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Abstract

Given a constant integer d ≥ 1 and a host graph H that is sufficiently dense, we lower
bound the number of d-factors H contains. When the complement of H is sufficiently
sparse, we provide an algorithm that uniformly generates the d-factors of H and we
justify the efficiency of the algorithm.

1 Introduction

Enumeration and uniform generation of d-regular graphs on n vertices have been studied
for decades. The earliest result on enumerating d-regular graphs for bounded integers d was
obtained by Bender and Canfield [2]. The boundedness of d was relaxed by Bollobás [1],
and then further by McKay [6], and McKay and Wormald [8]. The currently best result on
enumerating sparse d-regular graphs is due to McKay and Wormald [8] for d = o(n1/2). On
the other hand, enumerating dense d-regular graphs (where min{d, n−d} ≥ cn/ lnn for some
c > 0) was achieved by McKay and Wormald [9].

The technique used to enumerate sparse d-regular graphs leads to algorithms that gen-
erate uniformly random d-regular graphs. For d = O(n1/3), McKay and Wormald [7] used
switchings which repeatedly switch off loops and double edges. These switching operations
were a modification and refinement of those first introduced and applied by McKay in [6].

A natural generalisation of the above problems is to enumerate and uniformly generate
d-factors of a given graph Hn on n vertices instead of the complete graph Kn. We call Hn

the host graph and we let Hn denote the complement of Hn. A recent result [3] proves
that every bridgeless cubic graph contains exponentially many perfect matchings. A more
accurate asymptotic enumeration result was given by McKay when Hn is sufficiently sparse.
To be specific, given the degree sequence of Hn, McKay [5, Theorem 2.3 (a)] estimated the
asymptotic number of d-factors when d = o(n1/3) and the maximum degree of Hn is o(

√
n/d).

We haven’t seen any result on uniform generation of d-factors so far. Jerrum and Sinclair [4]
analysed an algorithm which generates near-uniform perfect and near-perfect matchings. The
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algorithm is based on designing a Markov chain which was shown to mix rapidly and has
uniform stationary distribution. The purpose of this paper is to provide a simple algorithm
that uniformly generates d-factors of a given host graph Hn for bounded d, and justify its
efficiency when the number of edges in Hn is O(n) and the maximum degree of Hn is bounded
by a certain constant times n. When Hn is denser, we also give asymptotic bounds on the
number of d-factors of Hn. We do not attempt to achieve tight bounds but rather make an
effort to weaken the conditions on Hn. For instance, our bounds require no information on
the degree sequence of Hn and allow the maximum degree of Hn to be linear in n, whereas
the number of edges in Hn can be proportional to n2.

2 Main results

Let (Hn)n≥1 be a sequence of graphs on n vertices. Let e(Hn) denote the number of edges
in Hn. Colour all edges in Hn blue and all edges in Hn red. Let Kn denote the complete
graph on the same vertex set of Hn, i.e. Kn = Hn ∪ Hn. For any red edge x = uv, let
dr(x) = dr(u) + dr(v)− 2, where dr(u) denotes the number of vertices adjacent to u by a red
edge. Let ∆r(Hn) = maxx∈R d(x). For simplicity, we use ∆r(n) instead of ∆r(Hn) when the
context is clear.

All asymptotics in this paper refer to n → ∞. For two functions f(n) and g(n), we say
f(n) is asymptotically at least g(n) if there exists a sequence of positive reals (an)n≥1 such
that an → 0 as n→∞ and f(n) ≥ (1− an)g(n) for all n.

Let Fn denote a d-regular graph chosen uniformly at random from all d-factors of Kn, and
let Xn = Xn(Hn) denote the number of red edges contained in Fn. In this paper, we assume
d is constant. Our main result is the following theorem.

Theorem 2.1 Let Hn be a graph on n vertices and let tn =
(
n
2

)
− e(Hn). Assume a :=

lim supn→∞∆r(n)/n < 1. Then provided tn/n
2 is sufficiently small,

P(Xn = 0) ≥ exp

(
−8d2tn

(1− a)n
+ o(1)

)
.

A special case of Theorem 2.1 is tn = o(n) and d is constant, in which the probability
P(Xn) = 1+o(1). Thus, removing o(n) arbitrary edges from a complete graph does not affect
asymptotically the number of d-factors it contains for any constant d.

Since the total number of d-factors of Kn is asymptotically

(dn)!

2dn/2(dn/2)!(d!)n
exp

(
−d

2 − 1

4

)
, (2.1)

as proved in [2], we immediately obtain a lower bound of the number of d-factors in Hn.

Corollary 2.2 Let Hn be a graph on n vertices and let tn =
(
n
2

)
− e(Hn). Assume a :=

lim supn→∞∆r(n)/n < 1. Then provided tn/n
2 is sufficiently small, the number of d-factors

of Hn is asymptotically at least

(dn)!

2dn/2(dn/2)!(d!)n
exp

(
−d

2 − 1

4
− 8d2tn

(1− a)n

)
.
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The assumption lim supn→∞∆r(n)/n < 1 in Theorem 2.1 and Corollary 2.2 can not be
weakened without imposing other assumptions of Hn. This can be easily seen by considering
the following counterexample. Let H4n+2 be a graph composed of the union of two copies of
K2n+1. Clearly, lim supn→∞∆r(H4n+2)/(4n+2) = 1 but H4n+2 contains no perfect matchings.

A special case of Corollary 2.2 is when Hn is regular.

Corollary 2.3 There exists a constant 1/2 < α < 1, such that for any k-regular graph Hn

on n vertices with k ≥ αn, the number of d-factors that are contained in Hn is asymptotically
at least

(dn)!

2dn/2(dn/2)!(d!)n
exp

(
−d

2 − 1

4
− 4d2n · n− k − 1

2k − n+ 4

)
.

The following is another direct corollary of Theorem 2.1.

Corollary 2.4 Let d ≥ 1 and M > 0 be bounded. Let Hn be a graph on n vertices with at
least

(
n
2

)
−Mn edges. Assume a := lim supn→∞∆r(n)/n < 1. Then

lim inf
n→∞

P(Xn = 0) ≥ exp(−8d2M/(1− a)) > 0.

Consider the following algorithm, which obviously outputs a uniformly random d-factor of
an input graph H. The efficiency of the algorithm, when H is sufficiently dense, is guaranteed
by Corollary 2.4.

Algorithm: The d-Factor Generator

Input: A graph H on the vertex set [n].

Output: A uniformly random d-factor of H.

1. Uniformly at random choose a d-factor Fn from Kn, the complete graph on the
vertex set [n].

2. Output Fn if all edges in Fn are in H. Otherwise, go to step 1.

The first step of the d-Factor Generator can be performed efficiently when d = O(n1/3)
(with expected running time O(nd3)) using the algorithm in [7]. Corollary 2.4 implies that the
d-Factor Generator algorithm runs efficiently when the input graph H is sufficiently dense.
Given H as the input of the d-Factor Generator, let T (H) denote the number of times that
step 1 of the algorithm is called. The following corollary follows directly from Corollary 2.4.

Corollary 2.5 Let d, M and 0 < a < 1 be constants. Assume Hn is an input graph with n
vertices and at least

(
n
2

)
−Mn edges and ∆r(Hn) ≤ an. Then the d-Factor Generator algorithm

outputs a uniformly random d-factor of H and the expectation of T (Hn) is uniformly bounded,
i.e., ET (Hn) is bounded above by some absolute constant that depends only on d, M and a.

On the other hand, we have the following theorem, implying that ET (Hn) is unbounded
once cn →∞ as n→∞, where cn = (

(
n
2

)
− e(Hn))/n.

Theorem 2.6 Let cn = (
(
n
2

)
−e(Hn))/n. Assume cn →∞ as n→∞. Then limn→∞P(Xn =

0) = 0.

We prove Theorems 2.1 and 2.6 in the next section.
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3 Proofs

In order to prove Theorem 2.1, we introduce a switching operation called the r-switching. Let
Fn denote a d-factor of Kn.
The r-switching: Given Fn containing at least one red edge, choose a red edge x ∈ Fn; label
its end vertices as u and v and choose a blue edge y ∈ Fn which is not incident with x; label
its end vertices as u′ and v′. Replace x and y by uu′ and vv′. The r-switching is applicable if
and only if both uu′ and vv′ are blue and are not contained in Fn.

The inverse r-switching: Choose a blue edge in Fn and label its end vertices as u and u′;
choose another blue edge in Fn that is not incident with uu′ and label its end vertices as v
and v′. Replace these two edges by uv and u′v′. The inverse r-switching is applicable if and
only if both edges uv and u′v′ are not in Fn and uv is red and u′v′ is blue.

See an example of the r-switching and its inverse in Figure 1, where the dashed line denotes
a red edge and a solid line denotes a blue edge.

Let R(`) be the set of all d-factors Fn containing exactly ` red edges. For every ` ≥ 1, an
r-switching converts an Fn ∈ R(`) into an F ′n ∈ R(`− 1). Conversely, an inverse r-switching
converts an F ′n ∈ R(`− 1) into an Fn ∈ R(`). Let N(Fn) denote the number of r-switchings
applicable on Fn. For F ′n ∈ R(` − 1), let N ′(F ′n) denote the number of inverse r-switchings
applicable on F ′n.

Figure 1: r-switching and its inverse

In the rest of the paper, we always let tn =
(
n
2

)
− e(Hn) and let cn = tn/n. We first prove

the following lemma.

Lemma 3.1 For all ` such that n− 2`/d− 2d−∆r(n) > 0,

2`(dn− 2`− 2d2 − d∆r(n)) ≤ N(Fn) ≤ 2d`n, (3.1)

0 ≤ N ′(F ′n) ≤ 2d2cnn. (3.2)

Proof. Given Fn ∈ R(`), the number of ways to choose x and label its end vertices is
2`. There are at most dn/2 choices for y and given each choice of y there are two ways to
label its end vertices. So the upper bound of N(Fn) follows immediately. The lower bound
is obtained by a little more careful estimation of the choices of y. Clearly, given any choice
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of x and its end-vertex labelling, the number of ways to choose the edge y and label its end
vertices so that y is blue and not incident with x and that uu′ /∈ Fn, vv′ /∈ Fn is at least
2 · dn/2− 2`− 2d2. On the other hand, given any choice of x and labelling of its end vertices,
the number of ways to choose y and label its end vertices so that either uu′ or vv′ is red
is at most d∆r(n). Therefore, the total number of r-switchings applicable on Fn is at least
2`(dn− 2`− 2d2 − d∆r(n)).

Given F ′n ∈ R(`− 1), we choose uu′ and vv′ in the following way. First choose a red edge
x /∈ F ′n. Label its end vertices as u and v. Then choose a neighbour of u in F ′n and label it
as u′. Choose a neighbour of v in F ′n and label it as v′. The inverse switching is applicable
with such choice of uu′ and vv′ if and only if u′ 6= v′ and all edges uu′, vv′ and u′v′ are blue.
The upper bound of N ′(F ′n) follows immediately by noting that there are at most cnn ways
to choose x and two ways to label its end vertices, whereas given the labelling of u and v,
there are at most d ways to choose u′ and d ways to choose v′.

Next we prove the following lemma.

Lemma 3.2 Assume a := lim supn→∞∆r(n)/n < 1 and cn/n is sufficiently small. Let b =
(1− a)/8. Then P(Xn ≥ bn) = o(1).

Proof. There are at most cnn red edges, and thus at most
(
cnn
bn

)
ways to choose bn red edges

for Fn. The number of ways to choose the remaining dn/2 − bn edges to form a d-factor of
Kn is at most

(dn− 2bn)!

2dn/2−bn(dn/2− bn)!
= exp

(
(d/2− b)n ln

(
dn− 2bn

e

)
+O(1)

)
= exp ((d/2− b)n lnn+O(n)) .

Hence, the number of d-factors of Kn that contain at least bn red edges is at most(
cnn

bn

)
exp ((d/2− b)n lnn+O(n)) . (3.3)

We first show that (
cnn

bn

)
= exp(bn ln cn +O(n)). (3.4)

This is clearly true if cn = O(1). Assume cn → ∞. Then using the Stirling’s formula, we
obtain (

cnn

bn

)
= exp(n(cn ln cn − b ln b− (cn − b) ln(cn − b)) +O(n))

= exp(cnn(ln cn − ln(cn(1− b/cn))) + bn ln cn +O(n))

= exp(cnn(ln cn − (ln cn − b/cn +O(c−2n ))) + bn ln cn +O(n))

= exp(bn ln cn +O(n)).

This completes the proof of (3.4). Combining with (3.3), the number of d-factors of Kn that
contain at least bn red edges is at most

exp ((d/2− b)n lnn+ bn ln cn +O(n)) . (3.5)
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By (2.1), the total number of d-factors of Kn is asymptotically

(dn)!

2dn/2(dn/2)!(d!)n
exp

(
−d

2 − 1

4
− d3

12n

)
= exp ((dn/2) lnn+O(n)) . (3.6)

Taking the ratio of (3.5) and (3.6) yields

P(Xn ≥ bn) ≤ exp(−bn lnn+ bn ln cn +O(n)) = o(1),

provided cn/n is sufficiently small.

Proof of Theorem 2.1. Recall that a = lim supn→∞∆r(n)/n < 1. Let b = (1−a)/8. Then
there exists n0 > 0 such that for all n ≥ n0,

∆r(n)

n
< a+

1− a
2

= 1− 4b, and bn ≥ 2d2.

Therefore, for all n ≥ n0 and for all ` ≤ bn,

dn− 2`− 2d2 − d∆r(n) ≥ n(d− 2b− d(1− 4b))− 2d2 ≥ bn.

By Lemma 3.1, for all ` ≤ bn,

2`bn|R(`)| ≤ 2d2cnn|R(`− 1)|.

So,
|R(`)|
|R(`− 1)|

≤ 2d2cnn

2`bn
≤ d2cn

b`
.

It follows that for any n ≥ n0 and for any ` ≤ bn,

|R(`)|
|R(0)|

≤ (d2cn/b)
`

`!
.

Since tn/n
2 is sufficiently small, so is cn/n. Then by Lemma 3.2, for all n ≥ n0,

1

P(Xn = 0)
= (1 + o(1))

∑bn
`=0 |R(`)|
|R(0)|

≤ (1 + o(1))
bn∑
`=0

(d2cn/b)
`

`!
≤ (1 + o(1)) exp(d2cn/b),

which implies that

lim inf
n→∞

P(Xn = 0) ≥ exp(−d2cn/b) = exp(−8d2tn/(1− a)n).

Next, we prove Theorem 2.6. We define a few other switching operations.
The r0-switching: Given Fn ∈ R(0), choose two edges x and y in Fn, and label their end
vertices as u, v and u′, v′ respectively. Replace x and y by uu′ and vv′. This switching is
applicable if and only if both uu′ and vv are not in Fn and at least one of these two edges is
red.
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The r1-switching: Given Fn ∈ R(1), let x ∈ Fn be the red edge and choose another blue edge
y in Fn, and label their end vertices as u, u′ and v, v′ respectively. Replace x and y by uv
and u′v′. This switching is applicable if and only if both uv and u′v′ are not in Fn and both
edges are blue.

The r2-switching: Given Fn ∈ R(2), let x and y be the two red edges in Fn, and label their
end vertices as u, u′ and v, v′ respectively. Replace x and y by uv and u′v′. This switching
is applicable if and only if both uv and u′v′ are not in Fn and both edges are blue.

Examples of the ri-switchings are given in Figures 2–4. In Figures 3 and 4, the notation
(b), or (r), means the edge under discussion needs to be blue, or red, respectively.

Figure 2: r0-switching

Figure 3: r1-switching

Figure 4: r2-switching
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Let Ni(Hi) denote the number of ri-switchings applicable on Hi ∈ R(i) for i = 0, 1, 2.
Clearly, ∑

H0∈R(0)

N0(H0) =
∑

H1∈R(1)

N1(H1) +
∑

H2∈R(2)

N2(H2). (3.7)

Proof of Theorem 2.6. We first show the following claim. For any Hi ∈ R(i), i = 0, 1, 2,

N0(H0) ≥ 2dcnn, N1(H1) ≤ 4dn, N2(H2) ≤ 8. (3.8)

The upper bound of Ni(Hi) for i = 1, 2 follows trivially by considering the number of ways
to choose the red and blue edges and label their end vertices respectively. For any H0 ∈ R(0),
let z /∈ H0 be a red edge. Label its end vertices as u and u′. There are d neighbours of u in H0.
Choose one of them and label it as v. Given the choice of v, there are at least max{1, d− 1}
neighbours of u′ in H0 that are distinct from v. Choose one of them and label it as v′. Then an
r0-switching can be applied to the edges uv and u′v′. There are cnn ways to choose the edge
z and two ways to label its end vertices. Therefore, the number of r0-switchings applicable on
H0 such that uu′ is red is at least 2dcnn. Hence, N0(H0) ≥ 2dcnn. Note that the inequality
holds also because we omit the count of r0-switchings such that uu′ is blue and vv′ is red.
This completes the proof of the claim (3.8).

By (3.7) and (3.8), for any n ≥ 2,

2dcnn|R(0)| ≤ 4dn|R(1)|+ 8|R(2)| ≤ 4dn(|R(1) +R(2)|),

which yields

P(Xn = 0) ≤ |R(0)|
|R(1)|+ |R(2)|

≤ 4dn

2dcnn
= 2c−1n .

Since cn →∞ as n→∞, limn→∞P(Xn = 0) = 0.
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