Pure Math 450, Assignment 5

Due: March 16.

Notation: Since Lebesgue integration extends Riemann integration, we will often use notation $\int_a^b f = \int_{[a,b]} f = \int_{(a,b)} f$ interchangably. We make an exception in Q. 2 (c), below.

- 1. (Translation and inversion invariance of Lebesgue integration.) Let $f \in L(\mathbb{R})$ (integrable function space). Verify that and $t \in \mathbb{R}$.
	- (a) $t*f \in L(\mathbb{R})$ where $t*f(x) = f(x-t)$, and

(b) $\check{f} \in L(\mathbb{R})$ where $\check{f}(x) = f(-x)$,

with

$$
\int_{\mathbb{R}} t * f = \int_{\mathbb{R}} f = \int_{\mathbb{R}} \check{f}.
$$

Thus deduce that if $f \in L(\mathbb{T})$ (a.e. 2π-periodic functions, integrable on $[-\pi, \pi]$) and $t \in \mathbb{R}$ then

(c) $t*f \in L(\mathbb{T})$ and $\check{f} \in L(\mathbb{T})$

with

$$
\int_{-\pi}^{\pi} t \ast f = \int_{-\pi}^{\pi} f = \int_{-\pi}^{\pi} \check{f}
$$

[Hint: For (a), (b) first consider simple functions, then non-negative functions, etc.]

- 2. (A concrete approach to convolutions.) Let $f \in C(\mathbb{T})$ and $g \in L(\mathbb{T})$. Assume, for simplicity, that each of f and q are real-valued.
	- (a) Show that for each t in $[-\pi, \pi]$, $s \mapsto f(s)g(t-s)$ is integrable on $[-\pi, \pi]$.

We then define $f * g : \mathbb{R} \to \mathbb{R}$ by

$$
f*g(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)g(t-s)ds \stackrel{\text{(TI)}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t+s)g(-s)ds \stackrel{\text{(II)}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-s)g(s)ds
$$

where (TI) holds by translation invariance, and (II) holds by inversion invariance.

- (b) Show that $f * g$ is continuous and 2π -periodic, i.e. $f * g \in C(\mathbb{T})$. Also, show that if $g_1, g_2 \in L(\mathbb{T})$ with $g_1 = g_2$ a.e. then $f*g_1 = f*g_2$.
- (c) Show that the following "Fubini Theorem" holds in this case: For any fixed s, the function $t \mapsto f(t - s)g(s)$ is Riemann integrable and

$$
\int_{[-\pi,\pi]} \left(\int_{-\pi}^{\pi} f(t-s)g(s)dt \right) ds = \int_{-\pi}^{\pi} \left(\int_{[-\pi,\pi]} f(t-s)g(s)ds \right) dt
$$

where $\int_{-\pi}^{\pi} \cdots dt$ denotes Riemann integration while $\int_{[-\pi,\pi]} \cdots ds$ denotes Lebesgue integration.

- (d) Deduce that $|| f * g ||_1 \le || f ||_1 || g ||_1$.
- (e) Show that if g is continuous, then $||f * g||_{\infty} \le ||f||_1 ||g||_{\infty}$.
- 3. (Naive convergence of Fourier series fails catastrophically.)
	- (a) Fix t_0 in $[-\pi, \pi]$. Show that there is a subset U of $C(\mathbb{T})$, whose complement is meager (first category), such that

$$
\sup_{n \in \mathbb{N}} |s_n(h, t_0)| = +\infty
$$

if $h \in U$.

[Hint: Show that the family of linear functionals $\Gamma_n : C(\mathbb{T}) \to \mathbb{C}$, given for each *n* by $\Gamma_n(h) = s_n(h, t_0)$, is unbounded.]

(b) If $(t_m)_{m\in\mathbb{N}}$ is any sequence in $[-\pi, \pi]$, show that there exists a function h in $C(\mathbb{T})$ such that

$$
\sup_{n \in \mathbb{N}} |s_n(f, t_m)| = +\infty
$$

for each m in N. Hence deduce that there is an h in $C(\mathbb{T})$ such that $\lim_{n\to\infty} s_n(h) \neq$ h (pointwise) on a dense subset of $[-\pi, \pi]$.

[Hint: If U_1, U_2, \ldots is a sequence of sets whose complements are each meager, then $\bigcap_{n=1}^{\infty} U_n$ enjoys this property too.]

4. Let K_n denote the Fejer kernel of order n.

(A special case of Fejer's Theorem.) Show that if $f \in L(\mathbb{T})$ and $x \in [-\pi, \pi]$ and we have that $\omega_f(x) = +\infty$, then

$$
\lim_{n \to \infty} \sigma_n(f, x) = +\infty.
$$

[Hint: Given any $M > 0$, show that there is $\delta > 0$ such that $\lim_{n \to \infty} \frac{1}{2n}$ $\frac{1}{2\pi} \int_{-\delta}^{\delta} K_n(s) \big(f(x-\right)$ s) + f(x + s))ds ≥ M, while $\lim_{n\to\infty} \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{x} \right) K_n(s) \left(f(x-s) + f(x+s) \right) ds = 0.$