Pure Math 450, Final Exam Topics

Final Exam: Wednesday, April 11, 4:00-6:30PM, in RCH 301.

Measure Theory ($\leq 1/3$ of the exam)

• measurable sets, special sets $(G_{\delta}, \text{Cantor etc.})$

• measurable functions; properties: sums, products, compositions, approximation by simple measurable functions (proof)

• Lebesgue integral

• Monotone Convergence Theorem, Fatou's Lemma, Lebesgue Dominated Convergence Theorem

- L_p -spaces
	- completeness, separability *(proofs)*
	- Hölder's Inequality, Minkowski's Inequality
	- bounded linear operators and functionals *(proofs)*; see table below

• containment results: $C[a, b] \subsetneq L_p[a, b] \subsetneq L_r[a, b]$ if $1 \leq r < p \leq \infty$ (proofs)

- $||f||_p \le (b-a)^{1/p} ||f||_{\infty}$, if $f \in L_{\infty}[a, b]$; $C[a, b] \subset L_{\infty}[a, b]$ and norms agree
- $||f||_r \le (b-a)^{\frac{p-r}{pr}} ||f||_p$, if $f \in L_p[a, b]$
- $C[a, b]$ is dense in $L_p[a, b], 1 \leq p < \infty$; but closed in $L_{\infty}[a, b]$ (proofs)

Fourier Analysis ($\geq 2/3$ of the exam)

- Fourier series, Fourier coefficients
- sums $s_n(f)$ for f in $L_1(\mathbb{T})$, sums $s_n(f, x)$ for f in $L(\mathbb{T})$ and x in \mathbb{R}

• convolutions, convolution operators $C(f)(g) = f * g$ where $f \in C(\mathbb{T})$, Lipschitz constants $||C(f)||_{\mathcal{B}}$ for $\mathcal{B} = L_1(\mathbb{T}), C(\mathbb{T})$; compare with $||C(D_n)||_{L_2(\mathbb{T})}$ (Riesz-Fischer).

- Nonconvergence of Fourier series in $L_1(\mathbb{T})$ and in $C(\mathbb{T})$ (even pointwise) *(outline of proof)*
	- Dirichlet kernel, D_n ; Lebesgue constants, L_n
	- Banach-Steinhaus Theorem
	- norms of convolution operators on $L_1(\mathbb{T})$ and on $C(\mathbb{T})$
- Cesaro means, $\sigma_n(f)$ for f in $L_1(\mathbb{T})$
	- summability kernels, the Abstract Summability Kernel Theorem $$
	- Fejér kernel, K_n ; Fejér's Theorem (proof)
	- uniqueness of Fourier coefficients (proof)
- Riemann-Lebesgue Lemma $$
	- Fourier transform, $T: L_1(\mathbb{T}) \to A(\mathbb{Z}) \subset c_0(\mathbb{Z})$
	- Open Mapping Theorem, why $A(\mathbb{Z}) \subsetneq c_0(\mathbb{Z})$
- $f \in L(\mathbb{T}), \int_{-\pi}^{\pi}$ $\begin{array}{c} \hline \end{array}$ $f(t)$ t $dt < \infty \Rightarrow \lim_{n \to \infty} s_n(f, 0) = 0$ (proof)
	- Localization Principle $(proot)$
	- Dini's Theorem (& Lipschitz version) (proof)
- Inner product and Hilbert spaces
	- Cauchy-Schwarz Inequality, Pythagoreas' Theorem
	- Linear Approximation Lemma (proof)
	- Orthonormal Basis Theorem: Bessel's (In)equality, Parseval's Identity (proof)
	- Hilbertian Fourier analysis, Riesz-Fischer Theorem, Plancherel Theorem (proofs)
- Fourier algebra $A(\mathbb{T})$
	- is an algebra of continuous functions $$
	- $\mathcal{D}(\mathbb{T}) \subset A(\mathbb{T})$ (proof)

• Hardy's Tauberian Theorem; application to bounded piecewise differentiable functions with integrable derivative $$

• Gibbs phenomenon *(proof of Lemma)*

Homework Assignment questions

Questions may not be given literally from assignments: they may be simplified; or aspects of them will be explicitly assumed and you will be asked to deduce others.

A4. Q1 all (may use $p = 1$ or 2); Q3 all

A5. Q1 (you will most likely be asked to take these results on faith); Q2 all; Q3 all; Q4

A6. Q1 all (may offer functions with much simpler calculations, maybe $F(t) = \frac{1}{2} - \frac{t}{2i}$ $\frac{t}{2\pi}$ from Gibbs Lemma, or a step function like $\chi_{[-\pi/2,\pi/2]}$ or $-\chi_{[-\pi/2,0]} + \chi_{[0,\pi/2]}$; Q2 all; Q3 all