
Pure Math 450, Assignment 6

Due: Friday, March 30.

1. (a) Show that if f ∈ L(T) and is a.e. even, i.e. f(−t) = f(t) for a.e. t in R, then f has
Fourier sums

sn(f, t) = c0(f) +

n∑
k=1

2ck(f) cos kt

and ck(f) = c−k(f) = 1
π

∫ π
0 f(s) cos ks ds for each k in Z.

(b) Let f(t) = χ[−π/2,π/2](t) if t ∈ [−π, π], and extend f 2π-periodically to all of R. Compute
ck(f) for k = 0, 1, 2, . . . .

(c) Use results in (b) to evaluate each of the series
∑∞

j=0
(−1)j
2j+1 (no surprise),

∑∞
j=0

1
(2j+1)2

and
∑∞

k=1
1
k2

. Indicate any major theorems which are used to justify your computations.

(d) Let α > 0 and g(t) = cosh(αt) = 1
2(eαt+e−αt) if t ∈ [−π, π], and extend g 2π-periodically

to all of R. Compute ck(f) for k = 0, 1, 2, . . .

(e) Evaluate each of the series
∑∞

k=1
(−1)k
k2+α2 ,

∑∞
k=1

1
k2+α2 and

∑∞
k=1

1
(k2+α2)2

. Indicate any

major theorems which are used to justify your computations.

2. (The Fourier algebra.) Let

A(T) =

{
f ∈ L1(T) :

∞∑
n=−∞

|cn(f)| < +∞

}
.

(a) If f in A(T) show that
(
sn(f)

)∞
n=1

is a uniformly Cauchy sequence, and hence converges
to a function fu in C(T). Moreover, show that fu = f a.e.

(b) Show that if f, g ∈ A(T), then their pointwise product fg ∈ A(T) too.

Note: it is quite simple to show that A(T) is closed under scalar multiplication and pointwise
sum f + g as well. Hence A(T) can be realised as a subalgebra of C(T), called the Fourier
algebra. We note that A(T) is point separating and f̄ ∈ A(T) for any f in A(T). Thus the
Stone-Weierstrass Theorem tells us that A(T) is uniformly dense in C(T). (Why isn’t it all
of C(T)?)

We say f is piecewise differentiable, if it is differentiable except at finitely may points. Then
f ′ is defined a.e. on [−π, π]. Let

D(T) =

{
f ∈ C(T) :

f is piecewise differentiable and
f ′ is bounded on its domain

}
(c) If f ∈ D(T), show that f ′ is measurable on its domain, and integrable with∫ π

−π
f ′ = 0

[Hint: f ′ can be written a.e. as a pointwise limit of a sequence of continuous functions
n[(1/n)∗f − f ]; carefully use MVT to show that f is Lipschitz, and thus LDCT can be
used to get to result.]

Note: In PM451 you will see that
∫ b
a f
′ = f(b)− f(a) for any absolutely continuous function

f : [a, b]→ R. This result is Lebesgue’s Differentiation Theorem. This theorem is used in the
proof that a.e. x in [a, b] is a Lebesgue point for f ′, which we did not cover in class.



(d) If f ∈ D(T), then it has Fourier coefficients

c0(f
′) = 0 and cn(f ′) = incn(f) for n ∈ Z \ {0}.

[Hint: (c) justifies “integration by parts”.]

(e) Show that D(T) ⊂ A(T).

[Hint: if n 6= 0, |cn(f)| = 1
|n| |ncn(f)|; use (c) above and the Cauchy-Schwarz inequality

to get an upper bound on their sum.]

We might well consider (e) to be a “Global Dini’s Theorem”, since, by (a), it tells us that if
f ∈ D(T), then limn→∞ ‖sn(f)− f‖∞ = 0. Examples of elements of D(T) are such fuctions
as in 1 (d), above, or a “saw tooth”, f(t) = |t| on [−π, π], continued 2π-periodically to R.

3. Let X be an inner-product space. A sequence of vectors {fk}∞k=1 in X is called linearly
independant if for each n in N, the finite subset {fk}nk=1 is linearly independant. We denote
span{fk}nk=1 = {

∑n
k=1 αkfk : αk ∈ C, k = 1, . . . , n} and call ths the linear span of {fk}nk=1.

(a) Gram-Schmidt procedure. If {fk}∞k=1 is a linearly independant set in X , define a sequence
{ek}∞k=1 recursively by

e1 =
1

‖f1‖
f1 and e′k = fk −

k−1∑
j=1

〈fk, ej〉ej , ek =
1∥∥e′k∥∥e′k for k > 1.

Show that {ek}∞k=1 is an orthonormal sequence which satisfies span{ek}nk=1 = span{fk}nk=1

for each n.

(b) Show that the inner-product space X is separable if and only if it admits an orthonormal
basis sequence.

4. The Haar system. Define a sequence of intervals

I0 = [0, 1], In,k =

[
k − 1

2n
,
k

2n

)
(n ∈ N, k = 1, . . . , 2n − 1), In,2n =

[
2n − 1

2n
, 1

]
and then a sequence of elements of L2[0, 1] by

ψ0 = χI0 , ψn,j = 2(n−1)/2
(
χIn,2j−1 − χIn,2j

)
for n ∈ N, j = 1, . . . , 2n−1.

(a) Show that {ψ0, ψn,j : n ∈ N, j = 1, . . . , 2n−1} is an ortho-normal system in L2[0, 1].

(b) Show that if ϕ ∈ En = span{χIn,k
}2nk=1 — we might call ϕ a dyadic step function of order

n — then

Hn(ϕ) = ϕ, where Hn(f) = 〈f, ψ0〉ψ0 +
n∑

m=1

2m−1∑
j=1

〈f, ψm,j〉ψm,j for f in L2[0, 1].

(c) Show that {ψ0, ψn,j : n ∈ N, j = 1, . . . , 2n−1} is an ortho-normal basis for L2[0, 1]. Deduce
that limn→∞ ‖Hn(f)− f‖2 = 0 for f in L2[0, 1].

[Hint: You can show directly that elements of L2[0, 1] can be approximated by dyadic
step functions; or that elements of C[0, 1] are uniformly approximated by such, then use
A4, Q1.]
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