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The non-commutative analytic Toeplitz algebra is the wot–closed al-
gebra generated by the left regular representation of the free semigroup
on n generators. We obtain a distance formula to an arbitrary wot-
closed right ideal and thereby show that the quotient is completely
isometrically isomorphic to the compression of the algebra to the or-
thogonal complement of the range of the ideal. This is used to obtain
Nevanlinna–Pick type interpolation theorems.

In [9, 10], we studied the non-commutative analytic Toeplitz algebras Ln associated

to the free semi-group on n generators. This is the wot-closed algebra generated by the

left regular representation. This algebra and its norm-closed version (the non-commutative

disk algebra) were introduced by Popescu [19] in an abstract sense in connection with a

non-commutative von Neumann inequality and further studied in several papers [17, 19,

20, 21, 23]. We established a strong connection with the function theory on the ball Bn

in Cn through our characterization [10] of the automorphism group. In particular, there is

a natural homomorphism of Ln into H∞(Bn). This leads to the natural question of which

analytic functions are in the range of this map, and in particular, interpolation questions of

the Nevanlinna–Pick type.
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We let Fn denote the free semigroup on n generators z1, . . . , zn. (We allow n =∞,

but for convenience of notation, shall act as if n is finite.) Form the Hilbert space Hn =

`2(Fn) with orthonormal basis ξw for w ∈ Fn. Then define the left regular representation by

isometries Lvξw = ξvw for v, w ∈ Fn. For simplification of notation, we write Li instead of

Lzi . The algebra Ln is the wot-closed algebra generated by {L1, . . . , Ln}. It is sometimes

convenient to identify `2(Fn) with the Fock space of Cn = span{e1, . . . , en} by sending

ξzi1 ...zik to ei1 ⊗ · · · ⊗ eik for every word w = zi1 . . . zik in Fn. This identifies Li with the left

creation operator Lix = ei ⊗ x.

In [3], Arias and Popescu use a Beurling type theorem from [17] to obtain the re-

flexivity of Ln. We discovered this Beurling theorem independently and used it to establish

hyper-reflexivity [9, Theorem 2.9]. The Beurling theorem shows that cyclic invariant sub-

spaces of Ln correspond to the ranges of isometries in the commutant Rn, the right regular

representation algebra. Moreover, every invariant subspace is the direct sum of cyclic invari-

ant subspaces. Indeed an invariant subspace M is determined by a Wold decomposition by

computing its wandering space W =M	
∑n

i=1 LiM. Then M =
∑

w∈Fn ⊕LwW .

In addition to this description of invariant subspaces, we needed to know all the

invariant subspaces of codimension one. These correspond to eigenvectors of the adjoint

algebra L∗n. They are classified [9, Theorem 2.6] by the points of the complex n-ball

Bn = {λ ∈ Cn : ‖λ‖2 < 1}.

These vectors are given by the formula

νλ = (1− ‖λ‖2)1/2
∑
w∈Fn

w(λ)ξw = (1− ‖λ‖2)1/2(I −
n∑
i=1

λiLi)
−1ξ1.

They yield the set of all wot-continuous multiplicative linear functionals on Ln by the

formula

ϕλ(A) = 〈Aνλ, νλ〉 .

Moreover the map taking A to the function Â(λ) = ϕλ(A) is a completely contractive

homomorphism of Ln into H∞(Bn) [10, Theorem 3.3]. Finally, a calculation shows that for

λ1, λ2 ∈ Bn,

〈νλ1 , νλ2〉 =

√
1− |λ1|2

√
1− |λ2|2

1− 〈λ2, λ1〉
.
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Further evidence of the strong connection with analytic functions is provided by

the automorphism group. There is a natural map of Aut(Ln) onto the group Aut(Bn) of

conformal automorphisms of the n-ball given by the dual action on the functionals ϕλ [10,

Theorem 4.1]. The kernel is the subgroup of automorphisms which are trivial modulo the

wot-closed commutator ideal C. Moreover, the restriction of this map to the automorphisms

which are unitarily implemented is an isomorphism. All automorphisms are automatically

norm and wot-continuous.

In the case of the algebraH∞ for the unit disk (which is the algebra L1), Nevanlinna,

Pick and Carathéodory considered interpolation questions of the following type: given points

αj and cj in D for 1 ≤ j ≤ k, is there an analytic function h ∈ H∞ with ‖h‖ ≤ 1 such that

h(αj) = cj for 1 ≤ j ≤ k. The answer to this and related questions is generally given by

checking whether an affiliated matrix is positive semi-definite. We establish similar results in

our context: given points αj in Bn and matrices Cj in Mp for 1 ≤ j ≤ k, is there an element

F in the unit ball of Mp(Ln) such that F̂ (αj) = Cj for 1 ≤ j ≤ k? We will determine

necessary and sufficient conditions for this and related interpolation questions.

Our approach is modeled on that used by Sarason [25]. The kernel of the map

taking F to
(
F̂ (α1), . . . , F̂ (αk)

)
is the ideal of functions vanishing at these k points. It

was shown in [10, Theorem 2.1] that the map taking a wot-closed right ideal to its range

space is a complete lattice isomorphism onto the lattice of invariant subspaces of Rn, and

that two-sided ideals correspond to subspaces which are also invariant for Ln. Thus we are

led to computing the quotient map by an arbitrary ideal. This is shown to be completely

isometric to the restriction to the complement of the associated range space. This spatial

information will allow us to obtain the desired interpolation condition. It is a consequence

of our methods that the map from Ln into H∞(Bn) is not surjective.

The distance estimate is based on a refinement of the predual property A1(1) es-

tablished in [9, Theorem 2.10]. There it is shown that if f is any weak-∗ continuous linear

functional on Ln with ‖f‖ < 1, then there are vectors ξ and ζ with ‖ξ‖ ‖ζ‖ < 1 such that

f(A) = 〈Aξ, ζ〉 for all A ∈ Ln. Here we need the corresponding property for Ln⊗B(K), the

wot-closed algebra of all operators with coefficients in Ln. This property is immediate from

the proof for Ln. However it yields the generally stronger property Aℵ0 .
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In the last section, we relate our interpolation theorems to other similar results on

reproducing kernel Hilbert spaces. The connection is the fact that symmetric Fock space is

an analytic reproducing kernel Hilbert space [5]. This allows us to connect our results with

results of Agler [2], McCullough [14] and Quiggin [24]. We also provide a new proof of a

commutative dilation result of Popescu [22] and Arveson [5]. The dilation theory connects

to interpolation via a version of the commutant lifting theorem in this context, which follows

from Popescu’s non-commutative version [18].

We take this opportunity to thank Vern Paulsen for several conversations about the

content of this paper. In particular, this lead to the addition of the section on reproducing

kernel Hilbert spaces.

After this paper was submitted for publication, we received a preprint from Arias

and Popescu [4] which has significant overlap with our paper. Briefly, the principal over-

lapping parts are: i) the distance formula Theorem 2.1 is proved here for right ideals and

in [4] for two-sided ideals; and ii) both papers contain Corollary 2.2, Theorem 3.2 and The-

orem 3.3, although they are proved in [4] as a consequence of a commutant lifting theorem.

1. PREDUAL PROPERTIES

If A is a wot-closed operator algebra on a Hilbert space H, let A⊗B(K) denote the

wot-closed algebra generated by the spatial tensor product of the two algebras. This consists

of those operators acting on the Hilbert space H ⊗ K such that each “matrix coefficient”

with respect to some (any) basis for K belong to A. The following result is proven in the

same way as [9, Theorem 2.10] using the fact that the isometries V ⊗ I and W ⊗ I have

orthogonal ranges and commute with A⊗B(K).

LEMMA 1.1. If A ⊆ B(H) is a wot-closed algebra which commutes with two

isometries V and W with orthogonal ranges, then the algebra A⊗B(K) has property A1(1),

namely given any weak-∗ continuous linear functional ϕ and an ε > 0, there are vectors η and

ζ belonging to H⊗K such that ‖η‖ ‖ζ‖ < ‖ϕ‖+ ε and ϕ(A) = 〈Aη, ζ〉 for all A ∈ A⊗B(K).

COROLLARY 1.2. Ln⊗B(K) has property A1(1).
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This corollary is actually the precise form which we need, and for which we obtain

good norm control. In the literature [6], the following variant is used. So we include it

for completeness. We note that Bercovici [7] has established that any algebra commuting

with two isometries with orthogonal ranges has the property X (0, 1), which is closely related

to the property Aℵ0 . He uses this to establish hyper-reflexivity for all such algebras with

distance constant 3 (which is a much better estimate than the bound 51 which we obtained

for Ln in [9]).

An operator algebra has property Ap, 1 ≤ p ≤ ℵ0, if for every p× p matrix
[
ϕij
]

of

weak-∗ continuous linear functionals, there are vectors ηi and ζj for 1 ≤ i, j ≤ p such that

ϕij(A) = 〈Aηj, ζi〉 for all A ∈ A and 1 ≤ i, j ≤ p.

It has property Ap(r) if one may choose ‖ηj‖ < (r+ ε)1/2 and ‖ζ‖ < (r+ ε)1/2 provided that

‖ϕij‖ ≤ 1 for all i and j.

COROLLARY 1.3. If A is a wot-closed algebra which commutes with two isome-

tries V and W with orthogonal ranges, then it has properties Aℵ0 and Ap(p
2) for p ≥ 1.

Proof. If p is finite and Kp is a Hilbert space of dimension p, the matrix Φ =
[
ϕij
]

acts naturally as a linear functional on A ⊗ B(Kp) via the formula Φ(A) =
∑

i,j ϕij(Aij).

Clearly, if ‖ϕij‖ ≤ 1 for all i, j, then ‖Φ‖ ≤ p2. Using the fact that the tensor product

has property A1(1), we may find vectors η =
(
ηi
)p
i=1

and ζ =
(
ζi
)p
i=1

with ‖η‖ < p + ε and

‖ζ‖ < p+ ε such that

n∑
i,j=1

ϕij(Aij) = Φ(
[
Aij
]
) = 〈Aη, ζ〉 =

n∑
i,j=1

〈Aijηj, ζi〉 .

Hence we deduce that ϕij(A) = 〈Aηj, ζi〉 for 1 ≤ i, j ≤ p. Thus A has property Ap(p
2).

To prove property Aℵ0 , we use a simple rescaling device. Let Φ =
[
ϕij
]

be an

infinite matrix of weak-∗ continuous linear functionals on A. Let

ck = 2k max
{

1, ‖ϕij‖ : max{i, j} = k
}
.

Then consider Ψ =
[
c−1
i c−1

j ϕij
]
. It follows that

‖Ψ‖ ≤
∑
i,j

c−1
i c−1

j ‖ϕij‖ ≤
∑
i,j

2−i−j = 1.
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Thus by Lemma 1.2, there are vectors ζ = (ζi) and η = (ηj) for i, j ≥ 1 such that Ψ(A) =

〈Aη, ζ〉 for all A ∈ A⊗B(K). In particular,

c−1
i c−1

j ϕij(T ) = 〈Tηj, ζi〉 for all T ∈ A.

Thus the vectors η′j = cjηj and ζ ′i = ciζi solve the interpolation problem. �

COROLLARY 1.4. Ln has properties Aℵ0 and Ap(p
2) for p ≥ 1.

2. DISTANCE TO IDEALS

As mentioned in the introduction, when J is a wot-closed right ideal of Ln, the

range map

µ(J) = JHn = Jξ1

is a complete lattice isomorphism onto Lat Rn which carries the two-sided ideals onto

Lat Rn ∩ Lat Ln [10, Theorem 2.1]. The inverse is given by

ι(M) = {J ∈ Ln : Jξ1 ∈M}.

Given such a right ideal J withM = µ(J), the map which sends A in Ln to P⊥MA is

completely contractive and annihilates J. Thus this map factors through the quotient Ln/J

with completely contractive maps. When J is a two-sided ideal, M is invariant for Ln. In

this case, P⊥MA = P⊥MAP
⊥
M is the compression toM⊥. Moreover, this compression map is a

homomorphism. What we wish to establish is that this procedure determines the quotient

completely isometrically.

THEOREM 2.1. Let J be a wot-closed right ideal in Ln; and letM = µ(J) = Jξ1

denote its range. Then Ln/J is completely isometric to P⊥MLn. That is, for every matrix

A =
[
Aij
]

in Mp(Ln), p ≥ 1,

dist(A,Mp(J)) = ‖(P⊥M ⊗ Ip)A‖.

Proof. In fact, our proof works just as well with p = ℵ0, where Mp(Ln) is used to

mean Ln⊗B(K). Let ε > 0 and suppose that dist(A,Mp(J)) = 1. Choose a wot-continuous
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linear functional ϕ on Mp(Ln) which annihilates Mp(J) such that

1− ε < |ϕ(A)| ≤ ‖ϕ‖ = 1.

By Corollary 1.2, there are vectors η =
(
ηi
)p
i=1

and ζ =
(
ζi
)p
i=1

in H(p)
n such that ϕ(T ) =

〈Tη, ζ〉 for all T ∈Mp(Ln) and ‖η‖ ‖ζ‖ < 1 + ε.

Let

N =
∑p

i=1 Lnηi and N0 =
∑p

i=1 Jηi.

Clearly Mp(Ln)η = N (p) and Mp(J)η = N (p)
0 . Since N is an invariant subspace for Ln

which is generated by p vectors, its wandering space has dimension q ≤ p. Thus by [9,

Theorem 2.1], there are isometries Rj in Rn for 1 ≤ j ≤ q with pairwise orthogonal ranges

such that

N =

q∑
j=1

⊕RjHn.

Observe that since J is a right ideal, we have

N0 = JN =

q∑
j=1

⊕RjM.

Therefore,

(1) R∗jx ∈M⊥ for x ∈ N 	N0.

Let [ηζ∗] be the functional on Mp(B(Hn)) given by A 7→ (Aη, ζ). Since N (p) is

invariant for Mp(Ln), we see that [ηζ∗] is unchanged on Mp(Ln) if ζ is replaced by (PN⊗Ip)ζ.

So we assume that this has been done. Also, since ϕ annihilates Mp(J), it follows that ζ

belongs to (N 	N0)(p). Let

ξj = (R∗j ⊗ Ip)ζ and νj = (R∗j ⊗ Ip)η for 1 ≤ j ≤ q.

Equation (1) ensures that each ξi belongs to M⊥(p). Moreover,

ζ =

q∑
j=1

⊕(Rj ⊗ Ip)ξj.

Let ψ be the weak-∗-continuous linear functional given by

ψ(T ) =

q∑
j=1

〈Tνj, ξj〉 .
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Now compute for T ∈Mp(Ln):

ϕ(T ) = 〈Tη, ζ〉

=
〈
T

q∑
j=1

⊕(RjR
∗
j ⊗ Ip)η,

q∑
k=1

⊕(Rk ⊗ Ip)ξk
〉

=

q∑
j=1

q∑
k=1

〈
(R∗k ⊗ Ip)T (Rj ⊗ Ip)(R∗j ⊗ Ip)η, ξk

〉
=

q∑
j=1

〈
T (R∗j ⊗ Ip)η, ξj

〉
=

q∑
j=1

〈Tνj, ξj〉 = ψ(T ).

Moreover,

‖ψ‖ ≤
q∑
j=1

‖νj‖ ‖ξj‖

≤
( q∑
j=1

‖νj‖
)1/2( q∑

j=1

‖ξj‖
)1/2

≤ ‖η‖ ‖ζ‖ < 1 + ε.

Since ξj = (P⊥M ⊗ Ip)ξj for 1 ≤ j ≤ q, it follows that

|ψ(T )| = |ψ((P⊥M ⊗ Ip)T )| ≤ ‖ψ‖ ‖(P⊥M ⊗ Ip)T‖.

Therefore,

‖(P⊥M ⊗ Ip)A‖ ≥
|ψ(A)|
1 + ε

=
|ϕ(A)|
1 + ε

>
1− ε
1 + ε

.

As ε > 0 was arbitrary, the result follows. �

The desired conclusion for two-sided ideals is immediate:

COROLLARY 2.2. Let J be a wot-closed (two-sided) ideal in Ln; and let M =

µ(J) = Jξ1 denote its range. Then Ln/J is completely isometrically isomorphic to the

compression of Ln to M⊥.

Proof. By the previous theorem, the map taking A + J to P⊥MA is a complete

isometry. Since M is invariant for Ln by [10, Theorem 2.1], P⊥MA = P⊥MAP
⊥
M. Thus
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compression to M⊥ is also a complete isometry. The semi-invariance of M⊥ implies that

the compression to M⊥ is a homomorphism. �

As an application of the ideas, consider the Gelfand map taking Ln into H∞(Bn)

by sending A to the function Â(λ) = ϕλ(A). By [10, Theorem 3.3], the kernel is precisely

C, the wot-closed commutator ideal. By [10, Proposition 2.4],

µ(C)⊥ = span{νλ : λ ∈ Bn} =: Hs
n;

where Hs
n denotes the symmetric Fock space spanned by the tensors which are invariant

under permutations. Hence we obtain that:

COROLLARY 2.3. The quotient Ln/C of Ln by the wot-closed commutator ideal

is completely isometrically isomorphic to its compression to Hs
n.

One immediately wonders whether this quotient is H∞(Bn). However it is not. The

proof of this fact does not require the above distance estimate, only the easy direction. This

argument is closely related to [5, Theorem 3.3], although it was found independently.

THEOREM 2.4. The quotient map of Ln into H∞ given by sending A in Ln to

Â is not surjective.

Proof. It suffices to show that the map from Ln/C to H∞ is not bounded below.

To this end, consider the elements

Ak =
∑
w∈Pk

Lw

where Pk consists of all permutations of the word zk1z
k
2 . Since there are

(
2k
k

)
such words and

the corresponding isometries have orthogonal ranges, we see that ‖Ak‖ =
(

2k
k

)1/2
. Moreover,

since Akξ1 is a symmetric word and thus is orthogonal to the range M of the commutator

ideal C, it follows from the previous theorem (or by a simple bare-hands argument) that

‖Ak‖ ≥ dist(Ak,C) ≥ ‖Akξ1‖ =

(
2k

k

)1/2

= ‖Ak‖.

Now Âk =
(

2k
k

)
λk1λ

k
2. It is easy to check that ‖λ1λ2‖∞ = 1/2, so

‖Âk‖∞ = 2−k
(

2k

k

)
.
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Estimating the ratio using Stirling’s formula, we see that

‖Âk‖∞
dist(Ak,C)

= 2−k
(

2k

k

)1/2

=

(
(2k)!

)1/2

2kk!

≈
(√

2π(2k)2k+
1
2 e−2k

)1/2

2k
√

2πkk+
1
2 e−k

= (πk)−1/4.

�

3. NEVANLINNA–PICK INTERPOLATION

Nevanlinna and Pick considered the problem: given points αj and cj in D for 1 ≤

j ≤ k, is there an analytic function h ∈ H∞ with ‖h‖ ≤ 1 such that h(αj) = cj for 1 ≤ j ≤ k.

Carathéodory considered a related question: given a polynomial p(z) =
∑k−1

j=0 ajz
j, is there

a function in H∞ with ‖h‖ ≤ 1 such that h(z) = p(z) + O(zk). Both of these problems

were solved classically. However Sarason [25] was able to reformulate these problems in an

operator-theoretic context and provide new proofs based on a precursor of the commutant

lifting theorem of Sz. Nagy and Foiaş [26]. This approach makes it almost as easy to deal

with matrix interpolation questions. For an extensive treatment of this approach, see [11].

In this section we will use the distance estimate in Theorem 2.1 to obtain our

interpolation results. Interestingly, Theorems 3.3 and 3.2 use Theorem 2.1 applied to two-

sided ideals, while Theorem 3.6 uses the distance estimate applied to a certain right ideal.

We first consider the general matrix Nevanlinna–Pick problem. Before stating the

theorem, we require a simple lemma.

LEMMA 3.1. Given k distinct points αj in Bn and matrices Cj in Mp for 1 ≤

j ≤ k, there is an element F in MpLn such that F̂ (αi) = Ci for 1 ≤ j ≤ k.

Proof. Let

J =
n⋂
i=1

ker(ϕαj) and Jj =
n⋂
i=1
i6=j

kerϕαi for 1 ≤ j ≤ k.

We first observe that J is properly contained in Jj. This can be seen as follows. Since

µ(ker(ϕj))
⊥ = span{ναj}, Theorem 2.1 of [10] shows that µ(J)⊥ = span{να1 , . . . , ναk} and

µ(Jj)
⊥ = span{ναi : i 6= j}. Since the ναj ’s are linearly independent, µ(J) 6= µ(Jj) and the



NON-COMMUTATIVE TOEPLITZ ALGEBRAS 11

observation follows. Thus we may choose Hj ∈ Jj \ J so that Ĥj(αi) = δij. Now note that

F =
∑k

i=1 Hi ⊗ Ci does the job. �

THEOREM 3.2. Given k distinct points αj in Bn and matrices Cj in Mp for

1 ≤ j ≤ k, there is an element F in the unit ball of Mp(Ln) such that F̂ (αj) = Cj for

1 ≤ j ≤ k if and only if the matrix [
Ip − CiC∗j

1− 〈αi, αj〉

]
k×k

is positive semidefinite.

Proof. Let J =
⋂k
j=1 kerϕαj and let M be the range space of J. Since J is a

two-sided ideal of Ln, M⊥ belongs to Lat(L∗n), a fact we shall use shortly. It is clear that

if we ignore the norm condition, that any two solutions to the interpolation problem differ

by an element of Mp(J). Thus let F be any element of Mp(Ln) such that F̂ (αj) = Cj for

1 ≤ j ≤ k. Then the norm condition is satisfied exactly when dist(F,Mp(J)) ≤ 1.

By Corollary 2.2, this distance is computed as

dist(F,Mp(J)) = ‖(P⊥M ⊗ Ip)F (P⊥M ⊗ Ip)‖.

This is at most one if and only if

0 ≤ P⊥M ⊗ Ip − (P⊥M ⊗ Ip)F (P⊥M ⊗ Ip)F ∗(P⊥M ⊗ Ip)

= (P⊥M ⊗ Ip)(I − FF ∗)(P⊥M ⊗ Ip),

because M⊥ ∈ Lat(L∗n). Since {ναj : 1 ≤ j ≤ k} spans M⊥, a basis for M⊗ Cp is given

by the set ναj ⊗ er, where er, 1 ≤ r ≤ p, is an orthonormal basis for Cp. Thus the norm

condition is equivalent to

0 ≤
[〈

(I − FF ∗)ναi ⊗ er, ναj ⊗ es
〉]
.

Write F =
[
Frs
]
. Then[ 〈

(I − FF ∗)ναi ⊗ er, ναj ⊗ es
〉 ]

kp×kp

=
[〈
ναi , ναj

〉
δrs

]
kp×kp

−
[〈
F ∗(ναi ⊗ er), F ∗(ναj ⊗ es)

〉]
kp×kp

=
[〈
ναi , ναj

〉
δrs

]
kp×kp

−
p∑
t=1

[〈
F ∗rtναi , F

∗
stναj

〉]
kp×kp
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=
[〈
ναi , ναj

〉
δrs

]
kp×kp

−
p∑
t=1

[
F̂rt(αi)F̂st(αj)

〈
ναi , ναj

〉]
kp×kp

=
[〈
ναi , ναj

〉 (
Ip − F̂ (αj)F̂ (αi)

)t]
k×k

=

[
(1− ‖αi‖)1/2(1− ‖αj‖)1/2(Ip − CjC∗i )t

1− 〈αj, αi〉

]
k×k

= diag
[
(1− ‖αi‖)1/2

] [(Ip − CjC∗i )t

1− 〈αj, αi〉

]
k×k

diag
[
(1− ‖αj‖)1/2

]
Clearly this is positive if and only if the transposed matrix[

Ip − CiC∗j
1− 〈αi, αj〉

]
k×k
≥ 0.

�

It follows from Theorem 2.4 that the unit ball of Ln cannot interpolate every H∞

function of norm one. The answer to which functions can be interpolated is our next example

of a non-commutative Nevanlinna–Pick type of result.

THEOREM 3.3. Given an element h ∈ H∞(Bn), there is an operator A ∈ Ln

with ‖A‖ ≤ 1 and Â = h if and only if the matrices[
1− h(zi)h(zj)

1− 〈zi, zj〉

]
are positive for all finite subsets {zj : 1 ≤ j ≤ k} of Bn.

Proof. Let A ∈ Ln be given, and let h = Â. Given finitely many distinct

points z1, . . . , zk in Bn, we have Â(zj) = h(zj), so that Theorem 3.2 shows that the ma-

trix
[

1−h(zi)h(zj)

1−〈zi,zj〉

]
is positive.

Conversely, suppose h ∈ H∞(B) is such that the matrices[
1− h(zi)h(zj)

1− 〈zi, zj〉

]
are positive for all finite subsets {zj : 1 ≤ j ≤ k} of Bn. Let ∆ be the set of all finite subsets

of Bn. For any finite set δ ∈ ∆, Theorem 3.2 shows

Wδ := {A ∈ Ln : ‖A‖ ≤ 1 and Â(λ) = h(λ) for all λ ∈ δ} 6= ∅.
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Each ϕλ is wot-continuous, so Wδ is wot-closed and hence is wot-compact. Since the

family {Wδ : δ ∈ ∆} has the finite intersection property,
⋂
δ∈∆ Wδ 6= ∅. Choosing A in this

intersection, we find Â(λ) = h(λ) for all λ ∈ Bn. �

Given h ∈ H∞ such that h = Ĉ for some C ∈ Ln, Vern Paulsen has asked whether

one can guess the element A in Ln with smallest norm satisfing Â = h by simply considering

the “symmetrized” element of Ln. The following example shows the answer is no.

EXAMPLE 3.4. Consider the function h(λ) = λ1 + λ1λ2. The canonical choice

for a lifting would be A = L1 +(L1L2 +L2L1)/2. However, we shall show that B = L1 +L2L1

is a lifting with smaller norm. Indeed, B is the sum of two isometries with orthogonal ranges.

So ‖B‖ =
√

2. Write A = L1(I +L2/2) +L2L1/2. These two terms have orthogonal ranges,

and the latter L2L1/2 is half an isometry. Thus

‖A‖2 = ‖I + L2/2‖2 + ‖L2L1/2‖2

= ‖1 + λ2/2‖2
∞ + 1

4
=
(

3
2
)2 + 1

4
= 5

2
.

Indeed, a similar analysis shows that if At = L1 + tL1L2 + (1− t)L2L1, then

‖At‖ =
√

2 + 2|t|2.

The minimum clearly is attained at t = 0.

Even the choice of B is not optimal—higher order terms are needed. To see this,

it suffices to show that d = dist(A,C) <
√

2. By our distance formula, this is just ‖PMA‖ =

‖A∗|M‖ where M = CH2
⊥

= Hs
2. This space decomposes as a direct sum of the subspaces

Sk = PM span{ξw : w(λ) = λk1λ
s
2, s ≥ 0}. Moreover, PMA maps Sk into Sk+1 for k ≥ 0.

The reader wishing to carry out the calculation should read the last section which makes it

easy to compute that the compressions Si of Li toM are weighted shifts. It follows that the

norm is equal to the norm of S1(I + S2)|S0 , which yields d2 = ‖X‖ where X is the compact

self-adjoint tridiagonal operator X =
[
xij
]

given by xkk = 1
k

+ 1
k+1

and xk,k+1 = xk+1,k = 1
k
.

It can be shown directly that 2I −X is strictly positive, establishing the strict inequality.

It is clear that combining the matrix technique of the proof of Theorem 3.2 with

the argument of Theorem 3.3, we obtain a matrix version of global interpolation:
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COROLLARY 3.5. Given an element H ∈ Mp(H
∞(Bn)), there is an operator

A ∈Mp(Ln) with ‖A‖ ≤ 1 and Â = H if and only if the matrices[
Ip −H(αi)H(αj)

∗

1− 〈αi, αj〉

]
are positive semidefinite for all finite subsets {αj : 1 ≤ j ≤ k} of Bn.

Another immediate consequence of Theorem 2.1 is the analogue of the Carathéodory

Theorem. Every element A of Ln has a Fourier expansion A ∼
∑

w∈Fn awLw determined by

Aξ1 =
∑

w∈Fn awξw. The Cesaro means of this series converge weak-∗ to A [9]. Similarly,

we may define the Fourier expansion of elements of Mp(Ln) with coefficients in Mp: in this

case write A ∼
∑

w∈Fn Lw ⊗ aw, where aw ∈ Mp. The Carathéodory problem specifies an

initial segment of this series and asks if it can be completed to an operator of norm at

most one. Let a subset S of Fn be called a (left) initial segment if it has the property that

whenever w = uv belongs to S, then so does u. Let PS denote the orthogonal projection

onto span{ξw : w ∈ S}. The initial segment property ensures that PS is invariant under R∗n

and hence P⊥S belongs to Lat(Rn).

THEOREM 3.6. Suppose that S is a finite left initial segment of Fn and let Cw

be given matrices in Mp for w ∈ S. Then there is an element A in the unit ball of Mp(Ln)

with Fourier coefficients aw = Cw for w ∈ S if and only if

‖(PS ⊗ Ip)
(∑
w∈S

Lw ⊗ Cw
)
‖ ≤ 1.

We remark that finiteness of S is not necessary, although one then needs to make

sense of the sum over S in the Cesaro sense.

Proof. The set of elements of Ln interpolating the zero data Cw = 01 for all w ∈ S

is the wot-closed right ideal J with µ(J) = P⊥S Hn. Thus as before, given data Cw, the

desired element exists if and only if the distance from
∑

w∈S Lw ⊗ Cw to Mp(J) is at most

one. The result now follows from the distance formula. �

An natural example of this phenomenon is the set of all words of length at most k.

In this case, the ideal is

L0,k
n := {A ∈ Ln : A =

∑
w∈Fn
|w|>k

awLw},
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which is two sided. The projection Pk onto span{ξw : |w| ≤ k} is co-invariant and thus

PkA = PkAPk for all A in Ln. Hence we obtain a new proof of a result of Popescu [21,

Corollary 4.2]:

COROLLARY 3.7. Given a finite power series
∑
|w|≤k aww belonging to the semi-

group algebra CFn, there is a element A ∈ Ln with ‖A‖ ≤ 1 and A−
∑
|w|≤k awLw ∈ L0,k

n if

and only if ‖Pk
∑
|w|≤k awLw‖ ≤ 1.

QUESTION 3.8. When this occurs, is there an isometry in the coset? More

concretely, if A ∈ Ln is norm one and achieves its norm, is it necessarily an isometry?

This question is motivated by the fact that this situation is obtained when n = 1.

Moreover, the interpolating function may be taken to be a finite Blaschke product of degree

at most k. However the operator-theoretic argument usually used in that case does not

extend directly to the non-commutative setting. Partial results are readily obtained which

indicate that it may well be true nevertheless.

4. REPRODUCING KERNEL HILBERT SPACES

In this section, we wish to point out a more function theoretic viewpoint on this

material which relates our interpolation results more closely to other similar results in the

literature. In particular, we outline a proof that the symmetric Fock space is an analytic

reproducing kernel Hilbert space, and connect the interpolation results here to interpolation

results of Agler [2], McCullough [14] and Quiggin [24] in similar settings, and to commu-

tative dilation results of Popescu [22] and Arveson [5].

Specifically, we are concerned with Nevanlinna–Pick interpolation. In this case, the

ideal in question always contains the commutator ideal C, as it is the kernel of the Gelfand

map into H∞(Bn). The orthogonal complement of the range of C is Hs
n, the symmetric

Fock space. Let Ps denote the projection of Hn onto Hs
n. The compressions Si = PsLi|Hsn

generate a wot-closed algebra S which is completely isometrically isomorphic to Ln/C by

Corollary 2.3.

Arveson [5] shows that the symmetric Fock space and these operators Si form an

analytic reproducing kernel Hilbert space. We briefly outline this from our viewpoint. Let N0
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be the set of non-negative integers. For each λ ∈ Bn and each n-tuple k = (k1, . . . , kn) ∈ Nn0 ,

let λk := λk1
1 . . . λknn . For k ∈ Nn0 , let Pk := {w ∈ Fn : w(λ) = λk for all λ ∈ Bn}. Define the

vector

ζk :=
1

|Pk|
∑
w∈Pk

ξw.

Clearly this is a set of symmetric words which also spans Hs
n, are pairwise orthogonal, and

‖ζk‖ = |Pk|−1/2. Note that

|Pk| =
(

|k|!
k1! k2! · · · kn!

)
.

This space is spanned by the kernel vectors {νλ : λ ∈ Bn} by [10, Proposition 2.4],

where

νλ = (1− ‖λ‖2)1/2
∑
w∈Fn

w(λ)ξw = (1− ‖λ‖2)1/2
∑
k∈Nn0

λ
k|Pk|ζk.

Set

uλ = (1− ‖λ‖2)−1/2νλ =
∑
k∈Nn0

λ
k|Pk|ζk.

Note that for each λ ∈ Bn, 〈
ζk, uλ

〉
= λk|Pk|‖ζk‖2 = λk.

Thus every vector ζ =
∑

k∈Nn0
ckζ

k in Hs
n has a functional representation on Bn

given by

ζ(λ) = 〈ζ, uλ〉 =
∑
k∈Nn0

ckλ
k.

Moreover

|ζ(λ)| ≤ ‖ζ‖ ‖uλ‖ = ‖ζ‖ (1− ‖λ‖2)−1/2.

Thus Hs
n becomes a Hilbert space of analytic functions in which the point evaluations are

continuous. To emphasize that this is an L2 norm on these functions, we will write ‖f‖2 for

the norm of an element f in Hs
n.

The important fact is that the operators Si have a nice analytic form in this rep-

resentation. Indeed, if A is any operator in Ln and S = PsA|Hsn is the compression, then

because A∗νλ = Â(λ),

Sζ(λ) = 〈Aζ, uλ〉 = 〈ζ, A∗uλ〉 = Â(λ) 〈ζ, uλ〉 = Â(λ)ζ(λ).
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Thus the operators in S are analytic multipliers on Hs
n, and we may write S = Mh where

h = Â. Thus the operator norm equals the multiplier norm:

‖S‖ = ‖Mh‖ = sup{‖hf‖2 : ‖f‖2 ≤ 1}.

In particular, Si = Mλi are the multipliers by the coordinate functions.

Conversely, suppose that h is a bounded multiplier; so that Mh is a bounded oper-

ator. Then the Cesaro means hn = Cn(f) are polynomials and Mhn converges to Mh in the

strong operator topology (cf. [9, Lemma 1.1]). Since each Mhn is a polynomial in the Si’s,

it follows that Mh belongs to S. Thus S is precisely the algebra of multipliers.

Thus Theorem 3.3 may be reformulated as:

COROLLARY 4.1. An element h ∈ H∞(Bn) determines a multiplier Mh of norm

at most one if and only if the matrices[
1− h(λi)h(λj)

1− 〈λi, λj〉

]
are positive for all finite subsets {λj : 1 ≤ i, j ≤ k} of Bn.

Similarly, Theorem 3.2, Corollary 3.5 and Corollary 3.7 may be recast as statements

about matrix multipliers. This formulation suggests a related result in the same spirit,

namely a Caratheodory result for multipliers. Every multiplier h has a power series expansion

h(λ) =
∑
k∈Nn0

hkλ
k

determined by

Mhζ
0 =

∑
k∈Nn0

hkζ
k.

Let Sp = span{ζk : |k| ≤ p}.

THEOREM 4.2. Given a finite power series
∑
|k|≤p akζ

k, there is a multiplier Mh

with ‖Mh‖ ≤ 1 such that hk = ak for |k| ≤ p if and only if ‖PSp
∑
|k|≤p akMzk‖ ≤ 1.

Proof. The norm condition is the compression of any solution Mh to Sp, and thus

the norm condition is necessary. For the converse, consider the ideal J = C + L0,p
n of Ln.
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This is the wot-closed two-sided ideal such that (JHn)⊥ = Sp. By Theorem 2.1, there is an

element A in Ln with ‖A‖ ≤ 1 such that

Â(λ) =
∑
|k|≤p

akλ
k + higher order terms.

The compression of A to Hs
n is a multiplier Mh with the desired properties. �

The vectors uλ are the reproducing kernel functions. They determine a positive

definite function on Bn × Bn given by

K(λ, µ) = 〈uµ, uλ〉 =
∑
k∈Nn0

(
|k|!

k1!k2! · · · kn!

)
λkµk =

1

1− 〈λ, µ〉
.

Agler [2] reformulated the classical Nevanlinna–Pick problem to focus on the role of

the kernel function, and showed that the Sobolev space of L2-differentiable functions on (0, 1)

also satisfies the corresponding interpolation theorem. This idea is pursued by McCullough

[14] and Quiggin [24]. In particular, Quiggin defines a kernel function k(x, y) on X2 to be

an NP kernel provided that whenever E is a (finite) subset of X and f is a function on E,

there is an extension of f to a function F on X such that the multiplier ‖MF‖ ≤ 1 if and

only if the kernel

(1− ff ∗)K(x, y) =
[
K(x, y)(1− f(x)f(y))

]
for x, y ∈ E

is positive. Moreover, he establishes a useful sufficient condition to guarantee that this

occurs: if K(x, y) 6= 0 on X2 and the function (1/K)|E has exactly one positive eigenvalue

for all finite subsets E of X, then K is an NP kernel. McCullough shows that this condition

is also sufficient to imply it is a complete NP kernel, meaning that the matrix version of the

Nevanlinna–Pick theorem is valid.

In our case, the reciprocal of the kernel function is 1 − 〈λ, µ〉 which for a subset

E = {λ1, . . . , λk} leads to the matrices 1·1∗−Λ∗Λ, where 1 is the column vector consisting of

k 1’s, and Λ = (λ1, . . . , λk) is an n×k matrix with columns equal to λi. Now Λ∗Λ is positive

and norm less than k; while 1 ·1∗ is rank one and norm exactly k. It follows that 1 ·1∗−Λ∗Λ

has exactly one positive eigenvalue. So this is an NP kernel by Quiggin’s Theorem, which

leads to a rather different proof than ours.

We turn now to the connection with dilation theory mentioned above. The con-

nection comes from the fact that the n-tuple (S1, . . . , Sn) is a model for commuting n-tuples
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T = (T1, . . . , Tn) satisfying

TT ∗ = T1T
∗
1 + · · ·+ TnT

∗
n ≤ I.

This condition is merely that ‖T‖ ≤ 1 as an operator from H(n), the sum of n copies of

Hilbert space H, into H. The main dilation result in this context is the following result. It

appears in Popescu [22, Theorem 9.2] and Arveson [5, Theorem 6.3]. We provide another

proof which shows how it follows from the non-commutative dilation theorem of Bunce [8]

and Frahzo [12].

THEOREM 4.3. Let T = (T1, . . . , Tn) be an n-tuple of operators on a Hilbert

space H such that ‖T‖ ≤ 1. Then there is a (unique) completely positive map Φ from

C∗(S1, . . . , Sn) into B(H) such that

Φ(p(S)q(S∗)) = p(T )q(T ∗)

for all polynomials p and q in n commuting variables.

Proof. Fix r < 1 and consider rT = (rT1, . . . , rTn). Then by Proposition 2 of

[8], there exists a Hilbert space K ⊇ H and pure isometries C1, . . . , Cn on K with pairwise

orthogonal ranges such that H is invariant for C∗i and C∗i |H = rT ∗i for all i. For any operator

A, let A(∞) be the direct sum of A with itself countably many times. Since the Ci are pure

isometries, it follows that the n-tuples (C
(∞)
1 , . . . , C

(∞)
n ) and (L

(∞)
1 , . . . , L

(∞)
n ) are unitarily

equivalent. Therefore, there is an L
(∞)
n -invariant subspace M of H(∞)

n such that

rT ∗i ' L∗i
(∞)|M⊥ for 1 ≤ i ≤ n.

Thus rTi ' P⊥ML
(∞)
i |M⊥ . There is a canonical ∗-isomorphism of the C*-algebra C∗(L1, . . . , Ln)

into B(H(∞)
n ) taking each A to A(∞). Define Ψr(A) to be the compression P⊥MA

(∞)|M⊥ of

A(∞) to M⊥ followed by the unitary equivalence which identifies M⊥ with H. This is

completely positive, contractive and satisfies

Ψr(p(L)q(L∗)) ' P⊥Mp(L)(∞)q(L∗)(∞)|M⊥

= P⊥Mp(L)(∞)P⊥Mq(L
∗)(∞)|M⊥ ' p(rT )q(rT ∗).

Now let r increase to 1 to obtain a completely positive contractive map Ψ such that

Ψ(p(L)q(L∗)) = p(T )q(T ∗).



20 KENNETH R. DAVIDSON AND DAVID R. PITTS

Now notice that M⊥ must be contained in Hs (∞)
n . Indeed, one sees that for any

words u, v ∈ Fn,

0 = [u(T ), v(T )]∗x ' [L(∞)
u , L(∞)

v ]∗ξ

for all vectors ξ ∈ M⊥. Expressing each vector in H(∞)
n as ξ =

∑
w∈Fn xw ⊗ ξw (where

the coefficients xw are vectors in `2), one readily obtains that xuvw = xvuw for all words

u, v, w ∈ Fn. This establishes our claim.

Hence it follows that Ψ factors through compression to Hs
n, followed by the desired

completely contractive Ψ of C∗(S1, . . . , Sn) into B(H) with the required properties. �

The connection between dilations and interpolation comes via the commutant lifting

theorem. This appraoch was pioneered by Sarason [25] who proved the commutant lifting

theorem for parts of the shift prior to the general formulation by Sz. Nagy and Foiaş [26]. In

the present context, Popescu established a version of the Caratheodory interpolation using

a commutant lifting theorem for n-tuples of contractions which dilate to a multiple of the

non-commuting shifts Li. However, his theorem yields a commutative commutant lifting

theorem which fits into the context of the present discussion and provides an alternate route

to some of these results. We do not attempt to obtain the most general formulation, but

rather try to illustrate the connection between these dilation results and our interpolation

results.

PROPOSITION 4.4. LetM⊥ be an invariant subspace of the algebra S(p) acting

on Hs (p)
n , and let Ti = PMS

(p)
i |M. Suppose that X is a contraction in B(M) commuting with

each Ti for 1 ≤ i ≤ n. Then there is a contraction Y in Mp(S) such that X = PMY |M.

Proof. Since each Si is the compression of Li to Hs
n, it follows equally well that the

Ti’s are compressions of L
(p)
i ’s. Therefore by Popescu’s commutant lifting theorem [18], there

is a contraction Z in the commutant of L
(p)
n such that X = PMZ|M. Now this commutant

equals Mp(Rn). Let Y be the compression of Z toHs (p)
n . This is the desired operator because

the left and right creation operators Li and Ri on Fock space have the same compression to

Hs
n. Hence Y belongs to Mp(S), which is the commutant of S(p). �

Now for example, one may obtain a multiplier version of Nevanlinna–Pick interpo-

lation. Of course, this result is an immediate corollary of our Theorem 3.2 and the discussion

on reproducing kernels. So we just sketch the proof.
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COROLLARY 4.5. Given k distinct points αj in Bn and matrices Cj in Mp for

1 ≤ j ≤ k, there is a matrix multiplier MH in the unit ball of Mp(Sn) such that H(αj) = Cj

for 1 ≤ j ≤ k if and only if the matrix[
Ip − CiC∗j

1− 〈αi, αj〉

]
k×k

is positive semidefinite.

Proof. Consider the subspace S = span{uαj : 1 ≤ j ≤ k}. Let M = S(p), and

define an operator X on M by setting the restriction of X∗ to the subspace uαj ⊗ Cp to be

equal to C∗j . It is routine to verify that X∗ commutes with the restrictions T ∗i of S
∗(p)
i toM,

because these operators act on each uαj ⊗ Cp as the scalar operators (αj)iIp. A calculation

shows that the matrix condition in our hypothesis is equivalent to XX∗ ≤ I. Consequently,

this condition is necessary for the existence of H. Conversely, by Proposition 4.4, X dilates

to a contractive multiplier MH . It is evident that H(αj) = Cj for 1 ≤ j ≤ k as desired. �
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