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Abstract

We study the connectivity of random d-regular graphs which are recursively generated by
an algorithm motivated by a peer to peer network. We show that these graphs are asymptot-
ically almost surely d-connected for any even constant d ≥ 4.

1 Introduction

The properties (degree distribution, diameter, connectivity, short cycle distribution, hamiltonicity,
etc) of random graphs in the classical Erdős-Rényi model [1] were widely studied and applied to
various areas. Since a lot of networks, like the World Wide Web, have very different properties
from the graphs in the Erdős-Rényi model, other models were introduced to simulate them. The
preferential attachment model were introduced first by Yule [13], which produces random networks
whose degree distributions obey the power law. Many authors [4, 6, 8] then applied this model or its
variations to analyse scale-free networks. The most commonly studied scale-free networks include
the World Wide Web and some social networks. Bourassa and Holt [5, 11] recently introduced a
peer-to-peer network, called the SWAN network, whose underlying topology is a random regular
graph. In the SWAN network, clients arrive and leave randomly. Their experimental results showed
that this network has high connectivity and low latency amongst other things.

To model the SWAN network, Cooper, Dyer and Greenhill [7] defined a Markov chain on d-
regular graphs with randomised size. The moves of the Markov chain are by the “clothespinning”
(for arriving clients) or its reverse. The author and Wormald [9] studied random regular graphs
generated by the “pegging algorithm”, which repeats the pegging operation in each step, the same
operation as clothespinning in [7]. We showed that the joint short cycle distribution of graphs
generated this way is asymptotically independent Poisson, and also [9, 10] estimated the rate at
which the joint distribution converges to its limit. This result supports the conjecture proposed in [9]
of the contiguity between the random regular graphs in the pegging model and those of the uniform
distribution. If the conjecture holds, then immediately we can derive asymptotical properties of the
random d-regular graphs in the pegging model, such as being d-connected, containing a Hamilton

∗Dept CO, 200 University Ave W, N2L 3G1, Waterloo, ON, Canada

1



cycle, and with diameter asymptotically almost surely (a.a.s.) O(log n), etc. The difficulty involved
in proving the conjecture was discussed in [9]. Hence it is interesting to check other properties of
these random regular graphs.

In this paper, we study the connectivity of graphs generated from the pegging algorithm. This
is indicative of the connectivity properties of the SWAN network under long-term growth. It is
well known [3, 12] that the random d-regular graphs are a.a.s. d-connected in the uniform model
for any fixed constant d ≥ 3. We show that the random d-regular graphs generated by the pegging
algorithm, for any arbitrary even integer d ≥ 4, are a.a.s. d-connected.

2 Main results

The general pegging operation is defined in [9]. The pegging algorithm starts from an initial d-
regular graph, and repeats pegging operations at each step. Here we first give the definition of the
pegging operation for even degrees. The odd degree case is a natural generalization of the even
degree case, and its analysis is also analogous.

Pegging Operation for Even d
Input: a d-regular graph G, where d is even.

Choose a set E1 of d/2 pairwise non-adjacent edges in E (G) u.a.r.
Let {u1, u2, . . . , ud} denote the vertices incident with edges in E1.
Set V (H) := V (G) ∪ {u}, where u is a new vertex.
Set E(H) := (E(G) \ E1) ∪ {uu1, uu2, uu3, . . . , uud}.

Output: H.

The newly introduced vertex u is called the peg vertex, and we say that the edges deleted are
pegged. Figure 1 illustrates the pegging operation with d = 4.

Figure 1: Pegging operation when d = 4

Let G0 be the initial d-regular graph, and Gt be the resulting graph after t pegging operations
are repeatedly applied. We retain the notation P(G0, d) introduced in [9] for the random process
(G0, G1, G2, . . .). Let nt and mt be the number of vertices and edges respectively in Gt. Then
nt = n0 + t when d is even, whereas mt = dnt/2.

The joint short cycle distribution was studied in detail in [9]. Two of the results shown in [9]
are useful to this paper. The first is a theorem for the joint distribution of the number of short
cycles.
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Theorem 2.1 ([9]) For k ≥ 3, define

µk =
3k − 9

2k
. (2.1)

Let G0 and k ≥ 3 be fixed, and let Xt,k be the number of k-cycles in Gt. Then in P(G0),

EXt,k = µk + O
(
n−1

t

)
.

Moreover, the joint distribution of Xt,3, . . . , Xt,k is asymptotically that of independent Poisson vari-
ables with means µ3, . . . , µk.

The excess of a graph is the number of its edges minus the number of its vertices. Let Ψ(i, r) be
defined as the set of graphs with i vertices, minimum degree at least 2, and excess r. Define Wt,i,r

to be the number of subgraphs of Gt in Ψ(i, r). The second useful result in [9] is a lemma for the
expected number of subgraphs with given excess. Note that in the following lemma the constant
implicit in O() depends on i.

Lemma 2.1 ([9]) For fixed i > 0 and r ≥ 0,

EWt,i,r = O(n−r
t ).

The above theorem and lemma are used in this paper to estimate the counts of some local
structures. Let a k-cut be a vertex cut of size k, and a k-edge-cut be an edge cut of size k. The
vertex cuts in Gt are closely related to the edge cuts. We say an edge cut A is generated by a
vertex cut S in a graph G if A joins S and some component of G− S. Figure 2 is an example for
the simple case of a 3-cut when d = 4. These are edge cuts of size 6, 5 and 7 generated by the
3-cuts in Figure 2. In fact, when d = 4, a 3-cut generates at least one edge cut of size at most 6.
Similarly, a 2-cut generates some edge cut of size at most 4, and a 1-cut generates some edge cut
of size at most 2. So the study of edge cuts of size at most 6 will be helpful for the discussion of
vertex cuts of size at most 3.

Figure 2: a 3-cut which generates an edge-cut of size 6 or smaller

We call an edge cut A proper, if no proper subset of A is an edge cut of G. Unless otherwise
specified, all edge cuts discussed in this paper are proper edge cuts. The graph G − S has two
components if S is a proper edge cut. In this paper, we call these two components the side-
components of the edge cut S.
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Definition 2.1 We call an edge cut A of a graph G trivial if it is of the form A = E(S, S̄) for
some S that induces a tree in G, where S̄ = V (G) − S. The notation E(S, S̄) denotes the set of
edges with one end in S and the other end in S̄.

For any S and A specified as above with |S| = l, there are l−1 edges in S. Since Gt is d-regular,
|A| = dl− 2(l− 1), and hence a trivial edge cut is always of size dl− 2(l− 1) for some integer l ≥ 1.
For any vertex v ∈ Gt, there are O(1) trees of size l that contain v. So the number of induced
trees of size l is at most O(nt), which gives an upper bound on the number of trivial edge cuts.
The expected number of cycles of length at most l is O(1) by Theorem 2.1, and so there are Θ(nt)
(l − 1)-paths a.a.s. Thus the number of trivial edge cuts is a.a.s. Θ(nt).

Among all edge cuts other than trivial ones, we define the semi-trivial edge cut, which acts as
a transition from trivial edge cuts to the rest.

Definition 2.2 An edge cut is called semi-trivial if it is of the form A = E(S, S̄) for some S that
induces a connected unicyclic subgraph. Edge cuts that are neither trivial nor semi-trivial are called
non-trivial.

By definition, one of the side-components of a semi-trivial edge cut is connected and contains
one cycle. If the side-component is of size l, then it contains l edges, and therefore the semi-trivial
edge cut is of size dl − 2l. By Theorem 2.1, the expected number of semi-trivial edge cuts of size
k, for any fixed k, is Θ(1).

Simply by checking the neighbours of a trivial or semi-trivial edge cut, we will prove the following
lemma, indicating that, to determine the vertex connectivity, it is sufficient to study the non-trivial
edge cuts.

Lemma 2.2 For any graph in P(G0, d), with d ≥ 3, the edge cuts generated by vertex cuts of size
at most d− 1 are a.a.s. non-trivial.

We first study the connectivity of random d-regular graphs when d is even. In this way we
derive the following theorem for even degrees. However, we claim the same result holds for any odd
degree d ≥ 3 as well by analogous analysis.

Theorem 2.2 Let Gt ∈ P(G0, d) for any even d ≥ 4, then Gt is a.a.s. d-connected.

The proof of the theorem actually gives that the probability of Gt ∈ P(G0, d) being not d-

connected is O
(
n
−1/(M+1)
t

)
, where M = d(d− 1)/2.

3 Proofs

The following lemma was shown in [9] and will be used in some calculations in the later part of
this paper. The proof is elementary.

Lemma 3.1 Let (an)n≥1 be a sequence of nonnegative real numbers, and let c > 0, and p 6= c + 1,
be constants. If

an+1 =
(
1− c

n
+ O(n−2)

)
an + O(n−p),

then an = O(nδ) for all n ≥ 1, where δ = max{−c,−p + 1}.
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Proof of Lemma 2.2. Assume that S is a vertex cut of size at most d−1, and S generates a trivial
edge cut A, whose smaller side-component is S1, where |S1| = l is bounded. Then the subgraph of
Gt induced by S1∪S contains at most l+d−1 vertices, and at least (l−1)+|A| = dl−l+1 edges, since
|A| = dl−2(l−1). Hence the excess of this subgraph is at least dl−l+1−(l+d−1) = (d−2)(l−1).
Since d ≥ 3, the excess can be 0 only if l = 1, which means that the vertex cut is the set of neighbours
of some vertex, which is of size d. This contradicts |S| ≤ d − 1. Hence the subgraph has excess
at least 1. Similarly, if A is semi-trivial, and |S1| = l is bounded, then |A| = dl − 2l. Hence the
subgraph induced by S ∪ S1 contains at most l + d− 1 vertices, and at least l + |A| = dl− l edges.
So the excess is at least dl− l− (l + d− 1) = (d− 2)(l− 1)− 1. Since S1 contains a cycle, l ≥ 3. So
the excess of the subgraph is at least 1. By Lemma 2.1, this occurs with probability O(n−1

t ). So the
edge cuts generated by vertex cuts of size at most d − 1 are a.a.s. neither trivial nor semi-trivial.

We consider the random d-regular graph generated by the pegging algorithm, when d ≥ 4 is
even. The graph Gt contains nt = n0 + t vertices, and mt = dnt/2 edges. Let Nt be the number
of ways to choose d/2 non-adjacent edges. Then Nt is asymptotically

(
mt

d/2

)
. Hence the number of

ways to do a pegging operation at step t is asymptotically Nt. Let Yt,k be the number of non-trivial
edge cuts of size k in Gt. Correspondingly, let Y ∗

t,k, Ỹt,k be the number of trivial and semi-trivial
edge cuts of size k. So Y ∗

t,k = Θ(nt) if k = dl − 2(l − 1) for some integer l ≥ 1, and Y ∗
t,k = 0 for

other values of k. By Theorem 2.1 there are a.a.s. O(1) semi-trivial edge cuts of size k for any
fixed integer k, i.e. Ỹt,k = O(1 + n−1). By Lemma 2.2 we know that the study of the behavior of
Yt,k is enough, but in some sense it relates to Ỹt,k as we will see later in this paper.

We study the random process (Yt,k)t≥0 for any fixed k, or more precisely, we check the expected
changes of the value of Yt,k in a single step. Let A be a k-edge-cut in Gt. We say that A is destroyed
either if some edge in A is pegged or if A is no longer an edge cut in Gt+1. Therefore to destroy
A simply requires that either at least one edge in A is pegged, or two edges from different side-
components of A are pegged. We say that an edge cut A′ in Gt+1 is a new edge cut created from
A if A is destroyed and A′ contains at least one new edge created at step t. Note that whenever
A is destroyed, there are always new edge cuts being created at the same time. The number and
the size of new edge cuts depend on the way that the former edge cut is destroyed. For any given
k-edge-cut A, there are three ways to destroy it, according to the relative positions of the two edges
that are pegged. Let e1 and e2 be the two pegged edges, and v the peg vertex. Of course the d new
edges added form a trivial d-edge-cut themselves, but we do not count this case since Yt,k counts
only the non-trivial edge cuts.

Type 1(i): A contains e1 and another k − 1 edges as shown in Figure 3. The other d/2− 1 edges
pegged other than e1 are all in the same side-component of A. Figure 3 is an example of d = 4. In
this case, a new k-edge-cut and a new (k + d− 2)-edge cut are created.

Type 1(ii): A contains only one edge that is pegged, and the other d/2 − 1 edges pegged are
not contained in the same side-component of A. In this case, a new (k + i)-edge-cut and a new
(k + d− 2− i)-edge-cut are created for some 2 ≤ i ≤ d− 4.

Type 2: A contains e1, e2 and another k − 2 edges. Figure 4 is an example as d = 4. The
probability for A being destroyed this way is O(n−2

t ).

Type 3(i): None of the edges in A are pegged, and one of the pegged edges lies in one side-
component of A, while the rest lie on the other side-component. See Figure 6 as an example with
d = 4. In this case, at most one new (k +2)-edge-cut and one new (k + d− 2)-edge-cut are created.
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e1 v

e2

k-1 edges

Figure 3: only e1 contained in the edge cut

e2
ve1

k-2 edges

Figure 4: e1 and e2 are both contained in the edge-cut

A slight difference from Type 1 and 2 is that there might be other edge-cuts created besides the
above two new edge-cuts, when the edge pegged is a bridge of some side-component. For example,
let’s consider d = 4. Let S1 and S2 be the two side-components. If e1 is contained in a cycle of S1

and e2 is contained in a cycle of S2, then 2 new (k + 2)-edge cuts are created. This is illustrated in
Figure 6. Otherwise, assume e1 is a bridge of S1. Then we have created a new (i + 1)-edge cut and
a new (j +1)-edge cut and a (k +2)-edge cut, where i+ j = k. This is shown in the right hand side
of Figure 5. Note that this implies the existence of an (i + 1)-edge cut and a (j + 1)-edge cut in
Gt, and we will count the new (i + 1)-edge cut and (j + 1)-edge cut when the existing (i + 1)-edge
cut and (j + 1)-edge cut are destroyed with Type 1. Without over counting, we only count the
creation of the new (k + 2)-edge cuts for the destruction of A. For the same reason, if both e1 and
e2 are bridges in S1 and S2, then no creation of new edge-cuts is counted for the destruction of A.
In conclusion, at most two (k + 2)-edge-cuts are created for the Type 3(i) destruction of A.

Type 3(ii): A contains none of edges being pegged, and both side-components of A contains at
least two pegged edges. In this case, a new (k + i)-edge cut and a new (k + d − i)-edge cut are
created, for some 4 ≤ i ≤ d− 4.
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k-i edgesi edgesk edges

Figure 5: neither e1 nor e2 is contained in the edge-cut

v

e2

e1

k edges

Figure 6: neither e1 nor e2 is contained in the edge-cut

Given any constant integer M > 0, define Ĉ(M, t) be the set of all non-trivial edge cuts with
size at most M in graph Gt, and for any t ≥ 0, and let YM,t = |Ĉ(M, t)|. Hence YM,t =

∑
i≤M Yt,i.

We can partition all edge cuts in Ĉ(M, t) into three types.

• Edge cuts which are created from destruction of some edge cut in Ĉ(M, t− 1).

• Edge cuts that are in Ĉ(M, t− 1) and remain from Gt−1 to Gt.

• Edge cuts created from some semi-trivial edge cut in Gt−1.

The following lemma shows that Ĉ(M, t) is essentially empty.

Lemma 3.2 Let Gt ∈ P(G0, d), M > 0 be any given integer, then as t →∞,

E(|Ĉ(M, t)|) = o(1).

To prove this lemma we check the expected changes in E(|Ĉ(M, t)|) going from Gt to Gt+1.
The contribution to changes comes from edge cuts of the first and the third types. The truth of

7



this lemma is that the sizes of the edge cuts created are always at least that of the destroyed one,
and the expected number of non-trivial edge cuts coming from semi-trivial edge cuts is very small.
The outline of the proof is as follows.

S1. In each step, the destruction of any edge cut does not created any edge cut smaller than the
one destroyed, and the number of new edge cuts created is bounded.

S2. In each step, the destruction of any edge cut creates at most one new edge cut that is of the
same size of the one destroyed.

S3. There is a significant probability (Θ(n−1
t )), that all new edge cuts created are of strictly larger

size than that of the destroyed one.
S4. The probability of creating a non-trivial edge cut of size at most M from some semi-trivial

edge cut is O(n−2
t ).

We are going to prove the statements S1-S4, and then show how these statements lead to the
lemma.

Proof of Lemma 3.2. Let Ŷt,k be the number of k-edge-cuts in Ĉ(M, t), and define the weight

of a k-edge-cut to be 1/k!. Hence the weight of Ĉ(M, t) is

Wt =
M∑

k=1

1

k!
Ŷt,k.

We estimate the expected change from Wt to Wt+1. We first check the change caused by destruction
of edge cuts in Ĉ(M, t). For a given k-edge cut A, we analyse the different ways that it is destroyed.

Type 1(i): A new k-edge cut and a new (k + d− 2)-edge cut are created, so the weight change is
1/k! + 1/(k + d − 2)! − 1/k! ≤ 1/(k + 2)!. There are k ways to choose an edge in A, and at most(

mt

d/2−1

)
ways to choose the rest d/2 − 1 edges, which lie in the same side-component of A. So the

probability for this to occur is at most

k
(

mt

d/2−1

)

Nt

∼ k

nt

.

The expected increase of weight is at most

1

(k + 2)!

kŶt,k

nt

.

Type 1(ii): A new (k + i)-edge cut and a new (k + d − 2 − i)-edge cut are created. The weight
change is 1/(k + i)! + 1/(k + d− 2− i)!− 1/k! ≤ 2/(k + 2)!− 1/k! < 0.

Type 2: Some new (k + i)-edge cuts are created, with 0 ≤ i ≤ d− 4, and thus the contribution to
the weight change is at most 1/k!. The probability of this to occur is O(n−2

t ) as shown before. So
the expected increase of weight is bounded by

1

k!

Ŷt,k

n2
t

.

Type 3(i): A new (k + 2)-edge cut and a new (k + d − 2)-edge cut are created, and the weight
change is 1/(k + 2)! + 1/(k + d− 2)!− 1/k! ≤ 2/(k + 2)!− 1/k!. The probability of this occurrence
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depends on the size of each side-component. The probability is smaller as the sizes of the two
side-components are more imbalanced. The worst case is that there is only bounded number of
edges in one side-component, and mt −O(1) number of edges in the other side-component. There
are asymptotically

(
mt

d/2−1

)
ways to choose d/2−1 edges from the larger side-component. Hence the

probability for this to occur is at least

(
mt

d/2−1

)

Nt

∼ 1

nt

.

The expected decrease of the weight is at least

(
2

(k + 2)!
− 1

k!

)
Ŷt,k

nt

.

Type 3(ii): A new (k + i)-edge cut and a new (k + d − i)-edge cut are created, and the weight
change is 1/(k + i)! + 1/(k + d− i)!− 1/k! ≤ 2/(k + 2)!− 1/k! < 0.

Another cause of the change of Wt is the expected number of non-trivial edge cuts created from
semi-trivial edge cuts. Note that there are only O(1 + n−1

t ) semi-trivial edge cuts of size at most
M in Gt, since the number of cycles of size at most M is O(1 + n−1

t ). Let A be a semi-trivial edge
cut. All the ways of creating a non-trivial edge cut from A are listed as follows.

(1) Destroy A of Type 1, with e1, e2 being chosen such that they are adjacent to some common
edge. Hence the common edge together with two of the new added edges will form a new triangle,
which creates a non-trivial edge cut. There are only O(1) ways to choose e1 and e2. So the
probability of this to occur is O(n−2

t ).
(2) Peg at least two edges in A, i.e. destroy A of Type 2, which occurs with probability O(n−2

t ).
(3) Destroy A of Type 3, with e1 and e2 both adjacent to some edge in A, hence that edge

together with two of the new edges form a new triangle and a new non-trivial edge cut appears.
The number of choices of e1 and e2 is bounded and hence the probability for this to occur is O(n−2

t ).
There are only O(1) choices of A. Hence the expected change in this case is O(n−2

t ). Thus we
have

E(Wt+1 −Wt | Ĉ(M, t)) ≤
M−2∑

k=1

1

(k + 2)!

kŶt,k

nt

+
M∑

k=1

O

(
Ŷt,k

n2
t

)
+

M−2∑

k=1

(
2

(k + 2)!
− 1

k!

)
Ŷt,k

nt

−
M∑

k=M−1

1

k!

Ŷt,k

nt

+ O(n−2
t ).

The first term comes from Type 1(i), second term comes from Type 2, and the third and fourth
terms from Type 3(i). The contributions from Type 1(ii) and Type 3(ii) are ignored since they are
negative. The fifth term comes from non-trivial edge cuts created from semi-trivial ones. So we
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have

E(Wt+1 −Wt | Ĉ(M, t))

≤
M−2∑

k=1

−
(

1

k!
− 2

(k + 2)!
− k

(k + 2)!

)
Ŷt,k

nt

−
M∑

k=M−1

1

k!

Ŷt,k

nt

+
M∑

k=1

O

(
1 + Ŷt,k

n2
t

)

≤
M−2∑

k=1

− 1

(k + 1)!

Ŷt,k

nt

−
M∑

k=M−1

1

k!

Ŷt,k

nt

+
M∑

k=1

O

(
1 + Ŷt,k

n2
t

)

≤ −1/(M + 1)

nt

Wt + O(n−2
t ).

Taking the expectation of both side of the above inequality gives

E (Wt+1) ≤
(

1− 1/(M + 1)

nt

)
E(Wt) + ω(nt),

where ω(nt) is some function of nt such that ω(nt) = O(n−2
t ). Define (at)t≥0 to be a0 = W0, and

at+1 =

(
1− 1/(M + 1)

nt

)
at + ω(nt), for all t ≥ 0.

Assume E(Wt) ≤ at for some t ≥ 0, then

E (Wt+1) ≤
(

1− 1/(M + 1)

nt

)
E(Wt) + ω(nt) ≤

(
1− 1/(M + 1)

nt

)
at + ω(nt) = at+1.

Hence E(Wt) ≤ at for all t ≥ 0. By Lemma 3.1 at = O
(
n
−1/(M+1)
t

)
, and therefore E(Wt) =

O
(
n
−1/(M+1)
t

)
. Hence Lemma 3.2 follows.

Proof of Theorem 2.2. Clearly any vertex cut of size at most d− 1 generate an edge cut of size
at most d(d− 1)/2. By putting M = d(d− 1)/2, the theorem follows directly from Lemma 2.2 and
Lemma 3.2. More precisely, by Markov inequality, we have

P(Gt is not d-connected) = P(Wt ≥ 1) + O(n−1
t ) = O

(
n
−1/(M+1)
t

)
.

The definition of a pegging operation for regular graphs of even degree d does not adapt directly
to the case of odd d, but we may make a similar definition, illustrated in Figure 7 for d = 3. The
general definition for any odd integer d ≥ 3 is as follows.

Pegging Operation for Odd d
Input: a d-regular graph G, where d is odd.

1. Let c := bd/2c and choose a set E1 = {u1u2, u3u4, . . . , u2c−1u2c}
of c pariwise non-adjacent edges in E(G) u.a.r., and another set
E2 = {u2c+1u2c+2, . . . , u4c−1u4c} of c pairwise non-adjacent edges
in E(G) \ E1 u.a.r.

2. G := (G \ (E1 ∪ E2)) ∪ {u, v} ∪ E3 ∪ {uv}, where u and v are new vertices
added to V (G), and E3 = {uu1, . . . , uu2c, vu2c+1, . . . , vu4c}.

3. Output: G.
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Figure 7: Pegging operation when d = 3

We can now follow the same routine to prove the connectivity result when d ≥ 3 is odd. In
each step, two new vertices and d − 1 new edges are added. The only difference from the even
degree case is that, for any given k-edge cut that is destroyed, there can be up to four new edge
cuts created instead of two. So there are more complicate transitions to obtaining a new k-edge
cut for any k. It is straightforward but tedious to check the statements S1-S4 stated before the
proof of Lemma 3.2. The author checked the case d = 3. So we omit the details and claim that
Gt ∈ P(G0, d) are d-connected for any arbitrary integer d ≥ 3.
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