Pure Math 450, Final Exam Topics

Final Exam: Wednesday, April 11, 4:00-6:30PM, in RCH 301.

Measure Theory ($\leq 1/3$ of the exam)

• measurable sets, special sets (G_{δ} , Cantor etc.)

• measurable functions; properties: sums, products, compositions, approximation by simple measurable functions (proof)

• Lebesgue integral

• Monotone Convergence Theorem, Fatou's Lemma, Lebesgue Dominated Convergence Theorem

- L_p -spaces
 - completeness, separability (proofs)
 - Hölder's Inequality, Minkowski's Inequality

• bounded linear operators and functionals (proofs); see table below

space X	functional	symbol	Lipschitz const.]
$L_1[a,b]$	$\Gamma_{\varphi}(f) = \int_{a}^{b} f\varphi$	$\varphi \in L_{\infty}[a, b]$ (or in $C[a, b]$)	$\ \Gamma_{\varphi}\ _* = \ \varphi\ _{\infty}$	
$L_p[a,b]$	$\Gamma_g(f) = \int_a^b fg$	$g \in L_q[a, b]$	$\left\ \Gamma_g\right\ _* = \left\ g\right\ _q$	Always, $\frac{1}{q} + \frac{1}{p} = 1$ and
C[a,b]	$\Gamma_g(f) = \int_a^b fg$	$g \in L_1[a,b]$	$\left\ \Gamma_g\right\ _* = \left\ g\right\ _1$	$f \in X.$

- containment results: $C[a, b] \subsetneq L_p[a, b] \subsetneq L_r[a, b]$ if $1 \le r (proofs)$ $<math>\|f\|_p \le (b-a)^{1/p} \|f\|_{\infty}$, if $f \in L_{\infty}[a, b]$; $C[a, b] \subset L_{\infty}[a, b]$ and norms agree
- $||f||_r \leq (b-a)^{\frac{p-r}{pr}} ||f||_p$, if $f \in L_p[a,b]$ C[a,b] is dense in $L_p[a,b], 1 \leq p < \infty$; but closed in $L_{\infty}[a,b]$ (proofs)

Fourier Analysis ($\geq 2/3$ of the exam)

- Fourier series, Fourier coefficients
- sums $s_n(f)$ for f in $L_1(\mathbb{T})$, sums $s_n(f, x)$ for f in $L(\mathbb{T})$ and x in \mathbb{R}

• convolutions, convolution operators C(f)(g) = f * g where $f \in C(\mathbb{T})$, Lipschitz constants $\|C(f)\|_{\mathcal{B}}$ for $\mathcal{B} = L_1(\mathbb{T}), C(\mathbb{T})$; compare with $\|C(D_n)\|_{L_2(\mathbb{T})}$ (Riesz-Fischer).

- Nonconvergence of Fourier series in $L_1(\mathbb{T})$ and in $C(\mathbb{T})$ (even pointwise) (outline of proof)
 - Dirichlet kernel, D_n ; Lebesgue constants, L_n
 - Banach-Steinhaus Theorem
 - norms of convolution operators on $L_1(\mathbb{T})$ and on $C(\mathbb{T})$

- Cesaro means, $\sigma_n(f)$ for f in $L_1(\mathbb{T})$
 - summability kernels, the Abstract Summability Kernel Theorem (proof)
 - Fejér kernel, K_n ; Fejér's Theorem (proof)
 - uniqueness of Fourier coefficients (proof)
- Riemann-Lebesgue Lemma (proof)
 - Fourier transform, $T: L_1(\mathbb{T}) \to A(\mathbb{Z}) \subset c_0(\mathbb{Z})$
 - Open Mapping Theorem, why $A(\mathbb{Z}) \subsetneq c_0(\mathbb{Z})$
- $f \in L(\mathbb{T}), \int_{-\pi}^{\pi} \left| \frac{f(t)}{t} \right| dt < \infty \Rightarrow \lim_{n \to \infty} s_n(f, 0) = 0 \ (proof)$
 - Localization Principle (proof)
 - Dini's Theorem (& Lipschitz version) (proof)
- Inner product and Hilbert spaces
 - Cauchy-Schwarz Inequality, Pythagoreas' Theorem
 - Linear Approximation Lemma (proof)
 - Orthonormal Basis Theorem: Bessel's (In)equality, Parseval's Identity (proof)
- Hilbertian Fourier analysis, Riesz-Fischer Theorem, Plancherel Theorem (proofs) • Fourier algebra $A(\mathbb{T})$
- - is an algebra of continuous functions (proof)
 - $\mathcal{D}(\mathbb{T}) \subset A(\mathbb{T}) \ (proof)$

Modes of convergence of Fourier series								
space	pace Convergent to f in norm?		$\boxed{ Convegence at a point x? }$					
containing f	$s_n(f)$	$\sigma_n(f)$	$s_n(f,x)$		$\sigma_n(f,x)$			
$L_1(\mathbb{T}) (L(\mathbb{T}))$	$no^{(\dagger)}$	$yes^{(*)}$	no, in general ^{(\dagger)} ;		yes, to $\omega_f(x)$ if			
			yes, if f	is differen-	it exists ^(\bullet) ; [al-			
			tiable at	$x^{(**)}$	most everywhere			
					$to f(x) f^{(***)}$			
$C(\mathbb{T})$	$no^{(\dagger)}$	$yes^{(* or \bullet)}$	no, in	$general^{(\dagger)};$	yes to $f(x)^{(\bullet)}$			
			yes, if f	is differen-				
			tiable at	$x^{(**)}$				
$L_2(\mathbb{T})$	$yes^{(\ddagger)}$	$\mathrm{yes}^{(*)}$	[almost		[almost			
			everywhe	$ere^{(\bullet\bullet)}$	everywhere] ^(***)			
$A(\mathbb{T})^{(\dagger\dagger)}$	yes	yes	yes		yes			
(†) Banach-Steinhaus and			(*)	Abstract summability				
growth of Lebesgue constants				kernel theorem				
(**) Dini	ni's Theorem		(ullet)	Fejér's Theorem				
(\ddagger) Orth	onormal Basis Theorem		$(\dagger\dagger)$	assignment $\# 6$				
$(\bullet \bullet)$ theorem	rem of L. Carlson		(* * *)	Fejér-Lebesgue Theorem				
[beyond the scope of the course]				[will not be on the exam]				
Containment relations: $A(\mathbb{T}) \subsetneq C(\mathbb{T}) \subsetneq L_2(\mathbb{T}) \subsetneq L_1(\mathbb{T})$.								

• Hardy's Tauberian Theorem; application to bounded piecewise differentiable functions with integrable derivative (proof)

• Gibbs phenomenon (proof of Lemma)

Homework Assignment questions

Questions may not be given literally from assignments: they may be simplified; or aspects of them will be explicitly assumed and you will be asked to deduce others.

A4. Q1 all (may use p = 1 or 2); Q3 all

A5. Q1 (you will most likely be asked to take these results on faith); Q2 all; Q3 all; Q4

A6. Q1 all (may offer functions with much simpler calculations, maybe $F(t) = \frac{1}{2} - \frac{t}{2\pi}$ from Gibbs Lemma, or a step function like $\chi_{[-\pi/2,\pi/2]}$ or $-\chi_{[-\pi/2,0]} + \chi_{[0,\pi/2]}$); Q2 all; Q3 all