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Abstract

In this paper, we examine the moments of the number of d-factors in G(n, p) for all p and d
satisfying d3 = o(p2n). We also determine the limiting distribution of the number of d-factors
inside this range with further restriction that (1− p)

√
dn →∞ as n →∞.

1 Introduction

Studies of subgraphs in random graph spaces are one of the areas of major interest in random graph
theory. In the fundamental work [4] by Erdős and Rényi, various types of subgraphs, for instance,
trees and cycles of certain sizes, and general subgraphs of certain sizes or densities, are studied. A
general approach of determining the limiting distribution of subgraphs of fixed sizes in the binomial
model G(n, p) is investigated in [14, 15] by Ruciński, whereas the distributions of certain counts
of some types of subgraphs, also with fixed sizes, in the random d-regular graph space G(n, d) are
studied by Z. Gao and Wormald [5].

However, studying the distribution of subgraphs with larger size, in particular, the spanning
subgraphs, is much more difficult and there is no general approach. The commonly studied spanning
subgraphs include Hamilton cycles and spanning d-regular graphs (d-factors). In the binomial model
G(n, p) where p = Ω(ln n/n), even though the expected number of Hamilton cycles (or perfect
matchings) grows fast as a function of n, it was unknown for a long time whether a Hamilton cycle
exists or not until the breakthrough by Pósa [13]. The result was further strengthened by Komlós
and Szemerédi [10] and Bollobás [2, pp. 239, Theorem 15]. The existence of a d-factor in G(n, p)
was investigated by Shamir and Upfal [18]. However, the distributions of the number of Hamilton
cycles and d-factors are not of usual types and have strong tails. These random variables have large
deviation (comparable to their expectation) whereas they are positive asymptotically almost surely
by the existence results for sufficiently large p.

The first breakthrough in determining the limiting distribution of spanning subgraphs is credited
to Robinson and Wormald’s work [16, 17] on showing that almost all regular graphs are Hamilto-
nian, using the small subgraph conditioning method. However, the distribution of the Hamilton
cycle counts in the random d-regular graph model G(n, d) was not clearly revealed in that paper. Its
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limiting distribution was first sorted out by Janson [7], which according to the author, is implicitly
hidden in the proof of Robinson and Wormald in [16, 17]. The limiting distribution is very unusual.
It can be expressed as the distribution of a variable whose logarithm is a linear combination of in-
finitely many independent Poisson variables. Janson [8] also determined the log-normal distribution
of the number of spanning trees, Hamilton cycles and 1-factors in G(n, p) by conditioning on the
number of edges. The proof used the decomposition and projection methods [9].

In this paper, we study the moments and the limiting distribution of Xn,d, the number of d-
factors in G(n, p). We prove that the distribution is asymptotically log-normal for a wide range of p
and d, via a completely different approach than in [8]. Indeed, we will apply the switching method
which allows us to estimate sharply the k-th moment of Xn,d for all k not growing too fast with
n. As we will discuss in Section 2, the k-th moment of the scaled variable Xn,d/EXn,d grows so
fast as a function of k that the distribution cannot be uniquely determined by its (finite) moments.
However, the moment estimates coupled with the Z. Gao-Wormald theorem [6] enable us to prove
the limiting normality of Xn,d in the particular case when d2(1 − p) = o(1), where the standard
deviation is relatively small compared to EXn,d. To prove log-normality of Xn,d in the other case
where lim infn→∞ d2(1 − p) > 0, we condition on the number of edges Yn in G(n, p) and establish
the concentration of Xn,d in the random graph G(n,m) by the method of the second moment, and
then use the limiting normality of Yn.

Let g(n,d) denote the number of graphs on n vertices with degree sequence d. In particular,
let g(n, d) denote the number of d-regular graphs on n vertices. The following result is known from
McKay [11].

Theorem 1.1 Assume d = o(n1/3). Then

g(n, d) ∼ (dn)!

2dn/2(dn/2)!(d!)n
· exp

(
−d2 − 1

4

)
.

The restriction of d was further relaxed by McKay and Wormald in [12]. Clearly EXn,d =
g(n, d)pdn/2. However, calculating the second moment of Xn,d is not trivial. We need to count
the number of pairs of d-regular graphs (M1,M2), both on the same vertex set [n], according to
how the edge sets in M1 and M2 intersect. Brute-force counting is difficult for general d and high
moments. In this paper, we use the switching method, which is surprisingly powerful in calculating
the moments. This method was first introduced by McKay [11] to evaluate g(n, d). In this paper
the switchings are used in a different way but the basic ideas are the same.

2 Main results

Recall that G(n, p) denotes the probability space of random graphs on n vertices, in which each
edge between a pair of vertices occurs independently with probability p. Recall also that g(n, d)
denotes the number of d-regular graphs on n vertices and Xn,d denotes the number of d-factors in
G ∈ G(n, p). Here both p = p(n) and d = d(n) are sequences indexed by n and we drop n from the
notation when there is no confusion. Define

µn,d = g(n, d)pdn/2, βn,d = exp

(
d2(1− p)

2p

)
. (2.1)
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In this paper, all the asymptotic notations refer to n →∞. We say f(n, k) ∼ g(n, k) uniformly
for all k (in certain range) if there exists a sequence, (an) with an ≥ 0 and an → 0 as n →∞ such
that |f(n, k)/g(n, k) − 1| ≤ an for all k and n. We define uniform convergence in a similar way.
For a random variable Y , we let EY = Ep(Y ) denote the expectation of Y in G(n, p). We normally
drop p from the notation but we use it if we need to emphasise the value of p. We will prove the
following.

Theorem 2.1 Assume d3 = o(p2n). Then in G(n, p),

E(X2
n,d) ∼ βn,dE(Xn,d)

2.

Moreover, for any 0 < α < 7/8,

E(Xk
n,d) ∼ β

(k
2)

n,d E(Xn,d)
k =

(
µn,d√
βn,d

)k

β
k2/2
n,d ,

uniformly for all positive integers k such that k4d3 = o(p2n) and (7/4 − 2α) ln n + k ln p → ∞ as
n →∞.

We note here that the above theorem is likely to be true without the condition (7/4− 2α) ln n+
k ln p →∞, and it is possible to weaken or remove this condition by a more careful analysis in the
proof of Lemma 3.7 in Section 3. Since the current version is already strong enough to prove our
main results on the d-factor distributions, we do not make a further effort to extend the theorem
for a larger range of k. The proof of the theorem immediately yields the following proposition.

Proposition 2.2 For any integer k such that k4d3 = o(n), the number of ordered k-tuples of
pairwise disjoint d-factors in Kn is asymptotically g(n, d)k exp

(−(
k
2

)
d2/2

)
.

Let Wn,d = Xn,d

√
βn,d/µn,d. Theorem 2.1 implies that for any fixed integer k ≥ 0, EW k

n,d → β
k2/2
n,d

as n → ∞. Consider the case that β = limn→∞ βn,d exists and β > 1. Let W denote the random
variable with log-normal distribution with parameters µ = 0 and σ2 = ln β, i.e. ln W is distributed
as N (0, ln β), the normal distribution with expectation 0 and variance lnβ. It is easy to check
that EW k = βk2/2 for every fixed integer k ≥ 0. However, since the log-normal distribution is not
uniquely determined by its moments, we can not claim that Wn,d → W in distribution, not even
the existence of the limit. Indeed, we will determine the limiting distribution of Wn,d (as below in
Theorem 2.5), using a different approach than calculating the moments. For more details on the
moment problem, readers can refer to [1, Theorem 30.1,30.2].

However, for a certain range of p where limn→∞ βn,d = 1, we are able to determine the limiting
distribution of Xn,d using Theorem 2.1.

Theorem 2.3 Assume that d2(1− p) = o(1) and (1− p)
√

dn →∞ as n →∞. Let

λn,d = µn,d/
√

βn,d

σn,d = λn,dd
√

(1− p)/2p.

Then (Xn,d − λn,d)/σn,d converges in distribution to the standard normal as n →∞.
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Contrary to the large deviation of Xn,d in G(n, p), this random variable is concentrated around
its expectation in G(n,m).

Theorem 2.4 Consider the random graph G(n,m). Let N =
(

n
2

)
and p = m/N . Define

µ̃n,d = g(n, d)

(
N − dn/2

m− dn/2

)
/

(
N

m

)
.

Assume d3 = o(p2n). Then in G(n,m), we have EXn,d = µ̃n,d and

Xn,d/µ̃n,d
p−→ 1,

as n →∞.

Using Theorem 2.4, we can prove the following main theorem which considers the case that the
assumption d2(1− p) = o(1) in Theorem 2.3 is not satisfied.

Theorem 2.5 Consider the random graph G(n, p). Assume d3 = o(p2n) and lim infn→∞ d2(n)(1−
p(n)) > 0. Define

λn,d = µn,d/
√

βn,d,

sn,d = ln βn,d = d2(1− p)/2p.

Then
ln (Xn,d/λn,d)√

sn,d

d−→ N (0, 1), as n →∞.

3 Proofs

We first prove Theorem 2.3 assuming Theorem 2.1. We use the following theorem from Z. Gao and
Wormald [6] to show normality.

Theorem 3.1 Assume (µn)n≥1 and (σn)n≥1 are sequences of reals such that σn/µn → 0 as n →∞.
Suppose that f(n) ≥ 0 is a sequence of functions with f(n) → 0 as n → ∞ and (Xn)n≥1 is a
sequence of random variables such that for some constants c′ > c > 0, for every n and for all
integers k in the range Rn := {k ∈ Z : cµn/σn ≤ k ≤ c′µn/σn},

EXk
n = (1 + f(n, k))µk

n exp

(
k2σ2

n

2µ2
n

)
,

for some f(n, k) with |f(n, k)| ≤ f(n) for all k ∈ Rn and for all n. Then (Xn − µn)/σn converges
in distribution to the standard normal as n →∞.

Proof of Theorem 2.3. Apply Theorem 3.1 with Xn = Xn,d, µn = λn,d and σn = σn,d. In order
to show that (Xn,d − λn,d)/σn,d converges to the standard normal, we only need to check that all
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the hypotheses of Theorem 3.1 hold. Let q = 1 − p. Since d2q = o(1) and q
√

dn → ∞ as n → ∞,
we have βn,d → 1. We also have σn,d/λn,d = d

√
q/2p = O(

√
d2q) = o(1). Lastly, since

λn,d

σn,d

= (d
√

q/2p)−1 = O((d
√

q)−1),

the theorem is proved by showing that uniformly for all integers k ≤ (d
√

q)−1,

EXk
n,d ∼ λk

n,d exp(k2σ2
n,d/2λ

2
n,d). (3.1)

Since d2q = o(1) and q
√

dn →∞ as n →∞, we have p = Ω(1) and
√

d3/n = o(d2q) = o(1), which
implies d3 = o(p2n). Also, for all k ≤ (d

√
q)−1, we have k4d3 = o(p2n) and

ln n + k ln(1− q) = ln n−O(kq) = ln n−O(
√

q/d) →∞,

as n →∞. Hence Theorem 2.1 with α = 3/8 implies that (3.1) holds for all k ≤ (d
√

q)−1.

In order to prove Theorem 2.1, we need to compute the expected number of k-tuples (M1, . . . , Mk),
where each Mi is a d-factor of G(n, p). To illustrate the idea of the proof, we first compute the
second moment (k = 2).

Let Fd(`) denote the class of ordered pairs of graphs (M1,M2), where M1 and M2 are both
d-regular graphs on n vertices on the same vertex set [n] and share exactly ` common edges. Hence
the number of edges in each graph in Fd(`) is dn−`. Let fd(`) = |Fd(`)|. We first show the following
lemma.

Lemma 3.2 Let α = 1/10. For all 1 ≤ ` ≤ (1− α)dn/2,

fd(`)

fd(`− 1)
=

d2

2`
(1 + O(`/dn + d/n)).

Proof. We define two types of switchings.
s-switching: Take an edge x that is contained in both M1 and M2. Label the end vertices of x

as u2 and u′2. Then take an edge y such that y ∈ M1 \M2 and label the end vertices of y as u1 and
u′1. Then take an edge z ∈ M2 \M1 and label its end vertices as u3 and u′3. An s-switching replaces
x and y by {u1, u2} and {u′1, u′2} in M1 and replaces x and z by {u2, u3} and {u′2, u′3} in M2. An
s-switching is applicable on the chosen triple {x, y, z} with the given labeling, only if

(a) all six vertices ui and u′i for i = 1, 2, 3 are distinct;

(b) all of {u1, u2}, {u′1, u′2}, {u2, u3}, {u′2, u′3} are not in M1 ∪M2.

inverse s-switching: Choose a pair of directed 2-paths (u1, u2, u3) and (u′1, u
′
2, u

′
3) such that

{u1, u2}, {u′1, u′2} ∈ M1 \ M2 and {u2, u3}, {u′2, u′3} ∈ M2 \ M1. The inverse s-switching replaces
{u1, u2} and {u′1, u′2} by {u1, u

′
1} and {u2, u

′
2} in M1 and replaces {u2, u3} and {u′2, u′3} by {u2, u

′
2}

and {u3, u
′
3} in M2. The s-switching is applicable on the chosen pair of directed paths only if

(a’) all vertices u1, u2, u3, u′1, u′2, u′3 are distinct;

(b’) none of {u1, u
′
1}, {u2, u

′
2} and {u3, u

′
3} are contained in M1 ∪M2.
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Figure 1: s-switching and its inverse

An example of the s-switching and its inverse is shown in Figure 1 where the solid lines denote
edges in M1 and the dashed lines denote edges in M2.

For any g ∈ Fd(`), an s-switching converts g into a graph in Fd(`−1). For each such g, let N(g)
denote the number of ways to choose the three edges x, y and z and to label their end vertices so
that an s-switching can be applied. There are ` ways to choose x and two ways to label its end
vertices. For any chosen x, the number of ways to choose y (or z) is dn/2 − ` − O(d2), where the
term ` + O(d2) counts all edges in M1 ∩M2 and all choices of y such that x and y are adjacent or
u1, u2 are adjacent or u′1, u′2 are adjacent. For each chosen y (or z), there are two ways to label its
end vertices.

N(g) = 8`
(
(dn/2− ` + O(d2))2 + O(d2n)

)
= 2`d2n2(1 + O(`/dn + d/n)),

where the error term O(d2n) acounts for the case when y and z are adjacent. On the other hand,
for any g′ ∈ Fd(`−1), an inverse s-switching converts g′ into a graph in Fd(`). Let N ′(g′) denote the
number of ways to choose the two directed 2-paths so that an inverse s-switching can be applied.
Every vertex is incident with d edges in M1 and another d edges in M2, and so the number of directed
2-paths (u1, u2, u3) with {u1, u2} ∈ M1 and {u2, u3} ∈ M2 is approximately d2n. The only miscount
occurs when the vertex u2 is incident with an edge in M1∩M2. Hence N ′(g′) = (d2n)2+O(d5n+d3n`),
where the error term O(d5n) accounts for all miscounts that violate constraints (a’) and (b’) while
the error term O(d3n`) accounts for the case that one of the two paths contains an edge in M1∩M2.
Clearly,

∑
g∈Fd(`) N(g) =

∑
g′∈Fd(`−1) N ′(g′). Moreover, for any ` ≤ (1− α)dn/2, dn/2− ` = Ω(dn).

So,
fd(`)

fd(`− 1)
=

(d2n)2 + O(d4n + d3n`)

8`
(
(dn/2− ` + O(d2))2 + O(d2n)

) =
d2

2`
(1 + O(`/dn + d/n)).

Lemma 3.3 Let t > 0 be an integer. For any d = o(n1/3) and any degree sequence d such that
dn−∑n

i=1 di = t, g(n,d) ≤ g(n, d)n−t exp(O(dn)).

Proof. The asymptotic value of g(n, d) was given in Theorem 1.1, whereas the asymptotic value
of g(n,d) was also given in [11]. But here we only use a crude upper bound as follows. For any
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degree sequence d with M =
∑n

i=1 di being even,

g(n,d) ≤ M !

2M/2(M/2)!
∏n

i=1 di!
.

For any real x > 0, define x! =
∏dxe−1

i=0 (x− i). Since
∏n

i=1 di! ≥ ((M/n)!)n, we have

g(n,d) ≤ M !

2M/2(M/2)!((M/n)!)n
.

Thus,

g(n,d)

g(n, d)
≤ (dn− t)!

(dn)!

(
d!

(d− t/n)!

)n

exp(O(dn)) = n−t exp(O(dn)).

Lemma 3.4 Let α = 1/10 and let tn =
∑

`>(1−α)dn/2 f(`). Then ln(tn/g(n, d)2) ≤ −(1−α)dn ln n+

O(dn).

Proof. We count the number of (M1,M2) such that both M1 and M2 are d-regular graphs on [n]
and they share at least (1 − α)dn/2 edges. There are g(n, d) ways to choose M1. Given any M1,
there are at most 2dn/2 ways to choose a set T of shared edges. Given any such T , the number of
ways to choose M2 such that T ⊆ M2 is at most g(n, d)n−2|T | exp(O(dn)) by Lemma 3.3. Therefore,

tn ≤ g(n, d)22dn/2n−(1−α)dn exp(O(dn)) = g(n, d)2n−(1−α)dn exp(O(dn)).

Lemma 3.5 Assume d3 = o(p2n). Then Ep(X
2
n,d) ∼ βn,dµ

2
n,d.

Proof. As explained before, every graph in Fd(`) contains dn− ` edges. So

Ep(X
2
n,d) =

dn/2∑

`=0

pdn−`fd(`) = pdn

dn/2∑

`=0

fd(`)

p`
.

By Lemma 3.2, for any 1 ≤ ` ≤ (9/10)dn/2,

p−`fd(`)

p−(`−1)fd(`− 1)
=

d2

2p`
(1 + O(`/dn + d/n)).

Hence, for any function w(n) that tends to infinity arbitrarily slowly as n tends to infinity, we have

p−`fd(`)

p−(`−1)fd(`− 1)
= o(1),

for all d2w(n)/p ≤ ` ≤ (9/10)dn/2. On the other hand,

pdn

dn/2∑

`=(9/10)dn/2

fd(`)

p`
≤ g(n, d)2n−(9/10)dn exp(O(dn)),
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by Lemma 3.4. Thus,

Ep(X
2
n,d) ∼ pdn

bd2w(n)/pc∑

`=0

fd(`)

p`
+ O(g(n, d)2n−(9/10)dn exp(O(dn)))

= pdnfd(0)

bd2w(n)/pc∑
i=0

d2i

(2p)ii!
(1 + O(i(i/dn + d/n))) + O(g(n, d)2n−(9/10)dn exp(O(dn)))

= pdnfd(0) exp(d2/2p)

(
1 + O

(
d4w(n)2

p2dn
+

d3w(n)

pn

))
+ O(g(n, d)2n−(9/10)dn exp(O(dn))).

Since d3 = o(p2n), we have

Ep(X
2
n,d) ∼ pdnfd(0) exp(d2/2p) + O(g(n, d)2n−(9/10)dn exp(O(dn))). (3.2)

In particular, (3.2) holds for p = 1. Thus,

E1(X
2
n,d) ∼ fd(0) exp(d2/2) + O(g(n, d)2n−(9/10)dn exp(O(dn))) = fd(0) exp(d2/2) + o(g(n, d)2).

However, E1(X
2
n,d) = X2

n,d = g(n, d)2. Hence,

fd(0) ∼ g(n, d)2 exp(−d2/2).

Combining with (3.2), we have

Ep(X
2
n,d) ∼ pdng(n, d)2 exp(−d2/2 + d2/2p) + O(g(n, d)2n−(9/10)dn exp(O(dn))) ∼ βn,dµ

2
n,d,

since n−(9/10)dn exp(O(dn)) = o(pdn).

It follows right away that when d2(1−p) = o(1), the number of d-factors in G(n, p) is concentrated
around its expectation.

Corollary 3.6 Assume d2(1− p) = o(1). Then for any ε > 0,

PG(n,p)(|Xn,d − µn,d| ≥ εµn,d) = o(1).

Proof. By the definition of βn,d in (2.1), βn,d = 1+o(1) when d2(1−p) = o(1). Hence the corollary
follows by Lemma 3.5 and Chebyshev’s inequality.

Now we extend the proof of Lemma 3.2 and 3.5 to show Theorem 2.1. We count the number
of k-tuples M = (M1, . . . , Mk), where each Mi is a d-regular graph on the same vertex set [n].
Let H = (hi,j)i,j≤k be a matrix and let FH denote the set of M such that the number of edges
in Mi that are shared by exactly j of the k graphs from M is hi,j. For each 1 ≤ i ≤ k, we

let xi =
∑k

j=2 hi,j, denoting the number of edges in Mi that are shared by some other Mj with

j 6= i. Let Z`
+ denote the set of `-dimensional vectors with each component a nonnegative integer.

Let J = {j = (j2, . . . , jk) ∈ Zk−1
+ :

∑k
i=2 iji ≤ kdn/2}. Given j = (j2, . . . , jk) ∈ J , define

j1 = kdn/2 − ∑k
i=2 iji. Let Fd(j) denote the set of M such that in ∪k

i=1Mi, there are exactly ji

edges that are contained in exactly i of the k d-regular graphs in M. Let fd(j) = |Fd(j)|. Given
j ∈ J , let H(j) = {H : iji =

∑k
`=1 h`,i, ∀ 1 ≤ i ≤ k}. Then, Fd(j) = ∪H∈H(j)FH .
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Similarly as in the proof where k = 2, it is hard to analyse the switchings when there is some
xi such that xi is close to dn/2. Therefore, we will restrict our analysis of switchings on a subset
of Fd(j) instead. Let 0 < α < 1 be an arbitrary constant. For any j ∈ J , let Hα(j) be the subset
of H(j) such that xi ≤ (1 − α)dn/2 for all 1 ≤ i ≤ k. Let Fα

d (j) = ∪H∈Hα(j)FH . Analogous to
Lemma 3.4, we bound

∑
j∈J |Fd(j) \ Fα

d (j)|. Recall that µn,d = g(n, d)pdn/2.

Lemma 3.7 Let 0 < α < 1 be an arbitrary constant and let

tn =
∑

j∈J

|Fd(j) \ Fα
d (j)|.

Then

ln(tn/µ
k
n,d) ≤ −dn

2

(
(7/4− 2α) ln n + k ln p

)
+ O(dn).

Proof. By the definition of tn,

tn =
∑

j∈J

∑

H∈H(j)\Hα(j)

|FH |.

By the definition of Hα(j), for any H ∈ H(j) \ Hα(j), there exists i with xi > (1 − α)dn/2. We
first bound the number of all M with at least (1− α)dn/2 edges of Mi being shared by other M`,
for a fixed i. There are g(n, d) ways to choose Mi. Colour the edges of Mi with k colours so that
if an edge is in Mj for j ≥ 1 but not in any M` with ` < j, it receives colour j. Colour all edges
that are only contained in Mi with colour 1. Given Mi, there are kdn/2 ways to k-colour all edges in
Mi. Let T be the set of edges with colour not equal to 1. For any given T with |T | > (1− α)dn/2,
the number of ways to choose the other k − 1 M` is at most g(n, d)k−1n−(1−α)dn exp(O(dn)) by
Lemma 3.3. Thus, for any fixed i, the number M with at least (1 − α)dn/2 edges of Mi being
shared by other M` is at most g(n, d)kkdn/2n−(1−α)dn exp(O(dn)). There are k choices for i and the
number of choices of j is at most (dn/2)k. Therefore,

tn ≤ k(dn/2)kg(n, d)kkdn/2n−(1−α)dn exp(O(dn)) = g(n, d)kkdn/2n−(1−α)dn exp(O(dn)).

Thus,

ln(tn/µ
k
n,d) ≤

dn

2
ln k − (1− α)dn ln n− kdn

2
ln p + O(dn).

Since k4d3 = o(p2n), we have k = o(n1/4). Thus, ln k ≤ ln n/4. Then the conclusion of the lemma
follows.

Proof of Theorem 2.1. The case k = 1 is trivially true and the case k = 2 is true by Lemma 3.5.
Now consider an integer k ≥ 3 such that k4d3 = o(p2n) and (7/4−2α) ln n+k ln p →∞ as n →∞.

We extend the s-switching into the si-switching for any 2 ≤ i ≤ k as follows. Choose any edge
x that is contained in exactly i of the k d-regular graphs in M. Label the two end vertices of x as u
and u′. Assume the i d-regular graphs that contain x are M`1 , . . . , M`i

. Then pick another i edges
y1, . . . , yi, such that for each 1 ≤ j ≤ i, yj is contained in M`j

but not other regular graphs in M.
Label the end vertices of every yj as uj and u′j. An si-switching replaces x and yj by {u, uj} and
{u′, u′j} in M`j

for every 1 ≤ j ≤ i. The si-switching is applicable only if

(a) all vertices u, u′, uj, u′j, for all 1 ≤ j ≤ i are distinct;
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(b) none of {u, uj}, {u′, u′j} for all 1 ≤ j ≤ i are contained in any of the regular graphs in M.

Similarly we can extend the inverse s-switching to inverse si-switching. We choose a star centered
at u where for j = 1, . . . , i, uuj is contained in M`j

but not other regular graphs in M. Similarly,
we choose another star centered at u′ where for j = 1, . . . , i, u′u′j is contained in M`j

but not other
regular graphs in M. The inverse si-switching replaces the edges in the two stars by {u, u′} and
{uj, u

′
j} for all 1 ≤ j ≤ i. The inverse si-switching is applicable only if

(a’) all vertices u, u′, uj, u′j for 1 ≤ j ≤ i are distinct;

(b’) Neither {u, u′} nor any of {uj, u
′
j} for 1 ≤ j ≤ i is contained in any of the regular graphs in

M.

Figure 2 gives an example that illustrates the s3-switching and its inverse.

Figure 2: s3-switching and its inverse

Fix any i ≥ 2, let j = (j2, . . . , ji, 0, . . . , 0) and let j′ = (j2, . . . , ji − 1, 0, . . . , 0), where ji ≥ 1.
Clearly an si-switching converts an element g ∈ Fd(j) to an element g′ ∈ Fd(j

′). We define N(g) and
N ′(g′) similarly as in the proof of Lemma 3.2. An analogous argument gives that for any g ∈ Fd(j),

ji(dn/2)i2i+1 ≥ N(g) ≥ ji(dn/2)i2i+1 − jii(dn/2)i−12i+1
∑

2≤`≤i

j` + O
(
ji(dn/2)i−12i · kd2

)

= 2jid
ini

(
1− 2i

∑

2≤`≤i

j`/dn + O (kd/n)

)
, (3.3)

where the second inequality holds because the number of ways to choose the i edges y1, . . . , yi such
that at least one of them is contained in more than one regular graph is at most i(dn/2)i−12i+1

∑
2≤`≤i j`.

On the other hand, for any g ∈ Fα
d (j) ⊆ Fd(j),

N(g) ≥ ji2
i+1

(
dn/2− (1− α)dn/2 + O(kd2)

)i

= Ω(ji(dn)i), (3.4)
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since in every M`, the number of edges that are shared by other regular graphs of M is at most
(1− α)dn/2 by the definition of Fα

d (j).We also have the following observation.

Observation: For any 0 < β1 ≤ β2 < 1, and any F1 such that F β1

d (j′) ⊆ F1 ⊆ F β2

d (j′), let F2 be the

set of M that can be obtained from F1 by an inverse si-switching. Then F β1

d (j) ⊆ F2 ⊆ F
β2+2/dn
d (j).

Next, we estimate N ′(g′). For any g′ ∈ Fd(j
′), each vertex has degree at most kd since every

vertex is incident with d edges from every Mj ∈ M. There are
(

k
i

)
ways to choose a set of i distinct

regular graphs M`1 , . . . , M`i
from M and given each choice, there are approximately (din)2 ways to

choose the two stars. Thus,

N ′(g′) =

(
k

i

) (
(din)2 + O

(
kd2i+1n + din · di−1

∑

2≤`≤i

j`

))

=

(
k

i

)
(din)2

(
1 + O

(
kd/n +

∑

2≤`≤i

j`/dn

))
,

where the error term O(kd2i+1n) accounts for the case when condition (a’) or (b’) is violated whereas
the error term O(din ·di−1

∑
`≤i j`) accounts for the case when one of the two stars contains an edge

that is commonly shared by at least two of the regular graphs in M. Then it follows that for
any i ≥ 2 and for any j ∈ J with j = (j2, . . . , ji, 0, . . . , 0), ji ≥ 1, and Fα

d (j) not empty, by (3.3)
and (3.4),

|F ′|
|Fα

d (j2, . . . , ji − 1, 0, . . . , 0)| =

(
k
i

)
di

2jini−2

(
1 + O

(
kd/n + i

∑

2≤`≤i

j`/dn

))
.

where F ′ is the set of M that can be obtained from |Fα
d (j2, . . . , ji − 1, 0, . . . , 0)| by an inverse

si-switching. By our observation, F ′ ⊇ Fα
d (j2, . . . , ji, 0, . . . , 0). Thus, for any i ≥ 3 and ji ≥ 1,

|Fα
d (j2, . . . , ji, 0, . . . , 0)|p−(i−1)ji

|Fα
d (j2, . . . , ji − 1, 0, . . . , 0)|p−(i−1)(ji−1)

≤ kidi

2jini−2pi−1

(
1 + O

(
kd/n + i

∑

2≤`≤i

j`/dn

))
= o(1),

(3.5)
and for any j2 ≥ dn/ ln n,

|Fα
d (j2, 0, . . . , 0)|p−j2

|Fα
d (j2 − 1, 0, . . . , 0)|p−(j2−1)

≤ k2d2

2j2p
(1 + O (kd/n + j2/dn)) = o(1). (3.6)

Given j ∈ J , every graph in Fd(j) contains kdn/2−∑k
i=2(i− 1)ji ≥ dn/2 edges. So

Ep(X
k
n,d) =

∑

j∈J

|Fd(j)|pkdn/2−Pk
i=2(i−1)ji =

∑

j∈J

|Fα
d (j)|pkdn/2−Pk

i=2(i−1)ji + O(γn), (3.7)

where γn =
∑

j∈J |Fd(j) \ Fα
d (j)|pdn/2. By (3.5) and (3.6),

Ep(X
k
n,d) ∼

dn/2∑
j2=0

|Fα
d (j2, 0, . . . , 0)|pkdn/2−j2 + O(γn)

∼
dn/ ln n∑
j2=0

|Fα
d (j2, 0, . . . , 0)|pkdn/2−j2 + O(γn). (3.8)
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Next, we estimate |Fα
d (j2, 0, . . . , 0)|. Define a sequence (S`)`≥0 as follows. Let S0 = Fα

d (0, . . . , 0).
For any ` ≥ 1, let S` be defined as the set of M that can be obtained from S`−1 by an inverse s2-

switching. Then by our observation above, for each `, Fα
d (`, 0, . . . , 0) ⊆ S` ⊆ F

α+2`/dn
d (`, 0, . . . , 0).

Let s(`) = |S`| for all ` ≥ 0. Since 0 < α < 7/8, for any ` ≤ dn/ ln n, 0 < α+2`/dn < 7/8. By (3.3)
and (3.4), for any ` ≤ dn/ ln n and any g ∈ S`,

1

N(g)
=

1

2j2d2n2
(1 + O (j2/dn + kd/n)) .

Then for any j2 ≤ dn/ ln n,

s(j2)p
−j2

s(j2 − 1)p−(j2−1)
=

(
k
2

)
d2

2j2p
(1 + O (kd/n + j2/dn)) .

By noting that Sj2 ⊇ Fα
d (j2, 0, . . . , 0) for all j2 ≥ 0 and by (3.8), we have

Ep(X
k
n,d) ∼

dn/ ln n∑
j2=0

s(j2)p
kdn/2−j2 + O(γn).

Since (7/4− 2α) ln n + k ln p →∞ as n →∞ by our assumption, by Lemma 3.7, γn = o(µk
n,d). Let

M = k2d2/p. Then since k4d3 = o(p2n), we have Mkd = o(n) and M2 = o(dn). Hence, for any
arbitrarily slowly growing function w(n), uniformly for all k in this range,

Ep(X
k
n,d) ∼

dn/ ln n∑
j2=0

s(j2)p
kdn/2−j2 + o(µk

n,d) ∼ pkdn/2

Mw(n)∑
j2=0

p−j2s(j2) + o(µk
n,d)

= pkdn/2s(0) exp

((
k

2

)
d2/2p

)(
1 + O

(
Mw(n)

(
kd

n
+

Mw(n)

dn

)))
+ o(µk

n,d)

∼ pkdn/2s(0) exp

((
k

2

)
d2/2p

)
+ o(µk

n,d).

In particular, taking p = 1 in the above formula yields

g(n, d)k = E1(X
k
n,d) ∼ s(0) exp

((
k

2

)
d2/2

)
. (3.9)

Thus,

Ep(X
k
n,d) ∼ µk

n,d exp

((
k

2

)
(d2/2p− d2/2)

)
= µk

n,dβ
(k
2)

n,d .

Proof of Proposition 2.2. It follows directly from (3.9).

For any real x and any integer ` ≥ 0, define the `-th falling factorial [x]` to be
∏`−1

i=0(x− i).

Lemma 3.8 Let N =
(

n
2

)
and let p = m(n)/N , where 0 < m(n) < N . Then for any integer

` = `(n) ≥ 0 such that lim supn→∞ `(n)/m(n) < 1,

(
N − `

m− `

)
/

(
N

m

)
= p` exp

(
−1− p

pN

`2 − `

2
+ O(`3/m2)

)
.
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Moreover, if ` = Ω(
√

m), then

(
N − `

m− `

)
/

(
N

m

)
= p` exp

(
−1− p

pN

`2

2
+ O(`3/m2)

)
.

Proof.

(
N − `

m− `

)
/

(
N

m

)
=

[m]`
[N ]`

=
`−1∏
i=0

m− i

N − i

=
`−1∏
i=0

m

N
exp

(
− i

m
+

i

N
+ O(i2/m2)

)
(since lim sup

n→∞
`(n)/m(n) < 1)

= p` exp

(
−1− p

pN

`2 − `

2
+ O(`3/m2)

)
.

If we have further that ` = Ω(
√

m), then `/pN = O(`3/m2).

Proof of Theorem 2.4. The probability space considered in this proof is G(n,m). Let N =
(

n
2

)
and let p = m/N . We Apply Lemma 3.8 with ` = dn/2. Since d3 = o(p2n), we have ` = Ω(

√
m).

Thus,

EXn,d = g(n, d)

(
N − dn/2

m− dn/2

)
/

(
N

m

)
= g(n, d)pdn/2 exp

(
−1− p

pN

d2n2

8
+ O(d3n3/m2)

)
.

Following the notations above Lemma 3.2, we have

EX2
n,d =

dn/2∑

`=0

fd(`)

(
N − (dn− `)

m− (dn− `)

)
/

(
N

m

)
.

Let

gd(`) = fd(`)

(
N − (dn− `)

m− (dn− `)

)
/

(
N

m

)
.

Since (
N − (dn− `)

m− (dn− `)

)
/

(
N − (dn− ` + 1)

m− (dn− ` + 1)

)
=

N − dn + `

m− dn + `
=

1

p
(1 + O(dn/m)),

by Lemma 3.2, for any ` ≤ (9/10)dn/2,

gd(`)

gd(`− 1)
=

d2

2p`
(1 + O(`/dn + d/n + dn/m)) .

We first bound γn =
∑

`>(9/10)dn/2 gd(`). Since for any ` ≤ dn/2,
(

N−(dn−`)
m−(dn−`)

) ≤ (
N−dn/2
m−dn/2)

)
, by

Lemma 3.4,

γn ≤ g(n, d)2n−(9/10)dn exp(O(dn))pdn/2 exp

(
−1− p

pN

d2n2

8
+ O(d3n3/m2)

)
. (3.10)
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Following the same approach as in Lemma 3.5, we obtain

EX2
n,d ∼ γn + pdnfd(0) exp

(
−1− p

pN

(dn)2

2
+ O(d3/p2n)

) d2w(n)/p∑
i=0

d2i

(2p)ii!

(
1 + O

(
i2

dn
+

id

n
+

idn

m

))

∼ γn + pdnfd(0) exp

(
−1− p

pN

(dn)2

2
+

d2

2p

)
∼ γn + pdng(n, d)2 exp

(
−d2(1− p)

p
+

d2

2p
− d2

2

)

= γn + pdng(n, d)2 exp(−d2(1− p)/2p),

as d3 = o(p2n). By (3.10), γn = o(pdng(n, d)2 exp(−d2(1− p)/2p)). Thus,

EX2
n,d ∼ (EXn,d)

2,

since

(EXn,d)
2 ∼ pdng(n, d)2 exp

(
−1− p

pN

d2n2

4

)
= pdng(n, d)2 exp

(
−d2(1− p)

2p

)
.

By Theorem 1.1 and the assumption d3 = o(p2n), we have EXn,d → ∞ as n → ∞. Then by
Chebychev’s inequality, for any ε > 0,

P(|Xn,d/EXn,d − 1| > ε) → 0, as n →∞.

Hence,
Xn,d/EXn,d

p−→ 1,

as n →∞.

Proof of Theorem 2.5. Let Yn denote the number of edges in G(n, p), then Yn ∼ Bin(N, p).
Hence we have

Yn − pN = Op(
√

p(1− p)N), (3.11)

where f(n) = Op(g(n)) for some g(n) ≥ 0 means P(|f(n)| > Kg(n)) → 0 as K →∞ and n →∞.
Similarly we use the notation f(n) = op(g(n)) meaning that for every ε > 0, P(|f(n)| > εg(n)) → 0
as n →∞. Since d3 = o(p2n), we have d3 = op(Y

2
n n/N2) and thus d3n3/Y 2

n = op(1). By conditioning
on Yn and applying Theorem 2.4 and Lemma 3.8, we have

ln Xn,d(G(n, p))− ln g(n, d)− dn

2
ln(Yn/N) +

1− Yn/N

Yn

d2n2

8

p−→ 0. (3.12)

By (3.11),

1− Yn/N

Yn

d2n2

8
=

d2(1− p)

4p

(
1 + Op

(√
p

(1− p)N
+

√
1− p

pN

)
+ O(n−1)

)

=
d2(1− p)

4p
+ op(1), (3.13)

where the equality above holds because d3 = o(p2n). We also have

ln(Yn/N) = ln p(1 + Y ∗
n

√
(1− p)/pN) = ln p +

√
(1− p)/pNY ∗

n + Op((1− p)/pN), (3.14)
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where

Y ∗
n =

Yn − pN√
p(1− p)N

is the normalised variable of Yn. Recall from (2.1) that µn,d = g(n, d)pdn/2 and ln βn,d = d2(1−p)/2p
and from the statement of Theorem 2.5 that λn,d = µn,d/

√
βn,d and sn,d = ln βn,d = d2(1 − p)/2p.

Combining with (3.12)–(3.14), we have

ln(Xn,d/λn,d)−√sn,d(1 + O(n−1))Y ∗
n

p−→ 0. (3.15)

Since lim infn→∞ d2(n)(1− p(n)) > 0, we have sn,d = Ω(1). Thus (3.15) immediately yields

ln(Xn,d/λn,d)√
sn,d

= Y ∗
n + op(1).

Since Y ∗
n

d−→ N (0, 1), the theorem follows.

Acknowledgement: I would like to thank Xavier Pérez Giménez for helpful discussions. It may be
worth mentioning here that we considered another (unpublished) approach for proving Theorem 2.5
by estimating the joint moments E(Xn,dY

j
n ) for any fixed integer j and then extending the small

subgraph conditioning method in [16]. But due to some technical difficulties, that approach does
not work for p → 0 or d →∞.
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