = ol
=1 i=1

Therefore
o]l < |lvlli < v/nljv]lz forall v e R™

Hence these two norms are equivalent. The same argument works for C”.

1.5.2. THEOREM. IfV is a finite dimensional vector space over F € {R,C},
then any two norms on V' are equivalent.

PROOF. Since V is finite dimensional, we have that V ~ [F", where n =
dimV. Fixabasisey, ..., e, for V. Then each v € V has the form v = Z?:l V€4,
with v; € F. Let [[v], = (X1, |vi]2)1/2 be the 2-norm. This is the usual Eu-
clidean norm on F™. It suffice to show that all norms on V" are equivalent to | - ||2.

Let ||-|| be another norm on V. By the triangle inequality,

n n
lloll < >~ Noieall < D fvil llesl.
i=1 i=1

Hence by the Cauchy-Schwarz inequality,

ot < (1) (Zm@m )" =i,

=1

where C = (30 [les |||2)1/ ?is a constant. This shows that [lv]| is a Lipschitz
function on (V.|| - ||2), and in particular it is continuous.

Let S := {v € V : ||v|]» = 1} be the unit sphere in V. This is a closed and
bounded set in F"*, so we can apply the Extreme Value Theorem to the continuous
function ||v| to conclude that it attains its minimum value on S, say

¢ = lJeoll = inf ol
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Since 0 ¢ S, we have that ¢ > 0. Take any non-zero v € V. Then v/||v||» belongs
to S. Hence

) ‘ o |l _ Il
c < = .
ol llvll2
Therefore
clvll2 < |lv|| £ Cllv||z forall v e V.
Thus these two norms are equivalent. |

1.5.3. COROLLARY. Every vector space norm on F™ is biLipschitz homeomor-
phic to F™ with the Euclidean norm.

Exercises

1. Let (X, d) be a set with the discrete metric.
(a) Describe all open sets and all closed sets.
(b) Describe all convergent sequences.
(c) Describe all accumulation points of X.

2. Let V be an inner product space with norm ||z|| = (z, 2)'/2. Prove that a linear map

T from (F", || - ||2) into V is an isometry if and only if the set {Te¢; : 1 <i < n}isan
orthonormal set.

3. (a) If d; and d, are equivalent, prove that (X, d;) and (X, d,) have the same open sets.
(b) Is the converse true? Either prove it or provide a detailed counterexample.

4. Let d, be the 2-adic metric on Q.
—(—2)"
(a) Find lim # in (Q, d), and show that this limit is in the closure of N.
n—oo

(b) Find the closure of N in (Q, d,). HINT: figure out why (a) works.

5. Let (X,d) be a metric space and let (z,,),,>1 be a sequence in X, and let zp € X.
(a) If lim,,_, o &, = xo, then every subsequence (z,,);>1 converges to zo.
(b) If every subsequence (z,,);>1 has a subsequence (2, ) >1 which converges to o,
then (z,,),>1 converges to .

6. Let (X, d) be a metric space, and let Y C X have the induced metric.
(a) Show that a subset V' C Y is open if and only if there is an open set U in X such

that V =UNY.
(b) Show that a subset A C Y is closed if and only if there is a closed set B in X such
that A=BNY.

7. Given an example of a metric space (X,d), a point zo and r > 0 so that b,.(zo) is
properly contained in b, (zo).

8. Let (V)| -|) be a normed vector space. Let A C V,z € V and A € F.
(a) Show that z + A = r+ A and x + int(A) = int(z+ A).
(b) Show that AA = AA. When is \int(A) = int(\A)?.
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9. For this question, let’s write A~ instead of A. Consider the collection of sets obtained
by repeated application of closure and complement inside (X, d). E.g., A=¢7¢7 A",
(a) Show thatif U is open and B = U, then B = B~ °".
(b) Use (a) to show that starting with a set A, there are at most 14 possible sets, includ-
ing A itself, obtained by repeated use of closure and complement.
(c) Find a bounded subset A C R with exactly 14 different sets obtained this way.

10. Let (X, d) and (Y, p) be a metric spaces. Let f,g : X — Y be continuous functions.
Show that {z € X : f(x) = g(z)} is closed.

11. Let (V|| - ||) be a normed vector space. Let W be a finite dimensional subspace of V.
(a) Show that for any v € V, there is a point w € W such that ||[v — w|| = d(v, W).
HINT: Extreme Value Theorem on some closed bounded subset of ..
(b) Show that if V' is an inner product space, then there is a unique closest point.
(c) Let V' = ¢, the space of all sequences © = (xy,),>1 With lim,_,o 2, = 0 and
norm ||z]|ec = sup,,~; |zn|. Let W, = {z : & = Ofork > n}. Find a point
v € ¢ for which there are many closest points in W,,.

12. Suppose that (X, d) is a nonempty metric space.
(a) Fix xp € X. Foreach x € X, define f,(y) = d(x,y) — d(zo,y) for y € X. Show
that f, is a bounded continuous function on X.
(b) Show that || f; — fyllec = d(z,y) forall z,y € X.
(c) Hence deduce that the map that takes = € X to the function f, is an isometry that
identifies X with a subset of C%(X).

13. Let X = -NUJ,,»,(2n,2n + 1) and Y = —N U J,,5¢[2n,2n + 1). Show that
there are continuous bijections f : X — Y and g : Y — X, but X and Y are not
homeomorphic.

1.6. Completeness

By analogy to what we know in R™, we can define the notions of Cauchy se-
quence and completeness in arbitrary metric spaces. Recall that intuitively, Cauchy
sequences behave like convergent sequences, but the definition avoids naming the
limit point.

1.6.1. DEFINITION. Let (X,d) be a metric space. A sequence (Z,),>1 of
points in X is a Cauchy sequence if for every ¢ > 0, there is an N € N so that
d(zpm,xy) < € forall m,n > N. In symbols, Ve~ IneN Vinn>N d(@m, zn) < €.

A metric space (X, d) is complete if every Cauchy sequence in X converges to
a limit in X. A complete normed vector space is called a Banach space.

This easy proposition confirms the intuition.

1.6.2. PROPOSITION. Convergent sequences are Cauchy sequences.
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PROOF. Suppose that lim,,_,~, z, = z¢ and let ¢ > 0. Using £/2, we may find
an integer IV so that d(zp, o) < €/2 forallm > N. Then if m,n > N, we have

AT, ) < d(Tm, o) + d(z0, 1) < % + % =c.

Hence (z,,),>1 is a Cauchy sequence. [ |

1.6.3. EXAMPLES.

(1) If X has the discrete topology, a Cauchy sequences is eventually constant. Take
¢ = 1 and find N; then d(z,,xx) < 1 means that x,, = z foralln > N. So X
is complete.

(2) R and R™ are complete. We will review this soon.

(3) Let X = (—1, 1) with the Euclidean metric d induced from R. Then (X, d) is
not complete because z;,, = ;.77 is Cauchy, but has no limit in X.

However, let f(z) = tan(7x/2). Then f is a strictly increasing map of (—1, 1)
onto R, and so it is injective. Define a metric p(z,y) = |f(x) — f(y)|. (Check the
triangle inequality!) Suppose that (x,,),,>1 is Cauchy in (X, p). Then by definition,
f(xy) is a Cauchy sequence in R. By the completeness of R, this sequence con-
verges, say lim,, oo f(2,) = y. Letz = f~'(y) = %tan_l(y). Now z € (—1,1)
and p(xn,x) = |f(zn) — y| — 0. So lim,,_, x, = x in the p metric. Therefore
(X, p) is complete.

The identity map from (X, d) to (X, p) is a continuous bijection, and the in-
verse map is also continuous (check!). Thus these two spaces are homeomor-
phic. However the map is not biLipschitz. Indeed f’(z) = % sec?(mz/2) is un-
bounded, so f is not Lipschitz. The map f~!(y) = %tan_l(y) has derivative

"y = ﬁ is bounded by Z, so ! is Lipschitz.

1.6.4. PROPOSITION. Suppose that (X,d) is a complete metric space, and that
Y C X is a subset with the induced metric. Then (Y, d) is complete if and only if
Y is closed in X.

PROOF. (=) Let x € Y. Then there is a sequence (y,,),>1 in Y with x =
lim;,—, o y5. By Proposition 1.6.2, this is a Cauchy sequence. Since Y is complete,
the sequence has a limitin Y, namely z € Y. Thus Y is closed.

(<) Let (yn)n>1 be a Cauchy sequence in Y. Since X is complete, and this
sequence is also Cauchy in X, x = lim,,_,, ¥, exists in X. Because Y is closed,
z € Y. So the sequence converges in Y. Thus Y is complete. |

1.6.5. THEOREM. The normed vector space l,, for 1 < p < oo is complete.

PROOF. Let X, = (Zn1,Zn2, Tn3,...) for n > 1 be a Cauchy sequence in Iy,
Given € > 0, there is an N = N (¢) so that ||X,, — X, ||, < € forall m,n > N. For
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each j > 1,
|Zmg — Tng| < [|Xm — Xnllp-
Therefore the sequence (xnj)nzl is a Cauchy sequence in R. As R is complete,
limy, 00 pj =: ; exists. Let x = (x1, 22, 23,...). This is a sequence, but we do
not yet know that it lies in [,,.
Now fix an integer J. Then for all N < m < n,

J
§ T — Ts” < [|xm — x| < P
j=1
Keep m fixed and let n — oo. Since this is a finite sum and each term converges,
we obtain

J
Z |xj — x|’ <P forall m > N.
j=1
Now let J — oo to conclude that
o0
(1.6.6) |x — Xmllp = Z |zj — xpm;|P <P forall m > N.

j=1
In particular, Minkowski’s inequality shows that

1l < xonll + 1 = Xom < 0.
So x € l,,. Finally, (1.6.6) shows that x = lim,;, 0 Xy,. S0 [, is complete. [ |

The case of [, will be established in section 1.8 based on the fact that [, =
C®(N), where N has the discrete topology.

1.6.7. DEFINITION. If (V,|| - ||) is a normed vector space, let £L(V,F) denote
the vector space of linear maps of V' into the scalars, linear functionals , and let V'*
denote the dual space of V of all continuous linear functionals.

1.6.8. PROPOSITION. Let (V.|| - ||) be a normed vector space, and let v €
L(V,F). The following are equivalent:

(1) ¢ is continuous.
@) lllls := sup{lp(v)] : o]l <1} < oo

(3) ¢ is continuous as v = 0.

PROOF. (2) = (1). fu#v e V,setw = ﬁ and note that
o(u) = (V)] = le(u —v)| = [e(w)] [[u = vl| < [lelllu = vl
Hence ¢ is Lipschitz, and in particular is continuous.
(1) = (3) is trivial.
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(3) = (2). Assume that (2) fails. Then there are vectors v, € V with ||v,|| =
1 and |p(v,)| > n% Thus 1v, — 0 while [p(1v,)] > n diverges. So ¢ is

discontinuous at 0. The result follows. [ |

1.6.9. THEOREM. Let (V.| - ||) be a normed vector space. Then (V*,|| - ||«) is
a Banach space.

PROOF. First we show that || - ||« is @ norm. Clearly ||¢||. = 0 if and only if
@(v) = 0 forall v € V with |jv]| < 1. This forces ¢ = 0 by linearity. Also if
A € F, then

[Apll = sup [Ap(v)] = |A] sup [p(v)] = [Al[lell-
<1 Joll<t

For the triangle inequality, take ¢, 1) € V*.
I +¥ll« = sup [p(v) +¥(v)] < sup |p(v)]+ [¢(v)]

lll<1 O
< sup [p(v)[+ sup [P(v)] =[]« + ]l
Joll<1 Ok

To establish completeness, let (¢5,),>1 be a Cauchy sequence in V*. For each
v €V, |om(v)—en(v)] < [[@m—pnll« ||v]. It follows that (¢, (v))n>1 is a Cauchy
sequence in F. Since F is complete, we may define p(v) = lim,, o ¢, (v). Then

p(Au+ po) = lim @ (Au + po)
= lim App(u) + pon(v) = Ap(u) + pp(v).

Therefore ¢ is linear. Now let € > 0 and select N so that if m,n > N, then
lom — @nllx < e. In particular, if ||Jv|| < 1, we have that |@,,(v) — pn(v)] < €.
Holding m fixed and letting n — oo, we obtain that |, (v) — ¢(v)| < e. Taking
the supremum over all v with ||v|| < 1 yields ||¢m — ¢||« < € whenm > N. In
particular, [[¢[l« < [[@mll« + [[m — @llx < o005 s0 ¢ € V*. Moreover we have
shown that limy,, o0 @m = @ in (V|| - ||+). So V* is complete. [

1.7. Completeness of R and R"

This is a topic covered in earlier courses, so we will review this quickly. Exactly
how one gets started depends on how we define the real numbers. We will explore
this important issue later.

For now, we will assume that every infinite decimal describes a unique real
number. Of course, some numbers like 1 have two such infinite decimals, namely
1.000... and 0.999.. ..

Another basic property of R that we need is that it is Archimedean, meaning
thatif x € R, x > 0, and ¢ < 107" for all n > 1, then x = 0. To see this, note
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that since x > 0, it has a decimal expansion z = xg.x1xx3 ... where g > 0. If
x # 0, there is a first non-zero digit in its expansion, say x,, > 1. Then x > 107",

1.7.1. LEAST UPPER BOUND PRINCIPLE. If S is a non-empty subset of R
which is bounded above (below), then S has a least upper bound (greatest lower
bound).

PROOF. We will deal with the case of the lower bound. The case of the least
upper bound follows from the fact that sup S = —(inf —5).

Since S is bounded below, there is a largest integer ag which is a lower bound.
That is

ag < sforalls € S and dsy € S suchthat sy < ag+ 1.

Think of the point sy as a witness to the fact that ag + 1 is not a lower bound. Note
that this is where the fact that .S is non-empty is used.

Now consider the numbers ag.0, ag.1,...,a9.9. From these, pick the largest
one, say ag.a;, which is a lower bound, and pick s; € S to witness that ag.a; +107!
is not:

ap.a; < sforalls € S and s; < ag.a; + 107"

Recursively select a,, € {0, 1,...,9} so that ag.a; . ..a, is a lower bound for S,
and ag.aq ...a, + 107 is not, and s,, € S is a witness, so that

ap.ay...a, <sforallse€ S and s, <ag.aj...a,+ 107"

Let L = ag.ajazas . ...

We claim that L. = infS. First, if s € S, we have ag.a;...a, < s for all
n > 1, and so L < s. This follows from the Archimedean property, because if
there were an s € S with s < L, then for some n > 1,

s<L—-107" < ap.ay...an,

which contradicts our construction. So L is a lower bound. If M > L, then by the
Archimedean property, there is some n > 1 so that

M>L+107" >ag.a;...a, + 107" > s,.
So M is not a lower bound. Hence L = inf S. [ |

1.7.2. COROLLARY. A bounded monotone sequence in R converges.

PROOF. Suppose that (x,,),>] is a monotone increasing sequence in R which
is bounded above. By the Least Upper Bound Principle, L = sup{x, : n > 1}
exists. We claim that lim,,_,o ©,, = L. Take any € > 0. Since L — ¢ is not an upper
bound for the sequence, there is some NV so that L — ¢ < x . Hence

L—-—es<ay<z, <L forall n> N.
Thus |L — z,| < e foralln > N. So lim,,_,c z, = L. |
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1.7.3. BOLZANO-WEIERSTRASS THEOREM. Every bounded sequence in
R has a convergent subsequence.

PROOF. Let (x,,),>1 be a sequence of real numbers bounded below by ag and
bounded above by by. We use the disection method.

Let y = (ag + bo)/2. Either there are infinitely many n’s with z,, € [ao, y]
or there are infinitely many n’s with z, € [y, by| or both. If there are infinitely
many in [ag, y], let a; = ap and b; = y. Otherwise set a; = y and b = bp. In
either case, pick n; so that z,, € [a1,b1]. Note that ap < a; < by < bp and
by —a1 = 2_1(b0 — CL()).

We will recursively select a; and by so that a1 < ap < by < bi_; and
by — ap = 27%(by — ap) so that there are infinitely many n’s with z,, € [ag, by).
Then pick ng > ng_; so that z,, € [ag, bg].

We claim that (2, )r>1 converges. Note that ag,ai,az,... is a monotone
increasing sequence bounded above by by. Hence it converges, say to A. Likewise
bo, b1, ba, ... is a monotone decreasing sequence bounded below by ag, so it also
converges, say to B. However

B— A= lim bk —ag = lim Z_k(bo — ao) =0.
k—o0 k—o0

So B = A. Now a;, < z,, < by. Therefore limy_, z, = A by the Squeeze
Theorem. |

1.7.4. LEMMA. Cauchy sequences are bounded.

PROOF. Let (z,),>1 be a Cauchy sequence in (X, d). Let ¢ = 1, and find N
so that d(xy,, zn) < 1 forn > N. Let
R =max{l,d(z;,zn): 1 <i< N}.
Then (xn)nzl - I_)R(acN). [ |

1.7.5. THEOREM. R is complete.

PROOF. Let (z,,)n>1 be a Cauchy sequence in R. By the Lemma, this sequence
is bounded. Hence by the Bolzano-Weierstrass Theorem, there is a subsequence
(@n,,)k>1 converging to a limit L. We claim that lim,,_,oc z,, = L.

Let ¢ > 0 and pick N so that |z,, — x,,| < § for all m,n > N. Pick & so large
that ny, > N and |[L — x,, | < 5. Thenforn > N,

e €
|L — x| < |L—zp, | + |20, — 20| < §+§ =e.
Therefore lim,, oo T, = L. |

These results are circular. That is, completeness in turn implies the Least Upper
Bound Principle. To see this, let S be a non-empty set bounded below. Repeat the
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proof of Theorem 1.7.1. But instead of claiming that the infinite decimal number
L is a real number, check that x,, = ag.a; ...a, is a Cauchy sequence, and thus
L = lim,,_, x,, exists. The rest of the proof is the same.

1.7.6. COROLLARY. R" is complete.

PROOF. Suppose that z = (xg1,...,Zkn), & > 1, is a Cauchy sequence in
R™. Then for each 1 < i < n, the sequence (z;)x>1 is Cauchy. Indeed, if ¢ > 0,
choose N so that ||z, —x;|| < e forall k,] > N. Then, x| < |lep—xy| < e
for all k,1 > N. So by the completeness of R, limy_, o, xx; = y; exists for 1 <17 <
n. Thus limg_ oo 2k = ¥ 1= (Y1, -+ -, Yn)- |

1.7.7. COROLLARY. IfV is a normed vector space and M is a finite dimen-
sional subspace, then M is complete and hence closed in'V'.

PROOF. Let n = dim M. By Corollary 1.5.3, (M, || - ||) is equivalent to F"
with the Euclidean norm. Therefore M is complete by Exercise 1.8 (3) and Corol-
lary 1.7.6. In particular, M must be closed in V. |

1.8. Limits of continuous functions

1.8.1. DEFINITION. Let (X,d) and (Y, p) be metric spaces. A sequence of
functions f,, : X — Y converge uniformly to f if for all € > 0, thereisan N € N
so that

If = frlloo = Slelgp(f(ﬂs),fn(a:)) <e forall n> N.

In particular, uniform convergence of bounded continuous functions in C*(X) is
just convergence in the norm || f || o = sup,cx |f(z)|.

1.8.2. THEOREM. Let (X,d) and (Y, p) be metric spaces. Suppose that f,, :
X — Y forn > 1is a sequence of continuous functions which converge uniformly
to f. Then f is continuous. IfY =F € {R,C} and f, € CL(X), then f € C5(X).

PROOF. Fix z¢p € X and £ > 0. By uniform convergence, there is an /V so that
|f — fnlloo < €/3. Since fy is continuous, there is a § > 0 so that d(z, x¢) < §
implies that p(fx (), fv(x0)) < €/3. Then if d(z, xo) < 6,

p(f(x), f(x0)) < p(f(2), fn(x ))+ﬂ(fN( ); fN(ﬂfo))+p(fN( 0) f(x0))

(3

Hence f is continuous.
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For C?(X), itis easy to see that convergence in the supremum norm is precisely
uniform convergence. Using € = 1 and the corresponding N, we see that

[flloe < N lloo +I1f = fNlloe < [l fnlloo + 1.
Thus £ lies in C°(X). u

1.8.3. EXAMPLES. It is important to distinguish between uniform convergence
and pointwise convergence. We say that f, converges pointwise to f if
f(x)= lim f,(z) forall ze€ X.
n—oo
(1) Let f,,(x) = 2™ in C[0, 1]. Then

0 if 0<z<l1
1 if z=1.

n—oo

@)= lim fo(z) = {

This function is discontinuous. Note that convergence is not uniform because

If = fullo = sup 2" =1

0<z<1
foralln > 1.
(2) Let
n’x if 0<z< %
fu(x) = n2(% — ) if <z< %
<z <1

1
o2
0 if n
Then f(x ) = limy, 00 frn(x) = 0 for all z € [0, 1]. Indeed if z > 0O, then = > %

for n. > 2, and thus f,(z) = 0; and £, (0) = 0 for all n. So the pointwise limit is
contlnuous However, this limit is definitely not uniform because

If = fallo = fu(3) = n.

The set of functions { f,, : » > 1} is not even bounded!

1.8.4. THEOREM. If (X,d) is a metric space, the normed vector space space
CA(X) is complete for F € {R,C}.

PROOF. Let (f,)n>1 be a Cauchy sequence in C°(X). If & > 0 is given, there
isan N € N so that ||f, — fi]leo < € for all m,n > N. For each z € X,
|fn(z) — fi(2)| < ||fn — frmllo < € When m,n > N. Therefore (fy,(x))n>1
is a Cauchy sequence. Since ' = R or C is complete, there is a pointwise limit
f(x) :=limy, 00 frn(z). Moreover if n > N, by fixing n and letting m — oo,

o) = f@)] = T |fule) ~ fn()] < e
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This is valid for all z € X, and thus ||f, — f|loc < € forall n > N. That is,
fn converges uniformly to f. By Theorem 1.8.2, the limit f is continuous and
bounded, so lies in C?(X) Therefore, C*(X) is complete. [

One elementary but very useful test for uniform convergence is the Weierstrass
M-test. This is used, for example, to study the radius of convergence of a power
series.

1.8.5. WEIERSTRASS M-TEST. Suppose that f, € C°(X) for n > 1 and
Yonst I falle < M < oco. Then the series )~ fn converges uniformly to a

function s € CE(X).

PROOF. The sequence involved is the set of partial sums s,,(z) = > "7 _; fx(2).
Let ¢ > 0. From the convergence of ) -, | fnl/cc, there is an N € N so that
EnZN | frlloo < e. Thusif N < m < mn,

n

s = smlloc = | > @< D @l <&
1

k=m+ k=m+1

Hence (s,,) is a Cauchy sequence. By the completeness of C2(X), (s,,) converges

uniformly to a function s € C5(X). [
Exercises
1. Suppose that (V, || - ||) is a complete normed vector space. Let {z,, },>1 be a sequence

in V' and define a series as the sequence of partial sums s;, = 22:1 x, converges.
(a) Show thatif ) -, |lzy|| < oo, then (s)x>1 converges.

(b) Show that if («%)7@1 converges, then lim,,_, ||z, || = 0.

(c) Show by example that the converse of both (a) and (b) fail.

2. If A C (X,d), say the diameter of Ais diam A = sup, . 4 d(z,y). Show that a metric
space (X, d) is a complete if and only if (1) whenever A,, are nested non-empty closed
sets (A,, 2 A,41) with diam(A4,,) — 0, then (), ., A,, is not empty.

3. Let(X,d) and (Y, p) be metric spaces, and suppose that f : X — Y is a biLipschitz
homeomorphism.
(a) Show that (x,,) is a Cauchy sequence in (X, d) if and only if (f(x,,)) is a Cauchy
sequence in (Y, p).
(b) Show that (z,,) is a convergent sequence in (X,d) if and only if (f(z,)) is a
convergent sequence in (Y, p).
(c) Hence show that (X, d) is complete if and only if (Y, p) is complete.

4. Show that a sequence (z,),>1 in (Q, d2) (the 2-adic metric) is a Cauchy sequence if
and only if dp(xy,, zp41) — 0.

5. Let X be a closed subset of R™ and consider the Hausdorff metric dz on the space
H(X) of all non-empty closed bounded subsets of X. Prove that H (X ) is complete.
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10.

11.
12.

Metric Spaces

Suppose that f,, : X — R are Lipschitz with constant L. Show that if f,, converge
pointwise to f, then f is Lipschitz.

Let (X, d) be a set X with the discrete metric.
(a) Which functions f : X — R are continuous? Which are uniformly continuous?
(b) Which functions from R to X are continuous? Which are uniformly continuous?

Let (X, d) be a complete metric space, and let Y be an open subset of X. Show that
there is a metric p on Y which has the same open sets as (Y, d) and is also complete.
HINT: find a continuous function f : (Y,d) — R, such that f(y) — +oo asy
approaches Y ¢. Use this to help define p.

Let (X,d) and (Y, p) be metric spaces. Show that the product space X X Y (see
Example 1.3.12) is complete if and only if both X and Y are complete.

Let (X, d) and (Y, p) be metric spaces.

(a) Let f : X — Y be uniformly continuous. Show that if (x,),>; is a Cauchy
sequence in X, then (f(z,,))n>1 is Cauchy in Y.

(b) Give an example to show that (a) can fail if f is just continuous.

Let V be a normed vector space. Show V' is complete if and only if b; (0) is complete.

Show that C®(X,Y’), the space of bounded continuous functions from (X, d) to (Y, p),
is complete if and only if Y is complete.



CHAPTER 2

More Metric Topology

2.1. Compactness

The power of the Bolzano-Weierstrass Theorem is that one can extract from
every bounded sequence in R", a subsequence which converges. This notion will
be called sequential compactness. A topological version will be introduced using
open sets. It will be what we call compactness. In the metric setting, we will show
that these two notions coincide. The reader who has heard of topological spaces
should be warned that this equivalence does not extend to this greater generality,
where these are different concepts. In that case, it is the topological property which
is more important.

2.1.1. DEFINITION. Let (X, d) be a metric space. An open cover of A C X is
a collection of open sets {Uy : A € A} such that A C (Jycp Un. A subcover is a
subset {Uy : A € A’'}, where A’ C A, which is still a cover of A. A finite subcover
is a subcover such that A’ is a finite set.

A set A is compact if every open cover has a finite subcover.

A set A is sequentially compact if every sequence (ay,)n>1 With all a,, € A has
a subsequence which converges to a point in A.

2.1.2. EXAMPLES.
(1) Finite sets are compact and sequentially compact.

(2) The Heine-Borel Theorem, which we will review, says that every closed and
bounded subset of R" is compact.

The Bolzano-Weierstrass theorem shows that a closed, bounded subset of R is
sequentially compact. The same readily applies in R™. Suppose that we are given
a sequence (an)n>1 C A where A C R” is closed and bounded. Consider the
first coordinates, which form a bounded seqeunce in R and select a subsequence
so that this coordinate converges. Then consider the second coordinate, and find a
subsequence of this subsequence where the second coordinate converges. Note that
the first coordinate still converges, since a subsequence of a convergent sequence
still converges. Repeat this procedure n times. We arrive at a subsequence in which
every coordinate converges. Thus the vectors converge. Since A is closed, the limit
remains in A. So A is sequentially compact.

29
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(3) Let X be an infinite set with the discrete metric. Then X is closed and bounded,
because all subsets of X are both open and closed, and X has diameter 1. However
X is not compact or sequentially compact. The open cover consisting of all single-
tons {x} for z € X is an infinite open cover of X, and there is no proper subcover.
So X is not compact. Select a sequence of distinct points (2, )n>1, Tn, # Tm
if m < n. This has no convergent subsequence because the only convergent se-
quences are eventually constant. So the only compact subsets of X are the finite
subsets.

The previous example shows that the converse of the following proposition is
false. Keep it in mind to keep yourself clear on this point.

2.1.3. PROPOSITION. Every compact or sequentially compact subset of a met-
ric space is both closed and bounded.

PROOF. Suppose that A is not bounded in a metric space (X, d). Fix a point
ap € A and consider {b,(ap) : n > 1}. Then every point of A belongs to
U,,>1 bn(ao) since any « € X has d(ag, ) < oco. However since A is unbounded,
there is no finite n so that b, (ag) contains A. Hence there is no finite subcover.

Similarly, we could choose a sequence a,, € A so that d(ay,ap) > n. This
sequence has no convergent subsequence because if n; < np < n3 < ... and
lim; o a,, = b, then we arrive at the absurd conclusion:

d(ap,b) = lim d(ag, an,) = oco.
1—00

Now suppose that A is not closed, so that b € A\ A. Then by, (b) N A # 0,
so we may choose a,, € A with d(ay,b) < % Clearly lim; . a,, = b, and this
also holds for any subsequence. So no subsequence has a limit in A. Thus A is not
sequentially compact.

Let U, = {z € X : d(z,b) > 1}. Then |,~, U, = X \ {b} D A. However
as noted in the previous paragraph, no U,, can contain A, and thus there is no finite
subcover. So A is not compact. |

We need two more definitions.

2.1.4. DEFINITION. Let (X, d) be a metric space. A collection F = {F) : A €
A} of subsets of X has the finite intersection property (FIP) if every finite subset
A’ C A has non-empty intersection (., F # 0.

A set A is totally bounded if for all ¢ > 0, there is a finite subset F' C X so
that A C |J,cp be(). A finite set F' = {x1,...,2,} suchthat A C |J,cp be(2) is
called a e-net for A.

We come to the main result about compact metric spaces.
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2.1.5. BOREL-LEBESGUE THEOREM. Let (X, d) be a metric space. Then
the following are equivalent:

(1) X is compact.

(2) If F = {F\ : X € A} is a collection of closed sets with the finite inter-
section property, then (\yca F is non-empty.

(3) X is sequentially compact.
(4) X is complete and totally bounded.

PROOF. (1) = (2). Let F = {F) : A € A} be a collection of closed sets with
FIP. Define open sets Uy = FY. If [ F := (], F) is empty, then

Uon=(F)'=x

AEA AEA

Thus U = {U, : A € A} is an open cover of X. By compactness, there is a finite
subcover Uy, ..., Uy,. So i, F\, = (UL, Uy,) = 0. This contradicts FIP.
Hence we must have (| F # 0.

(2) = (3). Let (z)n>1 be a sequence in X. Define non-empty closed sets
F, = {xp : k> n} forn > 1. Note that F,, D F,,;;. Hence F = {F,, : n > 1}
has FIP because Fy,, M-+ N Fy, = Frax(n,,....n,,} 18 non-empty. By (2), (1,5
is non-empty, say x is in the intersection. Then b,.(z) N F}, # () for all » > 0 and
n > 1. Suppose that we have choosen ny, ..., ny so that d(:z:nj,z:o) < % for1 <
j < k. Then bﬁ(xo) N Fpyg1 # 0. Pick njyy > ny, so that d(an,.,,,20) < 77
This recursively selects a subsequence such that limy,_, @, = x¢. Therefore X
is sequentially compact.

(3) = (4). Let (xy,)n>1 be a Cauchy sequence in X. By sequential compact-
ness, there is a subsequence (zy,);>1 such that lim; ,.c x,, = x¢ exists. By the
Cauchy property, the whole sequence converges to xg. Indeed, let ¢ > 0. Select
I € Nso that if ¢ > I, then d(xy,, o) < €/2. Use the Cauchy property to find
N so thatif N < m,n, then d(x,, z,,) < €/2. Pick some ¢ > [ so that n; > N.
Thenif n > N,

d(zp, x0) < d(xp, ;) + d(zp,, o) < % + % =c.

It follows that lim,,—, o x,, = x¢. So X is complete.

Suppose that X were not totally bounded. Then for some € > 0, X cannot be
covered by finitely many e-balls. We claim that we can then select points x,, in X
recursively so that d(x,, z,) > € for all m # n. Indeed suppose that zy, ...,z
have been selected. Since X\Uf:1 be(x;) # 0, pick x4 in this set. Then (xy,)n>1
has no convergent subsequences. This contradicts the sequential compactness of X.
So X is complete and totally bounded.

(4) = (1). Suppose that (4) holds, but (1) fails; so that there is an open cover

U = {U) : X € A} of X with no finite subcover. Use total boundedness with ¢ = %
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to select x’f, ey x’ka to be a finite %—net for X. We will choose a sequence y;, = xfk
so that X, := ﬂf: 1 b ! (y;) has no finite subcover. Suppose that yy, . . . , yj has this

property. Consider the sets
Xpi =XpNb_1 (acf“) for 1 <7< ng.
k+1
If they each had a finite subcover, their union would have a finite subcover. But
N1 Nk+1 k1

Usz*Ukabl k+1 XﬂUbl k+1 =X.NX=X,.

Z l

has no such cover. Therefore for some 7. 1, X kyin. = Xg4+1 has no finite sub-
cover. Set Yp41 = xfktll

Observe that the sequence (yx)r>1 is Cauchy. Indeed, if ¢ > 0, choose an
integer N > 271, If N < m < n, then X;, C b1 (yn) N b1 (yy,) is non-empty,

say x € X,,. Hence

1 1 2
dmvngd my d angi *S* .
Yms yn) < d(ym, @) +d(2,yn) < — + <e

N
Since X is complete, there is a limit yg = lim,,_, o, y» in X. Note that
1 1 1
d(Ym, Yo) = hm d(ym,yn) < lim — -|- =
n—oo M m

Since U is a cover of X, there is some A\ so that yg € U),. Hence thereisanr > 0

so that b, (yo) C U),. Choose m so large that % < 5. Then x € Xy, C by (Ym)
satisfies

2
d(x,y0) < d(@, Ym) + d(Ym, yo) < —<r

Thatis, X,,, C U, does have a finite subcover. This contradicts the assumption that
U has no finite subcover, since that was how the X}.’s were constructed. Therefore
X is compact. |

2.1.6. REMARK. The definition of compactness depends only on the topology,
i.e., the collection of open sets, not on the metric. Likewise the property about
collections of closed sets with FIP depends only on closed sets, which are the com-
plements of open sets. So this property is also topological. The same is true of
sequential compactness, although that is a bit more subtle. We need to show that
we can define convergence for a sequence only using open sets.

Prove the following: a sequence (x,,)n>1 converges to xg if and only if for each
open set U containing x, there is an integer N so that x,, € U foralln > N.

However the notions of completeness and total boundedness are metric notions.
The real line R is complete but is not totally bounded. But the real line is homeo-
morphic to (0, 1) which is not complete, but is totally bounded. So neither property
is preserved by a homeomorphism. Somehow the two notions are competing and
play off of one another in order to jointly characterize compactness.
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2.1.7. REMARK. We have stated our theorem about compactness of the whole
space (X, d) for simplicity. Suppose that A C X. There are two slightly different
notions: one is compactness of A as a subset of X'; and the other is the compactness
of (A, d), thinking of A as a metric space in its own right with the induced metric.
Fortunately these two notions coincide.

A set in X is open if it is a union of balls, and the same is true of open sets
in A. To make things clear, let B, (a) denote the ball in X and let b,(a) be the
corresponding ball in A. Then

br(a) ={y e A:d(a,y) <r} =An{z e X :d(a,z) <r} =ANB,(a).

Now suppose that U is open in A, and write U = (J{b.(a) : b,(a) C U}. Define
V =U{B:(a) : b(a) C U}. Then V is open in X and

VnA=|[{B(a)nA:b(a) cU} = J{br(a): br(a) CU}=U.

This shows that every open subset of A is the intersection of A with an open subset
of X.

Suppose that (A, d) is compact, and let V = {V\ : A € A} be a collection of
open sets in X which cover A. Define i/ = {Uy := ANV, : A € A}. This is an
open cover of (A, d). By compactness, there is a finite subcover Uy, ..., Uy, . It
follows that V..., V), is a finite subcover of A in X.

Conversely suppose that A is a compact subset of X, andlettd = {U) : A € A}
be an open cover of (A, d). Construct the open sets V), in X so that AN V) = U,.
Then V = {V) : A € A} is an open cover of A in X. By compactness, there is a
finite subcover V), ..., V) . Therefore Uy ,...,U,, is a finite subcover from {{ .
Thus (A, d) is compact.

Now let’s deal with subsets of R".

2.1.8. HEINE-BOREL THEOREM. A subset A C R" is compact if and only
if it is closed and bounded.

PROOF. First proof. If A is compact, then Proposition 2.1.3 shows that A is
closed and bounded. Conversely, if A is closed and bounded, Example 2.1.2(2)
used the Bolzano-Weierstrass Theorem to deduce that A is sequentially compact.
Now the Borel-Lebesgue Theorem 2.1.5 shows that A is compact.

Second proof. Since R™ is complete, A is complete if and only if it is closed.
If A is bounded say by R, then the finite grid

{z=(21,..., )tz € {5k €Z, k] < Rpn}}

is a %—net for A. So A is totally bounded. Conversely, if A is unbounded, then no
finite setis a 1-net. Thus A is complete and totally bounded if and only if it is closed
and bounded. Now the Borel-Lebesgue Theorem 2.1.5 shows this is equivalent to
the compactness of A. |
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2.2. More compactness

We continue to collect consequences of compactness, and provide more exam-
ples.

2.2.1. PROPOSITION. Let X be a compact metric space. Then a subsetY C X
is compact if and only if Y is closed.

PROOF. If Y is compact, then in particular, it is closed by Proposition 2.1.3.
Conversely, suppose that Y is closed., and let &/ = {U : A € A} be an open cover
of Y. Then U/ U {Y“}. is an open cover of X. Since X is compact, there is a finite
subcover, say Uy, ..., Uy, ,Y*. Since Y does not help to cover Y, it follows that
Uy, ..., Uy, is a finite subcover of Y. Hence Y is compact. |

2.2.2. DEFINITION. A subset A is dense in X if X C A. A metric space is
separable if it contains a countable dense subset.

2.2.3. PROPOSITION. Compact metric spaces are separable.

PROOF. If X is a compact metric space, then it is totally bounded by the Borel-
Lebesgue Theorem 2.1.5. For ¢ = %, choose a finite %—net xy,...,zg . Then
{z' :n>1,1 <i < k,} is a countable dense subset. [ |

2.2.4. EXAMPLES.
(1) R™ is separable because the set of vectors with coefficients in Q is countable
and dense. Also C™ is separable because it is equivalent as a metric space to R>".

(2) The space [, 1 < p < o0, is separable. The subspaces V;, = span{ej,...,e,}
are each separable by (1). Their union is dense in /,,, and the countable union of
countable sets is countable, so [, is separable.

1 ifnek
0 ifngE
Then ||[Xg — Xrlloo = 1 is E # F. The power set P(N) of all subsets of N has
cardinality 2%, and so is not countable. No point can be within 0.5 of two of these
elements, and hence a dense subset must be uncountable.

(3) I is not separable. For each subset £ C N, let Xg(n) =

(4) Let X be a set, and let d be the discrete metric. Then a subset Y C X is dense
if and only if Y = X. Thus X is separable if and only if X is finite or countable.
In particular, R with the discrete metric is not separable.

2.2.5. PROPOSITION. If (X,d) and (Y, p) are compact metric spaces, then
X xY is also compact.
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PROOF. Recall from Example 1.3.12 that we put a metric D on X X Y by
D((z1,y1), (w2, 42)) = max{d(z1,22), p(y1,92)}. By the Borel-Lebesgue Theo-
rem 2.1.5, it suffices to show that X x Y is sequentially compact. Let (x,, y,,) for
n > 1 be a sequence in X x Y. Since X is compact, there is a subsequence z,,
so that lim;_,c 2, = w0 exists. Now consider the sequence (yp,);>1. Since Y is
compact, there is a subsequence Yni, SO that lim;_, Yni, = Yo exists. It is still
true that lim;_, o Tn;, = 0. Hence lim; o (2, , Yn; ) = (%0, yo) is a convergent
subsequence. Therefore X x Y is sequentially compact, and thus compact. |

2.3. Compactness and Continuity

There is an important connection between compactness and the properties of
continuous functions. The next three results are fundamental.

2.3.1. THEOREM. Let (X,d) and (Y, p) be metric spaces. Suppose that X is
compact and f : X — Y is continuous. Then f(X) is compact.

PROOF. Let V = {V), : A € A} be an open cover of f(X). By continuity,

Uy := f~!(V,) are open in X. Moreover, since V covers f(X), U = {U, : A € A}
covers X. By compactness, X has a finite subcover, say Uy, ..., Uy, . Therefore
n n

FX) cJrwn) < Uva

i=1 i=1

Therefore, this is a finite subcover; whence f(X) is compact. |

Note that f(U) = f(f~!(V)) C V, and this containment may be proper, since
it omits points in V' that are not in the range of f.

The following result is an important special case should be familiar from cal-
culus.

2.3.2. EXTREME VALUE THEOREM. If X is a compact metric space and
f X — Ris continuous, then f is bounded and attains its maximum and minimum
values.

PROOF. By Theorem 2.3.1, f(X) is a compact subset of R. Hence it is closed
and bounded. So f(X) contains its (finite) supremum and infimum. These are the
maximum and minimum values. |

This shows that if X is compact, then || f|lcc = sup|f(z)| is a norm on the
space C'(X).
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2.3.3. THEOREM. Let (X,d) and (Y, p) be metric spaces. Suppose that X is
compact and f : X — 'Y is continuous. Then f is uniformly continuous.

PROOF. Let ¢ > 0 be given. Since f is continuous at x € X, there is a
6z > 0 so that f(bs,(z)) C b.ja(f(x)). Observe that {bs, »(z) : z € X}
is an open cover of X. By compactness of X, there is a finite subcover, say
bs, j2(x1), ..., bs, jo(zn). Letd = min{3d;, : 1 < i < n}. Suppose that
z,2' € X with d(z,2") < d. Then there is some ig so that z € by, ().
Therefore ’

d(x” Q}io) < d(x/7 x) + d((L‘,l‘Z‘O) <0+ %5I10 < ég

i "

Soz, 2’ € bawio (2i,). Thus, we see that f(x), f(2") € be/2(f(xi,)). Hence

p(f(@), (&) < p(F(@), Flaig)) + p(f i), f&) < 5+ 5 =

That is, f is uniformly continuous. |

It was noted in the discussion following Definition 1.4.5 that a biLipschitz bi-
jection between metric spaces is a homeomorphism. However in Example 1.4.7(2),
we showed that a continuous (even Lipschitz) bijection of one metric space onto
another need not be a homeomorphism. The following easy result is a critical ex-
ample where compactness is used to deduce that a bijection is a homeomorphism.

2.3.4. PROPOSITION. Let (X,d) and (Y, p) be metric spaces. Suppose that X
is compact and that f : X — Y is a continuous bijection. Then f is a homeomor-
phism.

PROOF. We need to show that f~! is continuous. Let U be an open subset
of X. Set C = U*°. This is a closed subset of the compact space X, and hence is
compact by Proposition 2.2.1. Therefore f(C') is compact by Theorem 2.3.1. Since
f is a bijection, f(U) = f(C)¢ is the complement of a compact, hence closed, set
f(C). So f(U) is open. Again since f is a bijection (f~!)~!(U) = f(U). This is
open, and hence f~! is continuous. So f is a homeomorphism. |

Exercises

1. Show that a metric space (X, d) is compact if and only if (1) whenever A,, are nested
non-empty closed sets (4,, 2 A,.1), then ﬂnz | Ay, is not empty.

2. The Hilbert cube is H = {x = (z,) € b, : 0 < z,, < %, n > 1}. Prove that it is
compact.

3. Prove that a metric space (X, d) is totally bounded if and only if every sequence in X
has a Cauchy subsequence.
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12.
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Show that the closure Z in (Q, d), the 2-adic metric, is totally bounded but not com-
plete.

Let X be a closed subset of R™ and consider the Hausdorff metric dz; on the space
H(X) of all non-empty closed bounded subsets of X. Prove that H(X) is compact if
and only if X is compact.

Suppose that (X, d) is a compact metric space, and that f : X — X is an isometry.
Prove that f is surjective.

Let (X, d) be a compact metric space. Suppose that f, f,, € Cr(X) forn > 1 and that
fn < fapiforn > land f(z) = lim f,(z) pointwise. Prove that the convergence
n— o0

is uniform.

Let (X, d) be a compact metric space. Suppose that f,, : X — R are Lipschitz with
constant L. Show that if f,, converge pointwise to f, then the convergence is uniform.

(a) If (X, d) is compact, show that U = {f € Cr(X) : f(z) > 0 for x € X} is open.
(b) Find the interior of V = {f € CE(R) : f(z) > 0forz € X}.

A metric space (X, d) is second countable if there is a countable family {U,, : n > 1}

of open sets that generates the topology, i.e. each open set V satisfies V = v,cv Un.

(a) Prove that (X, d) is second countable if and only if it is separable.

(b) Let (X, d) be a separable metric space. Show that every open cover of X has a
countable subcover.

Show that a metric space (X, d) is complete if and only if every infinite totally bounded
subset has an accumulation point.

(a) Let (X, d) be a compact metric space. Show that X has finite diameter.

(b) Let (X;,d;) for ¢ > 1 be non-empty metric spaces with diameters bounded by D.
Define the product X = [],., X; to be the set of all sequences x = (z1,22,...)
where z; € X;. Define a metric on X by §(z,y) = Y, 27'd;(;, y;). Show that
a sequence in X converges if and only if each coordinate converges in X;.

(c) Prove that X is compact if and only if each X is compact.

The Lebesgue number of an open cover i = {Uy : A € A} of (X, d) is
o) = 1g)f( sup{r > 0: b,.(z) C U, for some A € A}.

Show that if X is compact and I is an open cover, then 6(U/) > 0.

2.4. The Cantor Set, Part I

We quickly review the construction of the Cantor set, which is obtained from

the interval [0, 1] by successively removing the middle third of each segment. That
is, let Cp = [0, 1], and Cj4 is constructed from C; by removing the middle third
from each interval in C;. The first three terms are

Cr=10,5]U[3, 1]
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C3 = 10,351 U5 U 5, F1U 3,31V 5, BV, SV U 35, 1]

The Cantor set is C' = ﬂn>0 C,. This is an intersection of compact subsets of
[0, 1] with FIP, and hence C is not empty. It is a closed subset of a compact set, and
hence is compact.

Each point in C' is determined by a binary decision tree; whether to choose
the left or right interval after removing the middle third at each stage. It will be
convenient to label the 2™ intervals in C), by a sequence of 0’s and 2’s of length
n, where 0 indicates the left interval, and 2 indicates the right. For example, C, =
Coo U Cpp U Cao U Cay. Proceeding from C), to Cj, 41, an interval Cy, g, splits into
two intervals Cy, . 4,0 and Cy, . 4,2. Note that each interval in C), has length 37",

We will show by induction that

Ca]...an = [(O'QI ce an)base37 (0-a1 cee an)baseS + 3—71]_

Recall that t = (0.a1a2a3 . .. Jbase3 = Yooy @3~ makes sense for any sequence
with a; € {0,1,2}. The number (0.a; ... ay)base 3 + 37" can be written as the
ternary number (0.a; . ..a,222 ... )pase 3 ending with an infinite sequence of 2’s.

Our claim is easily verified for the first two levels by inspection. Suppose that
it is true for n. At the next stage, Cy, .. 4, is split into two intervals of length 31
one starting with (0.a; ... an)base3 = (0.a; ... an0)pase 3 and the other beginning
with (0.a1 . .. an)base3 +2(37" 1) = (0.a1 ... an2)base 3. This establishes the in-
ductive step.

Consider an infinite path in the decision tree given by an infinite sequence
ajazas ... of 0’s and 2’s. This leads us to

m Cal...an = ﬂ [(O-al cee CLn)base 3, (O'QI cee an)baseS + 3—n]

n>1 n>1
= {(0.a1a2a3 . )base 3}'

That is, each infinite path determines a unique point in C'. Conversely, each point ¢
in C' is determined by the infinite path obtained by picking the interval containing
t at every stage. It follows that every point in the Cantor set is represented by a
ternary expansion using only 0’s and 2’s. The number of infinite sequences of 0’s
and 2’s is the same as the number of subsets of N, where we identify the infinite
sequence with the set A = {i : a; = 2}. This is a bijection. Since the power set of
N is uncountable, the Cantor set is also uncountable.

Note that C' has no interior, because any non-empty open set contains an inter-
val of positive length, say r. But if 37" < r, it is clear that C), does not contain
an interval of length 7. So int C' = (). A set A such that A has no interior is called
nowhere dense. Also C has no isolated points. To see this, note that each point in
C'is the limit of the left (right) endpoints of each interval Cy, ,, containing it. At
least one of these sequences is not eventually constant. So every point in C' is an
accumulation point. A closed set with no isolated points is called perfect. Also note
that within the metric space (C, d), the sets C,. q, are closed and open, because
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C\ Cq,...q, is the finite union of 2" — 1 closed sets, and thus Cy, 4, is open in the
relative topology of C.
In this section, we prove the following remarkable property of the Cantor set.

2.4.1. THEOREM. Let (X,d) be any compact metric space. Then there is a
continuous map of the Cantor set onto X.

PROOF. Since X is compact, it has a finite %-net. By adding points if neces-
sary, we may suppose for convenience that the number of points is a power of 2,

say :U%, . ,xén(l). Define a function f; : C' — X by sending C' N Cau.-.an<1) to

n(ll) %21'*1. This function is constant on each interval

the point le where j = > .0
Cal.‘.an(l)-
Now suppose that a function fj, : C' — X has been defined so that the range is a

finite 2% net for X, say :c’f, ceey $§n(k) obtained by sending each interval Cj, (k)

to % where j = 1 + E?:(li) %.27~1, and moreover, for k > 2, that
1fe—1 = frlloo == Sugd(fkfl(t)v fr(t)) < 2"
te

This is true for f; because the second condition doesn’t apply.

For each ball Bz—k(l‘?), we select a 275! net. By adding extra points as
needed, we can ensure that each net has the same number of points, which is a
power of 2, say 2P and set n(k + 1) = n(k) 4 p. For each j, f; mapped Cal-..azn

k .
to JJ] We Spht Cal...azn(

(k)
). These
intervals will be mapped by fz1; to the 2? points in the 27*~! net for by-x ().
This ensures that || fx — fx+1]|co is No more than 2%, the radius of the balls.

Observe that the functions f; are continuous because they are constant on
clopen sets. Moreover » .~ || fx — fit1lloc < 00. So the sequence (fi)r>1 is
a Cauchy sequence in C(C, X). Now X is compact, and hence is complete; so
C(C, X) is complete. Therefore f(t) = limy_,o fx(t) converges uniformly to a
continuous function f. More precisely, for any ¢t € C,

d(f(t)7 fk(t)) = nlglgod(fn(t)v fk(t))

| into the 2P intervals Ca1-~-a2n

k (k) @yn(k) 4 qo 2 %yn(k+1

n—I1 o)
< lim Y d(fia(t), fi(1) < Y20 =2
j=k j=k

So ||f = fullo <2°7F — 0.
To see that f is surjective, let z € X. Choose a sequence z; = x;‘?(k) which

converges to x. Then xy, is in the range of fj, so there is a point ¢;, € C' such that
fr(tx) = x. Since C' is compact, there is a subsequence t;, with limit¢ € C. Now

d(f(t),l‘) = Zl_lglod(f(tkl)?x)
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< igr&d(f(tki),fki(tk,-)) + d(zy,, v)
< Jim |~ fi oo + (o5, 7) = 0.
Hence f(t) = x, and f maps C onto X. [

We can parlay this result into something even more surprising.

2.4.2. DEFINITION. A path is a continuous image of [0, 1]. A Peano curve or
space filling curve is a path in R™, for n > 2, such that the range has interior.

We will prove the existence of Peano curves in a general setting. Various con-
structions inside a square or cube have been discovered. Check out Hilbert’s curve
at Hilbert curve wiki where you can slide the cursor and see the iterative stages in
its construction.

2.4.3. THEOREM. Let X be a compact convex subset of a normed vector space.
Then there is a continuous map of [0, 1] onto X.

PROOF. By Theorem 2.4.1, there is a continuous map f of the Cantor set onto
X. Write [0,1] \ ¢ = U,>(an,bn), where (ay,by) are the disjoint intervals
removed from [0, 1] to form C. Define ¢ : [0, 1] — X by extending f to be linear
on each (ay, b,,) and matching up with f at the endpoints:

(2) = f(x) if zeC
T Z Vit an) + (1= O f(by) it x=tan+ (1 — Db, 0 <t <1

The reason for insisting that X be convex is to ensure that ¢ f(a,,) + (1 — t) f(bn),
which lies on the line segment from f(a,) to f(by,), belongs to X. Clearly g maps
[0, 1] onto X. We claim that g is continuous, and hence is the desired map.

Let £ > 0 be given. Since C'is compact, f is uniformly continuous by The-
orem 2.3.3. Hence there is a §; > 0 so that if z,y € C and |z — y| < d;, then
|.f(x) = f(y)|l < 5. The lengths of the intervals in the complement of C' tend to 0,
so there are only finitely many with length b,, — a,, > §, say forn € F'. Let

D= max{ 1f(bn) — flan)|[:n€ F} and 6= _—— <4;.

Suppose that z,y € [0, 1] with |z — y| < 4.
case 1. z,y € C. Since § < §;, we have ||g(x) — g(v)|| = || f(z) — f(W)|l < 5.

case 2. x,y € [an,b,] and n € F. Since g is linear on this segment,

00— fla)ll < S5 4D =

lo(@) - 9wl = 5 5P =5


http://jsxgraph.org/wiki/index.php/Hilbert_curve
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case 3. x,y € [ay,b,) andn & F. Then b, — a,, < 01, SO
€

llg@) =gl < () = flan)]| < 3

case 4. x € (an,b,) and y € C. We may assume that b,, < y. (The case y < ay, is
similar.) Then by the previous cases,

lg(z) = gl < llg(x) = g(Oa)ll + 1F (ba) = F(W)II < % + % <e.

case 5. x € (ap,by,) and y € (am,by,) for n # m. By interchanging = and y if
necessary, we may assume that b,, < a,,. Then by the previous cases,

lg(@) — gl < llg(z) — g(bn)[l + [[£(bn) — flam)l + [lg(am) — g()|l

<S4i4i-c
373737 °

Therefore g is continuous. |

2.4.4. COROLLARY. There are Peano curves with range equal to the unit
square in R2, the unit ball in R3 and the Hilbert cube.

2.5. Compact sets in C(X)

In this section, we will be concerned with C'(X) where (X, d) is a compact
metric space. By the Extreme Value Theorem 2.3.2, every function in C'(X) attains
its maximum modulus. So the supremum norm makes sense without assumimg
boundedness.

We are interested in compact subsets of C'(X'). By Proposition 2.1.3, a compact
subset X' C C'(X) must be closed and bounded. The following examples show that
this is not sufficient, and we need to look for another condition.

2.5.1. EXAMPLES.

(1) Let K = {fn(x) = 2™,n > 1} C C]0,1]. In Example 1.8.3(1), we observed
that f,, converges pointwise to the discontinuous function X ;3. Any subsequence
will also converge pointwise to this function. Hence no subsequence converges uni-
formly to a continuous limit. It follows that K is closed, and clearly K is bounded
by 1. However this also shows that K is not compact, again because no subse-
quence of (f,,),>1 converges uniformly.

1 ifz=1
(2) Forn > 2, let g,(z) = { 0 ifz =0, 5,1
piecewise linear  in between.
Then ||gm — gnlloc = 1 when m # n. So K = {g, : n > 2} has the discrete

metric. In particular, it is closed and bounded but not compact.
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Here is the key new notion that we need.

2.5.2. DEFINITION. A subset F C C(X) is equicontinuous at x € X if for
every € > 0, thereis a 0 > 0 so that whenever d(2, z) < ¢, then | f(2')— f(x)| < e
forall f € F. In symbols, Vex0 J5(2)>0 Ve F Varey (@) f@) = f(z)| <e.
Say that 7 C C(X) is equicontinuous if it is equicontinuous at every = € X.
Say that F is uniformly equicontinuous if § does not depend on z; i.e., for every
€ > 0,thereisad > Osothatif f € Fandd(z,22) < 6, then |f(x))—f(z2)| < e.
In symbols, Ve~0 J50 Ve F Vi, a0)<s | f(@1) — f(22)] <&

2.5.3. LEMMA. Let (X,d) be a compact metric space. Suppose that K C
C(X) is compact. Then K is uniformly equicontinuous.

PROOF. Let ¢ > 0 be given. Since K is compact, it has a finite 5-net, say
fi,---, fn. Each f; is continuous on X, and hence is uniformly continuous by
Theorem 2.3.3. Therefore there is a §; > 0 so that d(x;,z3) < §; implies that
|f(z1) — f(z2)| < 5. Define § = min{dy,...,d,}. Suppose that d(z1,z2) < &
and f € F. Select i so that || f — fi|lcc < §. Then

[f(@1) = f@2)] < [f(21) = file)] + [ fi(z1) = filz2)| + | fi(z2) — f(22)]

g 3 & g
<||f_fz‘”oo+§+Hfi_fHoo<g"‘g‘f‘g:&

Therefore K is uniformly equicontinuous. |

The following is proved much like the proof of Theorem 2.3.3.

2.5.4. LEMMA. Let (X, d) be a compact metric space. Suppose that F C C(X)
is equicontinuous. Then F is uniformly equicontinuous.

PROOF. Let € > 0 be given. For each z € X, there is a §, > 0 so that if
d(x',x) < 0g, then |f(2") — f(x)| < 5 forall f € F. The collection

{bs, 2(z) 1w € X}
is an open cover of X. By compactness of X, there is a finite subcover, say
bs,. j2(w;) for 1 <7 < n. Define § = min{%dwi 11 <i<n}.
Suppose that y1, v, € X with d(y;,y2) < d. Select i so that d(y;, x;) < %5xi-
Then

1
d(y2, ;) < d(y2,y1) + d(yi, z) <6+ 5612. < Og,-
Then if f € F,

) = Fup)| < 1F ) = Faol + [ F () = fap) <5 +5 ==

Therefore F is uniformly equicontinuous. |
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2.5.5. ARZELA-ASCOLI THEOREM. Let (X, d) be a compact metric space.
A subset K C C(X) is compact if and only if it is closed, bounded and equicontin-
uous.

PROOF. If K is compact, then it is closed and bounded by Proposition 2.1.3,
and uniformly equicontinuous by Lemma 2.5.3.

Conversely, suppose that K is closed, bounded and equicontinuous. Now
C(X) is complete by Theorem 1.8.4. Since K is closed, it is also complete by
Proposition 1.6.4. We will show that K is totally bounded. Then the Borel-
Lebesgue Theorem 2.1.5 will show that K is compact.

Fix an € > 0. By Lemma 2.5.4, K is uniformly equicontinuous. Hence there
isad > 0 so that whenever f € K and xj,z; € X with d(x1,x;) < d, then
|f(x1) — f(x2)| < §. Since X is compact, it has a finite J-net, say z1,.. ., Zp.
Define a linear map 7" : C'(X) — (F", || - [|s0) by

Tf=(f(x1), ..., f(zn)-

Note that |7 f]lcc = max{|f(x;)] : 1 < i < n} < ||f|lcc. Therefore TK is
bounded in F". Hence TK is compact, and so T K is totally bounded. Therefore it
has a finite §-net, say T'f1,..., T f, for f; € K.

We claim that fi,..., fn, is an e-net for K. Let f € K. Select j so that
|Tf —Tfjllo <5 Iy e X, pickiso that d(y, z;) < 0. Then

f) = )] < [ f(y) = fl@)l + (@) = fi@a)| + 1 f5(@i) — fi ()]
e € € 3¢

Therefore ||f — fj]jc < 32 < &. Thus K is totally bounded, and so is compact. H

2.6. Connectedness

The notion of connectedness is introduced to generalize the ideas underlying
the Intermediate Value Theorem.

2.6.1. DEFINITION. A subset A of a metric space is disconnected if there are
disjoint open sets U, V suchthat A C UUV and ANU # () # ANV. A subset
A of a metric space is connected if it is not disconnected; i.e. if U, V are disjoint
open sets such that A C U UV, theneither ACUor A C V.

2.6.2. EXAMPLES.
(1) [0, 1] U [2, 3] is disconnected. Take U = (—1,1.5) and V' = (1.5,4).

(2) Q is disconnected. Take U = (—oo,7) and V' = (7, 00).
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2.6.3. REMARK. If X is a metric space which is not connected, then X is the
union of non-empty disjoint open sets U and V. Thus V' = U¥€ is closed. Therefore
U and V are clopen sets in X.

2.6.4. THEOREM. [a,b] is connected.

PROOF. Suppose that U, V' are disjoint open subsets of R such that [a,b] C
UUV and [a,b] N U # 0 # [a,b] NV, Without loss of generality, a € U.
Define ¢ = sup{z : a < z < b, [a,2] C U}. Choose x,, increasing to ¢ so that
[a, zy,] C U. Taking their union, we see that [a,c) C U. If ¢ € U, then there is an
r > 0so that (c — r,c +r) C U, and then [a,c + r) C U. This contradicts the
definition of ¢ unless ¢ = b. So either [a,c) C U and ¢ ¢ U for some ¢ < b or
[a,b] C U.

Suppose that ¢ € V. Then there is an r > 0 so that (c—r, c+7) C V. Therefore
UNV D (c—rc), contradicting the fact that they are disjoint. Consequently,
[a,b] C U. Thus, [a, b] is connected. [ |

2.6.5. THEOREM. [f A is connected and f : A — Y is continuous, then f(A)
is connected.

PROOEF. Suppose that U, V' are disjoint open subsets of Y such that f(A) C
UUVand f(A)NU # 0 # f(A) NV, By continuity, f~'(U) and f~!(V) are

open in A; and they are disjoint. Also A C f~'(U) U f~'(V)and AN f~1(U) #
0 # AN f~1(V). So A is disconnected. This is a contradiction. [ |

2.6.6. INTERMEDIATE VALUE THEOREM. If X is a connected metric
space, and f : X — R is continuous, then f(X) is an interval (possibly infinite).

PROOF. By Theorem 2.6.5, f(X) is a connected subset of R. Let
a=inf f(X) e RU{—oc0} and b=supf(X)ecRU{{o0}.

If a < ¢ < b, we must have ¢ € f(X), for otherwise

and both of these intersections must be non-empty. This shows that f(X) is dis-
connected. Therefore (a,b) C f(X) C [a,b], and hence f(X) is an interval. W

2.6.7. LEMMA. If X, C Y are connected sets for A € A and xo € (| X, then
X = Uyea X is connected.
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PROOF. Suppose that U and V are disjoint open sets, and X C U U V. We
may assume that xg € U. Then since X, is connected, X, C U. Thus X C U;
whence X is connected. |

2.6.8. LEMMA. If A C X is connected, then A is connected.

PROOF. Suppose that U and V are disjoint open sets, and A C U U V. Then
A C UUYV, so by connectedness it is contained in one of the open sets, say A C U.
Then A C U C V¢, the last because V¢ is closed and contains U. Thus ANV = (),
whence A C U. So A is connected. [ |

2.6.9. DEFINITION. If o € X, then the connected component of x is the
largest connected set containing .

2.6.10. EXAMPLES.

(1) Let C be the Cantor set, and let x € C'. I will show that the connected com-
ponent of x in C is just {z}. There is a unique sequence aj,ay, ... in {0,2}
sothat z € C,, 4, foreach n > 1. Now Cy, 4, is clopen in C, and thus
C = Cy,. .0,V (C\ C4,,. q,) is a union of disjoint open sets. Therefore the
connected component of x is contained in Cy, . 4,; and thus it is contained in

ﬂnZl Cay,..an = {}.

(2) Q is totally disconnected. The connected component of r € Q is contained
in (r — 7 r + 7), because Q is contained in the disjoint union of the open sets
(r—12,r + %) and ('—<.>o,r - %) U (r + 7, 00). This holds for all n > 1; so the
component is just their intersection, {r}.

2.6.11. PROPOSITION. The connected component exists and is a closed set.

PROOF. The connected component exists, since the union of all connected sets
containing z is connected by Lemma 2.6.7. This is clearly contains all others, so
it is the largest. Moreover this connected component is closed by Lemma 2.6.8. l

An easy way to show that a set X is connected is to construct a path between
any two points in X. For example, any convex subset A of R” is connected be-
cause if a,b € A, then the line segment [a, b] lies in A. This is connected by The-
orem 2.6.4, and hence A consists of a single connected component. We formalize
this idea.

2.6.12. DEFINITION. X is path connected if for every x,y € X, there is a
path from z to y in X, i.e., there is a continuous function f : [0, 1] — X such that

f(0) =z and f(1) = y.
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2.6.13. PROPOSITION. Path connected sets are connected.

PROOF. Fix zp € X. For each y € X, find a continuous map f : [0,1] — X
such that f(0) = zo and f(1) = y. By Theorems 2.6.4 and 2.6.5, f([0,1]) is
connected. Therefore y belongs to the connected component of zyp. Hence X is
connected. |

0 ifz <0
2.6.14. EXAMPLE. Let f(x) =4 , . = .

sin_ ifz >0
Let X = G(f) = {(z, f(z) : © € R}. Then X = X UL where L = {0} x [~1,1].
See Figure 2.1. We show that both X and X are connected but not path connected.

FIGURE 2.1. The topologists’s sine curve.

Suppose that X C UUV where U and V are disjoint open sets. One set, say U,
contains (0, 0). So the connected component contains the left z-axis (—oo, 0] x {0}.
It also contains a neighbourhood about (0, 0), and so contains (%, 0) for large n.
The curve {(z, sin %) : & > 0} is path connected and hence connected, so it is also
contained in U. Therefore X is connected. So X is also connected.

Now we show that neither X nor X is path connected. In fact there is no path
from (0, 0) to (£,0) in X, which establishes both claims. Suppose g : [0, 1] — X is
continuous such that g(0) = (0,0) and g(1) = (£,0). Let ¢ = sup{t : g(t) € L}.
Say g(c¢) = (0,y). By continuity, there is a §; > 0 so that if ¢ < ¢ + J;, then
lg(t) = (0,9)|| < 7. Lett; = ¢+ 61/2 and g(t1) = (z1,sin5-). Now find
6y > 0so thatif t < ¢ + 0y, then [|g(t) — (0,)|| < %. Lett = ¢+ 02/2 and
g(ta) = (w2,sin ). Since g([ta,t1]) is connected, it must contain {(z,sin 1) :
2y <z < x1}. Now x; < i, and x5 < %, sothatg%z—gc—l1 > 3711 > 27. So the
function f(x) takes all values in [—1, 1] on this interval. But not all of these values
are within ﬁ of y, contradicting continuity of g.

2.7. The Cantor Set, Part I1

Next we consider spaces which are very disconnected like C' and Q.
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2.7.1. DEFINITION. X is totally disconnected if every connected component
is a singleton.

The last result of this chapter is an abstract characterization of the Cantor set.

2.7.2. THEOREM. If X is a non-empty compact metric space which is totally
disconnected and perfect, than X is homeomorphic to the Cantor set.

Before starting the main proof, we need the following key lemma.

2.7.3. LEMMA. Let (X,d) be a compact, totally disconnected metric space, and
let € > 0. Then X has a finite cover consisting of disjoint non-empty clopen sets
of diameter at most €. If X is perfect, then the cardinality of this partition can be
increased to any larger (finite) number.

PROOF. Forz € X, let A = {a € X : d(a,z) > ¢/2}. Eacha € A is
not in the connected component of z, namely {x}. Hence there are clopen sets
Uy and V,, = US such that x € U, and a € V,. Then {V, : a € A} covers A.
Since A is a closed subset of X, it is compact. Therefore there is a finite subcover
Vaysoo 3 Vg, Define W, = ﬂ?zl U,,;. This is a clopen neighbourhood of z, and
is the complement of V' = |J;"_, V4, which is a clopen set containing A. Hence
Wi C b jp(x). Thus the diameter of W, is at most ¢.

Now {W,, : 2 € X} is an open cover of X consisting of clopen sets of diameter
at most ¢. Select a finite subcover Wy, ..., Wy, . Define W] = W,, \ Uf;ll W,
for 1 < k < m. After discarding any empty sets, this is the desired partition.

If X is perfect, then each non-empty clopen subset W is also perfect, and thus
is not finite. So given two points z,y € W, we can find a clopen set U > z such
thaty € V := W \ U. Replacing W by U, V increases the size of the partition by
one. Repeat as often as required. |

PROOF OF THEOREM 2.7.2. Using Lemma 2.7.3, partition X into n; > 2 non-
empty clopen subsets Uy, ..., Uy, of diameter at most 2~!. Then partition C into
the same number of clopen subsets Vi,...,V,, of diameter at most 2~!. In this
case, we can do this using the standard intervals, as Cy and C; are complementary
clopen subsets of diameter 1/3, and they can be further dissected as necessary to
get ny sets.

Next we can partition each U; into finitely many disjoint clopen sets of diameter
at most 272, By adding further divisions if required, we may assume that each has
ny > 2 sets, enumerated U;,;, for 1 < i; < nj. Partition each V; into n, disjoint
non-empty clopen sets of diameter at most 272 called V;;, for 1 < ij < nj.
Recursively repeat this procedure, so that for each £ > 1, X is partitioned into
non-empty clopen sets U;, ;, of diameter at most 27k where 1 < ij < nj, and
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U?:’“l Ui,..ix_,i = Ui,..i,_,. And likewise partition C into non-empty clopen sets
Vi,...i;, of diameter at most 2% where 1 < 1; < nj, and U?jl Vivig_1i = Vi iy -

The idea now is to use these partitions as a decision tree to identify individual
points which are the intersection of a decreasing sequence of clopen sets. For each
point x € X, there is a unique choice of a sequence U;,, Uj i, ..., Uiy iy - -
such that x € Uj;,. ;, for every k > 1 because at each level, X is partitioned into
disjoint sets, so exactly one contains z. The intersection (\,~, Us,..;, = {x} is
a single point because it has diameter 0. Conversely every choice of a decreasing
sequence of these sets, ().~ U;,...;, is non-empty since it is a decreasing sequence
of closed sets with FIP, and X is compact. Again this intersection has diameter 0,
so is a single point. Let’s call it ;,;,,.... Exactly the same is true for C' for the same
reasons. Denote the corresponding point in C' by ¢;,4y4;.....

Define a function f : X — C by f(%i i js...) = Cijinjs.... By the discussion in
the previous paragraph, this map is a bijection. We need to show that f and f~! are
continuous. First note that by construction, f(U;,. s,) = Vj,..i.- So we also have
S Vi) = Uiy

To finish the proof, we show that every open set V' C C'is given by

(2.7.4) V= J{Viir : Vs, €V

Suppose that € V. Since V is open, there is an > 0 so that b, (z) C V. Choose
k so that 2=% < r. There is a set Vi,...i,, which contains x, and has diameter at most
2% Therefore V;, ;, C by(x) C V. It follows that the right hand side of (2.7.4)
contains every point in V, establishing the identity. Now we see that

(V) = U{f_l(Vil,,ik) Vi, CV})= U{Uil..‘ik Vi, CV}

is a union of open sets, and thus is open. Hence f is continuous.
The continuity of f~! follows similarly, or we can apply Proposition 2.3.4.
Hence X is homeomorphic to C. |

Exercises

1. Consider the Cantor setas C' = [),,~.; Cy, asin § 2.4. The set C,, is the disjoint union of
2™ intervals, say Iy, ,, for 0 < k < 2" in increasing order. Define a continuous function
fn : Cp — [0,1] by fo(x) = k27" for x € I ,. Prove that (f,),>i converges
uniformly on C' to a continuous monotone function f which maps C onto [0, 1].

2. Provethat C+C ={z+y:z,y € C}=][0,2]. HINT: consider C,, + C,,.

3. LetF={FeC.1]: Fx) = [{ f(t)dt, f € Cl0,1], ||f] <1}.
(a) Show that F is bounded and equicontinuous, but not closed.
(b) Show that F = {f € C[0,1] : f(0) =0 and Lip(f) < 1}, and this is compact.

HINT: find F,, € F such that F,(£) = (1 — 1) f(£).

4. Show that the closed unit ball of C[0, 1] is not compact.



10.

11.
12.

13.

14.

15.

16.

17.
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A continuous curve v : [0, 1] — (V|| - ||) is rectifiable if
L(v) = sup { S () = Yt 20 =to <t < tigy <ty = 1}
is finite. Prove that a space filling curve onto the unit square in R? cannot be rectifiable.

HINT: use a fine grid in the square, and find a lower bound for the length of a curve
that passes near every lattice point.

Let f, € Crla,b] for n > 1. Suppose that they are all Lipschitz with Lipschitz
constant at most 5 and |f,,(a)] < 7. Prove that there is a subsequence of (fy,)n>1
which converges uniformly.

Let (X, d) be a compact metric space and let F be an equicontinuous family in C'(X)
such that M, := sup{|f(x)| : f € F} < oo forx € X. Prove that F is bounded.

Let F be an equicontinuous family of continuous functions on R such that M, :=
sup{|f(z)| : f € F} < oo for every x € R. Prove that every sequence (f,,)n>1 in F
has a subsequence which converges uniformly on every compact subset of R.

Let U be an open subset of a normed vector space V. Prove that U is connected if and
only if it is path connected.

HINT: fix x € U, and show that the set of points in U which are path connected to x
is open, and that the set of points in U which are not path connected to x is also open.

Show that the unit interval [0, 1] and the unit circle T are not homeomorphic.
HINT: [0, 3) U (3, 1] is not connected.

Show that [0, 1] and the unit square [0, 1] x [0, 1] are not homeomorphic.

LetC, ={z€C:|z—+|=1—+}forn > 1. Define X = J,~(Cn. Show that
X and X are path connected. Is there a continuous function from [0, 1] onto X ?

Consider the curve v : (0,1] — C by y(t) = (1 + t)e¥/*. Clearly Ran+ is path
connected. Show that Ran ~ is connected but not path connected.

Let X = {(2,0):0<z < 1}U{(1,y):neN, 0<y <1}U{(0,1)} C R Prove
that X is connected but not path connected; however X is path connected.

(a) Let Ay D Ay D A;... be a decreasing sequence of connected compact subsets of
(X, d). Prove that (), A; is connected.

(b) Find an example of a decreasing sequence of connected closed subsets of R? such
that the intersection is not connected.

Show that if x,y € C, the Cantor set, then there is a homeomorphism f of C' onto
itself such that f(x) = y. Note: this means that being the endpoint of an interval is a
property of the imbedding of C into [0, 1], not a topological property of C'.

Fix a real number 0 < ¢t < 9. If € [0,1), choose the decimal expansion for x,
x = 0.z12; ..., which does not end in all 9’s. Let a,(z) = %Z?:l x;. Define

B={x€]0,1):a,(z) <t forall n > 1}. Show that B is closed, nowhere dense
and perfect.



CHAPTER 3

Completeness Revisited

3.1. The Baire Category Theorem

In this section, we prove a result about complete metric spaces which is not
particularly difficult, but has many surprising consequences. We will see some of
them in this course, and you will see several others if you take functional analysis.

3.1.1. DEFINITION. A subset A of a metric space X is nowhere dense if A has
no interior. A set A is first category in X if A = J,,~, A, and each A,, is nowhere
dense; i.e., A is a countable union of nowhere dense sets.

Say that B is a residual set in X if B€ is first category.

If A is nowhere dense, then A° is a dense open set. Thus A is small and its
complement is pervasive within X . One should think of sets of first category sets
as being small as well.

3.1.2. EXAMPLES.
(1) Single points in R are closed and nowhere dense. Thus Q is a countable union
of {r} for r € Q. Hence Q is first category and R \ Q is a residual set.

(2) The Cantor set is closed and has no interior in R. So it is nowhere dense even
though it has the same cardinality as R.

3.1.3. BAIRE CATEGORY THEOREM. A non-empty complete metric space
X is not first category; i.e., X is not a countable union of nowhere dense sets.
Indeed, if A,, are nowhere dense subsets of X, then ﬂn>1 AnC is dense in X.

PROOF. Let z € X and r > 0. We will find a point in b, (z) \ |, An. This
will show that (), -, A, is dense in X.

Since A has no interior, V; := b.(z) N A" is non-empty and open. Thus
there is a point 71 € X and an 0 < r; < r/2 so that b, (z;) C V;. Proceed
recursively. At stage n, we will have zy,...,z, and r1,...,r, so that r; < r/ 2t
and by, (z;) C V; = by, (wi—1) \ A; for 1 < i <n. Set Vi1 = by, (z0) \ A1
Since A, is nowhere dense, this is a non-empty open set. So we may find a

50
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point z,, 1 and an 7,1 < /2" so that b,., 1(Znt1) C Vig1. This completes the
inductive step.

The balls b, (x,,) form a decreasing nested sequence of closed sets. We claim
that the sequence (z),>1 is Cauchy. Indeed, if N < m < n, then x,,z,, €
bry (zn) and hence d(zp,z,) < 2ry < 21=Np. Soif ¢ > 0 is given, choose
N so that 217Ny < ¢. Since X is complete, this sequence has a limit, say
zo = lim,_,00 ¥,. Hence zg belongs to > by, (zn). (Alternatively, by, (z,)
is a decreasing nested sequence of closed sets with diameter tending to 0, and thus
they have non-empty intersection {zo} by the completeness of X. See Assign-
ment 3.) Since b, () is disjoint from A,,, we have 29 € (), -, 4, . Moreover,

xo € VI C by(x), so that d(z, x9) < r. Thus ngl /TnC is dense in X. [ |

3.1.4. DEFINITION. If X is a metric space, aset A C X is a G set if there are
countably many open sets Uy, n > 1, so that A = ﬂn21 U,. Aset A C X isan
F, set if there are countably many closed sets Cy,, n > 1, so that A = Un21 Ch.

Since the complement of a closed nowhere dense set is a dense open set, the
following corollary is immediate.

3.1.5. COROLLARY. If X is a complete metric space and U, are dense open
sets forn > 1, then ﬂn>1 U, is a dense G set.

The Baire Category Theorem is often used using the contrapositive, which can
be formulated as follows. Again the proof is immediate.

3.1.6. COROLLARY. Let X be a complete metric space. Suppose that C,, are
closed sets such that X = |J,,~, Cpn. Then there is some ng so that Cyp, has non-
empty interior.

3.1.1. Pointwise Limits of Continuous Functions. We have seen in Exam-
ple 1.8.3 that the pointwise limit of continuous functions need not be continuous.
Functions which are pointwise limits of continuous functions are called Baire one
functions. In this short section, we will show that Baire one functions retain some
good properties.

3.1.7. DEFINITION. Let (X, d) be a metric space, and let IF be either R or C. If
[+ X — Fis afunction, the oscillation of f at x, ws(x), is defined in two stages:

wi(z,8) =sup{|f(y) — f(2)| 1y, 2 € bs(x)} for §>0
Wf(.CL‘) = gggwf(x>5)
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The following easy lemma is left as an exercise.

3.1.8. LEMMA. Let f : X — F. Then f is continuous at x if and only if
wi(xz) =0.

We need another easy lemma.
3.1.9. LEMMA. Let f : X — Fandlete > 0. Then {z : w¢(x) < e} is open.
PROOF. Suppose that ws(xz) < e. Then for some § > 0, ws(x,0) < e. If

d(z,y) = r < 6, then bs_,(y) C bs(x). Therefore, w¢(y,0 —r) < wy(x,d) < e.
Hence wy(y) < e. Thatis, bs(x) C {x : ws(x) < €}. So this is an open set. [ |

The main result of this subsection is the following.

3.1.10. THEOREM. Suppose that f; € C|a, b] converge pointwise to a function
f. Then f is continuous on a residual G set.

PROOF. Observe that the points of continuity of f are

{z:ws(z) =0} = ﬂ{x twp(z) < 1} = ( U{m twr(x) > %})

n>1 n>1

Cc

Since U,, = {z : wy(z) < 1} is open by Lemma 3.1.9, the points of continuity
form a Gy set. The plan is to show that the closed sets A, = {z : wy(z) > 1} =
US are nowhere dense. Let I be a (small) open interval in [a, b]. We will show that
I contains a point with wy(z) < % Hence I ¢ A,,. As I is arbitrary, A,, has no
interior.

Sete < 5. Foralli,j > 1,set X;; = {x € I : |f;(z) — fj(z)| < €}. By
the continuity of f; — f;, these are closed sets. Define closed sets for n > 1 by
Ey = (; jon Xi;- Since f;(x) converges to f(z), there is some N € N so that

|fi(z) — f(z)| < 5foralli > N. Henceifi,j > N, we have |fi(x) — fj(z)| <e&;
and thus z € Ey. It follows that [ = Un21 E,.

Now T is complete, so Corollary 3.1.6 shows that there is some ng so that E,,
has interior, say E,, D .J where J is an open interval. Hence | f;(x) — fp,(z)| < ¢
for all i > np and x € J. Take the limit as i — oo to see that | f(x) — fp,(z)| < e.
Since fj,, is uniformly continuous, there is a §o > 0 so that |z — y| < &y implies
that | fn,(y) — fo,(z)| < e. If x € J, let 6, = min{do/2,d(x,J¢)}. Then if
Y,z € bs,(x) C J, we have d(y, z) < dp; s0

1f () = FI < 1FW) = Fao @)+ 1fng (1) = fro ()] + [ fno (2) = f(2)]

1
<e+t+et+e=3<—.
n
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Therefore wy(z) < wy(z,0,) < 3e < L forallz € J C I. This shows that 4,
has no interior; so it is nowhere dense.

Hence | J,,~; An = {z : wy(x) > 0} is first category. By the Baire Category
Theorem 3.1.3, {z : wy(z) = 0} = (,,>; AS, is a dense Gy set. By Lemma 3.1.8,
this is the set of points of continuity of f. |

3.2. Nowhere Differentiable Functions

Our major application of the Baire Category Theorem will be to show that most
continuous functions on an interval are not differentiable even at a single point.
Such functions are called nowhere differentiable.

We need the following local variant on Lipschitz functions. The reason for
discussing a Lipschitz condition is that these functions are better behaved under
limits than differentiable functions. The easy lemma is a local version of Exam-
ple 1.4.7(3).

3.2.1. DEFINITION. A function f € C(X) is Lipschitz at x for z € X is there
is a constant C so that

|f(z) — f(y)| < Cd(z,y) forall ye X.
3.2.2. LEMMA. [f f € C|a,b] is differentiable at x, then it is Lipschitz at x.

PROOF. We are given that f'(z) = lim,_,, w exists. Hence there is a
d > 0sothat when 0 < |y — x| < 4,

RS GRS

If follows that |f(y) — f(z)] < (|f/(z)] + 1) |y — «| if |y — 2| < 6. Now if
ly — x| >4,

1F(y) = f(@)] <2/ flloo < 21 fllocd™") Iy — .
Hence f is Lipschitz at z with constant C' = max {|f’(z)| + 1, 2||f[lsc6~")}. W

3.2.3. THEOREM. The set of functions f € C|a,b] which are differentiable at
one or more points is a set of first category. So the set of nowhere differentiable
functions on [a, b] is a residual set, and in particular is dense in Ca, b).

PROOEF. For k > 1, let
A ={f €Cla,b] : 3z € [a,b] s.t. fisLipschitz at  with constant k}.

Our goal is to show that Ay is closed and nowhere dense.
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First suppose that f,, € Ay and f,, — f uniformly on [a,b]. For each f,,
there is a point x,, € [a,b] so that |f,(y) — fu(xn)| < kly — x| fory € [a,b].
The bounded sequence (x,),>1 has a convergent subsequence by the Bolzano-
Weierstrass Theorem, say xg = lim;_,o Zr,. Then

1f(y) = f(@o)l < [f(y) = fa W] + [fn, (W) = fri(@n) |+
+ i (@n;) = fri (@o)| + | i (m0) — f(20)]
<f = frilloo + kly — @n, | + Elzn, — zol + [ fn, — fllo
=2[|f = failloo + k(’y — T, | + |20, — 5U0|)

Now take the limit as © — oo to obtain that

[f(y) = flzo)| < Kly — xol-

Thus f € Ag. So Ay is closed.

Next we show that Ay has no interior. Take f € Ay and let ¢ > 0 be given.
The idea is to first find a nice (in this case, piecewise linear) function close to f.
Then we will add to this function a very wild function to obtain a function that does
not have a small local Lipschitz constant anywhere.

Since f is uniformly continuous, there is a 0 > 0 so that |z —y| < § implies that
|f(z) — f(y)|] < e/4. Choose a finite set of points a = zg < 2] < -+ < x,, = b
so that x;11 — x; < § for 0 < ¢ < n. Define h to be the piecewise linear function
determined by h(z;) = f(z;) for 1 <i <n.Thenif z; < z < x;41,

Ih(z) — f(2)] < |h(@) = h(x:)| + [h(zs) = f(x:)] + |f (@) = f(@)]
< |h(@ir1) = h(z)] + 0+ =

4
= |f(@e) = flad] + 3 <

€
5
Thus || — flloc < 5. (Strict inequality follows from the Extreme Value Theorem.)
Since h is piecewise linear, it is Lipschitz with constant L equal to the maximim
absolute value of the slope on each segment. Let M > 4ne~!(L + k). Define
g = h + 5sin Mx. The small function §sin Mx has a big derivative at many
points, and this will ensure that g is not in A;. Note that

g . 9
lg = Flloo < llg = Alloo +[1h = flloo < Sl sin Mzflo + 5 <&

For any x € [a, b], we will show that g is not k-Lipschitz at . In any interval
of length 27t /M, the function sin Mz will take all values in [—1, 1]. So choose a
point x € [a, b] so that

+1 if sinMxg <0

2
|x—:v0|<—7r and sinMzx = o
—1 if sin Mxy > 0.

M
Then
l9(z) — g(wo)| = |(x) — hlwo) + %(sin M — sin Mag)|
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> %‘ sin Mz — sinMxo} — |h(z) - h(mo)}
> % — L|z — x|
M
> % By |z — xo| — L|z — x|
M
= (E— —L)|a:—xo| > klz — o).
4

Hence g is not Lipschitz at xo with constant k. As x¢ was arbitrary, g ¢ Aj. Hence
A}, has no interior.

We have shown that each Ay, is nowhere dense. So | J;,~; Ay is first category.
The complement consists of all functions which are not locally Lipschitz at any
point. By Lemma 3.2.2, this implies in particular that they are nowhere differen-
tiable. Hence the set of nowhere differentiable functions is also a residual set. By
the Baire Category Theorem 3.1.3, the set of nowhere differentiable functions is
dense in C'[a, b). [

3.2.1. Weierstrass’s Nowhere Differentiable Function. This Baire Category
argument is not how people first discovered nowhere differentiable functions. Weier-
strass constructed a whole family of such functions as sums of infinite series. We
will provide one of his examples here.

Define

f(z) = ZZ"“ cos(10Fmz) = ka(m) for z eR.

k>1 k>1

Since || fx|loo = 27%, the Weierstrass M-test 1.8.5 shows that this series converges
uniformly to a continuous function on R. Moreover each f}, is 1-periodic so f has
period 1. Thus we need only consider z € [0, 1].

Let z = 0.z zpz3 - -+ € [0,1]. Foreachn > 1, let a,, = 0.z12223 . ..z, and
b, = a, + 107", Notice that 10"a,, is an integer and 10"b,, = 10"a,, + 1; so

falan) = 27" cos(10"may,) = 27" (—1)10"n
fu(by) = 27" cos(10"wh,,) = 27" (—1)10"ant1,

Therefore | f,(ay) — fn(bn)] =2'".

If £ > n, 10*a,, and 10¥b,, are both even integers, so that fi(a,) = fi(b,). If
1 < k < n, the Mean Value Theorem shows that

| fr(an) = fi(bn)] < || filloo (bn — an) = (275107 m)107" = 275" ",

Therefore

[Fan) = FOn)] = | D fulan) = fi(ba)
k=1

n—1
> |fn(an) - fn(bn)’ - Z |fk(an) - fk(bn)‘
k=1
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n—1
Eizl—n__z—nﬂjizsk—n
k=1

>27"(2 - %) >0,

It follows that choosing the endpoint y,, € {ay, by, } judiciously, we can arrange
that | f(y,) — f(x)| > 27""!. However |y, — z| < 10~"™. Therefore

‘f(yn) —fle)] 2 s
Y

n — T

10— 2

This tends to oo, from which we deduce that f is not differentiable at x.

3.3. The Contraction Mapping Principle

This section provides another easy but powerful consequence of completeness.

3.3.1. DEFINITION. Let (X,d) be a metric space. Amap7T : X — X isa
contraction mapping if it is Lipschitz with a Lipschitz constant ¢ < 1.
A fixed point of amap T : X — X is a point z € X such that Tz = x.

3.3.2. CONTRACTION MAPPING PRINCIPLE. Let (X,d) be a complete
metric space, and let'T' : X — X be a contraction mapping with Lipschitz constant
c < 1. Then T has a unique fixed point x.. Moreover, for any xo € X, the sequence
Ty = T"x converges to x., and

T

1—c¢

d(Tp, xy) < d(x0,24) < d(xo, Txp).
PROOF. Start with any point ¢ € X and define z, 11 = T'x,, for n > 0. Then
forn > 1,
d(Tpi1,Tn) = d(Txp, Trp—1) < cd(Tp, Tn_1).
By induction, we see that d(z,+1, x,) < ¢"d(x1, z9).
We claim that (z,,),>0 is a Cauchy sequence. Indeed, if N < m < n, then by
the triangle inequality,

n—I1 n—I1
d(Tn, Tm) < Z d(wiy1, ;) < Z c'd(wy, o)

N

< Zcid(xl,xo) = ( ¢ )d(ml,xo).

: 1—c¢
i>N

Given ¢ > 0, we may choose N so large that ¢V @ < e. Then d(xy, Ty) < €
for all N < m < n, so the sequence is Cauchy.
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Let x, = lim,,_,oo x5, Which exists since X is complete. Then
Tz, = lim Tx, = lim ;1] = .
n—oo n—oo
Thus z, is a fixed point for 7. Moreover,
d(xpi1,24) = d(Tan, Txy) < c (xn,a;*

By induction, we again show that d(z,,z.) < 0, Zx). From the previous
paragraph with N = 0, we have that d(z,, x¢) § % (z1,x0). Letting n — oo
yields d(z., zo) < %_cd(:zl, xo). Hence

n

d(Tzg, x9).

d(n, ) < "d(o,2,) < T

Suppose that y, is a fixed point of T'. Then
d(xs,Ys) = d(Txs, Tys) < cd(xs,ys).

Since ¢ < 1, this shows that d(x.,y.) = 0; that is, y. = z.. So z, is the unique
fixed point. u

3.3.3. EXAMPLES.
(1) The condition ¢ < 1 is required to ensure a fixed point. If S : R — R by
Sx = x + 1, then this is an isometry and has Lipschitz constant ¢ = 1. Clearly it
has no fixed points.

A somewhat more subtle example is 7' : [1,00) — [1,00) by Tz = z + 1.
Then

1 1
\Tﬂf—TylzlﬂﬁJr;—y—;\=Ix—y|(1—ﬁ)<\ﬂr—y\-

Thus 7T shrinks the distance between any two pairs of points. However for , y very
large, this ratio gets arbitrarily close to 1, so the Lipschitz constant is 1. This map
has no fixed point because 7'z > x for all x.

(2) Put your calculator in radian mode, and enter an arbitrary number. Repeatedly
compute the cosine by hitting the cos button many times. You will see that fairly
quickly, you get the answer 0.739085133 and if you use a computer with higher
precision, you will get x, = 0.73908513321516064 . . ..

This corresponds to the map 7' : R — R by T'x = cos x. Whatever the starting
point zg is, x; € [—1,1] and 2, € [cos 1, 1]. The Mean Value Theorem shows that
if x,y € [—1, 1], then there is some 0 € (x,y) so that

COSX — COS Y
T—Y
Hence |Tx — Ty| < (sinl)|z — y| is a contraction mapping with ¢ = sin 1 once
we restrict T' to its range, [—1, 1]. Thus by the Contraction Mapping Principle,
there is a unique fixed point. This fixed point is the unique solution to the equation
c0s T« = xx. Graph the curves y = cos x and y = x and find the intersection point,
(Twy ).

=sinf <sinl.
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(3) Let T : [-1,1] — [~1,1] by T2 = 1.8(x — 23). Note that T(+1) =
0. Compute 7’z = 1.8(1 — 32?). Then T’z = 0 when z = #1/+/3; and
T(£1/V/3) = %\/5 These are the local max and local min respectively, and
2v/3 < 5; 50 T maps [—1, 1] into itself. You can also see by inspection that the
derivative 7(0) = 1.8 > 1 and |7"(£1)| = 3.6 > 1. So T is not a contraction
mapping.

Solve for fixed points: Tz = x if and only if = 1.8z — 1.8z, which holds
if (2> — §) = 0. This has three solutions, z = 0, +%. Note that 7’(+3) = —0.6
while 77(0) = 1.8.

We will show that: if Tx, = x, and T is C'! with |T"(x4)| < 1, then there is a
(small) interval I = (x, — 0, x4 + 0) sothat T : I — I is a contraction mapping.
This is called an attracting fixed point. Use the continuity of 7" to select an interval
containing x,. on which max |T7"z| = ¢ < 1. By the Mean Value Theorem, if z € I,
then there is a point £ in (x, x,) so that

[Tz — Tz,

v -]

— Tl <.

Hence [Tz — Tz.| < ¢z — x4|. So T maps [ into itself, and is a contraction
mapping. Thus T™x converges to z. if we start with x € I. This is what occurs in
our example near x, = j:%.

Also if if Tz = x4 and T is C' with |T'(x,)| > 1, then there is a (small)
interval I = (x, — 6,2+ 0) and ¢ > 1 sothat forx € I, |Tx —Tx,| > c|x — x4|.
This is called a repelling fixed point. You can similarly bound min |7"z| = ¢ > 1
on some interval . Another application of MVT shows that |Tx—T'z.| > c|lx—x.|.
So the points are being pushed away from x,. This is the case for x, = 0.

A useful extension of the contraction Mapping Principle is the following vari-
ant.

3.3.4. COROLLARY. Let (X,d) be a complete metric space, and let T : X —
X. Suppose that there is a positive integer k so that T* is a contraction mapping.
Then T has a unique fixed point x.. Given any xg € X, x, = limy,_, o T"xy.

PROOF. Since T is a contraction, it has a unique fixed point . Observe that
TH(Tx,) = T(T*z,) = Tx,.

Thus Tz, is a fixed point of T%. By uniqueness, 7'z, = x.. So z, is fixed for T
Given zo and 0 < i < k, starting with 7"z, repeated application of T* yields ..
Thus

lim T gy = lim T (T 'z) = ..

n—oo n—oo
Therefore T"xo converges to x.. Conversely, if y, is any fixed point of 7', then
T*y, = y, as well. So the fixed point for 7" is unique. |
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3.3.1. Fractals. Suppose that X is a closed subset of R and 717, ...,T;, are
affine invertible contraction mappings of X with Lipschitz constants ¢; < 1 for
1 <4 < k. (An affine map is a translation of a linear map.) Look for a closed
subset A C X such that

A=T1AU---UT,A.
Since we are using invertible affine mappings, each 7; A is similar to A geometri-
cally. If the T; A are almost disjoint (say except for a finite number of points), then
this self-similarity property will be more apparent. A will look like the union of k
smaller copies of A, each of which is a union of k even smaller copies, etc. Such a
figure is called a fractal.

3.3.5. EXAMPLE. Let X = R? and let
i

Tz = ; Tz = (1,0) + g and Ty = (3, %) + 3.
Let Ag be the solid equilateral triangle with vertices (0,0), (2,0) and (1,+/3).
Define A, = T1A,—1 UT3A,_1 UT3A,_ forn > 1 Then T; Ay is an equilateral
triangle of half the size. So A is the union of three triangles, and looks like Ay was
divided into four equal triangles and the centre was removed. Likewise, A, looks
like each solid triangle in A; had the middle triangle removed from each. In the
limit, it converges to a figure known as Sierpinski’s triangle.

AL L
V.

FIGURE 3.1. Ao, Al, Ay, Az, Ay, As.

The fact that 7; are affine and invertible turns out to be unimportant in terms
of existence of a unique solution. It does, however, produce more symmetrical and
pleasing results.

3.3.6. THEOREM. Let (X,d) be a complete metric space, and let T; : X — X
be contraction mappings with Lipschitz constants ¢; < 1 for 1 <1i < k. Let H(X)
denote the space of non-empty closed bounded subsets of X with the Hausdorff
metric. Define T : H(X) — H(X) by TA = T1AU--- UT,A. ThenT is a
contraction mapping. It has a unique fixed point A, and it satisfies

A, =TVA, U---UTLA,.
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PROOF. First we show that if A;, B; € H(X) for 1 < i < n, then
dH(Al Uu---Ud,,Biu---u Bn) < max dH(AZ, Bl)
1<i<n
Let r be the right hand side. Then A; C (B;), := {z : d(x, B;) < r} and similarly
B; C (4;),. Therefore
AjU--UA, C(BiU---UBy), and (ByU---UBy) C (A U---UAp).

That proves the claim.
If A, B € H(X), then

dp(T; A, T; B) = max{sup d(T;a, T; B), sup d(T;b, T; A) }

acA beB
< ¢;max{sup d(a, B),supd(b, A)}
acA beB
= CidH(A, B)

Let c = max{c; : 1 <i <n}. Thenif A, B € H(X), we have

dH(TA,TB) = dH(TlA Uu---UuTzAATiBU---U TkB)
< max{cidH(A, B)} = CdH(A, B)

Therefore 7' is a contraction mapping with Lipschitz constant c.
By the Contraction Mapping Principle 3.3.2, T" has a unique fixed point A,. B

3.4. Newton’s Method

Newton’s method is an iterative algorithm for finding zeros of nice functions
that you have probably seen in your calculus class. It is frequently implemented
for computer computation because it converges very quickly. In fact, it converges
quadratically. This means that once you get sufficiently close to the solution, each
iteration essentially doubles the number of significant digits. In fact the precision
of the calculation may become the more serious problem.

3.4.1. DEFINITION. An algorithm for approximating a solution z, by a se-
quence (z,)n>0 converges quadratically if there is a constant C' so that

|-Tn+1 - $*| < C|xn - $*|2-

Start with a function f € C2[a,b]. Suppose that there is a point z, such that
f(zx) = 0and f'(z,) # 0. You need to start with a point o sufficiently close to
x4. Exactly how close depends on the function, but in some cases, there is a lot of
leeway.
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The idea is to take the tangent line through (xo, f(x0)) and solve for its root,
x1, which is the first step of the algorithm. Repeat, generating a sequence of ap-
proximations. As with any numerical method, it is important to have good error
estimates.

The line through (x,, f(z,,)) with slope f’(zy,) is

y = f(zn) + f'(zn) (@ — 2).
The solution to y = 0 is x,,4| given by
Tyl = Ly — f(@n)
n—+ n f/(fl:‘n) .

Define the mapping Tx = z — ;((?)' Observe that T'x, = x, precisely when

f(zs) = 0. We won’t have any problem with the denominator being 0 if we are
close to x, because f’ is continuous, and is non-zero at z,. Compute

@) = f@) (=) _ fa)f"(2)
f'(x)? f'a)>

Notice that 7" (z,) = 0, and hence 7' is very contractive near ..

Tzr=1

3.4.2. NEWTON’S METHOD. Suppose that f € C? and there is a point x,

suchthat f(xz,) = 0and f'(x4) # 0. Then there is anr > 0 so that Tx = x— f,(é,))
is a contraction mapping on I = [x, — 1, x, + r|. Moreover there is a constant M

so that |2y, 11 — o] < M|z, — 2%

PROOF. Based on the calculations preceding the proof, we can choose r > 0
so that [T"z| < 1 on some interval I = [z, —r, z,+7]. This implies that f'(z) # 0
on I. By the Mean Value Theorem, if x,y € I, there is a point £ € (x,y) so that

Tz — Tyl = |f'(€)(x —y)| < 3lz —yl.

Thus 7' is a contraction mapping with Lipschitz constant % In particular, if z € I,
Tz — z,| = [Tw — Tz.| < 3z — 2.]. So Tz belongs to I; whence T1 C I.
The Contraction Mapping Principle shows that x,, = T"z( converges to z, and
satisfies |z, — x| < 27"|xo — x4|. This is good, but it isn’t quadratic convergence.

Let A = sup,;|f"(x)| and B = inf¢r | f'(x)|. We need to apply the MVT
twice. First there is a point £ € (x, x,,) so that

So f(xn) = f'(€)(xy, — x4) because f(x4) = 0. Therefore

T Fla)
_ f@) (@) = ') _ (n =2 )(f (@) = ()

F1)f' (xn) B f'(an)

T+l — Tx = (CCn - SC*) + (xn—i-l - mn)
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Now apply the MVT a second time to find ¢ € (§, ;) so that
f/(xn> — f,(f) _
= (o).

Plugging this back in yields

T — Ty ) (T — &) (¢ A
’xn+1_$*‘: ( n *}([(;Ln> ) ( ) §§|l’n—ﬂf*2
This is quadratic convergence with M = A/B. |

3.4.3. EXAMPLE. The favourite example of this algorithm is the computation
of square roots. Let f(z) = x> — 153. Note that f is smooth and f’(z) = 2z
is not zero on I = [12,13]. Indeed, B = inf{|f'(z)| : ® € I} =24 and A =

sup |f"(z)] = 2. The map T'is To = z — £513 = J(z + 18). Also 'z =

f(jj,)(/;/;gz) = x2i1253‘ On [, this is bounded by % = %. So T’ is a contraction.

_ A _ 1
The constant M = 5= 13 Thus

= n — V153)?

Start with (g = 12.5. we can estimate

12.52 — 153 3.25
12.5—V153 = < < 0.14.
125++153 125+12

Hence
|21 — V153| < 11—2(.14)2 <.0017
and
|22 — V153] < 1—12(1.7 1073)? <2.5107".

153

This is very rapid convergence. The real computational problem is computing ->=

to sufficient accuracy.

Exercises

1. Let (X, d) be a complete metric space. If A C X is a G5 set, prove that A \ A is first
category.

2. Let (X, d) be a countable complete metric space. Prove that X has isolated points.

3. (a) Show that R? is not the union of countably many lines.
(b) More generally, show that a complete normed vector space is not the union of
countably many translates of proper closed subspaces.
(c) Show that there is no norm on the vector space C[x] of polynomials in which it is
complete.
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(a) Let (X, d) be a metric space, and let f : X — C be a function. Show that the set
of points of continuity of f is a Gs.

(b) Prove that Q is not a G5 subset of R. Hence deduce that there is no function on R
which is continuous precisely on Q.

Let (X, d) be a compact metric space. Let V be a closed subspace of Cg (X)) such that
every f € V is Lipschitz. Prove that V is finite dimensional.
HINT: show that A, = {f € V : |f(z) — f(y)| < nd(z,y)} has interior for some n.
Hence show that the closed unit ball of V' is equicontinuous.

Show that the unit cube C = {x € R : 0 < z; < 1, 1 < i < d} is not the union of
countably many disjoint non-empty closed sets by the following plan:

Suppose that A,, are disjoint non-empty closed sets such that C' = J,,.; A,. Define
the boundary of A,, to be B, = A, \ int(A,,), (interior w.r.t. to C). Set X = C'\
U,,>,int(A4,) = U,,>; Bn. Show that b,.(x) for x € B,, must intersect some B,,, for
m # n. What does the Baire Category Theorem say about X = U,>1 Bn?

A nowhere monotonic function on [0, 1] is not monotonic on any interval. Show that
these functions are a residual subset of C[0, 1].
HINT: Let A, = {£f € C[0,1] : Tpepo.1) s.t. (f(£)—f(2)) (t—2z) > 0if [t—z| < L}

Let f : [1,00) — R be continuous such that for every = > 1, lim,,, o, f(nz) = 0.
Prove that lim,_, - f(z) = 0.

(a) Show that |sinx — siny| < |z — y| forall z # y € R.

(b) Show that T’z = sinx is not a contraction mapping on R.

(c) Show that if zy € R, then x,, = T™x converges .

(d) Use the Taylor expansion about = = 0 to show that if zp = 1, then convergence of
x,, is much slower than geometric (i.e. for any ¢ < 1, limy, 00 |i2| = +00).

Let (X, d) be a complete metric space.

(a) Suppose that S and T are both contraction mappings with Lipschitz constant ¢ < 1;
with fixed points be x g and 27 respectively. Define do (S, T') = sup, . x d(Sz, Tx).
Prove that d(xg, 1) < (1 — ¢)~'duoo (S, T)).

(b) Show that if t — T for ¢ € [0, 1] is a continuous path of contraction mappings on
X (with respect to d,) and they have a uniform Lipschitz constant ¢ < 1, then the
map t — x; to the fixed points x; of T} is a continuous path in X.

(c) Construct a continuous path of maps 7} : [0, 1] — [0, 1] consisting of contractions,
but the supremum of the Lipschitz constants is 1.

Let T : C[0,1] — C[0,1] be defined by T'f (z) = 1 + [ f(t) dt.
(a) Show that 7 is not a contraction mapping, but that 72 is.
(b) Find the fixed point of 7.

Let A = [a;;] be a linear transformation from lg") to itself.

(a) Show that ||A]| = max{>_" , |a;;| : 1 < j < n} = maxi<j<, |T¢;]|; is a norm
on the vector space M,, of n X n matrices.

(b) Show that A is a contraction mapping if and only if ||A|| < 1.

(c) Suppose ||I—A]| < 1. Solve Az = b by finding the fixed point of T = x— Az +b.
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3.5. Metric Completion

In this section, we will show that every metric space sits inside a unique small-
est complete metric space. This will be used soon to discuss the construction of the
real numbers.

3.5.1. DEFINITION. If (X, d) is a metric space, a completion of X is a complete
metric space (Y, p) together with a map J : X — Y which is isometric, i.e.,
p(Jxy, Jxy) = d(zy, x) for all 1,2, € X, and has dense range, i.e., JX =Y.

We provide two proofs of our main result. The first is slick, but the second is
more informative.

3.5.2. THEOREM. Every metric space has a completion.

FIRST PROOF. Recall from Theorem 1.8.4 that C®(X) is complete. Fix a point
o € X, and for z € X, define a function

fz(y) =d(y,x) — d(y,x0) for ye X.

Note that this function is continuous because d(y,z) and d(y,xo) are Lipschitz
functions of y. By the triangle inequality,

—d(z, ) < d(y,x) — d(y,x0) < d(z,x0);

so that || fz]|cc < d(z,0). This is sharp because f5(xo) = d(z,x0). Hence f,
belongs to C®(X). Define .J : X — C*(X) by Jx = f, forz € X.
Now if z1,27 € X,

fo () = fo,(y) = d(y, 21) — d(y, o) — d(y, x2) +d(y, x0) = d(y, 1) — d(y, z2).

As above, the triangle inequality shows that | fo, (y) — fz,(y)| < d(z1,z2). Taking
y = xp shows that || fz, — fz,|lcc = d(x1, x2). Therefore .J is an isometry,

Define Y = JX. This is a closed subset of the complete space C?(X). Hence
it is complete. By construction JX is dense in Y. Thus Y is a completion of X. l

SECOND PROOF. Let C = {(z,),>1 : Cauchy sequences in X } be the set of all
Cauchy sequences in X. Let (x,,) and (y,,) belong to C. By the triangle inequality

’d(xn, Yn) — d(xmaym)’ < d(Tn, Tm) + d(Yn, Ym)-

The right hand side is small if 7n, n are big enough. So (d(n, ys)), , is a Cauchy

>
sequence. Therefore we may define a function f : C x C — [0, c0) by

R((xn)7 (yn)) = nlggo d(Tn; Yn)-
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This is a pseudo-metric: clearly it is symmetric and the triangle inequality is:
R((:Cn), (zn)) = nll)rgo d(xp, 2n)
< lim d(-%'nv Yn) + d(yna Zn)
n—oo
= R((mn)a (yn)) + R((yn)7 (Zn))-

By Assignment 1, A3, we obtain a metric space as follows. Put an equivalence
relation on C by setting (z,,) ~ (yn) if R((zn), (yn)) = 0. Itis easy to see that
this is reflexive: (z,,) ~ (z,), symmetric: (x,,) ~ (y,) implies that (y,) ~ (x,),
and transitive: (z,) ~ (y,) and (y,,) ~ (2y,) imply that (x,,) ~ (z,). These are the
requirements of an equivalence relation.

Let Y = C/ ~ denote the set of equivalence classes of C. Put a metric on Y by

p([(xn)L [(yn)]) = R((xn)7 (yn))

First we show that this is well-defined, meaning that it is independent of the choice
of representatives for the equivalence classes. So suppose that (z),) ~ (x,) and

(yiz) ~ (yn)' Then
< im d(ay, 20) + d(@n, yn) + d(Yn, yn)

n—0o0

= R((zn), (yn)).

Reversing the roles of the two representatives shows that

R((x/n)’ (y;z)) = R((xn)a (yn))

Thus p is well defined.

Clearly p([(zn)], [(yn)]) = 0 if and only if lim,,_,~c d(zy, yn) = 0 if and only
if (x,,) ~ (yn) if and only if [(zy,)] = [(yn)]. Itis also clear that p is symmetric.
For the triangle inequality, take [(xy,)], [(yn)], [(2n)] € Y. Then

o

p([(@n)]; [(zn)]) = Tim d(an, 2n)
(@0, Yn)
zn)l;

< hm AT, yn) + d(Yn, 2n)

n—oo

Therefore p is a metric on Y.
Imbed X into Y by Jx = (z,x,z,...). Then

p(Jzy, Jra) = lim d(z,y) = d(z,y).
n—oo
Thus J is an isometry. To see that J X is dense, let [(x,,)] € Y and lete > 0. Since

(xy,) is Cauchy, choose N so that for all m,n > N, d(x,, z,) < /2. Then Jz
satisfies

p([(zp)], Jon) = lim d(zp,zn) <eg/2 <e.
n—oo
Therefore JX is densein Y.
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Finally we show that Y is complete. Let (yx)x>1 be a Cauchy sequence in Y.
For each k, choose zj, € X so that p(yg, Jog) < 27%. Let yo = [(21)]. We claim
that limg_, o yx = yo. So let € > 0. By the Cauchy property, there is an integer /N
so that if N < m < n, then p(ym, yn) < £/2. Make N bigger if necessary so that
27N < ¢/4. Thenfor N <m <n

d(l‘ma fEn) = P(Jﬂjma J-Tn) < ,O(Jfﬂm, ym) + p(yma yn) + P(yn, J-Tn)

5 e € €
PR, S
<YM A2 < o=
Thus (x,,) is a Cauchy sequence in X, so yo = [(x,)] is a point in Y. Moreover, if
m> N,

p(Jxm,yo) = lim d(xp,, z,) < €.
n—oo
Since € > 0 is arbitrary, this shows that lim,,_,, Jx,, = yo. Finally,
lim p(yx,y0) < lim p(yx, Jog) + p(Jzk, Yo) = 0.
k—o0 k—o0

So limy_, Y& = yo. Thus Y is complete. |
It turns out that this completion is unique. To establish this, we first need a
result of independent interest.

3.5.3. THE EXTENSION THEOREM. Let (X,d) be a metric space with
completion (Y, p), and let (Z, o) be another complete metric space. If f : X — Z

is a uniformly continuous function, then there is a unique (uniformly) continuous
function f 1Y — Z such that f(Jx) = f(x) forx € X.

PROOF. We first show that if (x,,) is a Cauchy sequence in X, then (f(x,)) is
a Cauchy sequence in Z. Let € > 0. By uniform continuity, there is a § > 0 so that
d(z,z") < § implies that o(f(z), f(2')) < e. Since () is Cauchy, there is an
integer IV so that if N < m < n, then d(x,, z,) < §; thus o(f(xm), f(zn)) < €.
This just says that (f(zy,)) is Cauchy in Z.

Since Y is a completion of X, each point of Y is a limit of points in JX. So
for y € Y, choose a sequence (z,,) in X so that y = lim, o0 Jz,. As (Jzp)
converges, it is a Cauchy sequence. And since J is an isometry, (x,,) is Cauchy in
X. By the previous paragraph, we can define

We need to show that f is well defined. That is, if (/) is another sequence
in X so that y = lim,,—,, J2,, we need to show that we assign the same value to
f(y). We see that the sequence (Jz1, Jx), Jxz, Jab, ...) converges to y and thus
is Cauchy. So (z, ], z2,2%,...) is a Cauchy sequence in X. Thus by the first
paragraph, (f(z1), f(x}), f(x2), f(25),...) is a Cauchy sequence in Z. Hence
limy, o0 f(2,) = limy, 00 f(2n). So f is well defined.



3.6 The p-adic Numbers 67

Next, since (Jz) converges to Jz, we have

f(Jx):nILn;Of(x):f(x) for z e X.

So f extends f. Finally we show f is uniformly continuous. Let ¢ > 0. Again,
there is a § > 0 so that d(x, 2') < ¢ implies that o(f(x), f(2')) < e. Lety,y' € Y
with p(y1,2) < 9. Then there are Cauchy sequences (z,,) and () so that y =
limy, 00 Jp, and y' = limy,—,o0 J!,. So
lim d(z,,2),) = lim p(Jz,, Jzl) = p(y1,y2) < 9.
n—oo

n—oo

Hence there is some integer M so that d(anx’n) < 0 forn > M. Therefore
o(f(zn), f(x],)) < e. Taking limits yields o(f(y), f(v')) < e. So f is uniformly
continuous. Finally f is unique because it is defined on a dense subset by f(Jx) =

f(x), and thus there is at most one way to extend it to be continuous on Y. |

An important consequence of this result is the uniqueness of the metric com-
pletion,

3.5.4. COROLLARY. The metric completion of (X,d) is unique in the sense
that if J; : X — (Y3, pi), i = 1,2, are two metric completions of X, then there is a
unique isometry k of Y| onto Y, such that J, = kJ.

PROOF. Define kg = J, : X — Y5. Then kg is an isometry, and hence is uni-
formly continuous. By the Extension Theorem 3.5.3, there is a unique continuous
function x : Y] — Y, such that xJ; = Jp. If y, 4/ € Yj, choose sequences (z,)
and (z/,) in X so that y = lim,, o0 J12, and 3/ = lim,, o0 J12,. Then

pa(ky, ky') = Tim_po(kJian, kJia,)
T AT /
= nlg;() p2( oy, Jrx,) = nl;ngo d(xy, ;)
= 1im_py(Jizn, J1zy,) = p1(y, y).
n—o0

Therefore « is an isometry.
Since k is an isometry, it takes Y onto a complete subset of Z, and thus it is
closed. Also kY contains the dense set .J, X. Therefore « is onto. |

3.6. The p-adic Numbers

r

Let p be a fixed prime number. For x € Q \ {0}, factor z = p®L where
r, s, p are all relatively prime; and define |z|, = p~® and |0], = 0. We showed
in Example 1.2.2(5) that dj,(z,y) = |x — y|, is a metric on Q. Let Q,, denote the
completion of (Q,d,). We will use the Cauchy sequence construction to describe
elements of Q,,. For z € Q,, we define |z|, := dp(z,0), extending the definition
of the norm.
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3.6.1. PROPOSITION. Letx € Q, \ {0}, then |z|, € {p® : a € Z}. If x, € Q
such that x = limy,_ Ty, then |z|, = lim,_o ||y and |z, |, is eventually
constant.

PROOF. Suppose that x,, € Q such that x = limy,_,~ 5. Then
||, = dp(0,2) = nll)ngo dp(xy,0) = nl;n;o |Zp[p-

For n large, z, # 0 so dp(z,,0) > 6 > 0. Now |z,|, € {p* : a € Z} and
{p*:a€Z}={p*:acZ}uU{0}. Solz|, € {p®: a € Z} U {0}, and is not O
because x # 0. So |z|, = p® is an isolated point of {p® : a € Z} U {0}, and so for
n sufficiently large, |z, |, = |z/p. [

3.6.2. PROPOSITION. Let x = [(z,)] and y = [(yn)] belong to Q,. Define
rty=[(znEyn)] and vy = [(xnyn))]. This makes Q, into a commutative ring,
and

lzylp = |zlp [ylp and |z £yl < max{[z]y, |ylp}-

PROOEF. Notice that

dp(xn + Yn — T — Ym) < max{d,(xn — Tm), dp(Yn — ym)}-
Since (z,) and (y,,) are Cauchy, so is their sum. Moreover it is easy to see that if
(x)) ~ (z5,) and (y.,) ~ (yn) in the sense that

n

hmd (T, 1)) =0 = 11md o (Yns Un)

then (2, + y},) ~ (zn + yn). Therefore addition is well defined. Moreover
[z £ ylp =lim |2y + ynlp < limmax{|zplp, [ynlp} = max{|z|p, [y|p}.
Similarly, if z £ 0 # y, there is an IV so that if N < m < n, then
dp(TnYn, TmYm) < |<mn = Zm)Yy + Tm(Yn — ym)‘p
< max{|zn — Tmlp [Ynlp: [Tmlp [Yn — Ymlp}
< max{|zn — Tmlp [Ylp, |Z]p [Yn — Ymlp}

It follows that (z,yy,) is a Cauchy sequence. Again it is easy to check that this
multiplication is well defined. For n > M, we have that |z, |, = |z|, and |y,|, =
|y|p. Hence we have that |2,y | = |Zn|p |[Ynlp = |Z|p |y|p- It follows that |xy|, =
||, |ylp- It is easy to check that 0z = 0.

Now taking limits of the various ring axioms shows that Q,, is a commutative
ring. |

Now we are ready for the main result of this section.

3.6.3. THEOREM. Q, is a topologically complete field containing Q as a dense
subfield.
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PROOF. By construction Q,, is a complete metric space, and Q is a dense sub-
set. The definition of addition and multiplication extend the operations on Q. We
need to show that non-zero elements are invertible.

Let 0 # = = [(x)] € Qp. Then there is an N so that |z,|, = |z|, # O for
n > N, Moreover

1 _ 1 _ |2 — Timlp _ |[Zn — Tmlp

In  Tmlp ‘xn‘p |xm|p \x]%
It follows that (i) is a Cauchy sequence, and hence y = [(i)] € Qp. Moreover
zy = [(1)] = 1. Hence Q, is a field. [

3.6.4. PROPOSITION. Z, :=Z = {z € Q, : |z|, < 1} is a subring of Q,,.

PROOF. Note that by the strong triangle inequality, the set {z € Q, : |z[, < 1}
is closed and contains Z; and hence contains Z,. Conversely, suppose that z € Q,
with |z|, < 1. Select z,, € Q so that d,(z,z,) < p~™™ < 1 forn > 1; so that
z = [(xy)]. Then |z,], < max{[z|p, |z, — z[p} < 1. Write 2, = p*» 2 where
P, Tn, S, are relatively prime, and a,, > 0 (because 1 > |z, |, = p~*"). Solve the
modular equation 7, + p"b, = 0 (mod s,) for an integer b,, which is possible
because ged(p™, s,) = 1. Define ¢, = (1, + p™by,) /S Define

o= g 4t = g 2D,
Sn Sn

Then z], € Z and d, (), z,) = p~ " converges to 0 as n — oo; so [(z],)] =
[(z)] = 2. Hence = = lim,, _,, =/, belongs to Z.

Since Z is closed under addition and multiplication, both of which are contin-
uous operations, it follows that Z,, is also closed under addition and multiplication.
Thus it is a subring of Q,,. |

We now show that every element of (Q; has a p-adic expansion which we now
describe,

3.6.5. LEMMA. Letx € Z,. Then there is a unique integer oy € {0,1,...,p—1}
so that |z —oy)p < ]lg. Foreachi > 0, there is a unique integer o; € {0, 1,...,p—1}
so that ‘a: > aipi‘p < ]ﬁ.

PROOF. Since Z is dense in Z,, choose an integer k so that |z — k|, < L.
Choose o € {0,1,...,p—1} so that k = g (mod p). So p|k — ap, and hence
|k — aplp < %. Then

|z — aolp < max{|z — klp, [k — aolp} <

S
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On the other hand, if 5 # k (mod p), then k— 3 is not a multiple of p, so |k— 3|, =
1. Thus

1
1= [k — Blp <max{|k — x|y, |z — B} < max{i, |z — Blp}-

Hence |z — ], > 1. So « is unique.
n—1

Suppose that I have found o; € {0, 1,...,p—1} so that ‘x_zz':o ayp } 1

:,\

Lety=p™" (a: - ZZ-:OI aipi), and note that

xr —

<1

|y|p =p"

By the first paragraph, there is a unique v, € {0, 1,...,p—1} sothat |y—ay, |, < %
Therefore

, 11 1
x— a~p” =p"(y — « < — - = )
’ ; P Ip"( n)lp o p pnl n
This leads to our p-adic expansion for elements of Q,,.
3.6.6. THEOREM. Ifx € Q, and |x|, = p*, then x has a unique expansion as

an infinite series of the form x = > ;2 | a;p’ where a; € {0,1,...,p—1}

e
PROOF. Let y = p*z, so that |y|, = 1. By Lemma 3.6 5 there is a unique
sequence of integers 5; € {0,1,...,p— 1} so that ‘y — > Bip! |p < pnlﬂ

Multiply by p~* and rename 3; = a;_j, to get
n—=k k

)x—Zaipip< p

— n+1-
i=—k p

Letting n — oo yields the desired convergent series. |

Another consequence of this approach is the compactness of Z,,.

3.6.7. PROPOSITION. Z, is compact.
PROOF. Z, is a closed subset of a complete space, and hence is complete. We

claim that it is also totally bounded. Indeed we will show that {0, 1,...,p"—1}is
a p~"-net for Z,. Indeed, if v € Z,, it follows from Lemma 3.6.5 that

‘x—Za

Moreover k = Z?:_ol a;p' < p", so we have a p~"-net. The Borel-Lebesgue
Theorem 2.1.5 shows that Z,, is compact. |

1
<
- n




3.7 The Real Numbers 71

3.7. The Real Numbers

We have not talked about the construction of the real numbers. One approach,
which fits well with our course, is to complete the rationals. Of course, we can’t
use our first proof that embeds Q into C*(Q) because this presumes the existence
of R. However the Cauchy sequence approach basically works, though again the
way we define the metric presumes the existence of R. Nevertheless we will see
that it does work. There are several other constructions of R which we will also
outline. The more serious issue is whether these various constructions produce the
‘same’ real numbers. This requires more subtlety.

3.7.1. DEFINITION. An ordered field is a field F which contains a subset IP of
positive elements satisfying

(i) F =PU{0} U —P is the disjoint union of the three sets P, {0} and —P.

(i) If z,y € P, then x + y and zy are in P.
Wesay thatz < yify —z € P.

An ordered field has the Least upper bound property (LUBP) if whenever ()

S C F is a nonempty subset which is bounded above (i.e., there is some =z € F
so that s < x for every s € 5), then there is a y := sup S such that y is an upper
bound, and whenever x is another upper bound, then y < x. An ordered field with
the LUBP is called complete.
1 An ordered field is Archimedean if whenever x € P, there is an n € N so that
n <.

Notice that a complete ordered field has nothing to do with Cauchy sequences.
One can define Cauchy sequences for any ordered field using arbitrary € € P, but
it turns out that it is a different property from the LUBP.

3.7.2. PROPOSITION. Let F be an ordered field.
(1) ThenQ CFand QNP ={reQ:r >0}
(2) IfF has the LUBP, then F is Archimedean.

(3) IfF is Archimedean and x < y, then there isanr € Q so that x < r < y.
(i.e. Q is order dense in F.)

PROOF. (1). 1 € Fand 1 # 0. So either 1 € P or —1 € P; but in either
case, | = 1> = (—1)? belongs to P by (ii) (and thus —1 € —P). Forn € N,
n =14 .-+ 1is the sum of n ones. This is positive by repeated application of
(i1). In particular, n never equals O; so in fact, they are all distinct because n < n—+1
foralln € N. Thus —N C —P. If n € N, then 2 € F \ {0}. It must be positive,
because if = € —P, then —1 € P; so that n(—1) = —1 would be in P. Therefore
if m,n € N, then * € P by (ii). SoQ C Fand QNP = Q*.



72 Completeness Revisited

(2). Note that F is Archimedean if and only if
J:={zxeP:nx <1 forall n € N}

is empty. If it is non-empty, say x¢ € J, then let y = sup J. Take any x € J and
note that x 4+ x¢ € J since if n € N, we have 2nx < 1 and 2nzo < 1, so that
2n(x + z9) < 2. Divide by 2 to get n(z + x9) < 1 for all n € N. Therefore
Yy — xo must be a smaller upper bound because x + x¢ < y implies that x < y — g
for all x € J. This shows that J does not have a least upper bound, which is a
contradiction. So J is empty and F is Archimedean.

(3). If F is Archimedean and x € IP, then there is some m € N such that
0 < 2 < m. Ifnot, then 0 < % < % for all n € N, which contradicts the
Archimedean property. Suppose that < y. Then by the Archimedean property,
there isann € Nsothat% <y—ux. Ifx € P, thenforsomem € N,0 <z < m;
and if z € —P, then for some m € N, we have —m < z < 0. In either case, among
the finite set of numbers % with |k| < mmn, there is a smallest one larger than z, say

k 1
<z<-—<z2+ - <y.
n n n

Thus Q is order dense in F. |

3.7.3. DEFINITION. An embedding of ordered fields IF and K is an order pre-
serving homomorphism v : F — K.

In the following result, we sketch the ideas, but some details are left to the
reader to complete.

3.7.4. PROPOSITION. Let F be an Archimedean ordered field, and let K be a
complete ordered field. Then there is an embedding v : F — K.

PROOF. Both fields contain a copy of QQ as the subfield generated by the iden-
tity element, which we denote by Qp and Q. Let vy : QF — Qg be the identity
homomorphism. For each x € F, define S, = {r € Qp : r < x}. Define

v(z) = supo(Sz) € K.
Observe that if x,y € F, then
Se+ Sy ={r+s:reS; s€Sy} = Suty.

It follows that y(z) +7(y) = v(z+y). If z > 0, then S, = (QN(—PU{0}))US;
where S;7 = {r € Qp : 0 < r < z}. Multiplication is a bit more delicate, but one
can check that if z,y € P, then

Sey = (QN(-PU{0})) USSS, = (QN(-PU{0}))U{rs:r e S;,s€S5,}.

From this, we deduce that v(z)v(y) = v(zy) when x,y > 0. With a bit of work,
one can verify that v is a homomorphism. |
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3.7.5. THEOREM. There is a unique complete ordered field up to order pre-
serving isomorphism.

PROOF. Let K and LL be two complete ordered fields. By Proposition 3.7.2(2),
they are both Archimedean. By Proposition 3.7.4, there is an embedding v : K —
L and an embedding v’ : L. — K, Then 'y : K — K is an order preserving
homomorphism. Since it carries 1 to 1, it must be the identity map on Q. Now for
each x € K, x = sup S,.. Since 7'~y preserves order,

v'y(x) = supy'v(Sy) =sup S, = w.

Thus 7'y = idg. Likewise vy’ = idy,. Therefore -~y is an order preserving isomor-
phism; i.e., K is unique up to order preserving isomorphism. |

3.7.6. DEFINITION. The unique complete ordered field is called R, the field of
real numbers.

Now we describe a few methods for constructing R. There are many. We will
be a bit sketchy on some of the details.

3.7.1. Cauchy sequences. We modify the second proof of Theorem 3.5.2 to
complete Q. Start with the set C of all Cauchy sequences in Q and define the
equivalence relation (x,,) ~ (yy) if limy, 00 5, — Yy, = 0. Let R = C/ ~ be the
collection of equivalence classes. We embed Q into R by ~(r) = [(r,r,7,...)].
Note that these constructions do not require the real numbers.

We make R into a commutative ring by defining

0=~(0) and 1=~(1)
[(@n)] £ [(yn)] = [(2n £ yn)]
[(2n)] [(yn)] = [(@nyn)]-

The details to check that this is indeed a commutative ring (R, 0, 1, +, ) is left
to the reader. This includes associativity of addition and multiplication, and the
distributive law. They are all easy to deduce from the corresponding property of Q.
We leave the issue of inverses until later.

What we can’t do is define a metric on R by taking limits, since these limits
generally do not exist in Q. However we can define the order. If z = [(z,,)] # O,
say that x > 0 (i.e. « € P) if there is an integer N so that x,, > O foralln > N.
Note that this extends the notion of positivity for Q. We need to check that every
non-zero element x is either positive or negative; and that this is a well-defined
notion.

Soletz = [(z,)] # 0. That means that (z,,) does not converge to 0. Thus there
is some ¢ > 0in Q and n; — oo so that |z,,| > e. Use the Cauchy property to find
N so thatif N < m < n, then |z, — | < £/2. Now choose n = n; > N. If
Ty, > €, then x,,, > /2 for all m > N; while if z,,, < —e, we have z,,, < —¢/2
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for all m > N. In the first case, x > 0 and in the second case, z < 0. If
() ~ (xy), then since lim,, o x,, — x, = 0, we have |z], — z,| < &/4 for
n > N'. Thus for n > max{N, N'}, !, and x,, have the same sign. So positivity
is well defined. It is now easy to see that if z,y € P, then x + y and xy also belong
to P.

Finally consider inverses. By the argument in the previous paragraph, if z =
[(zn)] # O, then for some N, |x,| > €/2 for all n > N. So we can define
y = [(yn)] where y,, = 0if n < N and y,, = x,,! forn > N. It is routine to check
that (y,,) is Cauchy. Moreover zy = [(znyn)] = 1 since z,y, = 1 forn > N.
Thus every non-zero element of R has an inverse. So R is an ordered field.

Next we show that R is Archimedean. Suppose that z € P. We showed above
that there is some € > 0 in Q so that =, > ¢/2 for all n > N. Choose n € N so
that % < 5. Thenit s easy to see that 7(%) < x. Therefore by Proposition 3.7.2(3),
v(Q) is order dense in R.

Finally we need to verify the LUBP for R. Let S C R be a nonempty set
which is bounded above by z € R, and let s € S. Since R is Archimedean, we can
find integers ¢ < s < z < b. Recursively define sequences x,, and y,, of rational
numbers as follows. Let z; = a and y; = b. Suppose that x; and y; have been
defined in Q for 1 < i < n so that y(z;) is not an upper bound for S and ~(y;) is
an upper bound for S and y; — ; = 2! ~¥(b—a). Let ¢, = %(xn_l +Yn—1). lf ¢y is
an upper bound for S, then let x,, = x,,_ and y,, = c,; while if ¢, is not an upper
bound for S, then let z,, = ¢, and y,, = yp—1. Let x = [(zy,)]. Then x = [(yn)]
because lim,,_, o Yyn — xn = 0. We claim that sup S' = .

Let s = [(s,)] € S. If s > =, then by the Archimedean property, s > x + ()
for some d € N. So there is an integer N so that s,, > y, + ﬁ foralln > N.

Choose M > N so that 2!~ (b — a) < ;5. Then forn > M

m m
. 1
_ i o 21—@ _ —
Yn =yn E (Yi —yi-1) > ym | E (b—a)>ym 1d
i=M+1 i=M+1

Therefore for n > M, we have s,, > yur + ﬁ. This contradicts the fact that y(yas)
is an upper bound. So no such s exists, and « is an upper bound for S. A similar
argument shows that if w < z, then w is not an upper bound.

The result is a construction of a complete ordered field, which we call R.

3.7.2. Dedekind cuts. A clever construction of R due the Richard Dedekind
uses the following notion. It is perhaps the easiest construction.

3.7.7. DEFINITION. A cut is a proper subset C' of Q with no largest element
such that it is downward directed: if r € C and s < r, then s € C. Let R denote
the collection of all cuts.
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We embed Q into R by y(r) = {s € Q : s < r}. However there are other
cuts, suchas C = {r : r < Oorr? < 2}.

Order is easily defined: C < D if C C D and C > D if C 2 D. In particular,
C > 0ifand onlyif 0 € C.

This makes the LUBP very easy. Suppose that S C R has an upper bound D,
let £ = |JoegC. Itis clear that E is proper since it is contained in D, and it is
downward directed since it is the union of such sets. E cannot contain a largest
element ry because then there would be a C' € S with ryp € C' and r¢ would also
be the largest element of C'. So E is a cut. By construction, C' < E forall C' € S.
But if F' is another upper bound, then C' C F' for all C' € S, and hence E C F’; so
E < F'. Therefore Ef = sup S.

It remains to define the field operations. Addition is defined by

C+D={r+s:reC, sc D}.
Multiplication of two nonnegative numbers is defined by
CD={reQ:r<0}U{rs:reC,r>0,seD,s>0}.

Now you have to extend the definition to the rest, and verify all of the field laws. It
is a bit tedious, but isn’t difficult.

3.7.3. Infinite decimals. This is an intuitive and familiar construction, but it
is actually more difficult to carry out than the others. However because of its famil-
iarity, it is a good ‘working version’ of the real numbers.

We consider the set of all infinite decimal expansions x = ag.ajazas ... where
where ag € Z is an integer and each a; € {0,1,2,...,9} for ¢ > 1. While this is
familiar, there are a number of problems. First it seems to depend on being in base
10. Secondly some numbers have two names. Thirdly, defining addition is hard
and multiplication is harder. We will only discuss the bare bones of this approach.

We will interpret this number * = ag.ajazasz ... as a real number lying in
the interval [ag, ap + 1]. Note that this is a bit different from the standard prac-
tice of writing negative real numbers as the additive inverse of a positive infinite
decimal expansion. So that what we normally call —1.73000... will be written
as (—2).27000. ... At this point, we think of the infinite decimal expansion as a
name for the real number x, and it does not imply that there is an infinite convergent
series in the background. Nevertheless, this idea leads us to one important issue:
some numbers have two names. For example, z = 1.000... and y = 0.999. ..
should both represent the number 1.

We put an equivalence relation on the infinite decimals: let x = ag.ajaz2a3 . ..
and y = by.b1bybs ... ;say x ~ y if

(1) a; = b; foralli > 0, or

(2) there is some ig > 0 so that a; = b; for 0 < i < ig, bj, = a;, + 1 and
a; = 9and b; = 0 for¢ > i, or
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(3) there is some i9 > 0 so that a; = b; for 0 < ¢ < g, a;, = b;, + 1 and
a; = 0and b; = 9 for i > 1.

When z ~ y, we will write z = y. Equivalence relations require three properties:
reflexivity x ~ x, symmetry x ~ y means that y ~ x and transitivity x ~ y
and y ~ z mean that x ~ z. In this case, it isn’t hard to see that the equivalence
class contains either a single infinite decimal which does not end in an infinite
sequence of 0’s or 9’s, or it contains two infinite decimals, one (usually called a
finite decimal) ending in an infinite string of 0’s and a second ending in an infinite
string of 9’s. So it is easy to verify that this is an equivalence relation.

We can define the order by saying that x = ag.ajaza3 --- < y = bg.b1b2bs . ..
if o4 y and there is an integer igp > 0 so that a; = b; for « < ip and a;, < b;,. We
establish the LUBP using the proof of Theorem 1.7.1.

The tricky bit is to define addition and multiplication. However one can use the
order to help. Using x and y as before, we have that for any n € N

a0.a102 . ..an < x < ag.a1az...a, + 107"
bo.biby ... by <y < bo.biby...b, + 107",

We can add the left and right hand sides because these are rational numbers to get
z2=cp.c1cp...cpn <xz+y<z+2-107"

A similar argument works for multiplication when x, y are nonnegative. Details are
omitted.

A similar construction can be obtained using any other base, for example bi-
nary numbers. Theorem 3.7.5 shows that the field that we obtain is independent
of the construction, and in this case, of the base used. If we use one of the other
contructions of R, it is also straightforward to show that every number has a deci-
mal expansion and that our equivalence relation describes the occasions when two
different decimal expansions represent the same number.

Exercises

1. Show that the completion of a normed vector space is a normed vector space.
2. Show that the completion of (X, d) is compact if and only if X is totally bounded.

3. Consider (C([0,1],]| - ||1). Let L'(0, 1) denote its completion in this norm.

(a) Show L'(0, 1) is a Banach space.

(b) Show that the Riemann integral J(f) = fol f(z) dx extends to a continuous func-
tion on L' (0, 1). We will write | f for this extended function.

(c) (i) Show that [sf+tg=s [ f+t[gforall f,g € L'(0,1)and s,t € C.
(i) Prove that | [ f] < [ /1= /Il

(d) Say that f € L'(0,1) satisfies f > O ifitis a limitin L'(0, 1) of positive functions
in C[0,1]. Thus f < gif g — f > 0. Suppose that f,, € L'(0,1), n > 1, is
monotone increasing and sup,,~, || f»|li < oo. Prove that lim f,, = f exists in
L'(0,1) and that [ lim f, = lim [ f,.
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Find the p-adic expansion of —1.
Show that if p > 2 and 2> = 2 (mod p) has a solution, then 2 has a square root in Z,.

Show that an ordered field I is Archimedean if and only if for every = > 0, there is an
n € Nsothatz < n.

Show that C can’t be ordered to be an ordered field. HINT: what about =44?

LetF = {17; :p,q € R[z],q # 0}, where g # 0 means that ¢ is not the 0 polynomial.

(a) Show that I is a field.

(b) Say that £ > 0 if p and ¢ are non-zero with leading terms a, 2™ and b,,z™ and
apby, > 0. Show that IF is an ordered field.

(c) Show that 0 < % < % for all n € N, so that IF is not Archimedean.

(d) Show that N is bounded above but does not have a least upper bound.



CHAPTER 4

Approximation Theory

4.1. Polynomial Approximation

Problem: Given f € Cfa,b] and £ > 0, find a polynomial p so that
[f = plloo = sup |f(z) —p(z)] <e.
a<z<b
First attempt. Let x; = a + @ for 0 < i < n. There is a unique polynomial p
of degree at most n such that p(z;) = f(x;) for 0 < i < n, obtained by Lagrange

interpolation. Define
Tr — I

qi(x) =
0<j<n T T T
JFi

and observe that ¢;(x;) = 1 and ¢;(x;) = 0if j # . Then the desired polynomial is
p(z) =" o f(z:)gi(x). Itis unique because if p; is another polynomial of degree
at most n such that p(z;) = f(z;) for 0 < i < n, then r(z) = pi(x) — p(x) has
degree at most n and r(x;) = 0 for 0 < i < n. If a polynomial of degree at most n
has n + 1 zeros, then it is the zero polynomial; thus p; = p.

This seems like a reasonable approach, but it doesn’t work. A counterexample

was constructed by Carl Runge in 1901.

Second attempt. Taylor polynomials. These work very well for certain very nice
functions like sin x and e®. However in general, a continuous function may have
no derivative.

Even if f is C'°°, the radius of convergence of the power series may be too
small. A typical example from calculus is

1
= (=2?)" for |z|<1.

2
1+x =

However this function is defined on the whole real line, but the series diverges if
|x| > 1. (The power series actually makes sense in C, but has a pole at +i on the
circle of radius 1. That is what causes the problems.)

Another even more troublesome example from calculus is

e~ /e if z#0
ﬂ@_{o if 2=0.

78
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It turns out that this function is C°° and f*)(0) = 0 for all n > 0. So the Taylor
series about = = 0 is the zero series. This converges uniformly on R to 0, but only
agrees with f at one point!

4.1.1. WEIERSTRASS APPROXIMATION THEOREM. The polynomials
are dense in Cla, b].

Bernstein’s proof. We will prove the theorem for the unit interval [0, 1]. Con-
sider the terms arising in the binomial theorem:

1:(a:+(1—:c))"=i(?> (1—a)" an

=0
where P""(z) = (7)z'(1 — )" " for 0 < i < n. Note that P;"(z) > 0 on [0, 1].

7

FIGURE 4.1. P! for0 <i <4.

Moreover it is easy to check that (P/*)/(z) = 0 atz = L. So P/ has a maximum
at *. Bernstein defined a linear map By, : Cg[0, 1] — R[z] by

=3 s@rre =3 (f)ra o

Since B, f is a linear combination of polynomlals of degree n, it follows that this
is a polynomial of degree at most n.

4.1.2. LEMMA. B, is a positive linear map, i.e.
(1) Bp(sf +tg) = sBnf +tBng for f,g € Cr[0,1] and s,t € R. (linear)
(2) f > 0implies that B, f > 0. (positive)
(3) f > gimplies B, f > Byg. (monotone)
(4) [f] < g implies |Byf| < Bng.

PROOF. (1) is easy. (2) follows because each P* > 0, so if f > 0, then B,, f
is a sum of positive functions.
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B)Iff <g,then0 < g— f,sothat 0 < B,(g — f) = Bng — B, f. Thus
B, f < Byg.

4) |f| < gmeans —g < f < g, and hence —B,,g < B,f < Byg. Since
B,g > 0, we have |B,, f| < Bpg. |

4.1.3. LEMMA.
(1) B,1 = 1.
(2) Bpx = .

_ 2 :
(3) Bpz? = ”TIZL‘Z + %x = 2 + 2= Hence Bya* converges uniformly to

xzasn—>oo.

PROOF. (1) follows from the binomial theorem:
n
n _
Byl = % 1 <k>xk(l —z)" k=1,

For (2), compute 8%(96 + y)™ in two ways to get

n
(4.1.4) > Z) kah "y = n(z +y)" L
k=0
Multiply equation (4.1.4) by :* and substitute y = 1 — x to get
"k (n
(4.1.5) B,x = n<k>xk(1 —2)" =g+ —2)" =2
k=0

Now for (3), take % of equation (4.1.4) to get

n

(4.1.6) > (Z k(k — 12" 2% = n(n — 1)(z + y)* 2.
k=0

Multiply equation (4.1.6) by i—i and substitute y = 1 — z to get

n

2_ — —
4.1.7) Z knzk <n>xk(1_l.)n—k — nn 1$2($ + (l_$))n—2 _ lez'

k
k=0

Now add % times equation(4.1.5) to equation(4.1.7) to get

n
k:Z
Bpx? = Z ) (Z) a*(1 —z)nk
k=0
-1 1 —a?
=C x2+—x:x2+x v
n n n

Then ||22— B,2%|| = 1[|l2—12%|oc = 2. So B,2? converges to 22 uniformly. l
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4.1.8. COROLLARY. |(By(z—a)?)(a)| < £ fora € [0,1].

PROOF. By (z—a)* = Bua? — 2aB,x + a®B,1 = (z—a)* + L(z—2?).
Substitute z = a to get (By,(z— )2)(a) =L(a—a?) €0, L] [ |

PROOF OF WEIERSTRASS’S THEOREM. Fix a function f in Cg[0, 1], and let
e > 0. Since f is uniformly continuous on [0, 1], there is 6 > 0 so that

[f(x) = fla) <e if |z —a] <4, @,acl0,1].
Also, if |z — a| > 6 for z,a € [0, 1],
[f(x) = fla)] <2[|flleo <
Therefore for all z,a € [0, 1],
[f(z) = fla)] <e+ (¢ —a)’.

Hence if we make a a constant and x the variable, Lemma 4.1.2(4) shows

IIfHoo

2| floe
”gzy (x_a)2.

2| flloo
52

[Bnf(x) = f(a)] < eBnl + By (z — a)*.
Plug in x = a and use Corollary 4.1.8 to get
2|[flloo 1
By <e
[Buf(a) = f(a)] < e+ T

Now if n > N(e) := {%—‘, we get
[1Buf = flloo < 2.

Therefore B, f converges uniformly to f.

If f is a complex valued continuous function, decompose f = g + ih where
g(z) =Re f(z) and h(x) = Im f(x). Find real polynomials p,, and g,, converging
uniformly to g and h, respectively. Then p,, + ig, does the job.

Now consider an arbitrary interval [a, b]. Make a linear change of variables: if
f € Cla,b), deﬁneg( )= f(a+ (b—a)t) fort € [0,1]. Since z = a + (b — a)t,
we have ¢ = 7=2. Find polynomials p,, converging uniformly to g on [0, 1]. Let
an(z) = pn(#2). Then g, converges uniformly to g($=2) = f(z) on [a,b]. M

4.2. Best Approximation

The question we address in this section is whether there is a best approximation
of degree n, i.e., a closest polynomial in the subspace P, [a, b] C C|[a, b] of all poly-
nomials of degree at most n. Here IP,,[a, b] means the vector space of polynomials
of degree at most n with norm ||p||oc = sup{|p(x)| : @ < z < b}. In general, when
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finding approximations in an infinite dimensional space like C'a, b], there need not
be a closest point. However in this case, IP,,[a, b] is finite dimensional, so it turns
out that there is a closest one. Also in norms with flat spots on the unit ball, which
happens with the supremum norm, there can sometimes be many closest points. So
we want to know if the closest point is unique.

4.2.1. DEFINITION. The error of approximation for f € C|a, b] is
En(f) = dist(f, Pn[a,b]) := inf{]|f — plloc : degp < n}.

4.2.2. PROPOSITION. [f f € C|a,b] and n > 0, there exists a polynomial p of
degree at most n so that

Hf _pHoo = En(f)

PROOEF. The closest polynomial in P, [a, b] is no further from f than 0, namely
| f[loo- Hence it must lie in X, := Byjz (f) NPy a, b]. The subspace P, [a, b] has
dimension n + 1. Thus by Corollary 1.7.7, P,,[a, b] is complete and hence closed in
Cla, b]. Therefore X, is a closed and bounded subset of a finite dimensional space.
Hence it is compact by the Heine-Borel Theorem.

Define a function on X, by D(p) = ||f — p||oo- This function is Lipschitz and
thus continuous. By the Extreme Value Theorem, D attains its minimum value. H

4.2.3. EXAMPLES.
1) Let S = {f € C[0,1] : f(0) = 0}. This is a closed infinite dimensional
subspace of C0, 1]. Let 1 denote the constant function. What is dist(1,S)? If
f €8, then

11 = flloo = [(1 = £)(0)] = 1.
On the other hand, if 0 < f <2 and f(0) =0, then f € Sand |1 — f|lcc = 1. So
there are infinitely many closest points, such as x, 3x2 —at,2 sin? 6mz, xe® /2, ete.

Q)Let 7T ={f € C[0,1] : f(0) =0and fol f(z)dx = 0}. Again this is a closed
subspace. Let g(x) = x. What is dist(g, 7)? If f € T, then

lg = £l =/01 lg = flloc da > ‘/Ol(g—f)(x)da:‘ _ x;\l !

o 2
If this were an equality for some f, it is necessary that g(z) — f(z) = 1 for all .
But then f(z) = z — § does not vanish at 0, and thus f ¢ 7. So the distance J is

not attained. Nevertheless, this is the distance to 7. Let

(n—2) 4
n =
1 1 4
1

Then you can check that h,, € T and ||g — hp|leo = 5 +

1
pegt
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4.2.4. CHEBYCHEV APPROXIMATION THEOREM. If f € Cgla,b], then
there is a unique closed polynomial of degree at most n.

The key notion recognizes a geometric property of the smallest difference.

4.2.5. DEFINITION. A function g € Cr|a, b] satisfies equioscillation of degree
n if there are n 4+ 2 points a < ) < 23 < -+ < Tp42 < b so that

g(zi) = (=1)"[lglloo or g(w:) = (1) |lglloo for 1 <i <m+2.

FIGURE 4.2. Equioscillation for n = 6.

4.2.6. LEMMA. Suppose that f € Crla,b] and p € P,|a,b] such thatr = f —p
satisfies equioscillation of degree n. Then || f — pllsc = En(f).
PROOF. Leta <z < xp < -+ < Tpao < bso that
r(2:) = (= 1)¥|7]|oo 0or (x5) = (=1)"1|g||oo for 1 < i < mn +2.
Suppose that ¢ € P, [a, b] so that f — p — ¢ has smaller norm, i.e.
If =P —dllc = lIr = glloc <7 loo-

Then |r(z;) — q(;)] = | £ (=1)"||r]loc —q(i)| < [[7[|oo. Therefore sign(g(z;)) =
sign(r(x;)) for 1 < i < n + 2. Since r changes sign between x; and z;, SO
does ¢. By the Intermediate Value Theorem, there are points y; € (x;, x;41) for
1 <i < mn+1sothat g(y;) = 0. Since ¢ has degree at most n and n + 1 roots,
q = 0. This is a contradiction. So p is a closest point. |

The converse is trickier.

4.2.7. LEMMA. Suppose that f € Crla,b] and that p € P,[a,b] satisfies
|f — plloo = En(f). Thenr = f — p satisfies equioscillation of degree n.
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PROOF. If f is a polynomial of degree at most n, then p = f is clearly the
unique closest polynomial. So we may suppose that r # 0.

Since r is uniformly continuous, there is a 6 > 0 so that |x — y| < ¢ implies
that |r(z) — 7(y)| < %||r[|cc. Partition [a,b] into intervals of length less than 6.
Let I;,...,I be those intervals in this partition (in order) on which r attains one
of the values +||r||oc on I; (possibly an endpoint). Pick a point z; € I; so that
r(x;) = £||r|oo. Sete; = sign(r(z;)) € {&1}. Then |f(y)| > 1||7|o on I, and
in particular does not change sign. We need to show that (e1,¢2,...,¢,) changes
sign at least n + 1 times, for then we have equioscillation of degree n by choosing
n + 2 of the x;’s in order with alternating signs.

If there are at most n sign changes, we will construct a closer element of P,,.
Group together all adjacent intervals I; of the same sign into groupings Ji, J3,

, J¢ (still in order) where ¢ < n + 1. Pick a point ¢ between Ji and Jy1 for
1 < k < n. Then define ¢(z) = [[._}(z — ¢) € P,. Then g changes its sign at
each ¢y, and in particular has constant sign on each .Ji, and alternates sign. Multiply
g by —1 if neccesary so that sign(q) agrees with sign(r) on each J,. We will show
that subtracting a small multiple of ¢ from r will reduce the norm.

Let L = J5_, I and M = [a, 0] \ L. Let

m=min{|g(z)| :x € L} and sup{|r(z)|:z € M} =|r|x —d.

Since ¢ only vanishes on the points ¢, which are not in the compact set L, we have
m > 0. Also d > 0 because M is the union of those closed intervals in our partition

on which r does not attain its norm. Let ¢ = Ml H and consider p; = p+eq. Then
Hf pl”oo = ”7“—€Q||oo —max{sup|r( )—gq(x)‘, sup |7~ —Eq ’}
zeLl

< max {||7]|oc — em, ||7]loc — d+ ellqlloo }
= max {||r]loc — em, [|7lloc — £} < [I7]lco-

This contradicts p being a closest polynomial, and thus there must have been at
least n 4 1 sign changes, and so r satisfies equioscillation of degree n. |

PROOF OF CHEBYCHEV’S APPROXIMATION THEOREM. By Proposition4.2.2,
there is a polynomial p € P[a, b] so that || f — p||cc = En(f) =: d. Suppose that ¢
also satisfies || f — ¢||cc = d. Then
1 = Bloe = 152 + Lo < 31 = oo + 31 — dlloe = 4.

So % is also a closest polynomial. By Lemma 4.2.7, r := f — p—erq satisfies
equioscillation of degree n. Leta < x; < 23 < -+ < Tp42 < bso that

r(z;) = (=1)d or r(z;)=(=1)""'d for1<i<n+2.
Therefore

d=|f(z;) - p(xi);rfI(l"i)
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IN

31 (@) = plai)| + 3| f () — qlai)|
d_ d
S ) + b == d
This is an equality, and therefore
f(zi) —p(zi) = f(x;) —q(x;) =+d for 1<i<n+2.

Hence (p—q)(x;) = 0for 1 < i < n+2. Since p— ¢ has degree at most n and has
n + 2 roots, this means that p = ¢. Hence p is the unique polynomial in P, [a, b]
which is closest to f. u

4.3. The Stone-Weierstrass Theorems

In this section, we establish a very general approximation result which explains
when an algebra of continuous functions is dense in Cr(X) or C(X).

4.3.1. DEFINITION. Let (X,d) be a compact metric space. A subset A of
C(X) or Cr(X) is an algebra if it is a subspace such that if f,g € A, then the
product fg isin A.

A subset A of Cr(X) is a vector lattice if it is a subspace such that if f, g € A,
then f V g := max{f, ¢} and f A g := min{f, g} belong to A.

A subset A of C(X) or Cr(X) separates points if for all z,y € X, x # v,
there is an f € A such that f(x) # f(y).

A subset A of C(X) or Cr(X) vanishes at g if f(xo) = 0 forall f € A.

4.3.2. STONE-WEIERSTRASS THEOREM. Ler (X, d) be a compact metric
space. Suppose that A C Cgr(X) is an algebra which separates points and does
not vanish at any point of X. Then A is dense in Cr(X).

A key innovation by Stone was the recognition that the vector lattice property
was very useful.

4.3.3. LEMMA. If A is a subalgebra of Cr(X), then A is a closed subalgebra
and a vector lattice.

PROOF. If f,,9, € A and lim f, = f and limg, = g, then for r,s € R,
rfn + sgn and f,g, belong to A and converge to rf + sg and fg, respectively.
Therefore A is a subspace and an algebra.

To show that it is a lattice, it is enough to show that if f € A, then | f| is also in
A. This is because

_f+g+|f—g|

fvg="17 . _ftg If-4l

2 2

and fAg
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Let f € A. By Weierstrass’s Theorem, there are polynomials p,(t) which con-
verge uniformly to [t| on [—|| f|leos || flloo]- Say pn(t) = Zfﬁo ant'. In particular,
pn(0) = ano — 0. Hence g, (t) = pn(t) — ano = Zfﬁl anit’ also converges
uniformly to [¢| on [~ | f]|ec, || f]loc]- Note that g, (f) = S5, ani f belongs to A.
We use g, rather than p,, because we do not know that the constants belong to A.
Moreover

lan (f) = 1f1]] o = sup |an(f(2)) = |f ()]

< sup  gu(t) = [t]| = ||gn — Itl]| , = O
tI<IIflloo
Therefore | f| belongs to A. So A is a vector lattice. [

4.3.4. LEMMA. Suppose that A is a subalgebra of Cr(X) which separates
points and doesn’t vanish at any x € X. If x,y are distinct points in X and
r,s € R, then there is an function h € A so that h(z) = r and h(y) = s.

PROOF. As A separates points, there is an f € A sothata = f(x) # f(y) = b.

At least one of a, b is non-zero, so we may suppose that b # 0.
Case 1. a # 0. We look for h in span{ f, f*}. Note that

a a?
b b’
2

Hence the matrix T' = {Z Zz} is invertible. Hence we can solve the linear system
a a*] [u] _[r
b V| vl |s|”

Indeed, the solution is

u|  a 217N e 1 v —a?] [r] Zzl,?gf:‘;
v] b ¥ s] A= e [ s] | e ]

Therefore if we set h = uf + vf2,

=ab® —ba® = ab(b—a) =1 A #0.

of equations

h(z) = (uf + Ufz)(x) —watvat=r
h(y) = (uf +vf?)(y) = ub+ vb” = s.

Case 2. a = 0. Then since A does not vanish at x, there is some g € A such
that g(z) = ¢ # 0. Let g(y) = d; and set

cs —rd
be

M@:Eg@+ f(z) for ze€X.
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Then h € A and

T cs —rd

r
() Cc + r an (y) p + e s

PROOF OF THE STONE-WEIERSTRASS THEOREM. By Lemma 4.3.3, Aisa
vector lattice. Fix f € Cr(X)ande > 0. Leta € X. Foreachz € X \ {a}, use
Lemma 4.3.4 to find functions h, € A so that hy(a) = f(a) and hy(x) = f(x).
Let

Us={y € X tha(y) > f(y) — ¢} = (ha — )" (~&,00).
Then U, is open and contains both a and z. So {U, :  # a} is an open cover of
X. Thus thEre is a finite subcover Uy, ..., Uy, . Define g, = hy, V- -V hy,,. This
belongs to A, g,(a) = f(a) and

ga(T) > hy, () > f(x) —e for x €U, 1 <i<n.

Therefore g, > f — .

Let V, = {y € X : gu(y) < f(y) +€} = (90 — f) ' (—00, ). This is an open
set containing a. Hence {V, : a € X} is an open cover of X. By compactness,
Qere is a finite subcover V,,,...,V, . Let g = gq, A -+ A ga,,. This belongs to
A. Then g(x) > f(x) — ¢ since this is true for every g,. Also

9(x) < ga;(x) < f(z) +e forall zeV,, 1<j<m.

Hence g < f + ¢,
Consequently, [g(z) — f(z)| < ¢ for all z € X, and therefore ||g — f|| < e.
Since A is closed, it must equal Cr(X). [

We mention a few of the many applications of this result.

4.3.5. COROLLARY. Let X be a compact subset of R™. Then the algebra of
polynomials in the coordinates xy, . . ., Ty, is dense in C(X).

PROOF. First consider the algebra A of polynomials with real coefficients A =
R[zy,...,zy]. Then A is an algebra, it contains the constant function 1, so it does
not vanish at any point. Also y, ..., x, separate points in X. Hence by the Stone-
Weierstrass Theorem, A = Cr(X).

In the complex case, we can write f = g+ih where g, h € Cr(X). Since both
g, h are uniform limits of polynomials, f is also a uniform limit of polynomials
with complex coefficients. |

4.3.6. COROLLARY. Let X,Y be two compact metric spaces. Then
A={h(z,y) =) filx)gi(y): f; € C(X), gi € C(Y)}
i=1

is dense in C(X xY).
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PROOF. First consider the real version Agr which consists of finite sums of
products of functions in Cr(X) and Cr(Y’). This is a real algebra. It contains
1, so does not vanish anywhere. It separates points, because Cr(X ) separates the
X-coordinate and Cr(Y") separates the Y'-coordinate. Thus the Stone-Weierstrass
Theorem shows that Ag = Cg(X x Y). By taking real and imaginary parts, we
obtain the complex version. |

4.3.1. The complex case. Both corollaries were applicable to the complex
case by taking real and complex parts. However this is not possible to do within all
subalgebras.

4.3.7. EXAMPLE. Let D = {z € C : |z| < 1} be the open unit disc in
the complex plane. Let A(D) = {p(z) = > _,arzF} = Cl[2] considered as a

subalgebra of C'(D). 1 € A(D) so A(D) does not vanish at any point. The function
z separates points. However A(D) # C(D).

To see this, observe that

™

2 n 2
= ple)dt = Z ay 217r/ e dt = ap = p(0).
0 —0 0

By taking uniform limits, this identity extends to all f € A(D). But in C'(D), there
is no relationship between f(0) and the restriction of f to the unit circle T. For
example, f(z) = |z| satisfies f(0) = 0 and f(e*) = 1, so that

27

k| S d =14 50),

We can also consider A(ID) as a subalgebra of C'(T). This follows from the
maximum modulus principle which shows that each polynomial attains its supre-
mum on the boundary. This property extends to limits. So the supremum norm
over T is the same norm as the supremum norm over D. Again 1 € A(D) and z
separates points, but still A(D) # C(T). Using the integral above, we see that

2T ) )
= (eMedt =0 forall fe A(D).
0

However the function Z(e'') = e~ does not belong to A(ID) because

2
1 -
b z

27
(e®)e' dt = 217r/ dt =1.
0 0

4.3.8. DEFINITION. A subalgebra A C C(X) is self-adjoint if f € A implies
that f € A.
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Since Re f = %(f + f)and Im f = %(f — f), a subalgebra is self-adjoint if
and only if it contains the real and imaginary parts of it elements. This was key in
our two corollaries. This generalizes.

4.3.9. THEOREM. Let X be a compact metric space. Let A be a subalgebra
of C(X) which is self-adjoint, separates points, and does not vanish at any point.
Then A is dense in C'(X).

PROOF. Let Ag = {Ref : f € A}. Since A is self-adjoint, Ag is a real
algebra contained in A. It separates points, and does not vanish at any point. By
the real Stone-Weierstrass Theorem, Ag = Cgr(X). Every function f = g + ih
where g = Re f and h = Im f. Since g, h € Agr, we have f € A. |

Exercises

1. Let C(™a,b] denote the space of functions on [a, b] with n continuous derivatives.
n

(a) Define || f|[con = > %11f®||o. Show that this norm satisfies
k=0

Ifgllce < [fllcmllghce-
HINT: Leibnitz rule for (fg)™*).

(b) Show that the polynomials are dense in C™[a, b]. HINT: approximate () first.

2. Let p be the best polynomial approximation of degree n to y/z on [0, 1]. Show that
q(x) = p(«?) is the best polynomial approximation of degree 2n + 1 to |z| on [—1, 1].

3. For S C Cla,b], let E,(S) = sup;cs En(f). Let S be the functions in C0, 1] with
Lipschitz constant 1. Show that E,,(S) > ﬁ HINT: consider a piecewise linear

function such that f(-£5) = (—1)* for0 <k <n+ 1.

4. Show that the real linear span A of {1, sinnz,cosnx : n > 1} is a dense subalgebra
of B={f € Cr[—m,7]: f(—m) = f(m)}.

5. Let X be a compact subset of R”, and let ' = {y;,...,y,} be a finite subset of X.
Show that the set of polynomials in the coordinates xi, . .., x,, which vanish on F' is
dense on the ideal I(F) = {f € Cr(X) : f|Fr = 0}. HINT: build polynomials g;
such that ¢; (yj) = (51'.7'.

6. Let (X,d) be a compact metric space. Let J be an ideal of C(X). Define

Z=2(J)=Nyes F10).

(a) Lete > Oandlet Y. = {z : d(z, Z) > ¢}. Show that J contains a function f such
that f|y. = 1. HINT: Find finitely many f; € J so that > | f;(2)|* > 1 for all
reY..

(b) Hence show that J contains the ideal Iy(Z) = {f € C(X) : Z C int(f~'(0))} of

all functions that vanish on a neighbourhood of Z.
(c) Show that J = I(Z) = {f € C(X) : flz =0}.



CHAPTER 5

Differential Equations

Ordinary differential equations or ODEs are equations that relate a function of one
variable to one or more of its derivatives. Partial differential equations or PDEs re-
late functions of several variables to their various partial derivatives. They arise in
many contexts: in physics, chemistry and engineering in modelling various phys-
ical phenomena. In the life sciences modelling various global properties among
populations, such as predator-prey cycles, are governed by differential equations.
In economics and mathematical finance, many processes are governed by differ-
ential equations. In differential geometry and mathematical physics, differential
equations underlie most phenomena that are studied.

In this chapter, we study ODEs not with the idea of learning solution tech-
niques, but rather to understand when we can solve them and what we can say in
general about the behaviour of solutions.

Here is the basic idea:

y'(x) = f(z,y) and y(0)=yo for z,yeR.

In geometry and physics, one can consider a vector field which puts an arrow at
every point (x,y) with slope f(x,y). A common demonstration of this is to use
iron filings scattered around a magnet. The filings align with the direction of the
magnetic flow. Conversely, looking at the filings (which are the arrows), one can
“see” the flow lines. These flow lines are solutions to the ODE. There is an intuitive
sense that generally there is exactly one solution through each point, except for a
few exceptional points at the boundary of the magnet. This intuition is excellent as
long as the ODE is nice enough.

5.0.1. EXAMPLES.
(1) Consider ¢ = f(x) and y(a) = yo. This is easily solved by integration:

y(z) = yo + / oL

If f is continuous on R, then this has a solution on the whole line. But if f is
defined on a smaller set, say (—1, 1) by f(z) = ﬁ and a = 0, then the solution
will also ‘blow up’ as z tends to +1,

(2) Consider the ODE 3/ = xy. This can be solved by the technique of separation
of variables which involes rearranging things to get all the ’s on one side and all

90
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the z’s on the other:

Integrate to get logy = %3:2 + c. Thus y = Ce*’/2, The constant C is a parameter
determining a whole family of solutions. If we know some point on the curve,
say y(1) = e, then we can solve for C = y/e. If we change the initial value a
little, this changes C' a little, and the new solution is close to the original near the
starting point. However it moves away dramatically as we get further from the
initial position.

(3) Level lines. The equation xy = logy + ¢, where c is a constant determines a
family of curves, though they are difficult to express in closed form. These curves
are the solutions to a DE obtained by differentiation:

/ 2

y+a:y’:y— or y’: i .
y 1 —zy

If ¢ is known, we can see that (0, e~¢) lies on the curve. So we could add the initial
value condition: y(0) = e™¢.

(4) Some ODEs have no solutions. For example, (y')> + 1 = 0.

The question addressed in this chapter is: under what conditions does an ODE
have a solution? When is it unique? How does it change if we vary a parameter?
The following is a key example which illustrates some of the important ideas.

5.0.2. EXAMPLE. We will solve the initial value problem

_ 1 1
y=1+x—y for —3<z<;3
y(0) = 1.

Integrate to get

:1+/ 1+t —y(t)dt
0

x
:1+x+éx2—/ y(t) dt.
0

This changes the differential equation into an integral equation.

Define a map 7 on C [—%, %] by sending f to the function 7' f given by

Tf(x) :1+x+;x2—/xf(t)dt.
0
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The solution of the integral equation is a fixed point of 7'. Conversely, if
x
f0) =Tf@) =140+ o>~ [ o)
0

then f(0) = 1 and f'(z) = 1+ — f(z) by the Fundamental Theorem of Calculus.

We compute for z € [—1, 1],

15(w) = To@)| = | [ 10 - g <| [ 15~ g(o) a

1
<z If = glloo < 5I1f = 9lloo-
Therefore
1
ITf=Tglloo < 5If = 9lloo-

Hence 7' is a contraction mapping!

By the Contraction Mapping Principle, 7" has a unique fixed point f., that
will solve our DE. Moreover, we can compute the solution be setting fo(z) = 1,
defining fy,+1(x) = T'f,(z) for n > 0, and taking a limit. Then

file) =The) = 1o+ ot = [ 1de=14 a2
0

Similarly,
xT
f(z) =Tfi(z)=1+z+ j2° - / 1+ A% dt
0
=1+ %xz - %a:3.

We can show by induction that

fa(@) =1+ 127 — %af + 4%:1:4 - %acs +- (nil)!(—x)”ﬂ.

We obtain the solution

n—o0

foo(z) = lim fp(z) =2+ Z %(—x)k =x+e .
k=0 "

Note that this solution actually makes sense on the whole real line. Why that
happens is part of the story.

5.1. Reduction to first order

Our plan is to start with a DE, and convert it to the problem of finding a fixed
point of an associated integral operator. Generally this will need to be vector val-
ued.
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5.1.1. DEFINITION. The order of a DE is the highest derivative occuring in
the equation. It is said to be in standard form if the highest derivative can be
expressed as a function of x and the derivatives of lower order. An initial value
problem contains the DE and specifies values at some point for all derivatives of
lower order.

Initial value problem of order n. Let ¢ € [a, b]. Look for a functions f € C"[a, D]
satisfying:

(5.1.2) F™(2) = p(x, f(z), f'(2),..., f"D(x))  nthorder ODE
f(e) =0
flle)=m initial data.

where ¢ is a real-valued continuous function on [a, b] x R".

Reduce this to a first order ODE with values in R™. In order to proceed as in our
example, we require a first order DE. This can be arranged if we allow functions
with values in R™. Let F' : [a,b] — R™ by

F(a) = (f(2), (@), [V ().
This belongs to C([a, b], R™) and each coordinate is differentiable. Hence
Fa) = (£@) o @) ol £, 7)) ),

and the initial data become

F(c) = (vo:715- - s9m—1) =T
Define a continuous function ® from [a, b] x R™ to R" by
D(z, 90, Yn—1) = (Y1, Y2, s Yn—1, (T, Y0, - - -, Yn—1))-
Then (5.1.2) becomes the first-order vector-valued initial value problem :
(5.1.3) F'(z) = ®(z, F(x))
F(c)=T.

It is easy to see that a solution of (5.1.2) yields a solution of (5.1.3). Conversely,
suppose (5.1.3) has a solution

F(z) = (fo(x), fi(z), ..., far ().
Then
F'(x) = (fo(a), fi@), .- faa(@), foi(2))
= ®(z, fo(x), fi(x),..., fam1(x))
= (A@, s fr @), (@ f@), o S0 @)
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By identifying each coordinate, we get f/(z) = fi1(x) for0 <i <n —2and
f;—l(z) = 90(1'7 fO(x)a fl (:U)> ce fnfl(w))
Thus fi = fo. fo = f{ = fil. fie1 = f1 = fo " for0 < i <n—2and
15" = Fr = el fol@). fi(@), . fy" (@),

So fy is a solution to the ODE. Finally from F'(c) = I', we get that fé”(c) = ~; for
0 < i < n — 1. So the initial value data is satisfied. Therefore fj is a solution to
(5.1.2).

Convert to an integral equation. We now integrate (5.1.3) to get

F(x) = F(c) +/$ F'(t)dt = F+/$ D(t, F(t))dt.

Define a map on C([a, b], R"™) by

TF(z) =T+ / "o, F(1)) dt.

A solution of (5.1.3) is clearly a fixed point of T". Conversely, by the Fundamental
Theorem of Calculus, a fixed point of 7" is a solution of (5.1.3). So the problem
(5.1.2) is equivalent to finding the fixed point(s) of the mapping 7.

5.1.4. EXAMPLE. We will express the unknown function as y, instead of f(x).
Consider the differential equation
(1+ (y/)z)y(s) =y —ay'y+sinz for —1<z<1
y(0)=1, (0)=0, %"(0)=2.
Rewrite it in standard form as
3 _ Y —ay'y +sinz
1)

Y

Define I' = (1,0, 2) and

Y2 — xy1yo + sinx)

(Px7 b b :< ) b
(z,v0,y1,92) = (v1, 92 Y

Then define a mapping 7" from C([—1, 1], R?) into itself by sending a function
F(‘T) = (fo((L‘), fl (‘T)7 fZ(x)) to

TF(z) =T+ / o, F (1) dt
0

_ ‘ ’ T fa(t) = tfi(t) fo(t) +sint
_ (1+/0 fl(t)dt,/o Fa(t) dt 2+/0 o dt>.

This converts the differential equation into the integral equation T'F' = F'.
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5.2. Global Solutions of ODEs

In this section, we use a modification of the Contraction Mapping Principle to
establish the existence and uniqueness of solutions to a large class of ODEs. To
obtain this, we need a strong condition on the function ®.

5.2.1. DEFINITION. Let Q C R™. A continuous function ® = (¢1,...,px) :
[a,b] x Q — R™is Lipschitz iny = (y1, . . ., yn) if there is a constant L so that

N 1/2
@ (e,y) - (Zm zy) —pil@,2) ) < Ly |
forall x € [a,b] and y, z € Q.

5.2.2. EXAMPLES.
(1) Let ® = (¢1,...,pn) be defined on a convex set Q. Suppose that P has
continuous partial derivatives in the y-variables. Recall the gradient V,p; =

<ng ey g;"i ) Suppose that the derivative is bounded in Q:
max sup [Vypi(z,y)|| =M < oco.
1<i<n 3e(a,b]

yeQ
Then by the Mean Value Theorem, there is a point &; on [y, z| so that
lpi(z,y) = i, 2)|| = IVypilz, &) o (y = 2)[| < Mlly — z].

Therefore [ ®(x, ) ~®(x, 2)[| < S0, il y)~D(x, 2)|| < Mnlly—z|. T Qs
compact, then M < oo by the Extreme Value Theorem. However if Q = R", this is
quite a stringent condition, since even very nice functions like > have unbounded
derivative on the whole line.

(2) One important example where this condition does hold globally on R" is the
case of linear ODEs in which the function ® is linear in the y-variables. The
function ¢ has the form

Y™ (@) = Zaz ) + ba).

Writing F'(x) = (fo(z), fi(z),..., fn_1(z)), the DE becomes

- r 0 1 0o ... 0 17 fo@) 1 [ 0]
?’)Ex; 0 0 1 : fi(@) 0
F'(z) = 1 . = +
' (@) o 0 0 .. 1 fn-a(2) 0
" Lao(z) a1 (z) az(z) ... an_y(z)] Lfn-1(@)] [b(z)]
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= A(z)F(z) + B(z).

Here A(z) is an n x n matrix function of = and B(z) is a vector valued function of
x. The dependence on the y Variables is linear. That is, ®(z,y) = A(z)y + B(x).

211/2
Let M = supa<m<b | Ez =0 al ) }
write vectors horizontally to save space)

[P(z, y) — (2, 2)|| = [|A(x)(y — 2]
=== g1 =2 I,Zaz yi—z))}

<|ly =zl + Mlly — 2|l = (M+ Dlly = =l

where the Cauchy-Schwarz inequality shows that

3w < | Sar] | S < vty - 21
1=0 1=0 1=0

Hence & is Lipschitz in y.

. Since this is linear in y, we get (we

The following technical estimate is key. The point of the estimates is that they
improve dramatically with repeated application.

5.2.3. LEMMA. Let ® be a continuous function from [a,b] x R™ into R™ which
is Lipschitz in y with constant L. Let ¢ € [a, b], and

F—i—/CI)tF

IfF,G € C([a,b],R"™) satisfy || F(x) — G(x)|| < Mforsome k >0, then
LM |x — c|k+!
(k4 1)

Thus, T is Lipschitz; and there is an integer ko so that T* is a contraction map.

ITF(x) - TG(z)| <

PROOF. Compute

ITF(z) — TG(z)| = Hr+ / ®(t, F(t))dt — T — /

[

- | /cxfb(t,F(t)) — (1. G(1)) i
g/jH(ID(t,F(t))—d)(t,G(t))Hdtg/chHF(t)—G(t)Hdt

M [* LM
/ [t —clFdt = ——— |z —¢[F.
. (k4 1)!

T

O(t, G(1)) dtH
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Now ||F(2)—G(z)|| < ||F—Glleo = ||F—G||oo%. It follows by induction
that
IF = GllooLE [ — c* _ |IF' = GllooL* (b — a)"
k! - k! ’

|IT*F(x) = T"G(x)|| <

Thus | T F — T*G||o, < ZC-9% | P G|, This shows that T* is Lipschitz with

constant C, = Lk({g“)k. Observe that
C L(b—
im & — g Z0Z9)
k—00 k k—oo k+1

By the ratio test, lim;_,, C;; = 0. Hence one can choose ko so that Cj, < 1.
Therefore T%0 is a contraction mapping. |

5.2.4. GLOBAL PICARD THEOREM. If® : [a,b] x R™ — R"™ is continuous
and Lipschitz in y, and ¢ € [a, b], then the ODE

F'(z) = ®(x,F(z)), F(c)=T

has a unique solution on [a, b).

PROOF. We first convert the problem to a fixed point problem with the same
solutions. Let 7" map C(]a, b], R™) into itself by

TF() —F+/x<l>(t,F(t))dt for F e C([a,b],R").

By Lemma 5.2.3, there is an integer kg so that 7% is a contraction mapping. There-
fore by Corollary 3.3.4, T" has a unique fixed point F,. Thus this is the unique
solution to the ODE. |

Starting with any initial function Fy € C([a,b], R"), the sequence F,, = T*F,
converges uniformly to the solution. A convenient choice for Fj is the constant
function Fy(xz) = T'. In the next section, we will need some specific estimates
using this starting point.

5.3. Local Solutions

The stipulation that & has to be Lipschitz over all of R™ is quite restrictive.
However, many functions satisfy a Lipschitz condition in y on a bounded set of the
form [a,b] x br(T") for R < co. When this is the case, we can run the proof of the
Global Picard Theorem for a while, until the solution escapes the set.
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5.3.1. DEFINITION. Let Q C R". A continuous function ® : [a, b] x Q — R”
is locally Lipschitz in y if for every point (x,y) € [a,b] x Q, there is a neighbour-
hood ([z — €, + €] N [a,b]) x be(y) on which @ is Lipschitz in .

5.3.2. LEMMA. Suppose that a continuous function ® : [a,b] x Q — R" is
locally Lipschitz in y and that K C Q is compact and convex. Then ® is Lipschitz
inyonla,bl x K.

PROOF. Each point (z,y) € [a, b] x K has a convex open neighbourhood U, ,,
on which & is Lipschitz in y with constant L, ,. Since [a,b] x K is compact and
{Usy : (x,y) € [a,b] x K} is an open cover, there is a finite subcover, say Uy, .,
for1 <i < N. Let L = max{L,,,, : 1 < i < N}. Forany z € [a,b] and
y,z € K, the line segment [y, z] C K by convexity. Since {x} x [y, z] is covered
by our finite subcover, there is a sequence y = Yo, Y1....,Yp = z 0On [y, 2] so that
{z} X [yi, yi+1] is covered by a single set from the subcover. Therefore

p—1
[0, y) — Bz, 2)] < 3 [V, 55) — Dl yinr) |
=0

p—1

<> Ly — yinll = Llly — |-
=0

Thus & is Lipschitz in y on [a, b] x K. [ |

The main example is the case in which & has continuous partial first derivatives
in the y variables. This is Example 5.2.2(1).

In the following local version of the Picard theorem, one requires a local Lips-
chitz condition. However it is important to note that the interval on which a solution
is obtained is not dependent on the Lipschitz constant. For convenience, we start
at the left endpoint a, rather than some arbitrary point c. But this makes no real
difference. Also the argument works in the negative direction equally well.

5.3.3. LOCAL PICARD THEOREM. Suppose that ® : [a,b] x bp(T") — R"
is continuous and locally Lipschitz in y. Then the DE

F'(z) = ®(z,F(z)), F(a)=T

has a unique solution on the interval [a,a + h], where h = min{b — a, R/||P||s }.

PROOF. As for the Global Picard Theorem, we define a map 1. However it will
only be defined on C([a,a + h],br(I")), those vector valued continuous functions
on [a, a + h] with values in by (T"), because it is only in this range that ® is defined.

This is a closed subset of the complete normed space C'([a, a + h], R™), and thus it
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is complete. Set
xX
TF(x) = F—i—/ d(t, F(t)) dt.
a
Observe that

[TF(z) T < / [@(t, F(1)]| dt < [[®loc |2 — a] <[[Pfloc h < R.

Therefore TF' € C([a,a + h], br(I")).

C(la,a + h],br(T)) is a complete metric space and so the Contraction Map-
ping Principle is applicable. Now the proof of Lemma 5.2.3 works as before. It
follows that there is some kg so that 7% is a contraction mapping. Hence by Corol-
lary 3.3.4, T has a unique fixed point F, and that this is a solution of the ODE.

Uniqueness of a local solution to the ODE requires a bit more care. Suppose
that there is a solution G on a smaller interval [a,a + k] for 0 < k& < h. We can
then restrict the mapping 7" to the smaller domain C([a,a + k],br(T")). Again it
has a unique fixed point, and this must be Fl|q o4 Hence G = Fi(g qyp- [

5.3.4. EXAMPLE. Consider the DE

Y =12, y(0) =1, 0<x<2.

/

The function ®(x,y) = y? is not Lipschitz globally because ¢/(y) = 2y is un-
bounded. However since it is C', the derivative is bounded on [0,2] x [1 — R, 1+ R]
with constant sup), ;< [®'(y)| = 2R + 2. Also sup,_j < |P(y)| = (R + 1)2
By the Local Picard Theorem, this has a unique solution on [0, h] where

R |y R
(R+ 1)2} C(R+ 1Y

h = min {2,

If we pick R = 1 (which is optimal), then we get a solution on [0, ﬂ
/

We can solve this DE by separation of variables. Rewrite it as y—z = 1. Then
Yy

by integration, we get

xz/mmt:/xy/(t)dt - !
0 o y(t)? y(t)
Therefore, y(z) = 1.

This is a solution on the interval [0, 1). However it ‘blows up” at z = 1. So the
solution does not extend to all of [0, 2]. But this is definitely better than our solution
on [0, 1]. This can be improved by starting at z = } and applying the Local Picard
Theorem again. The next result explains why a repeated application of this idea
will succeed.
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Again we consider the initial condition at x = a for convenience. However
it works just as well with any initial point ¢ in both directions with appropriate
rewording.

5.3.5. CONTINUATION THEOREM. Suppose that ® : [a,b] x R™ — R" is
continuous and locally Lipschitz in y. Consider the DE

() F'(z) = ®(z,F(x)), F(a)=T.

Then either
(1) the DE has a unique solution F.(z) on |a,bl; or

(2) there is a c € (a,b] so that the DE has a unique solution Fy(x) on [a,c)
and lim,_, .- || Fy(2)| = +oc.

PROOF. Let ¢ := sup{d € [a,b] : (}) has a solution on [a,d]}. The Local
Picard Theorem shows that there is a unique solution on [a, a + k] for some h > 0,
so ¢ > a. Also no solution Fj can extend to include ¢ if ¢ < b, for in that case, we
can apply the Local Picard Theorem with initial data F'(c¢) = Fy(c) and extend the
solution to an interval [c, ¢ + h].

Next we show that if () is a solution on [a, d;] with d; < da, then F3 |4 4] =
F. If this were false, then

inf{x S [a,dl] : Fz(l’) #+ Fl(l’)} =d < d;.

Let I'1 = Fi(d) = F>(d). Apply the Local Picard Theorem with initial data
F(d) = T'| to obtain a unique solution on [d,d + h;]. By uniqueness, we have
F>(z) = Fi(z) on [a,min{d + hi,d,}], contradicting the definition of d. Thus
F|(q,4,) = F1. Therefore, there is a unique solution F(z) of (%) defined on [a, c)
by combining the solutions for d < c.

If lim,_, . || Fx(z)|| = +o0, then we satisfy part (2) of the theorem; and if the
solution extends to include b, we have part (1). The remaining possibility is that the
solution does not extend to include ¢, but

liminf || Fy(x)]| < oo.
Tr—Cc

In this last case, choose x,, — ¢~ such that ||Fi(z,)|| < K forn > 1.

Since @ is locally Lipschitz in y, it is Lipschitz in y on D = [a,b] X byx+1(0)
by Lemma 5.3.2. Let
min{%, %} ife<b

M = su P R and 5:
p [Pz, ) {2{&1 ife = 0.

(z,y)€D

Choose N so that zy > ¢ — 0. Let 'y = Fi(xzy). Apply the Local Picard The-
orem to the DE (1) F'(z) = ®(z, F(z)) and F(zy) = Ty. Since bx.1(T'y) C
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barc+1(0), we obtain a unique solution on [z, xy + h] where

K+1 } d K+1
——— ¢ an

M
Thus either the solution extends to include b or it extends to [xy,zy + 2d] D

[xn,c + 6]. In either case, the solution extends beyond [a,c), contrary to our
hypothesis. Hence it must be the case that lim,,_, . || Fi(z)|| = 4o0. [

h:min{b—:cN7 > 20.

5.3.6. REMARKS.
(1) The solution obtained in the Continuation Theorem is called the maximal con-
tinuation of the solution to the DE.

(2) Like the Local Picard Theorem, the Continuation Theorem works in both direc-
tions by symmetry.

(3) If the DE is defined on R x R™, one may have to restrict the x-domain as well as
the y domain to get a local Lipschitz condition. One can restrict to [— R, R] x bg(0)
to apply the Local Picard Theorem and the Continuation Theorem, and then piece
the unique solutions together as in the proof above.

5.3.7. EXAMPLE. Not all solutions of differential equations blow up in the
manner of the previous theorem. Consider this DE which was cooked up to have
f(z) = sin 1 as a solution.

ey’ + 2% +y=0 and  y(Z)=1, y(3)=0 for zeR.

This looks like a reasonably nice linear DE. However it is not in standard form, and
the leading coefficient z* vanishes at z = 0. In standard form, it becomes
2y oy 2y1 Yo
/"
=——"—-= and PD(z,y0,¥1)= (y1,—— — = ).
y i (@90, 51) = (y1,—— = -3
The function @ is discontinuous at x = 0, so we cannot expect any solution to
include 0 in the domain. On the other hand, ® satisfies a global Lipschitz condition

on [g,00) x R? because
0 1
qu) = |: 1 2]

x? z
is clearly bounded for x > €. Therefore the Global Picard Theorem shows that this
has a unique solution on [¢, c0). The uniqueness ensures that these solutions agree
on the intersection, and so we can continue the solution to (0, 00).
The reader can check that f(z) = sin% is a solution. Clearly this does not
extend beyond (0,00). Since f'(z) = —; cos 1, the solution to the first order
vector valued DE is

F(z) = (f(z), f'(z)) = (siné,—icos l)

22 x
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Look at the points z,, = m Then F(x,) = ((—1)",0). Thus

liminf || F(2)| <1 < oco.
z—0+F

This does not contradict the Continuation Theorem because @ is not defined at
z=0.

5.4. Existence without Uniqueness

5.4.1. EXAMPLE. Consider the differential equation

y =y, y0)=0, zeR

The function ®(z,y) = y?/3 is not Lipschitz because g—z’ = %yil/ 3 blows up at

y = 0. Hence the Picard Theorems do not apply.
We can try to solve it using separation of variables and integration to get:

3y1/3 =x+c.

Then ¢ = y(0) = 0, and hence y = 23/27. By inspection, one can see that
f(z) = 0 is a solution. This is a second solution valid on the whole real line.
Hence the solution is not unique.

In fact, there are infinitely many solutions. For any b < 0 < a, the function

@O if oz <b
flx)=<0 if b<z<a
@a’ if z>a

is a solution.

Note that as long as y is bounded away from 0, there is a Lipschitz condition on
®. So any non-zero initial value for y(c) will yield a solution by the Local Picard
Theorem and the Continuation Theorem. What will happen is that this solution
will be a cubic that will continue in both directions. But in one direction, it will
eventually hit the z-axis tangentially. At that point, the solution may run along the
axis for a while before continuing as a cubic on the other side of the axis. So the
uniqueness of the continuation works until we hit the axis, where & is fails to be
locally Lipschitz.

It turns out that only continuity of the function @ is necessary to ensure the
existence of a solution on a small interval. However the proof is more sophisticated,
and relies on the Arzela—Ascoli Theorem 2.5.5.

5.4.2. PEANO’S THEOREM. LetT' € R" and ® : D = [a,b] x br(I') — R"
be continuous. Then the DE

F'(z) = ®(z, F(x)), fla)=T for a<x<b
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has a solution on [a,a + h], where h = min{b — a, R/||P||c }-

PROOF. As in Picard’s proof, we convert the problem to finding a fixed point
for the map 7', where

TF(z) =T+ / o, F(1)) dt.

Pick IV so that - < h. For each n > N, define a function F},(z) on [a, a + h] by:

r for agﬂsga—F%

Fn(IL’) - z—1/n .
r+ D(t, F,(t)) dt for a+ ., <z<a+h.

It appears that this definition depends on knowing F;, to define F;,, but actually,
it is defined as the constant on [a, a + %] Then the integral makes sense for x in
[a+1,a+2]. Once F, is defined there, the integral will make sense on [a+2, a-+2]
as long as F,,(z) € br(I"). This follows from

z—1/n
£ () = T| < / 1D(t, Fa(t))ll dt < [[®@]lo(h — 5) < R.

Therefore ®(t, F},(t)) is defined for a < ¢ < a+h. So one proceeds in this manner,
step by step, to define F), on [a,a + h].
Next we calculate fora < z < a + %,

T Fy(z) — Fo(z)|| = Hr + / B(t, Fy(t)) dt — rH

< / 1D(t, Fa(t)ll dt < [|®loo(2 — a) < 7 [|P]l.

Thenfora—l—%gxga—i—h,

150 - B = | [ eteFu0) ar]

< [ e Fue)] de < @

n

Therefore |TF, — Fp oo < L{|®||so.

Next we show that {F,, : n > N} is equicontinuous. Given ¢ > 0, take
d=¢/||P|loc. fa <z < x2 < a+ hand|zy — x| < 0, then
-
@G, Fu ()] dt
=

NP lool (21— %) — (22— 2)| < [ @l = &.

The family of functions {F}, : n > 1} is bounded by ||T'|| + R and equicontinu-
ous. Therefore we may apply the Arzela—Ascoli Theorem to deduce that its closure

|mmm—m@m</

T
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is compact. Here we have a family of vector valued functions. However each of the
n coordinate functiona are closed, bounded and equicontinuous. So the set is itself
compact.

Hence we can extract a subsequence F},, which converges uniformly on [a, a +
h] to a function F'(z). We will show that F' is a fixed point of 7, and hence a
solution of the DE. Compute

1F(2)=TF (2)|| < [|[F(2) = Fn, (2) |4+ [1Fn; (2) = Ty, (2) |+ | TF, (2) = TF (2)

Pl , [
< = Flloo+ ==+ |®(t, F(t))—D(t, Fy,(t))]] dt.
7 a
Since D is compact, ¢ is uniformly continuous on D. For ¢ > 0, there is
ad > 0sothat ||y — z|| < ¢ implies that |®(x,y) — P(z, 2)|| < ¢/h for all
x € [a,a + h]. Choose n; so large that

|F'— Fu,lloo < min{d,e} and |P[ < nie.
Then
a+h
|F(z) — TF(x)|] <€+s+/ e/hdt = 3e.
a

The left side is constant, and the right side can be made arbitrarily small. Hence
TF = F is a solution. |

5.5. Stability of DEs

Many DEs are designed to model behaviour in a perfect environment. In real
life, there are often things which interfere with the process. For example, some
physical actions are hypothesized to happen in a vacuum. When they occur in air,
there is a component of friction from passing by air particles. In economics, there
is often a significant noise component.

It is important to understand how a solution changes under such perturbations.
The famous quote about a butterfly in the Amazon jungle affecting weather in
Canada is a very long-term effect. Even under the ideal conditions, small changes
in the initial conditions can have a dramatic effect far in the future. What we are
concerned with here are local issues: how does the solution change nearby? Does
a small change in the DE or in the initial conditions result in a small change in the
solution? The short answer is yes if the initial DE is locally Lipschitz.

5.5.1. PERTURBATION THEOREM. Let ® : D = [a,b] X br(T) — R"
satisfy a Lipschitz condition in y with constant L. Suppose thatV : D — R" is
another continuous function on D such that

¥ — Pl = sup [[¥(z,y) — P(z,y)|| <e.
(z,y)eD
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(The function ¥ is not assumed to be Lipschitz.) Suppose that F' and G are solu-
tions of the differential equations

Fl(z) = ®(z, F(z)),  Fa)=T
and
Gl =%(z,G(z)), Gla)=A
such that (x, F(x)) and (z, G(x)) belong to D for a < x < b. Define § := ||A—T||.
Then, for all x € [a, b,
[G(x) = F@)]| < det=el 4 (eHeel 1),

Thus -
|G = Flloo < ekl 1 Z(e“b*al —1).

PROOF. Define
n—1 1/2

(@) = |6() - F@)ll = (3 (6i(2) = fi(2))?)

i=0
In particular, 7(¢) = ||[A — I'|| = 4. Then by the Cauchy—Schwarz inequality,

—_

n—

27(2)7' () = ((2)*) = Z 2(gi(@) — fi(@)) (gi(@) — fi(2))

=0
(X 0w - 5@) " (Dlate) - @)
i= =0

0
27(@)|G () = F'(2)]].

Also
|G () = F'(@)|| = [[¥(z, G(x)) — (z, F(x))]
< [[¥(z, G(x)) — (2, G(x)) | + [|@(x, G(x)) — Bz, F(2))]
<e+ L|G(x) — F(z)|| =+ L7(x).
Therefore if 7(z) # 0, we get
(z) < ||G'(x) — F'(2)|| < &+ L7(2).

Consider € [a,b]. In the inequality above, we needed to divide by 7(z).
However it clearly is not a problem for us if 7(z) = 0 because this will improve
our estimates. Define

d=sup{a <t<uz:7(t)=0}U{a}.
If d = x, then 7(x) = 0. Otherwise

xX x /t
x—aZaz—d:/ dtz/T()dt
d d E+LT(t)
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1 | Lt(z)+e¢
~ Diogles 10 = Liog(L 15
ploele+ L] = ploe( T
Therefore
L
LZEZ; j;i < ellz=al o Lt(z)+e < eL|x*“|(LT(d) +e).

Now 7(d) < 7(a) = §. Thus by solving for 7(z), we get
|Gla) — F@)]| = (z) < debleel 4 S etleal 1)
The last statement is straightforward. |

An important consequence of this result is that the solution of a DE with Lips-
chitz condition is a continuous function of the initial conditions. For simplicity, we
take ¢ = a, but it is readily modified for other points.

5.5.2. COROLLARY. Suppose that ® satisfies a local Lipschitz condition in vy
on [a,b] x R™. Then the solution Fr of

F'(z) = ®(z, F(x)), F(a)=T

is a continuous function of I.

PROOF. Fix R > 0 and let L be the Lipschitz constant in y on D = [a, b] X
br+1(I) and let M = sup, yep [[P(2,y)||. Assume that |A — T < 1. Then
br(A) C br4+1(T). Then applying the Local Picard Theorem with either initial
condition f(a) = T"or F(a) = A, we obtain a unique solution Fr or F on [a, a+h]
where h = min{b — a, %} and the solution graphs remain in D.

Therefore we may apply the Perturbation theorem with ¥ = & in the Pertur-
bation Theorem (so that £ = 0) to show that

|Ea(e) = Fr(a)]| < A =Tlle"*= and ||Fy — Frllec < A = T|e"".

Thus the solution depends continuously on the initial conditions. |

The Perturbation Theorem can be interpreted as a stability result. If the DE
and initial data are measured empirically, then this theorem assures us that the
approximate solution based on the measurements remains reasonably accurate.

5.5.3. EXAMPLE. The DE 4" +y =0, y(0) = 0,%'(0) = 1 for x € [—m, 7] has
unique solution f(z) = sinz. The associated function ®(x, yo,y1) = (y1, —%o)
has global Lipschitz constant 1. Consider

v +y=elx,y,y) y(0)=0 and % (0)=1 for =z € [-m, 7],

where e(x,y,y’) is a small function bounded by ¢; and let g(x) be the solution. By
the Perturbation Theorem, since § = 0, we get

(9(x) — sinz, g'(x) - cosa)|| < (e - 1).
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Exercises

1.

Consider the DE: y' = 1 + xy and y(0) = 0 for « € [—b, b], where b > 0.

(a) Reduce this to finding the fixed point of a mapping 7". Show that when b = 1, the
map 7' is a contraction mapping.

(b) Prove that the DE has a unique solution on [—b, b] for any b > 0. Hence deduce
that there is a unique solution on the whole line R.

(¢) Let fo(z) = 1 and compute f,(x) = T™fy by induction. Prove directly (rather
than by quoting a theorem) that the sequence f,, converges uniformly on [—b, b].

Consider the linear DE y"" — 2!y + 272y = 0 for x € [1, 3].

(a) Show that this DE has a unique solution for each choice of initial values I' =
(y(1),y'(1)) € R%.

(b) Check that y = z is a solution. Find a solution of the form f(z) = xg(x) by
showing that ¢’ satisfies a 1st order DE, and solving it.

(c) Show that the set of solutions that you obtain is a 2-dimensional vector space that
contains all possible solutions.

Consider the DE: 4" = (1 + (/)?)*/? and y(0) = 0, %/ (0) = 0.

(a) Convert this to a first order vector valued DE. Show that it satisfies a local Lipschitz
condition, and find an h > 0 so that a solution exists on [—h, h].

(b) Show that f(z) = 1 — /1 — 22 is the unique solution on (—1, 1).

(c) This solution does not continue further, yet | f(x)| < 1. Why does this not contra-
dict the Continuation Theorem?

Suppose that ® and ¥ are Lipschitz functions defined on [a,b] x R. Let f and g
be solutions of f' = ®(z, f(z)) and ¢’ = ¥(x,g(x)), respectively. Suppose that
f(a) < g(a) and ®(z,y) < ¥(x,y) forall (x,y) € [a,b] xR. Show that f(z) < g(z)
for all z € [a,b]. HINT: If f(z) = g(z), what about f’(x) and ¢'(z)?

Consider the DE: 3 = 2% + y? and y(0) = 0.

(a) Show that this DE satisfies a local Lipschitz condition but not a global one.

(b) Integrate the inequality ¢/ > 1 4 y? for > 1 to prove that the solution must go
off to infinity in a finite time.

Show that the set of all solutions on [a, a + k] to the DE of Peano’s Theorem is closed,
bounded, and equicontinuous; and thus is compact.

Let v € R and let ® be a continuous real-valued function on [a,b] X [y — R,y + R].
Consider the DE ¢/ (x) = ®(z,y) and y(a) = 7. Then Peano’s Theorem guarantees a
solution on [a, a + h] for some h > 0.

(a) If f and g are both solutions on [a, @ + h], show that f V g(z) = max{f(z), g(x)}
and f A g(x) = min{f(x), g(x)} are also solutions.

HINT: Verify the DEin U = {x : f(z) > g(x)}, V = {z : f(z) < g(z)}, and
X ={x: f(x) = g(x)} separately.

(b) Prove that the set of all solutions on [a, a + h| has a largest and smallest solution.
HINT: use Exercise (6). Find a countable dense subset { f,, } of the set of solutions.
Let g = max{fi,..., fx} for k > 1. Show that g; converges to the maximal
solution fiax.
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8. Prove Gronwall’s inequality: suppose that u € C0, b] satisfies u > 0 and there are
non-negative constants C' and K so that

<C’+K/ t)dt for 0<ax<b.

Prove u(z) < Ce&? for z € [0, b].
HINT: let v(z) denote the RHS, derive a differential inequality, and integrate.
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