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Abstract

The pegging algorithm is a method of generating large random regular graphs
beginning with small ones. The ǫ-mixing time of the distribution of short cycle
counts of these random regular graphs is the time at which the distribution reaches
and maintains total variation distance at most ǫ from its limiting distribution. We
show that this ǫ-mixing time is not o(ǫ−1). This demonstrates that the upper bound
O(ǫ−1) proved recently by the authors is essentially tight.

1 Introduction

Different random graph models have been applied to analyse the behavior of real-world
networks. The most classical and commonly studied one is the Erdős-Rényi model [1],
which is the probability space of random graphs on n vertices with each edge appearing
independently with some probability p. The properties of the random network (degree dis-
tribution, connectivity, diameter, etc.) vary when p is assigned different values. However,
the Erdős-Rényi model cannot produce scale-free networks [2], whose degree distribution
obeys the power law. The scale-free network caught a lot of attention because a diverse
group of networks of interest are thought to be scale-free, such as the collaboration net-
work and the World Wide Web. The preferential attachment model was first introduced
by Yule [13] and then studied by many other authors [3, 7] in an attempt to simulate the
properties of such scale-free networks.

A new type of peer-to-peer ad-hoc network called the SWAN network was introduced
recently by Bourassa and Holt [4]. The underlying topology of the SWAN network is
a random regular graph. In the SWAN network, clients arrive and leave randomly. To
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accommodate this, the network undergoes changes in structure using an operation called
“clothespinning” (for arriving clients), and its reverse (for clients leaving), together with
some other occasional adjustments to repair the network when these operations cause a
problem, such as disconnection. Cooper, Dyer and Greenhill [6] defined a Markov chain
on d-regular graphs with randomised size to model (a simplified version of) the SWAN
network. The moves of the Markov chain are by clothespinning or the reverse. They
obtained bounds on the mixing time of the chain. Along the way, they showed that,
restricted to the times when the network has a given size, the stationary distribution is
uniform. Thus, for this simplified version of the SWAN network, the limiting distribution
of graphs coincides exactly with the model of random regular graphs which has already
received the most attention from the theoretical viewpoint.

The related pegging algorithm to generate random d-regular graphs for constant d
was first introduced by the authors in [10], where the clothespinning operation is called
pegging. (The notion of pegging was also extended to odd degree graphs.) The pegging
algorithm simply repeats pegging operations, without performing the reverse. This gives
an extreme version of the SWAN network, in which no client ever leaves the network. By
studying this extreme case we hope to gain knowledge of the properties of the random
SWAN network in the case that it grows quickly, as opposed to the more steady-state
scenario studied in [6]. Other models of random regular graphs generated algorithmically
are discussed in [10].

Fix d ≥ 3. For most models of random d-regular graphs, there are small numbers of
short cycles and rarely any more complex structures, so the local structure is basically
determined by the short cycle distribution. Although only describing local structure, the
short cycle distribution has played a major role in the theory of contiguity of random
regular graphs, which includes results on many global properties such as hamiltonicity
(see [12]). In the random d-regular graph generated by pegging, the joint distribution of
short cycle counts (up to some fixed length K) was proven to be asymptotically Poisson
in [10]. Moreover, let (σt)t≥0 be a sequence of distributions which converge to a distribution
π. The ǫ-mixing time τ ∗

ǫ

(

(σt)t≥0

)

was defined in [10] to be the minimum T ≥ 0 such that
dTV (σt, π) ≤ ǫ for all t ≥ T , where dTV denotes total variation distance. For the joint
distribution of short cycle counts mentioned above, the ǫ-mixing time was shown using
coupling to be O(ǫ−1). It is often easy to find a coupling, but hard to find one that gives
an optimal bound. Our goal in this paper is to show that the upper bound achieved by
coupling in [10] is tight, in the sense that the ǫ-mixing time is not o(ǫ−1).

The proof focusses on the number of 3-cycles. During the pegging algorithm, the
number of 3-cycles undergoes a random walk with transitions that are related to those of
a Markov chain with limiting Poisson distribution. This was the technique used in the
coupling argument in [10] to bound the total variation distance. The lower bound we
obtain can be intuitively explained by “mistakes” made by this random walk that are of
order 1/t after t steps. Actually, in a sense it is easy to show that such mistakes do occur
occasionally, and the difficult part is to show that the mistakes do not usually cancel each
other out.

For simplicity, we do not consider the case of odd d here. We expect that our method
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would show the same result in that case, but it would be more complicated to check the
details.

2 Main result

We first recall the pegging algorithm to generate random regular graphs. In [10], the
pegging operation was defined on a d-regular graph as follows for d even.

• Choose a set F of d/2 pairwise non-adjacent edges uniformly at random.

• Delete the edges in F .

• Add a new vertex u, together with d edges joining u to each endvertex of the edges in
F .

The newly introduced vertex u is called the peg vertex, and we say that the edges deleted
are pegged. Figure 1 illustrates the pegging operation with d = 4.

Figure 1: Pegging operation when d = 4

A similar operation for d odd was also defined in [10], but in the present paper we will
consider only the case d even in detail. Thus, we henceforth assume that d is a fixed even
integer, and at least 4.

The pegging algorithm starts from a nonempty d-regular graph G0, for example, Kd+1,
and repeatedly applies pegging operations. For t > 0, the random graph Gt is defined
inductively to be the graph resulting when the pegging operation is applied to Gt−1.
Clearly, Gt contains nt := n0 + t vertices. We denote the resulting random graph process
(G0, G1, . . .) by P(G0, d).

For any fixed k, let Yt,d,k denote the number of k-cycles in Gt ∈ P(G0, d) and let
σt,d,k denote the joint distribution of Yt,d,3, . . . , Yt,d,k. Theorem 2.2 in [10] is essentially the
following.

Theorem 2.1 For any fixed k, Yt,d,3, Yt,d,4, . . . , Yt,d,k are asymptotically independent Pois-
son random variables with means µi = ((d − 1)i − (d − 1)2)/(2i), for 3 ≤ i ≤ k, and the
ǫ-mixing time of (σt,d,k)t≥0 is O(1/ǫ).

The main result of this paper is that the ǫ-mixing time τ ∗
ǫ

(

(σt,d,k)t≥0

)

is not o(1/ǫ). In
other words, there exists c > 0 such that τ ∗

ǫ

(

(σt,d,k)t≥0

)

> c/ǫ for arbitrarily small ǫ > 0.
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Theorem 2.2 For fixed G0 and k ≥ 3, the ǫ-mixing time of the sequence of short cycle
joint distributions in P(G0) satisfies τ ∗

ǫ

(

(σt,d,k)t≥0

)

6= o (ǫ−1).

Let Po(µ3, . . . , µk) denote the joint distribution of independent Poisson random vari-
ables with means µi for 3 ≤ i ≤ k, where µi is as defined in Theorem 2.1. Note that
Theorem 2.1 essentially states that there exists a constant C > 0 such that for all ǫ
and t ≥ C/ǫ, dTV (σt,d,k,Po(µ3, . . . , µk)) ≤ ǫ. Putting ǫ = C/t and using the fact that
nt = n0 + t gives the following.

Corollary 2.1 For any fixed integer k ≥ 3, dTV (σt,d,k,Po(µ3, . . . , µk)) = O(n−1
t ).

We note here that the difficulty in proving results about the random process P(G0, d)
lies in the lack of existence of a simple model by which probabilities of events can be cal-
culated. Instead we are forced to find arguments that work with probabilities conditional
upon the graph Gt existing at time t. The basic relevant observation is that the total
number of ways to apply a pegging operation to Gt when d = 4 is

Nt = nt(2nt − 7) (2.1)

since this is the number of pairs of nonadjacent edges.

3 Proof of the theorem

We begin with a simple technical lemma that will be used several times in the remaining
part of the paper. The lemma holds for any c > 0 and p, though in our application we
need only the case that p < c.

Lemma 3.1 Let c > 0, p, a and ρ be constants with p < c. If (an)n≥1 is a sequence of
nonnegative real numbers with a1 bounded, such that

an+1 =
(

1 − cn−1 + O(n−2)
)

an + ρn−p + γ(n)

for all n ≥ 1, then

an =

{ (

ρ/(c − p + 1)
)

n−p+1 + O(n−p) if γ(n) = O(n−(p+1)),
(

ρ/(c − p + 1)
)

n−p+1 + o(n−p+1) if γ(n) = o(n−p).

Proof. When γ(n) = O(n−(p+1)), we have

an+1 = exp
(

−
c

n
+ O(n−2)

)

an +
ρ

np
+ O(n−(p+1)). (3.1)
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Iterating this gives

an = a1 exp

(

−
n−1
∑

i=1

c

i
+ O(i−2)

)

+
n−1
∑

i=1

exp

(

−
n−1
∑

j=i+1

c

j
+ O(j−2)

)

( ρ

ip
+ O(i−(p+1))

)

= a1 exp (−c log n + O(1)) +

n−1
∑

i=1

exp
(

−c log(n/i) + O(i−1)
)

( ρ

ip
+ O(i−(p+1))

)

= O(n−c) +

n−1
∑

i=1

ρic−p

nc

(

1 + O(i−1)
)

=
ρ

(c − p + 1)
n−p+1 + O(n−p).

When γ(n) = o(n−p), by simply modifying the above computation we obtain

an = O(n−c) +
n−1
∑

i=1

ρic−p

nc
(1 + o(1)) =

ρ

(c − p + 1)
n−p+1 + o(n−p+1).

Lemma 3.1 follows.

Define Ψ(i, r) to be the set of graphs with i vertices, minimum degree at least 2,
and excess r, where the excess of a graph is the number of edges minus the number of
vertices. Define Wt,i,r to be the number of subgraphs of Gt in Ψ(i, r). The following
lemma was proven in [10] and is useful in this paper to bound the expected numbers of
specific subgraphs.

Lemma 3.2 [10, Lemma 3.3] For fixed i > 0 and r ≥ 0,

EWt,i,r = O(n−r
t ).

Let [x]j denote the j-th falling factorial of x.

Lemma 3.3 For any fixed nonnegative integer j,

E([Yt,3]j) = 3j + O(n−1
t ).

Proof. Multiplying an equation near the end of the proof of [10, Lemma 3.5] by j! gives

E([Yt+1,3]j) −E([Yt,3]j) =
9j

nt
E([Yt,3]j−1) −

3j

nt
E([Yt,3]j) + O(n−2

t

(

1 + E(j[Yt,3]j−1)
)

.

We apply induction on j, starting with E([Yt,3]0) = 1. The error term is then simply
O(n−2

t ). Hence for any j ≥ 1,

E([Yt+1,3]j) =

(

1 −
3j

nt

)

E([Yt,3]j) +
9j · 3j−1

nt

+ O(n−2
t ).
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Applying Lemma 3.1 with c = 3j ≥ 3, ρ = 9j · 3j−1 and p = 1, we obtain the result
claimed.

For simplicity, we prove the main theorem for the case d = 4 in detail, and then at the
end discuss the case of fixed d > 4. We drop the notation d from the subscript of Yt,d,k

and σt,d,k as convenience in this case. By considering just the events measurable in the
σ-algebra generated by Yt,3, we see immediately that

dTV (σt,3, π3) ≤ dTV (σt,k, πk)

where πk is the limit of σt,k. Hence, it suffices to show that the ǫ-mixing time for σt,3,
which is the distribution of Yt,3, is not o(ǫ−1). For convenience, in the rest of the paper
we use the notation Yt to denote Yt,3.

Let C∗
4 denote the graph consisting of a 4-cycle plus a chord (i.e. K4 minus an edge),

and let Wt denote the number of subgraphs of Gt that are isomorphic to C∗
4 . Lemma 3.2

implies that a.a.s. Wt = 0. That is, a.a.s. all triangles are isolated, where an isolated
triangle is a 3-cycle that shares no edges with any other 3-cycle. We also need more
information on the distribution of the number of isolated triangles in the presence of
one copy of C∗

4 . In the following lemma, we show that this has the same asymptotic
distribution as Yt. This distribution is to be expected, since the creation of a copy of C∗

4

will leave an asymptotically Poisson number of isolated triangles. Until the C∗
4 disappears

due to some pegging operation, this Poisson number of isolated triangles will undergo
transitions with similar rules to Yt and will therefore remain asymptotically Poisson.
Instead of fleshing this argument out into a proof, it seems simpler to provide a complete
argument using the method of moments, although this conceals the coincidence to a
greater extent.

Lemma 3.4 Conditional on Wt = 1, the random variable Yt−2 has a limiting distribution
that is Poisson with mean 3.

Proof. Let Ut,j denote [Yt − 2]jI{Wt = 1}, i.e. the product of the j-th falling factorial
of Yt − 2 and the indicator random variable of the event that Wt = 1. Note that if we can
show

E(Ut,j) → 3j P(Wt = 1), (3.2)

then E([Yt − 2]j | Wt = 1) → 3j. Lemma 3.4 then follows by the method of moments
applied to the probability space obtained by conditioning on Wt = 1. So we only need
to compute P(Wt = 1) and E(Ut,j). We show that P(Wt = 1) = 27/(4nt) + O(n−2

t ), and
show by induction on j that

E(Ut,j) =
27

4nt
3j + O(n−2

t ), (3.3)

for any integer j ≥ 0. This gives (3.2) as required.
Consider P(Wt = 1) first. Our way of estimating this quantity is by computing

separately the expected numbers of copies of C∗
4 that are created, or destroyed, in each

step. There are two ways to create a C∗
4 . One way is through the creation of a new triangle
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which shares an edge with an existing triangle, which we will call C. This requires two
edges adjacent to different vertices of C (but not being edges of C) to be pegged. This is
illustrated in Figure 2, where v is the peg vertex, and the two dashed edges e1 and e2 are
pegged. Given C, if C is an isolated triangle, there are exactly 12 ways to choose such
two edges. Otherwise, C is part of an existing C∗

4 and the number of pegging operations
using such a type of C is O(Wt). Overall, the expected number of C∗

4 created in this way
is therefore

(

12Ŷt + O(Wt)
)

/Nt, where Ŷt is the number of isolated triangles in Gt. The
other way of creating a C∗

4 from a triangle C is as illustrated in Figure 3, where e1 is
an edge in C, and e2 is incident with some vertex of C, but not adjacent to e1. Given
C, there are 3 ways to choose e1, and for each chosen e1, there are 2 ways to choose e2.
Hence, there are 6 ways to choose the pair (e1, e2), and the expected number of C∗

4 created
in this way is 6Yt/Nt.

1

e2 e2

e

v

e1

Figure 2: pegging operation to create a C∗
4 , first case

v

e e ee 2

1
2

1

Figure 3: pegging operation to create a C∗
4 , second case

Clearly Yt = Ŷt + O(Wt). So the expected number of C∗
4 created in each step is

18Ŷt/Nt + O(Wt/Nt) = 9Yt/n
2
t + O(n−3

t ) + O(Wtn
−2
t ).

The expected number of C∗
4 destroyed in each step is easily seen to be 5Wt(2nt −

7)/Nt = 5Wt/nt. Thus

E(Wt+1 − Wt | Wt) =
9Yt

n2
t

−
5Wt

nt
+ O(Wtn

−2
t + n−3

t ).

Taking expected values and using the tower property of conditional expectation, this gives

EWt+1 − EWt =
9EYt

n2
t

−
5EWt

nt
+ O(EWtn

−2
t + n−3

t ).
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Since EYt = 3 + O(n−1
t ), and EWt = O(n−1

t ), this yields

EWt+1 =

(

1 −
5

nt

)

EWt +
27

n2
t

+ O(n−3
t ).

Applying Lemma 3.3 and Lemma 3.1 with c = 5, p = 2 and ρ = 27, we obtain that
EWt = 27/(4nt) + O(n−2

t ). Since P(Wt = i) ≤ E([Wt]i) = O(n−i
t ) by Lemma 3.2,

P(Wt = 1) = 27/(4nt) + O(n−2
t ). (3.4)

Next we compute E(Ut,j) by induction on j ≥ 0. The base case is j = 0, for which we
begin by noting that E(Ut,0) = P(Wt = 1) = 27/(4nt) + O(n−2

t ) as shown above. Now
assume that j ≥ 1 and that (3.3) holds for all smaller values of j. Given the graph Gt,
the expected change in Ut,j/j! when t changes to t + 1 is, as explained below,

E

(

Ut+1,j

j!
−

Ut,j

j!

∣

∣

∣

∣

Gt

)

=

((

9 + O((1 + Yt + Yt,4)/nt)

nt

)

[Yt − 2]j−1

(j − 1)!

)

I{Wt = 1}

+

(

9

n2
t

+ O
(

n−3
t

)

)

(j + 1)[Yt]j+1

(j + 1)!
I{Wt = 0}

+f(j, Gt)

−

(

(3j + 5)[Yt − 2]j/j!

nt
+ O(n−2

t )

)

I{Wt = 1}, (3.5)

where f(j, Gt) denotes some assorted “error” terms described below. Note that, given
Wt = 1, [Ut,1]j/j! is simply the number of subgraphs of Gt containing precisely j isolated
triangles, so we may just compute the change in the number of such subgraphs in those
cases where no copies of C∗

4 are created or destroyed. The first term on the right in (3.5)
is the positive contribution when Wt = 1 and the pegging step creates one new isolated
triangle. Any set of j−1 isolated triangles, together with the new triangle, can potentially
form a new set of j isolated triangles. A new triangle is created from pegging the two
end-edges of a 3-path, the number of which in Gt is 4 · 3 · 3 · nt/2 + O(Yt) = 18nt + O(Yt).
Dividing this by Nt gives rise to the main term. The error term O(1 + Yt + Yt,4) accounts
for choices of such edges which, when pegged, create two or more triangles (when both
edges pegged are contained in a 4-cycle) or cause some existing triangle, including possibly
the C∗

4 , to be destroyed, or cause the new triangle or an existing one not to be isolated.
The second term on the right in (3.5) accounts for the contribution when Wt = 0

due to the creation of a C∗
4 , when the set of j isolated triangles are all pre-existing. We

have noted above that a new C∗
4 can be created only from a triangle. So, when Wt = 0, a

positive contribution to Ut+1,j−Ut,j can arise from each set of j+1 isolated triangles, such
that a new C∗

4 comes from pegging near one of these triangles as in Figure 2 and 3. There
are [Yt]j+1/(j + 1)! different (j + 1)-sets of triangles, and for each (j + 1)-set, there are
j +1 ways to choose one particular triangle. There are 18 ways to peg two edges to create
a C∗

4 from any given triangle. This, together with Nt = 2n2
t (1 + O(n−1

t )), explains the
significant part of this term and the first error term. There is also a correction required
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when the pegging that creates a C∗
4 also “accidentally” destroys one or more of the other

triangles in the (j + 1)-set. This occurs only if the two triangles destroyed are near each
other, so they create a small subgraph with more edges than vertices. This correction
term is a sum of terms of the form [Yt]j′Wt,i′,1/n

2
t for a few different values of i′ and j′,

whose expected value is O(n−3
t ).

The third term, f(j, Gt), is a function that accounts for all other positive contributions,
i.e. counts all other cases of newly created sets of j isolated triangles together with a copy
of C∗

4 . The situations included here are those in which

(a) Wt = 1 and j′ ≥ 2 new triangles are created, which only happens if both edges
pegged are contained in a 4-cycle, contributing O(I{Wt = 1}[Yt]j−j′Yt,4/n

2
t ), or

(b) Wt = 1, the copy of C∗
4 is destroyed (leaving behind a new isolated triangle) and

simultaneously another is created, contributing O(I{Wt = 1}[Yt]j−1/n
2
t ) or

(c) Wt ≥ 2, and all but one of the copies of C∗
4 are destroyed, possibly creating a number

of isolated triangles and possibly destroying one. This contributes terms of the form
O(I{Wt ≥ 2}[Yt]j′/nt) for various j′ ≤ j + 1, or

(d) Wt = 0, a C∗
4 is created along with an isolated triangle, which is contained in the

set of j isolated triangles. When this happens, there must be a triangle sharing
a common edge with a 4-cycle, so that the triangle turns into C∗

4 when two edges
of the 4-cycle are pegged, whilst the other edge of the 4-cycle together with two
new edges forms an isolated triangle. Figure 4 illustrates how this works. This case
contributes O(I{Wt = 0}[Yt]j−1Wt,5,1/n

2
t ).

eee

e e1

2

1

2

Figure 4: pegging operation to create a C∗
4 and a new triangle.

We note here for later use that each of these cases involves a subgraph with excess at
least 1, and at least 2 in the case (c). For instance I{Wt = 1}[Yt]j−j′Yt,4 ≤ Wt[Yt]j−j′Yt,4

counts subgraphs with j−j′ distinct triangles, a 4-cycle and a copy of C∗
4 . Such subgraphs

have at most 3(j − j′) + 8 vertices and excess at least 1. By Lemma 3.2, the expected
number of such subgraphs is O(n−1

t ). Using this argument, we find that E(f(j, Gt)) =
O(n−3

t ).
The last term in (3.5) accounts for the negative contribution to Ut+1,j − Ut,j . Let Fi

be the class of subgraphs consisting of i isolated triangles, for some fixed i. Then Ut,j/j!
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counts the number of copies of subgraphs of Gt that are contained in Fj if Wt = 1, and is
counted as 0 if Wt 6= 1. The negative contribution comes when an edge contained in some
copy of a member of Fj is destroyed, or an edge contained in the C∗

4 is destroyed. In the
first case, each copy of an f ∈ Fj in Gt+1 that is destroyed contributes −1. The number of
subgraphs of Gt that are in Fj is [Yt−2]j/j!, and for each copy there are 3j ways to choose
an edge. Hence the expected contribution of this case is −3j[Yt−2]j/(j!nt). In the second
case, the destruction of C∗

4 kills the contribution of any copy of f ∈ Fj to Ut+1,j , since
Wt+1 becomes 0. Hence the negative contribution is −[Yt − 2]j/j!, the number subgraphs
in Fj. There are 5 edges in C∗

4 , hence the probability that the C∗
4 is destroyed is 5/nt. So

the expected negative contribution by destroying the C∗
4 is −5[Yt − 2]j/(j!nt).

Taking expectation of both sides of (3.5) and using the tower property of conditional
expectation, we have

E

(

Ut+1,j

j!

)

− E

(

Ut,j

j!

)

=
9

nt
E

(

Ut,j−1

(j − 1)!

)

+
9(j + 1)

n2
t

E

(

[Yt]j+1I{Wt = 0}

(j + 1)!

)

−
3j + 5

nt
E

(

Ut,j

j!

)

+ O(n−3
t ).

Note the error term O(n−3
t ) includes E(f(j, Gt)) (as estimated above), as well as E((1+Yt+

Yt,4)[Yt − 2]j−2I{Wt = 1}/(j − 2)!n2
t ), E([Yt]j+1I{Wt = 0}/(j!n3

t )) and E(I{Wt = 1}/n2
t ).

This bound holds because Yt[Yt − 2]j−2I{Wt = 1}/(j − 2)! counts subgraphs with j − 1
triangles and a copy of C∗

4 , Yt,4[Yt−2]j−2I{Wt = 1}/(j−2)! counts subgraphs with one 4-
cycle, j−1 triangles and a copy of C∗

4 , and [Yt]j+1I{Wt = 0}/j! counts subgraphs with j+1
triangles, and hence by Lemma 3.2 E((1+Yt+Yt,4)[Yt−2]j−2I{Wt = 1}/(j−2)!) = O(n−1

t ),
E([Yt]j+1I{Wt = 0}/j!) = O(1), and E(I{Wt = 1}) = P(Wt = 1) = O(n−1

t ).
Clearly for all fixed j ≥ 0,

E([Yt]jI{Wt = 0}) = E([Yt]j + O([Yt]jI{Wt ≥ 1})) = E([Yt]j) + O(E([Yt]jWt)). (3.6)

Hence by Lemma 3.3 we have E([Yt]jI{Wt = 0}) = 3j+O(n−1
t ). Together with E(Ut,j−1) =

27/(4nt)3
j−1 + O(n−2

t ) by the induction hypothesis, we derive

E(Ut+1,j/j!) =

(

1 −
3j + 5

nt

)

E(Ut,j/j!) +
9

nt
·

27

4nt
·

3j−1

(j − 1)!
+

9

n2
t

·
3j+1

j!
+ O(n−3

t ).

By Lemma 3.1 we obtain (3.3) as required.

Proof of Theorem 2.2: As mentioned above, it is enough to show that the ǫ-mixing
time for σt,3, i.e. the distribution of Yt, is not o(ǫ−1).

A random walk (Xt)t≥0 was defined in [10] as follows, and was used to derive the
upper bound of the ǫ-mixing time by the coupling technique. Define Bt,3 := {i ∈ Z+ :
(9 + 3i)/nt ≤ 1}, and the boundary of Bt,3 to be ∂Bt,3 := {i ∈ Bt,3 : i + 1 /∈ Bt,3}. The
notation w.p. denotes “with probability.”
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For Xt ∈ Bt,3 \ ∂Bt,3,

Xt+1 =







Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt − 9/nt

Xt + 1 w.p. 9/nt.

For Xt ∈ ∂Bt,3,

Xt+1 =

{

Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt.

For Xt /∈ Bt,3,
Xt+1 = Xt w.p. 1.

As was observed in [10], the Poisson distribution with mean 3, Po(3), is a stationary
distribution of the Markov chain (Xt)t≥0. Let the random walk Xt be defined as above and
X0 take the stationary distribution Po(3), so Xt has the same distribution for all t ≥ 0.
Let (Xt)t≥0 walk independently of (Yt)t≥0 as generated by the graph process (Gt)t≥0. We
aim to estimate the total variation distance between Yt and Xt.

Define δt = P(Xt = 0) −P(Yt = 0). Then

dTV (Xt, Yt) ≥ |δt|.

From the definition of δt, we have

δt+1 = P(Xt = 0)P(Xt+1 = 0 | Xt = 0) −P(Yt = 0)P(Yt+1 = 0 | Yt = 0)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0) −P(Yt 6= 0)P(Yt+1 = 0 | Yt 6= 0). (3.7)

Without loss of generality, we may assume that n0 ≥ 9. Then from the transition
probability of Xt we have

P(Xt+1 6= 0 | Xt = 0) =
9

nt
for all t ≥ 0. (3.8)

Now we estimate P(Yt+1 6= 0 | Yt = 0). We consider the creation of a new triangle.
Given an edge e of Gt, a new triangle is created containing e if and only if the two pegged
edges e1 and e2 are both adjacent to e. Of course, in a view of the definition of pegging,
they must be incident with different end-vertices of e. Since Gt is 4-regular, the number
of ways to choose such e1 and e2 is precisely 9 conditional on Yt = 0. It follows that the
expected number of new triangles created is 9 · 2nt/Nt. By (2.1),

E(Yt+1 | Yt = 0) =
9 · 2nt

nt(2nt − 7)
=

9

nt
+

63

2n2
t

+ O(n−3
t ).

Conditional on Yt = 0, there is no chord in any 4-cycle. Then it is impossible to create
more than two triangles in a single step. Hence P(Yt+1 ≥ 3 | Yt = 0) = 0. Hence we
obtain

P(Yt+1 = 1 | Yt = 0) + 2P(Yt+1 = 2 | Yt = 0) =
9

nt
+

63

2n2
t

+ O(n−3
t ). (3.9)
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To create two triangles in a single step, it is required to peg two non-adjacent edges
both contained in a 4-cycle. For any 4-cycle, there are precisely two ways to choose two
nonadjacent edges, so

P(Yt+1 = 2 | Yt = 0, Yt,4 = j) =
2j

Nt
=

j(1 + o(1))

n2
t

,

and thus

P(Yt+1 = 2 | Yt = 0) =

∞
∑

j=0

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0). (3.10)

By Corollary 2.1, Yt and Yt,4 are asymptotically independent Poisson, with means 3 and
9 respectively, and the total variation distance between the joint distribution of (Yt, Yt,4)
and its limit is at most O(n−1

t ). So P(Yt,4 = j | Yt = 0) = e−99j/j! + O(n−1
t ). Hence

∑

j≤log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) =
9

n2
t

+ o(n−2
t ). (3.11)

It was shown in Theorem 2.1 of [10], that EY 3
t,4 = O(1). By Corollary 2.1, the total

variation distance between the distribution of Yt and its limit Po(3) is O(n−1
t ). So P(Yt =

0) = e−3 + O(n−1
t ). Then by the Markov inequality,

P(Yt,4 ≥ j | Yt = 0) = P(Y 3
t,4 ≥ j3 | Yt = 0) ≤

1

j3
E(Y 3

t,4 | Yt = 0) = O(1/j3).

Thus
∑

j>log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) = o(n−2
t ). (3.12)

By (3.9)–(3.12),

P(Yt+1 = 2 | Yt = 0) =
9

n2
t

+ o(n−2
t ), (3.13)

P(Yt+1 = 1 | Yt = 0) =
9

nt
+

27

2n2
t

+ o(n−2
t ), (3.14)

P(Yt+1 6= 0 | Yt = 0) =
9

nt
+

45

2n2
t

+ o(n−2
t ). (3.15)

From (3.7), (3.8) and (3.15),

δt+1 = P(Xt = 0)

(

1 −
9

nt

)

− (P(Xt = 0) − δt)

(

1 −
9

nt
−

45

2n2
t

+ o(n−2
t )

)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0) − (P(Xt 6= 0) + δt)P(Yt+1 = 0 | Yt 6= 0)

= δt

(

1 −
9

nt
+ O(n−2

t ) −P(Yt+1 = 0 | Yt 6= 0)

)

+P(Xt 6= 0) (P(Xt+1 = 0 | Xt 6= 0) − P(Yt+1 = 0 | Yt 6= 0))

+P(Xt = 0)

(

45

2n2
t

+ o(n−2
t )

)

. (3.16)
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It only remains to estimate P(Xt+1 = 0 | Xt 6= 0) and P(Yt+1 = 0 | Yt 6= 0). From the
definition of the random walk of (Xt)t≥0,

P(Xt+1 = 0 | Xt 6= 0) =
P(Xt = 1)P(Xt+1 = 0 | Xt = 1)

P(Xt 6= 0)

=
3

nt

P(Xt = 1)

P(Xt 6= 0)
. (3.17)

The calculation of P(Yt+1 = 0 | Yt 6= 0) is not so straightforward. Given any two distinct
edges ei and ej , we can define a walk ei, el1 , el2 , . . . , elk , ej, such that every two consecutive
edges appearing in the walk are adjacent. The distance of ei and ej is defined to be the
length of the shortest walk between ei and ej. For instance, if ei and ej are adjacent,
then their distance is 1. Conditional on Yt = 1, i.e. the number of triangles in Gt being
1, if this triangle is destroyed without creating any new triangles, then one of the edges
contained in the triangle must be pegged. Call it e1. The other edge e2 being pegged must
be chosen from those whose distance from e1 is at least 3. Let R be the rare event that
at least one 4-cycle shares a common edge with this triangle, and R be the complement
of R. There are 3 ways to choose e1 and 21 edges within distance 2 from e1, including e1

itself, if R occurs. Otherwise, there are in any case O(1) edges within distance 2 from e1.
Hence

P(Yt+1 = 0 | Yt = 1) =
3(2nt − 21)

Nt
P(R | Yt = 1) +

3(2nt − O(1))

Nt
P(R | Yt = 1).

Note that the occurrence of R implies that Wt,5,1 ≥ 1. So by Lemma 3.2,

P(R | Yt = 1) ≤
P(R)

P(Yt = 1)
= O(n−1

t ).

Noting that (2.1) implies 1/Nt = 1/(2n2
t )(1 + 7/2nt + O(n−2

t )),

P(Yt+1 = 0 | Yt = 1) =
3

nt

−
21

n2
t

+ O(n−3
t ). (3.18)

Given Yt = j for any j ≥ 3, to destroy all j triangles in a single step, it is required either
to peg an edge contained in j triangles, and hence a small subgraph with excess at least
2, or to peg two edges such that one edge is contained in at least one triangle, and the
other edge contained in at least two triangles. The latter is a small subgraph with excess
at least 1. Both cases imply that for j ≥ 3,

P(Yt+1 = 0 | Yt = j) = O(n−3
t ). (3.19)

Now we only need to compute P(Yt+1 = 0 | Yt = 2). To destroy two triangles in a single
step, either the two triangles are isolated and the algorithm pegs two edges which are
contained in two triangles, or the two triangles share a common edge and the algorithm
pegs the common edge, i.e. the chord of a C∗

4 . Conditional on Yt = 2, the number of C∗
4
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can be either 0 or 1. Let Wt denote the number of C∗
4 as before. If Wt = 0, the two

triangles are isolated, and then two edges contained in different triangles are pegged, so
P(Yt+1 = 0 | Yt = 2, Wt = 0) = 9/Nt. If Wt = 1, then the algorithm pegs the chord of the
C∗

4 . So P(Yt+1 = 0 | Yt = 2, Wt = 1) = (2nt − 7)/Nt. Thus

P(Yt+1 = 0 | Yt = 2) =
9

Nt

(1 − P(Wt = 1 | Yt = 2)) +
2nt − 7

Nt

P(Wt = 1 | Yt = 2)

=
9

Nt

+
2nt − 16

Nt

P(Wt = 1 | Yt = 2). (3.20)

By Lemma 3.4, P(Yt = 2 | Wt = 1) = e−3 + o(1) and therefore using (3.4),

P(Wt = 1 | Yt = 2) =
P(Yt = 2 | Wt = 1)P(Wt = 1)

P(Yt = 2)
=

3 + o(1)

2nt

+ O(n−2
t ).

Combining this with (3.20) and (2.1), we have

P(Yt+1 = 0 | Yt = 2) =
6 + o(1)

n2
t

+ O(n−3
t ). (3.21)

From (3.18), (3.19) and (3.21) we have

P(Yt+1 = 0 | Yt 6= 0) =

(

3

nt
−

21

n2
t

+ O(n−3
t )

)

P(Yt = 1)

P(Yt 6= 0)
+

6 + o(1)

n2
t

P(Yt = 2)

P(Yt 6= 0)
+ O(n−3

t ).

(3.22)
By Corollary 2.1, dTV (Xt, Yt) = O(n−1

t ), and so (3.17) gives

P(Xt+1 = 0 | Xt 6= 0) − P(Yt+1 = 0 | Yt 6= 0)

=
3

nt

(

P(Xt = 1)

P(Xt 6= 0)
−

P(Yt = 1)

P(Yt 6= 0)

)

+
21

n2
t

P(Xt = 1)

P(Xt 6= 0)
−

6 + o(1)

n2
t

P(Xt = 2)

P(Xt 6= 0)
+ O(n−3

t )

=
3

nt
O(dTV (Xt, Yt)) +

36e−3

(1 − e−3)n2
t

+ o(n−2
t ).

Combining this with (3.16) and (3.22) gives

δt+1 ≥ δt(1 − γ(t)) +
3(1 − e−3)

nt

O(dTV (Xt, Yt)) +
117e−3

2n2
t

+ o(n−2
t ), (3.23)

where γ(t) = 9/nt +P(Yt+1 = 0 | Yt 6= 0)+O(n−2
t ) ≥ 9/nt +O(n−2

t ). For a contradiction,
assume that dTV (Xt, Yt) = o(n−1

t ). Then (3.23) gives

δt+1 ≥ δt(1 − γ(t)) +
117e−3

2n2
t

+ w(nt),

for some function w(nt) such that w(nt) = o(n−2
t ).
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Let (at)t≥0 be defined as a0 = δ0 and for all t ≥ 0,

at+1 = at(1 − γ(t)) +
117e−3

2n2
t

+ w(nt).

Clearly δ0 ≥ a0. Assume δt ≥ at for some t ≥ 0. Then

δt+1 ≥ δt(1 − γ(t)) +
117e−3

2n2
t

+ w(nt) ≥ at(1 − γ(t)) +
117e−3

2n2
t

+ w(nt) = at+1.

Hence δt ≥ at for all t ≥ 0. By Lemma 3.1, at = Θ(n−1
t ). Hence δt = Ω(n−1

t ), which
contradicts the assumption that dTV (Xt, Yt) = o(n−1

t ). So dTV (Yt,Po(3)) is not o(n−1
t ).

Clearly
dTV (Yt,k,Po(µ3, . . . , µk)) ≥ dTV (Yt,Po(3)),

where Po(µ3, . . . , µk) is the joint independent Poisson distribution with means µ3, . . . , µk,
and µi is as stated in Theorem 2.1, for all 3 ≤ i ≤ k. So dTV (Yt,k,Po(µ3, . . . , µk)) is not
o(n−1

t ).

The analysis for even d > 4 is analogous but more complicated. The random walk
(Xt)t≥0 and (Yt)t≥0 are defined similarly, as follows. First, define Bt,3 := {i ∈ Z+ : ((d/2−
1)(d− 1)2 +3i)/nt ≤ 1}, and the boundary of Bt,3 to be ∂Bt,3 := {i ∈ Bt,3 : i+1 /∈ Bt,3}.

For Xt ∈ Bt,3 \ ∂Bt,3,

Xt+1 =







Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt − (d/2 − 1)(d − 1)2/nt

Xt + 1 w.p. (d/2 − 1)(d − 1)2/nt.

For Xt ∈ ∂Bt,3,

Xt+1 =

{

Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt.

For Xt /∈ Bt,3,
Xt+1 = Xt w.p. 1.

It was shown in [10] that Po(µ), the Poisson distribution with mean µ = ((d− 1)3 − (d−
1)2)/6, is a stationary distribution of the Markov chain (Xt)t≥0. The variable δt is defined
the same as before. In order to bound δt, we need to compute

P(Yt+1 6= 0 | Yt = 0), P(Yt+1 = 0 | Yt 6= 0).

The calculation follows exactly the same path as in the case d = 4, though much more
complicated. As an example, we explain the calculation of Nt, the number of possible
pegging operations at step t. We also show as another example, the calculation of At, the
number of pegging operations which create a triangle at step t, conditional on the number
of triangles in Gt being 0.

Since Gt is d-regular, the number of edges in Gt is mt = dnt/2. At step t + 1, the
algorithm chooses d/2 non-adjacent edges. There are mt ways to choose the first edge,
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and mt − (2d− 1)i ways to choose the (i+1)-th edge for 1 ≤ i ≤ d/2− 1, if we ignore the
case that two or more of the previous i edges chosen are of distance 2, which will have a

contribution of O
(

m
d/2−2
t

)

to the total count. Hence,

Nt =
1

(d/2)!

(

d/2−1
∏

i=0

(mt − (2d − 1)i) + O
(

m
d/2−2
t

)

)

=
m

d/2
t

(d/2)!

(

1 −
d

4

(

d

2
− 1

)

(2d − 1)m−1
t + O(m−2

t )

)

.

Conditional on Yt = 0, if a triangle is created that contains an edge e ∈ Gt, the pegging
algorithm pegs two edges e1 and e2 that are adjacent to e but at different end-vertices of
e, together with d/2− 2 other non-adjacent edges. There are mt options for the choice of
e, and for each fixed e, there are exactly (d − 1)2 ways to choose e1 and e2, since Yt = 0.
Thus the number of ways to create a triangle when Yt = 0 is

At = mt(d − 1)2 1

(d/2 − 2)!

(

d/2−1
∏

i=2

(mt − (2d − 1)i + 1) + O
(

m
d/2−2
t

)

)

=
(d − 1)2m

d/2−1
t

(d/2 − 2)!

(

1 −

(

(2d − 1)

(

d

2
+ 1

)(

d

4
− 1

)

−

(

d

2
− 2

))

m−1
t + O(m−2

t )

)

.

Hence the expected number of triangles created, conditional on Yt = 0, is,

At

Nt

=
(d − 1)2

(

d
2
− 1
)

nt

+
(d − 1)2(d − 2)

dn2
t

(

5d

2
− 3

)

+ O(n−3
t ).

We omit the calculational details of the probabilities of other events. Table 1 gives the
significant terms in the probabilities of all events required to compute P(Yt+1 6= 0 | Yt = 0)
and P(Yt+1 = 0 | Yt 6= 0), as examined in detail in the special case when d = 4. The
values of the constants a1, a2, µ, k1, k2 in Table 1 are given in Table 2.

Hence

δt+1 = δt (1 − γ(t))

+ P(Xt 6= 0)

(

3

nt

O(dTV (Xt, Yt)) −
k1

n2
t

P(Xt = 1)

P(Xt 6= 0)
−

k2

n2
t

P(Xt = 2)

P(Xt 6= 0)
+ O(n−3

t )

)

+ P(Xt = 0)
a1 − a2

n2
t

+ o(n−2
t )

= δt (1 − γ(t)) +
O(dTV (Xt, Yt))

nt
+ e−µ

(

a1 − a2 − µk1 −
µ2

2
k2

)

n−2
t + o(n−2

t ).

where γ(t) ≥ (d− 1)2(d/2− 1)/nt + O(n−2
t ) ≥ 9/nt +O(n−2

t ). We only need to show that

a1 − a2 − µk1 −
µ2

2
k2 6= 0.
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P(Yt+1 = 2 | Yt = 0) a2/n
2
t + o(n−2

t )

P(Yt+1 6= 0 | Yt = 0)
(d−1)2( d

2
−1)

nt
+ (a1 − a2)n

−2
t + o(n−2

t )

P(Yt+1 = 0 | Yt = 1) 3
nt

+ k1

n2
t

+ O(n−3
t )

P(Yt+1 = 0 | Yt = 2, Wt = 0) 9(d−2)
d

n−2
t + O(n−3

t )

P(Yt+1 = 0 | Yt = 2, Wt = 1) 1
nt

+ O(n−2
t )

P(Wt = 1) 3µ
4d

(d − 2)2(d − 1)n−1
t + O(n−2

t )

P(Yt+1 = 0 | Yt 6= 0)
(

3
nt

+ k1

n2
t

+ O(n−3
t )
)

P(Yt=1)
P(Yt 6=0)

+ k2

n2
t

P(Yt=2)
P(Yt 6=0)

+ O(n−3
t )

Table 1: Significant probabilities

By substituting the values of a1, a2, k1 and k2 in terms of d, and simplifying, we get

a1 − a2 − µk1 −
µ2

2
k2 = −

(d − 1)2(d − 2)(64 − 134d + 91d2 − 25d3 + 2d4)

8d
,

which has no integral roots but 1 and 2, so

a1 − a2 − µk1 −
µ2

2
k2 6= 0 for all even d ≥ 4.

Hence the ǫ-mixing time is not o(ǫ−1) for any even d ≥ 4.

4 Discussion

For any fixed d ≥ 3, it is well known that the random d-regular graphs with the uniform
distribution are d-connected and have diameter O(log n) a.a.s. (See [12] for terms and
facts not referenced here.) These properties are of central interest where the graphs
are used as communication networks. The first author determined the connectivity of
random regular graphs in P(G0, d) in [9], which supports the conjecture given in [10],
that the probability space of d-regular graphs in the uniform model is contiguous with
that of those generated by the pegging model. If the conjecture holds, it implies that the
random regular graphs in P(G0, d) are a.a.s. d-connected with diameter O(log n). In any
case, the logarithmic diameter is common among random networks with average degree
above 1. In the Erdős-Rényi model of random graphs, the components of the random
graph a.a.s. all have diameter O(logn) if the edge probability p is at least c/n for some
c > 1. Ferholz and Ramachandran [8] showed that the diameter of random sparse graphs
with given degree sequences is a.a.s. c(1 + o(1)) logn, when the degree sequences satisfy
some natural convergence conditions, and they determined the value of c. Bollobás and
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a1
(d−1)2(d−2)

d

(

5d
2
− 3
)

a2
2((d−1)4−(d−1)2)(d−2)+(d−1)4(d−2)(d−4)(d−6)

8d

c d
4

(

d
2
− 1
)

(2d − 1)

l 3 + 3(d − 2) + 2(d − 2)(d − 1)

µ (d−1)3−(d−1)2

6

k1
6c
d
− 6

d

((

d
2
− 1
)

l + 1
2
(2d − 1)

(

d
2
− 1
) (

d
2
− 2
))

k2
1
d

(

9(d − 2) + 3
2µ

(d − 1)(d − 2)2
)

Table 2: Value of the constants appearing in Table 1

Riordan [5] proved that the random graphs generated by the preferential attachment
model a.a.s. have diameter asymptotically log n/ log log n. We are currently studying the
diameter of the graphs generated by the pegging process P(G0).
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