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Abstract

In this paper, we show that in the random graph G(n, c/n), with high probability,
there exists an integer k̃ such that a subgraph of G(n, c/n), whose vertex set differs from
a densest subgraph of G(n, c/n) by O(log2 n) vertices, is sandwiched by the k̃ and the
(k̃ + 1)-core, for almost all sufficiently large c. We determine the value of k̃. We also
prove that (a), the threshold of the k-core being balanced coincides with the threshold
that the average degree of the k-core is at most 2(k − 1), for all sufficiently large k;
(b) with high probability, there is a subgraph of G(n, c/n) whose density is significantly
denser than any of its non-empty cores, for almost all sufficiently large c > 0.

1 Introduction

For any graph G and any positive integer k, the k-core of G is the maximum subgraph of
G with minimum degree at least k. The density of G, denoted by ρ(G), is defined by the
number of edges of G divided by the number of vertices in G. We say G is balanced if there
is no subgraph of G with density greater than G.

Let G(n, p) denote the binomial random graph on vertex set [n], which includes each edge
in Kn independently with probability p. The relevant range of p considered in this paper
is Θ(1/n); hence with high probability the density of G(n, p) is bounded. Let k ≥ 1 be a
fixed integer. In the work of determining the threshold of k-orientability of the random graph
G(n, c/n), done by Cain, Sanders and Wormald [3] and Fernholz and Ramachandran [5], it
was proved that the following three graph properties have the same sharp threshold: (i) the
(k + 1)-core has density at most k; (ii) no subgraph of the (k + 1)-core has density more
than k; (iii) no subgraph of G(n, c/n) has density more than k. (Note that the latter two
thresholds coincide trivially and the non-trivial part is that these two thresholds coincide
with the one in (i).) Given a graph G, let ρ∗(G) denote the density of a densest subgraph
of G. It is then natural to ask the question: “what is the threshold for ρ∗(G(n, c/n)) ≤ α,
where α is a given real number?” The work in [3, 5] answers this question if α is an integer,
but there is no answer otherwise. We can even further ask: “Where is the densest subgraph
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of G(n, c/n) and what is the distribution of the random variable ρ∗(G(n, c/n))?” Intuition
tells that ρ∗(G(n, c/n)) is likely to be “close to” (meaning allowing an o(1) error) the density
of the densest non-empty core of G(n, c/n). If that is the case, then we can easily deduce
the concentration of ρ∗(G(n, c/n)) and determine its asymptotic value by applying results
in [12], in which the density of each non-empty core of G(n, c/n) is determined. In fact, it
is true for certain values of c (see Proposition 2.2). However, we will prove that this is not
true in general. In fact, we will show that for almost all sufficiently large c, ρ∗(G(n, c/n)) is
significantly greater than the density of the densest core of G(n, c/n). The goal of this paper
is to answer the question of where the densest subgraph of G is, rather than gaining new
knowledge of ρ∗(G), for G ∼ G(n, c/n) (here and throughout the paper, G ∼ G(n, p) means
that G is random graph distributed as G(n, p)). We will show that for almost all sufficiently
large constants c > 0 (except that c lies in a countable set C, defined later), asymptotically

almost surely (a.a.s.) there are constant k̃ > 0 and a densest subgraph H of G(n, c/n) such

that H is contained in the k̃-core and H contains all but at most O(log3 n) vertices of the

(k̃ + 1)-core. Moreover, H is significantly denser than any non-empty core of G(n, c/n).
The key part of the proofs in [3] was to show that if a random (k+ 1)-core has density at

most k−ε, for some absolute constant ε > 0, then a.a.s. it does not contain any subgraph with
density more than k. In other words, the (k + 1)-core is “loosely” balanced, and the density
of a densest subgraph of G ∼ G(n, c/n) is close to the density of the (k + 1)-core by letting
ε→ 0. In our current work, we strengthen this result by showing that if k is sufficiently large,
then a.a.s. a random (k + 1)-core with density k − ε is “strictly” balanced, i.e. it contains
no denser subgraphs. We also prove that a.a.s. a random (k + 1)-core with density k + ε
is not balanced, when k is sufficiently large. (In fact, we will prove a stronger result. See
Theorem 2.4.) Therefore, the threshold of the (k + 1)-core being balanced coincides with the
threshold that the (k + 1)-core has density at most k.

Using the threshold for a random k-core being balanced, we chase the densest subgraph
of G(n, c/n) by first searching for its densest core. We will determine the value of k̃ such that

the densest core is either the k̃ or the (k̃ + 1)-core. Moreover, we will prove that, roughly

speaking, the k̃ and the (k̃ + 1)-core sandwich the densest subgraph of G(n, c/n). Given a
graph G, consider the graph sequence (G0, G1, . . . , G`), where G0 = G, Gk is the k-core of
G for every k ≥ 1, and ` is the largest integer such that G` is non-empty. Then this graph
process enumerates all non-empty cores of G. For every k ≥ 0, going from Gk to Gk+1,
vertices with relatively low degrees are removed. We would expect that the density of the
graphs Gk will first increase as k increases. For instance, if a graph has average degree greater
than 2k, then removing a vertex with degree at most k would increase the density of the
graph. This monotonicity will terminate before step t when the t-core becomes balanced.
If G0 ∼ G(n, c/n), t is a concentrated random variable whose value can be determined by
applying Theorem 2.4 (stated in Section 2). We use this information to determine which core
is the densest and then further determine where a densest subgraph of G0 should be located.

For future work, it is interesting to answer the question: “What is the structure of the
densest subgraph of G ∼ G(n, c/n), where is it located exactly and how dense it is?” Our
result in this paper shows that we only need to restrict our search to the subgraphs sandwiched
by the k̃ and the (k̃ + 1)-core. One possible approach is to consider the stripping process
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(G′0, G
′
1, . . . , G

′
τ ), where G′0 and G′τ are the k̃ and the (k̃ + 1)-cores of G and Gt is obtained

from Gt−1 by removing a vertex with minimum degree. What is the density of the densest
graph among the Gt and how close is it from a densest subgraph of G? Indeed, our proof
indicates that there is a graph Gt in the stripping process whose density is significantly denser
than any non-empty core of G. But we believe that none of these G′t is a densest subgraph
of G, even allowing an o(1) error. Thus, new techniques will be required to further study the
graph structures between two consecutive cores.

We state lower and upper bounds of ρ∗(G(n, c/n)) in Section 2 as a simple corollary of
our main results (for large c). Note that these bounds are not new. The previous work
in [3, 5] yields the same bounds, which also work for small c. These bounds are not tight.
Very little is known about this random variable, including the existence of the limit of its
expectation. In very special cases (see Proposition 2.2), this variable is concentrated and its
value is determined. This makes us believe that in general cases, not only the limit of its
expectation shall exist but the variable itself is likely to be concentrated.

2 Main results

Recall that for a given graph G, ρ(G) denotes the density of G and ρ∗(G) denotes the density
of a densest subgraph of G. Given an integer k, let Gk denote the k-core of G.

It is well known that given k ≥ 3, there is a constant ck > 0: for any c > ck, there exist two
constants αc,k and βc,k such that a.a.s. the k-core of G(n, c/n) contains αc,kn + o(n) vertices
and βc,kn + o(n) edges; for any c < ck, a.a.s. the k-core of G(n, c/n) is empty. This was
first proved by Pittel, Spencer and Wormald [12], and was later re-proved in several papers,
including Cain and Wormald [4], Kim [7] and Molloy [11]. The constants ck, αc,k and βc,k are
defined as follows.

For any integer k ≥ 0 and real λ ≥ 0, define

fk(λ) = e−λ
∑
i≥k

λi

i!
.

For any k ≥ 3, define

hk(µ) =
µ

fk−1(µ)
,

and let
ck = inf{hk(µ), µ > 0}.

For any c > ck, define µc,k to be the larger solution of hk = c, and define

αc,k = fk(µc,k), βc,k =
1

2
µc,kfk−1(µc,k). (2.1)

Let G(n,m) denote the random graph with n vertices and m edges, with uniform distribution.
The following theorem is from [12].
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Theorem 2.1 Let k ≥ 3 and c > 0 be fixed and suppose that m = cn/2. If c > ck then a.a.s.
G(n,m) has a non-empty k-core with αc,kn + o(n) vertices and βc,kn + o(n) edges. If c < ck
then a.a.s. the k-core of G(n,m) is empty.

Remark: It follows easily that the same conclusion holds in G(n, p) with p = c/n by condi-
tioning on the number of edges in G(n, p). A direct analogous statement for G(n, p) can also
be found in [7].

It is easy to see that ck is an increasing sequence and βc,k/αc,k is an increasing func-
tion of c > ck, given k ≥ 3. It is also easy to check that βc,k/αc,k → ∞ as c → ∞ and
limc→ck βc,k/αc,k < k− 1 (by using the precise estimate of ck and the calculation leading to it
in [13, Lemma 1]). Thus, it is valid to define c̃k to be the unique c satisfying βc,k/αc,k = k− 1
for every k ≥ 3. Define C = {c̃k : k ≥ 3}. It was shown in [3, 5] that for every k ≥ 3 and
every ε > 0, if the k-core Gk of G(n, c/n) has density less than k−1 (corresponding to c < c̃k),
then a.a.s. Gk contains no subgraph with density greater than k. The following proposition
follows by letting ε → 0 and by Theorem 2.1 together with a simple coupling argument (to
deal with the case that the density of the k-core is between k − 1− ε and k − 1 + ε). For the
complete proof of the proposition, refer to [8, Corollary 31].

Proposition 2.2 Let k ≥ 3 be fixed. If c = c̃k + o(1) and G ∼ G(n, c/n), then a.a.s.
ρ∗(G) = ρ(Gk) + o(1) = k − 1 + o(1).

Proposition 2.2 leads us to guess that the same conclusion holds for all c > c3 rather
than only for c ∈ C. Surprisingly, as we state in the next theorem, this is not true. Let
R0 = R+ \ {c̃k : k ≥ 3}, where R+ is the set of all positive real numbers. Clearly, R0 is
R+ except for a countable set of real numbers. Let {G(n)} and {H(n)} be two sequences of
graphs. We say G(n) is significantly denser than H(n), if there exists an absolute constant
η > 0 such that ρ(G(n)) ≥ ρ(H(n)) + η, for all sufficiently large n.

Theorem 2.3 For all sufficiently large c ∈ R0, a densest subgraph of G ∼ G(n, c/n) is
significantly denser than any non-empty core of G.

By Theorem 2.3, a densest subgraph H of G ∼ G(n, c/n), for almost all sufficiently large
c, cannot be any non-empty core of G. Moreover, H is likely to differ from every non-empty
core of G by at least, say, Θ(n) vertices. However, gaining information of which core is the
densest will help us to chase the densest subgraphs. The result in [3, 5] only compares ρ∗(Gk)
with k (instead of ρ(Gk)), if ρ(Gk) < k. Thus, it does not imply that Gk contains no denser
cores and also gives no information of which core is the densest. We strengthen their result
by proving that Gk is indeed a.a.s. balanced and thus contains no denser (k + 1)-core. Using
that, we further specify two cores and show that the densest core of G must be one of them.

Theorem 2.4 The threshold at which the k-core of G ∼ G(n, c/n) is balanced coincides with
the threshold at which the density of the k-core is at most k − 1, i.e. at c̃k, provided k is
sufficiently large. Moreover, if c > c̃k, then a.a.s. there exists H ⊆ Gk which is significantly
denser than Gk.
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Corollary 2.5 For all sufficiently large c ∈ R0, there exists an integer k̃ = k̃(c) and a real

d̃ = d̃(c) < k̃, such that a.a.s. the k̃-core is not balanced and the (k̃ + 1)-core is balanced in

G ∼ G(n, c/n) and ρ(Gk̃+1) = d̃+ o(1). Moreover, if the k-core is the densest core of G, then

a.a.s. k ∈ {k̃, k̃ + 1}.

Proof. Let k̃(c) denote the maximum integer k such that c > ck and βc,k/αc,k ≥ k − 1.
It is easy to check that ck is an increasing sequence and ck → ∞ as k → ∞. Thus, there
are only finitely many k’s such that ck < c. Moreover, βc,k/αc,k ≥ k − 1 holds for k = 3,

provided that c is sufficiently large. This verifies that k̃(c) is well defined for all sufficiently

large c. By Theorem 2.1 and the definition of k̃, and since c ∈ R0, there is d̃ = d̃(c) < k̃

such that a.a.s. the density of the (k̃+ 1)-core is d̃+ o(1), whereas the density of the k̃-core is

greater than k̃ − 1. A.a.s. the (k̃ + 1)-core is balanced whereas the k̃-core is not balanced by

Theorem 2.4. Suppose that the k-core is the densest core of G. Then, a.a.s. k ≤ k̃ + 1, since
a.a.s. the (k̃ + 1)-core is balanced. Since we have shown that a.a.s. ρ(Gk̃) > k̃ − 1, it follows

then that a.a.s. ρ(Gk) ≥ ρ(Gk̃) > k̃ − 1 since Gk is the densest core. We prove next that this

implies k ≥ k̃. Assume k ≤ k̃ − 1. Then, repeatedly removing all vertices of degree at most
k ≤ k̃ − 1 from Gk will only increase the density of the resulting graph as ρ(Gk) > k̃ − 1.
This means that ρ(Gk+1) > ρ(Gk), contradicting with Gk being the densest core. Therefore,

we have shown that a.a.s. k ≥ k̃. It follows then that a.a.s. k ∈ {k̃, k̃ + 1}.
Corollary 2.5 states that either the k̃ or the (k̃ + 1)-core is the densest core of G(n, c/n),

whereas Theorem 2.3 states that neither of them is the densest subgraph of G(n, c/n). In the
next theorem, we prove that there is a densest subgraph which is almost sandwiched by these
two cores. For any two sets A and B, let A∆B denote the symmetric difference of A and B,
i.e. A∆B = (A \B) ∪ (B \ A).

Theorem 2.6 Consider G ∼ G(n, c/n). For all sufficiently large c ∈ R0, a.a.s. ρ∗(G) ≤ k̃

and there exists Gk̃+1 ⊆ H ⊆ Gk̃ with ρ(H) = ρ∗(G) + O(log3 n/n), where k̃ = k̃(c) is
defined as in Corollary 2.5. Moreover, a.a.s. there exists a densest subgraph G′ of G, such
that |V (H)∆V (G′)| ≤ log2 n.

By Corollary 2.5, either Gk̃ or Gk̃+1 may be the densest core, even though it is not
clear which one is denser between these two cores. The following corollary, which follows
directly from Theorems 2.6 and 2.3, gives bounds of ρ∗(G(n, c/n)). As we commented in the
introduction, these bounds are not new.

Corollary 2.7 For all sufficiently large c ∈ R0, a.a.s.

max

{
βc,k̃
αc,k̃

,
βc,k̃+1

αc,k̃+1

}
≤ ρ∗(G(n, c/n)) ≤ k̃.

Note that the above bounds are not tight. We conjecture that ρ∗(G(n, c/n)) is concentrated
and has a limit as n→∞.
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Conjecture 2.8 There exists ρ∗ = ρ∗(c) such that a.a.s. ρ∗(G(n, c/n)) = ρ∗ + o(1).

In the proof of Theorems 2.4 and 2.6, we consider only large k and c to simplify the
analysis. However, we conjecture that the same conclusions hold for small k and c as well.

Conjecture 2.9 Theorem 2.4 holds for all k ≥ 2 and Theorem 2.6 holds for all c ∈ R0 with
c > c3.

3 Generating a random core

Given three positive integers n, m and k with 2m ≥ kn, let P(n,m, k) denote the probability
space of equiprobable functions f : [2m] → [n] such that |f−1(i)| ≥ k for every i ∈ [n]. Let
M(n,m, k) denote the random multigraph generated by representing each element i ∈ [n]
in P(n,m, k) as a vertex and each {f(2i − 1), f(2i)} as an edge for 1 ≤ i ≤ m. We say
M(n,m, k) is generated from P(n,m, k). An alternative way to generate M(n,m, k) is to
throw 2m balls uniformly at random into n bins, conditioned on that each bin receives at
least k balls. Take a uniform pairing of all balls. Represent each bin as a vertex and each
pair of balls as an edge. The latter way of generating M(n,m, k) is usually referred to as
the allocation-pairing model [4], a variation of the configuration model, first introduced by
Bollobás [1].

Let H(n,m, k) denote the probability space of M(n,m, k) conditioning on graphs being
simple. The following result was proved by Cain and Wormald [4].

Lemma 3.1 Let G ∼ G(n, c/n). Then for any k ≥ 0, conditional on the number of vertices
and edges of Gk being n′ and m′, we have Gk ∼ H(n′,m′, k).

By Lemma 3.1, we can analyse Gk by analysing H(n,m, k). Note that H(n,m, k) is
M(n,m, k) conditioned to simple graphs. It is relatively much easier to compute probabili-
ties of events in M(n,m, k) than in H(n,m, k). The following results allow us to translate
properties of M(n,m, k) to H(n,m, k).

Proposition 3.2 Let k ≥ 0 be a fixed integer. Assume m = O(n) and 2m ≥ kn. Then the
probability that a graph in M(n,m, k) is simple is Ω(1).

This proposition follows from [14, Theorem 3], which is an analog to the well known fact
that the probability that a graph in M(n,m, 0) is simple is Ω(1), proved by Chvátal [2].
Proposition 3.2 immediately yields the following useful corollary.

Corollary 3.3 Let k ≥ 0 be a fixed integer. Assume m = O(n) and 2m ≥ kn. Then for any
event An such that PM(n,m,k)(An) = 1− o(1), we have PH(n,m,k)(An) = 1− o(1).

We will use the following result from [4] to analyse the degree sequence of M(n,m, k).
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Lemma 3.4 Let j ≥ k be fixed and let Xj denote the number of vertices with degree j in
M(n,m, k), where 2m/n > k. Then a.a.s.

Xj = pk,2m/n(j)n+ o(n),

where

pk,b(j) = e−λb
λjb

fk(λb)j!
,

where b > k and λb is the positive root λ of λfk−1(λ)/fk(λ) = b.

The following corollary follows immediately.

Corollary 3.5 Let j ≥ k be fixed and let Xj denote the number of vertices with degree j in
M(n,m, k), where 2m/n > k. Then a.a.s. Xj = Θ(n).

4 Proof of Theorem 2.4

For a vertex set S, let d(S) denote the degree sum of vertices in S. Let t(S) denote the
number of edges contained in S, or the number of pairs with both end-points contained in S,
if the allocation-pairing model is under consideration.

Recall the definition of αc,k and βc,k in (2.1) and recall that c̃k denotes the unique c
satisfying βc,k/αc,k = k−1. Theorem 2.4 follows immediately from the following two theorems.

Theorem 4.1 Let k be a positive integer and assume c < c̃k. Then a.a.s. Gk ⊆ G ∼ G(n, c/n)
is balanced provided k is sufficiently large.

Theorem 4.2 Let k be a positive integer and assume c > c̃k. Then a.a.s. Gk ⊆ G ∼ G(n, c/n)
is not balanced provided k is sufficiently large. Moreover, there exists H ⊆ Gk which is
significantly denser than Gk.

We first prove Theorem 4.1. Consider the allocation-pairing model that generatesM(n,m(n), k).
Let p(q, t) denote the probability that there are at least t pairs among a given set of q points
in M(n,m(n), k). A special case of [9, Claim 5.9] gives the following lemma. As the proof is
short, we include this proof.

Lemma 4.3

p(q, t) ≤

{ (
eq(q − t)/2t(2m− 1)

)t
if (q − t)/(2m− 1) ≤ 1/2(

eq(q − 2t+ 1)/2t(2m− 2t+ 1)
)t

if (q − t)/(2m− 1) > 1/2.

Proof. Given a set of q points, there are at most(
q

2t

)
(2t)!

2tt!
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ways to locate t pairs within the given q points. Such t pairs form a partial pairing of the 2m
points. The probability that a given partial pairing with t pairs occurs is

t−1∏
i=0

1

2m− 1− 2i
.

So

p(q, t) ≤
(
q

2t

)
(2t)!

2tt!
·
t−1∏
i=0

1

2m− 1− 2i
,

which is at most∏t−1
i=0(q − i)

2tt!

t−1∏
i=0

q − t− i
2m− 1− 2i

≤

{ (
eq(q − t)/2t(2m− 1)

)t
if (q − t)/(2m− 1) ≤ 1/2(

eq(q − 2t+ 1)/2t(2m− 2t+ 1)
)t

if (q − t)/(2m− 1) > 1/2.

The following lemma was proved in [9].

Lemma 4.4 ([9, Corollary 5.4]) Let G ∼M(n,m(n), k) with 2m ≥ kn. For any 0 < δ < 1,
there exists N(δ) > 0 and 0 < α(δ) < 1 such that provided k > N , for any S ⊆ G with
|S| ≥ log2 n,

P(|d(S)− 2ρs| ≥ δ2ρs) < αρs,

where ρ = m(n)/n.

Next, we prove that a.a.s. all small subgraphs of G(n, c/n) are sparse.

Lemma 4.5 For any fixed k ≥ 0 and c > 0, there exists εc = 8/e3c2 such that a.a.s. there is
no S ⊆ G ∼ G(n, c/n) with |S| ≤ εcn and t(S) > 2|S|.

Proof. The expected number of S with |S| = s and t(S) > 2s is at most(
n

s

)(
s2/2

2s

)
(c/n)2s ≤

(en
s

)s (esc
4n

)2s
=

(
e3c2

16
· s
n

)s
.

Let εc = 8/e3c2. Then e3c2εc/16 = 1/2 and thus the expected number of S with |S| ≤ εcn
and t(S) > 2|S| is at most∑

s≤lnn

e3c2

16
· lnn

n
+

∑
lnn<s≤εcn

2−s = o(1).

Lemma 4.6 For any c > 0, the maximum degree in G(n, c/n) is a.a.s. O(log n).
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Proof. The expected number of vertices in G(n, c/n) with degree at least lnn is at most

n

(
n

lnn

)( c
n

)lnn
≤ n

(
en

log n
· c
n

)lnn

≤ exp (lnn− lnn(ln lnn− ln(ce))) = o(1).

Let S ⊆ G be a vertex set. Recall that d(S) denote the sum of degrees of vertices of S in
G.

Lemma 4.7 Let k, n and m(n) be positive integers such that 2m ≥ kn and m/n = O(1).
Let ε0 > 0 be a fixed constant. Then, a.a.s. there exists no S ⊆ G ∼ H(n,m(n), k) with
ε0n ≤ |S| < (1.8/e)n and t(S) > ρ(G)|S|, provided k is sufficiently large.

Proof. Let ρ = ρ(G). Consider the allocation-pairing model that generates M(n,m, k).
Given s, the expected number of S ⊆ G ∼M(n,m, k) with |S| = s and t(S) ≥ ρs is∑

q

(
n

s

)
P(d(S) = q)p(q, ρs) ≤

∑
q

P(d(S) = q)
(en
s

)s
p(q, ρs). (4.1)

Let r1 = 1.8/e. Since ρ ≥ k, we may assume that k is sufficiently large so that (e/r1)
1/ρ ≤

9.5/9. Let δ > 0 be sup{δ : (1 + δ)(1 + 2δ) < 99/95}. By Lemma 4.4, there exists N(δ) > 0
and 0 < α < 1 such that provided k > N (therefore, ρ is sufficiently large),

P(∃S, |S| ≥ ε0n, d(S) ≥ (1 + δ)2ρs) ≤
∑
s≥ε0n

(
n

s

)
αρs ≤

∑
s≥ε0n

(
eε−10 αρ

)s
= o(1). (4.2)

By (4.1) and (4.2), the expected number of S with ε0n ≤ |S| ≤ r1n and t(S) > ρ|S|, denoted
by Y , is at most

E(Y ) ≤ o(1) +
∑

ε0n≤s≤r1n

∑
q≤(1+δ)2ρs

P(d(S) = q)
(en
s

)s
p(q, ρs). (4.3)

Since for any q ≤ (1+δ)2ρs, p(q, ρs) ≤ p((1+δ)2ρs, ρs) as p(q, t) is a non-decreasing function
of q, (4.3) is at most

o(1) +
∑

ε0n≤s≤r1n

(en
s

)s
p((1 + δ)2ρs, ρs),

which is at most

o(1) +
∑

ε0n≤s≤r1n

(en
s

)s(e(1 + δ)2ρs((1 + δ)2ρs− ρs)
2ρs · (2ρn− 1)

)ρs
,

by Lemma 4.3 (Note that (q − t)/(2m− 1) ≤ 1/2 by taking q = (1 + δ)2ρs and t = ρs.). Let
r = s/n. The above is

o(1) +
∑

ε0n≤s≤r1n

((e
r

)1/ρ e(1 + δ)(1 + 2δ)r

2(1− 1/2ρn)

)ρs
.

9



By our choice of r1 and δ,(e
r

)1/ρ e(1 + δ)(1 + 2δ)r

2
≤
(
e

r1

)1/ρ
er1
2

(1 + δ)(1 + 2δ) ≤ 9.5

9
· 1.8

2
· 99

95
≤ 0.99,

and so EY = o(1). By Corollary 3.3, the expected number of S ⊆ G ∼ H(n,m(n), k) with
ε0n ≤ |S| < r1n and t(S) > ρ|S| is o(1).

Lemma 4.8 Assume δ2 > δ1 > 0 are absolute constants which do not depend on k. Let k, n
and m(n) be positive integers with 2m ≥ kn and δ1 < k − 1 −m/n < δ2. Then a.a.s. there
exists no S ⊆ G ∼M(n,m, k) with log2 n ≤ |S| ≤ n/2 and t(S) ≥ d(S)− (k−1)|S|, provided
k is sufficiently large.

Proof. Let ρ = m/n and let δ = δ(n) = k − 1 − ρ. Then, ρ = k − 1 − δ and δ1 < δ < δ2.
The expected number of S with |S| = s and t(S) ≥ d(S)− (k − 1)|S|, denoted by Ys, is

EYs =

(
n

s

)∑
q

P(d(S) = q)p(q, q − (k − 1)s).

Let r = s/n. Since r ≤ 1/2 and thus

q − (q − (k − 1)s)

2m− 1
=

(k − 1)s

2m− 1
≤ (k − 1)s

kn− 1
≤ 1/2,

we have that

EYs ≤
∑
q

P(d(S) = q)
(e
r

)s( eq · (k − 1)s

2(q − (k − 1)s)(2ρn− 1)

)q−(k−1)s
. (4.4)

by Lemma 4.3. Let

δ′ = sup

{
x :

(1− x)2ρ

k − 1
> 1 + 5e/18 ≈ 1.755

}
.

Since ρ = k − 1− δ > k − 1− δ2, we have 0 < δ′ < 1, provided k sufficiently large. Let

S1 =
∑

q<(1−δ′)2ρs

P(d(S) = q)
(e
r

)s( eq · (k − 1)s

2(q − (k − 1)s)(2ρn− 1)

)q−(k−1)s
,

S2 =
∑

q≥(1−δ′)2ρs

P(d(S) = q)
(e
r

)s( eq · (k − 1)s

2(q − (k − 1)s)(2ρn− 1)

)q−(k−1)s
.

Then
EYs ≤ S1 + S2. (4.5)

We first estimate S2. Clearly,(
eq · (k − 1)s

2(q − (k − 1)s)(2ρn− 1)

)q−(k−1)s
10



is a decreasing function of q. Hence,

S2 ≤
(e
r

)s( e(1− δ′)2ρs · (k − 1)s

2((1− δ′)2ρs− (k − 1)s)(2ρn− 1)

)(1−δ′)2ρs−(k−1)s

=
(e
r

)s( e(1− δ′)r
((1− δ′)2ρ/(k − 1)− 1)(2− 1/ρn)

)(1−δ′)2ρs−(k−1)s

≤
(e
r

)s( er

(5e/18) · 2

)(k−1)s·5e/18

=
(
(e/r)1/C(9r/5)

)s
,

where C = 5e(k− 1)/18, by the choice of δ′. Clearly, (e/r)1/C(9r/5) is an increasing function
of r and r ≤ r1 := 1/2. We may assume that k is sufficiently large so that (e/r1)

1/C < 9.5/9.
Hence,

S2 ≤ ((e/r1)
1/C(9r1/5))s <

(
9.5

9
· 9

10

)s
≤
(

9.5

10

)s
. (4.6)

Next, we estimate S1. By Lemma 4.4, there exists 0 < α < 1 such that

P(d(S) < (1− δ′)2ρs) ≤ αρs.

Since all vertices in G has degree at least k, we have q ≥ ks. Thus,

S1 ≤ αρs
(e
r

)s( eks · (k − 1)s

2(ks− (k − 1)s)(2ρn− 1)

)ks−(k−1)s
= αρs

(e
r

)s( ek · (k − 1)r

2ρ(2− 1/ρn)

)s
≤
(
αρ
e2k2

4ρ

)s
.

Since ρ = k − 1− δ > k − 1− δ2, we may assume that k is sufficiently large so that

αρ
e2k2

4ρ
< 1/2.

Then,
S1 ≤ 2−s. (4.7)

By (4.5), (4.6) and (4.7), we have

EYs ≤ 0.95s + 0.5s.

So, the expected number of S with log2 n ≤ |S| ≤ r1n and t(S) ≥ d(S)− (k − 1)|S| is

r1n∑
s=log2 n

EYs = o(1).

The condition k− 1−m/n < δ2 can be removed if we replace t(S) ≥ d(S)− (k− 1)|S| by
t(S) ≥ d(S)−ρ(G)|S| and restrict to slightly smaller S in the above lemma. This immediately
gives the following, with almost the same proof as Lemma 4.8.

11



Lemma 4.9 Let k, n and m(n) be positive integers with 2m ≥ kn and lim supn→∞m(n)/n <
k − 1. Let r1 = 1 − 1.78/e. Then a.a.s. there exists no S ⊆ G ∼ M(n,m(n), k) with
log2 n ≤ |S| ≤ r1n and t(S) ≥ d(S)− ρ(G)|S|, provided k is sufficiently large.

Proof. We follow almost the same proof as in Lemma 4.8. Then (4.8) becomes

EYs ≤
∑
q

P(d(S) = q)
(e
r

)s( eq · ρs
2(q − ρs)(2ρn− 1)

)q−ρs
.

Define δ′ to be

δ′ := sup{x :
1− x
1− 2x

<
1

e− 1.75
≈ 1.032}.

Then 0 < δ′ < 1/2. Define S1 and S2 and bound S1 in the same way as in Lemma 4.8,
using the fact that k/2 ≤ ρ < k − 1. Now it only remains to bound S2. Following the same
calculation in Lemma 4.8, but using ρ ≥ k/2 rather than ρ > k − 1− δ2, we have

S2 ≤
(e
r

)s( e(1− δ′)(k − 1)r

((1− δ′)2ρ− ρ)(2− 1/ρn)

)(1−δ′)2ρs−ρs

≤
(e
r

)s(e(1− δ′)r
1− 2δ′

)(1−2δ′)ρs

=
(
(e/r)1/C1(C2r)

)s
,

where C1 = (1 − 2δ′)ρ ≥ (1/2 − δ′)k and C2 = e/(e − 1.75). Comparing with r1, we have
C2r1 < γ for some constant γ < 1. We may assume that k is sufficiently large so that
(e/r1)

1/C1 < 1/
√
γ. Since S2 is an increasing function of r, we have

S2 ≤
(
(e/r1)

1/C1(C2r1)
)s
< γs/2.

Then we can complete the proof of Lemma 4.9 as in Lemma 4.8.

We will use Lemma 4.9 in the proof of Theorem 4.1 and use Lemma 4.8 in the proof of
Theorem 2.6.

Proof of Theorem 4.1. Since c < c̃k+1, by Theorem 2.1, there exist an absolute constant
δ > 0 such that a.a.s. the density of Gk+1 ⊆ G ∼ G(n, c/n) is at most k− δ. Let εc = 8/e3c2.
By Lemma 4.5, a.a.s. there is no subgraph of G whose size is at most εcn and whose density
is at least 2. Let n′ denote the number of vertices in Gk+1. Then n′ ≤ n. It follows that a.a.s.
there is no subgraph of Gk+1 whose size is at most εcn

′ and whose density is at least 2.
We first prove that if Gk+1 is not balanced, then the following statements are true.

(a) There exists S ⊆ Gk+1 with t(S) > ρ(Gk+1)|S|;

(b) There exists S ⊆ Gk+1 with t(S) > d(S) − ρ(Gk+1)|S|, where S = V (Gk+1) \ S and
V (Gk+1) denotes the vertex set of Gk+1.

Statement (a) is obvious. We show that (a) and (b) are indeed equivalent. Let e(S, S) denote
the number of edges between S and S and let ρ = ρ(Gk+1). Then we have

ρ|V (Gk+1)| = t(S) + t(S) + e(S, S),

d(S) = e(S, S) + 2t(S)

2ρ|V (Gk+1)| = d(S) + d(S).

12



Hence,

ρ|V (Gk+1)| = t(S)+t(S)+
(
d(S)−2t(S)

)
= t(S)+d(S)−t(S) = t(S)+

(
2ρ|V (Gk+1)|−d(S)

)
−t(S),

i.e.
t(S) = t(S) + ρ|V (Gk+1)| − d(S).

Thus,
t(S) > ρ|S|

if and only if
t(S) + ρ|V (Gk+1)| − d(S) > ρ|S|,

i.e.
t(S) > d(S)− ρ(|V (Gk+1)| − |S|) = d(S)− ρ|S|.

Next, we show that a.a.s. any S ⊆ Gk+1 will violates either (a) or (b) and then it follows
that a.a.s. Gk+1 is balanced. Since a.a.s. any subgraph of Gk+1 whose size is at most εcn has
density at most 2, it follows immediately that a.a.s. there is no set S with size at most εcn

′

that satisfies (a), provided k ≥ 3. By Lemma 3.1, by conditioning on the values of n′, the
number of vertices and m′, the number of edges in Gk+1, we have Gk+1 ∼ H(n′,m′, k + 1).
Consider any n′ and m′ such that k − δ0 < m′/n′ ≤ k − δ. Let r1 = 1.8/e and r2 = 1.78/e.
Then r1 > r2.

By Lemma 4.7, the expected number of S with εcn
′ ≤ |S| < r1n

′ that satisfies (a) is o(1).
By Lemma 4.9 and Corollary 3.3, the expected number of S ⊆ G ∼ H(n′,m′, k + 1) with
r2n

′ < |S| ≤ n′ − log2 n′ that satisfies (b) is o(1). Thus, it only remains to show that the
expected number of S ⊆ G ∼ H(n′,m′, k+ 1) with |S| > n′− log2 n′ that satisfies (b) is o(1),
and then the proof of Theorem 4.1 is complete.

Consider Gk+1 ∈M(n′,m′, k+ 1), where m′/n′ < k− δ and let ρ = ρ(Gk+1) = m′/n′. The
expected number of S with |S| = s that satisfies (b), denoted by Ys, is at most

EYs =

(
n′

s

)∑
q

P(d(S) = q)p(q, q − ρs̄),

where s = n′ − s. Let r = 1− r. The above is at most∑
q

P(d(S) = q)
(e
r

)s( eq · r
2(q − ρs̄)(2− 1/ρn′)

)q−ρs
. (4.8)

Hence the expected number of S with |S| > n′− log2 n′ which satisfies (b) is
∑

s>n′−log2 n′ EYs.
Since inM(n′,m′, k+ 1), we always have q ≥ (k+ 1)s and we have ρ ≤ k− δ by assumption,
it follows that q − ρs ≥ (1 + δ)s. By (4.8) and the fact that(

eq · r
2(q − ρs̄)(2− 1/ρn′)

)q−ρs

13



is a decreasing function of q, we obtain

∑
s<log2 n′

EYs ≤
∑

s<log2 n′

(
en′

s̄

)s(
e(k + 1)

2(1 + δ)(2− 1/ρn′)
· s
n′

)(1+δ)s

=
∑

s<log2 n′

(
e2+δ

(
(k + 1)

2(1 + δ)(2− 1/ρn′)

)1+δ

·
(

log2 n′

n′

)δ)s

= o(1),

where the upper bound is obtained by taking q = (k + 1)s. Our claim then follows by
Corollary 3.3.

Next, we prove Theorem 4.2. Let Sk+1 denote the set of vertices with degree k + 1 in
G ∼M(n,m(n), k + 1) and let G[Sk+1] denote the graph induced by Sk+1.

Lemma 4.10 Let k > 0 be a positive integer. Assume m(n) = Θ(n). Then a.a.s. for any
constant integer ` > 0, there are Θ(n) vertex disjoint paths in G[Sk+1], each with length `,
provided k is sufficiently large.

Proof. Consider the allocation-pairing model that generatesM(n,m, k). Let nk+1 = |Sk+1|.
By Corollary 3.5, nk+1 = Θ(n). For any fixed integer ` > 0, let Z` denote the number of
paths of length ` in G[Sk+1]. Then

EZ` =

(
nk+1

`+ 1

)
(`+ 1)!

2
(k + 1)2((k + 1)k)`−2

`−1∏
i=0

1

2m− 2i− 1

∼
n`+1
k+1

2

(k + 1)`k`−2

(2m)`
= Θ(nk+1) = Θ(n).

Similarly, the expected number of ordered pairs of vertex disjoint paths of length ` in G[Sk+1]

is asymptotically (EZ`)
2 = Θ(n2). Let Y denote the number of subgraphs contained in G[Sk+1]

for which there are at most 2` + 1 vertices, and the maximum degree is at most 4, and the
number of edges is at least the number of vertices minus one. Clearly, the number of pairs of
paths of length ` that share at least one vertex is at most Y . Since

EY ≤
∑
i≤2`+1

(
nk+1

i

)( (i
2

)
i− 1

)
k4i

i−1∏
j=0

1

2m− 2j − 1
= O(nk+1) = o((EZ`)

2),

where
((i

2)
i−1

)
is an upper bound of the number of ways to locate the i− 1 edges, and k4i upper

bounds the number of ways to pick the end points of a given set of i−1 edges, by the method
of the second moment, we immediately have that a.a.s. for any fixed ` > 0, the number of
paths in G[Sk+1] with length ` is Θ(n). Since each vertex in G[Sk+1] has a bounded degree
(≤ k + 1), and each path under discussion has bounded length (≤ `), each of these paths
is vertex disjoint with all but at most constant number of other paths. Therefore, there are
Θ(n) vertex disjoint paths of length ` in G[Sk+1].
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Proof of Theorem 4.2. By Corollary 3.3, we only need to show that for any fixed δ0 > 0,
if Gk+1 ∈ M(n,m(n), k + 1) with m(n) ≥ (k + δ0)n, then a.a.s. there exists a subgraph of
Gk+1 that is significantly denser than Gk+1. Note that this is a stronger conclusion than Gk+1

being not balanced. Let δ = δn be that m = (k + δ)n. Then δ ≥ δ0. By Lemma 4.10, a.a.s.
there exists a set P = {p1, . . . , ps} of vertex disjoint paths in G[Sk+1] ⊆ Gk+1, each of length
` = 2/δ ≤ 2/δ0, where s = Θ(n). Let G′ be obtained from Gk+1 by removing all vertices in
P . Then

ρ(G′) ≥ m− ((k + 1)(`+ 1)− `)s
n− (`+ 1)s

.

Since ` = 2/δ, we have

(k + 1)(`+ 1)− `
`+ 1

= k +
1

`+ 1
< k +

δ

2
=
m

n
− δ/2 ≤ m

n
− δ0/2.

Together with s = Ω(n), we have that there exists an absolute constant η > 0 such that
ρ(G′) > ρ(Gk+1) + η.

5 Proof of Theorem 2.3

In the rest of the paper, let k̃ = k̃(c) and d̃ = d̃(c) be as stated in Corollary 2.5. The following
proposition follows from Theorems 2.4 and 2.1.

Proposition 5.1

(a) k̃(c) is a monotone increasing function of c;

(b) For all k ≤ k̃(c), |Gk+1|/|Gk| → 1 as c→∞.

Note that Theorem 2.3 holds if there exists a constant η > 0 such that the following
statements are true.

(a) a.a.s. ρ∗(G) > ρ(Gk) + η, for any integer 0 ≤ k ≤ k̃;

(b) a.a.s. ρ∗(G) > ρ(Gk̃+1) + η;

(c) a.a.s. ρ∗(G) > ρ(Gk) + η, for all k > k̃ + 1,

where G ∼ G(n, c/n).

By the choice of k̃ and Theorem 4.2, there exists η′ > 0 such that for all 0 ≤ k ≤ k̃, a.a.s.
there exists a subgraph of Gk whose density is greater than ρ(Gk) + η′, which implies (a). If
(b) is true, then (c) will be true because Gk̃+1 is balanced. Therefore, we only need to prove
(b).

Let δ > 0 be a constant chosen such that a.a.s. ρ(Gk̃+1) < k̃ − δ and ρ(Gk̃) > k̃ − 1 + δ.

(Note that by the choice of k̃, such δ exists.) If ρ(Gk̃+1) ≤ k̃−1+δ, then (b) follows by noting

that ρ∗(G) > ρ(Gk̃) + η′ > ρ(Gk̃+1) + η′. Hence, we may assume that ρ(Gk̃+1) > k̃ − 1 + δ.
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Consider the following vertex deletion algorithm. Let G be a graph with minimum degree
at least k. At step 0, let G0 = G. At each step t ≥ 1, choose randomly a vertex v with degree
k from Gt−1, remove v and all its incident edges from Gt−1. If there is some vertex with degree
less than k being produced, repeatedly remove all these vertices and their incident edges until
either there are no vertices with degree less than k or n1/3 vertices has already been removed
in this single step. Let Gt be the resulting graph. The algorithm terminates when there is no
vertex with degree k. Let τ denote the stopping time.

We will show that a.a.s. the algorithm never removes n1/3 vertices repeatedly in each step,
and therefore, a.a.s. the algorithm outputs the (k + 1)-core of G0.

The following proposition has qualitatively the same nature as Theorem 2.1 and indeed it
can be proved with almost the same argument in Theorem 2.1 by analysing the edge-deletion
algorithm, defined in [12], applied to G0 ∼ H(n,m, k) (instead of H(n,m, 0) = G(n,m)).

Proposition 5.2 Given n, m = O(n) and k with m/n > k − 1, assume G0 ∼ H(n,m, k).
Let n′ and m′ denote the number of vertices and edges in Gτ . Assume the minimum degree
of Gτ is at least k + 1. Then there exist absolute constants α and β, such that a.a.s. n′ =
αn + o(n), m′ = βm + o(m). Moreover, if we condition on the values of n′ and m′, then
Gτ ∼ H(n′,m′, k + 1).

We complete the proof of Theorem 2.3 using the following lemma.

Lemma 5.3 Let n, m and δ > 0 be such that α > 0, β > 0 and k− 1− δ < βm/αn < k− δ,
where α and β are constants determined by n, m and k as in Proposition 5.2. Assume
G0 ∼ H(n,m, k). Then, a.a.s. Gτ is the (k + 1)-core of G0 and there exists a constant η > 0
and Gτ ⊆ G ⊆ G0 such that ρ(G) ≥ ρ(Gτ ) + η.

By the previous argument, there exists δ > 0 such that a.a.s. ρ(Gk̃+1) < k̃−δ, ρ(Gk̃) > k̃−1+δ

and ρ(Gk̃+1) > k̃−1+δ. Conditional on the number of vertices and the number of edges in Gk̃

being n1 and m1, we have Gk̃ ∼ H(n1,m1, k̃). Let n2 and m2 denote the numbers of vertices
and edges in Gk̃+1. By Proposition 5.2, there exists α and β such that a.a.s. n2 = αn1 +o(n1),

m2 = βm1 +o(n1) and k̃−1+ δ < βm1/αn1 < k̃− δ. Conditional on the values of n2 and m2,

Gk̃+1 ∼ H(n2,m2, k̃ + 1). Apply Lemma 5.3 with k = k̃, n = n1 and m = m1. Theorem 2.3
follows.

It only remains to prove Lemma 5.3. We first show a technical lemma.

Lemma 5.4 Let δ be a constant. Let (ct)t≥1 be positive reals such that c2t = o(t) and (Yt)t≥1
be independent random variables such that |Yt| ≤ ct and EYt ≥ δ for all t ≥ 1. Let X0 = 0
and Xt =

∑
i≤t Yi for all t ≥ 1. Then for any ε > 0, a.a.s. Xn ≥ δn− ε|δ|n.

Proof. Clearly (δt−Xt)t≥0 is a supermartingle. Let n→∞. Then by [15, Lemma 4.2],

P(δn−Xn ≥ ε|δ|n) ≤ exp

(
− ε2δ2n2∑n

t=1 c
2
t

)
= o(1),

as
∑n

t=1 c
2
t = o(n2). Thus, a.a.s. Xn ≥ δn− ε|δ|n.
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Proof of Lemma 5.3. Instead of letting G0 ∼ H(n,m, k), we let G0 ∼M(n,m, k) and run
the vertex deletion algorithm on G0. For all 0 ≤ t ≤ τ , let Lt denote the degree sum of all
vertices with degree less than k + 1 in Gt. Let Vt and Bt denote the number of vertices and
the degree sum of all vertices in Gt.

Claim 5.5 A.a.s. the algorithm never removes n1/3 vertices repeatedly in one step.

By Claim 5.5, a.a.s. Gτ is the (k + 1)-core of G0 and so a.a.s. the numbers of edges of Gτ

is βm+ o(n). Thus, a.a.s. for all t ≤ τ , Bt ≥ 2βm+ o(n).
Let ε > 0 be a small constant. (We will choose ε ≤ min{1/k5, δ/8k2}.) By Claim 5.5,

a.a.s. Lτ = 0. Since |Lt+1−Lt| = O(n1/3) always, we have that a.a.s. there exists t0 such that
Lt0/2βm > ε/2 and Lt/2βm < ε for all t ≥ t0, as long as ε is sufficiently small.

Let ∆Bt = Bt+1 − Bt and similarly we define ∆Vt. Clearly, ∆Bt ≤ −2k always. Thus,
for any t > t0, Bt − Bt0 ≤ −2k(t− t0). Next, we analyse a lower bound of Vt. At each step,
the algorithm removes one vertex v with degree k and repeatedly all vertices with degree less
than k unless more than n1/3 vertices are removed. We label v with 0, and we label a vertex
with i ≥ 1 if its degree drops below k + 1 after the removal of a vertex labelled i− 1. Let Xi

denote the number of vertices labelled i. Then the total number of vertices removed at this
step is

∑
0≤i≤n1/3 Xi, since in each step, at most n1/3 light vertices (vertices with degree at

most k) can be removed. Consider the pairing model. At step t + 1, the degree sum of light
vertices is Lt + O(n1/3) and the degree sum of all vertices is Bt + O(n1/3). The probability
that a uniformly chosen point lies in a light vertex is Lt/Bt + O(n−2/3). Thus, X0 = 1 and
for all i ≥ 1, EXi ≤ (kLt/Bt + O(n−2/3))i. Since for all t ≥ t0, Lt/Bt ≤ Lt/Bτ and a.a.s.
Bτ = 2βm+ o(n), we have Lt/Bt < ε for all t ≥ t0 and so

E(∆Vt | Gt) ≥ −1−
∑
i≥1

(
k
Lt
Bt

)i
+O(n−2/3) ≥ −1− δ/4k,

by choosing ε ≤ δ/8k2. Since (∆Vt)
2 ≤ n2/3 = o(n), by Lemma 5.4, for any t0 < t ≤ τ such

that t− t0 = Ω(n), a.a.s. Vt − Vt0 ≥ (−1− δ/2k)(t− t0).

Claim 5.6 A.a.s. τ − t0 = Ω(n).

It follows then by Claim 5.6 that a.a.s.,

Bτ

Vτ
≤ −2k(τ − t0) +Bt0

(−1− δ/2k)(τ − t0) + Vt0
. (5.1)

If ρ(Gt0) ≥ k−δ/2, then a.a.s. ρ(Gt0) > ρ(Gτ )+δ/2 since a.a.s. ρ(Gτ ) = βm/αn+o(1) < k−δ.
Now assume ρ(Gt0) < k − δ/2. Let Z = (τ − t0)/Vt0 . By Claim 5.6, a.a.s. there exists γ > 0,
such that Z > γ. By (5.1), a.a.s.,

2ρ(Gτ ) =
Bτ

Vτ
≤ 2ρ(Gt0)− 2kZ

1− (1 + δ/3k)Z
≤ 2ρ(Gt0)− ε̄,
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where

ε̄ =
εδγ

2k(1− (1 + δ/2k)γ)
,

since Z > γ a.a.s. and ρ(Gt0) < k − δ/2 by assumption. This completes the proof that
a.a.s. there exists G = Gt0 such that Gτ ⊆ G ⊆ G0 and ρ(G) ≥ ρ(Gτ ) + η by choosing
η = min{δ/2, ε̄/2}.
Proof of Claim 5.5. Recall that in each step, Xi denote the number of vertices removed that

are labelled i. If there are n1/3 vertices removed, then there exists a vertex labelled ` = logn
1/3

k

that is removed. The expected number of such vertices is (kLt/Bt + O(n−2/3))` ≤ n−4/3,
because Lt/Bt < ε ≤ 1/k5 by the choice of ε. Hence, the probability that at some step, there
are more than n1/3 vertices being removed is o(n−1/3) by the union bound.

Proof of Claim 5.6. Consider ∆Lt = Lt+1 − Lt. Clearly, −∆Lt ≤ k
∑

i≥0Xi, where Xi

denote the number of vertices removed that are labelled i. We have shown that E(Xi | Gt) =
(kLt/Bt +O(n−2/3))i. Thus,

E(∆Lt | Gt) ≥ −k − k
∑
i≥1

(
kLt
Bt

)i
+O(n−2/3) ≥ −k − 1,

by the choice of ε. Since (∆Lt)
2 ≤ k2n2/3 = o(n) and Lt0 > εβm = Ω(n), by Lemma 5.4, it

follows that a.a.s. τ − t0 = Ω(n).

6 Proof of Theorems 2.6

Given a graph G, let dmin(G) denote the minimum degree of G. For a graph G, we call a
subgraph H of G considerable if dmin(H) ≥ bρ(H)c+ 1. The following proposition is obvious.

Proposition 6.1 For any (multi)graph G, there exists a considerable subgraph H that is a
densest subgraph of G.

Recall that ρ∗(G) denote the density of a densest subgraph of G.

Lemma 6.2 Consider G ∼ G(n, c/n). Then for all sufficiently large c ∈ R0, a.a.s. there

exists H ⊆ Gk̃ such that ρ(H) = ρ∗(G) and bρ∗(G)c ≤ k̃ − 1.

Proof. By Proposition 6.1, there exists a densest subgraph H of G, such that H is consider-
able. Then we have dmin(H) ≥ bρ∗(G)c+ 1. So H is contained in the (bρ∗(G)c+ 1)-core. By
Theorem 2.3, a.a.s. H is not the (bρ∗(G)c+1)-core, i.e. the (bρ∗(G)c+1)-core is not balanced.

By the definition of k̃, a.a.s. bρ∗(G)c+ 1 ≤ k̃, i.e. bρ∗(G)c ≤ k̃ − 1.

Lemma 6.3 Let Gk̃ denote the k̃-core of G(n, c/n). Then a.a.s. ρ(Gk̃) > k̃ − 1.

Proof. It follows from Theorem 2.4 and the choice of c ∈ R0, that ρ(Gk̃) > k̃ − 1.
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Lemma 6.3 implies that a.a.s. ρ∗(G(n, c/n)) > k̃ − 1. So a.a.s.

dρ∗(G(n, c/n))e+ 1 ≥ k̃ + 1. (6.1)

Assume H is a subgraph of G. Recall that d(S) denote the degree sum of vertices in S
(inside G). Let dH(S) denote the sum of degrees of vertices of S in the subgraph H (instead
of inside G), if S ⊆ H.

Lemma 6.4 Let G ∼ G(n, c/n). A.a.s. there exists H ⊇ Gk̃+1 such that ρ(H) = ρ∗(G) +

O(log3 n/n), provided c is sufficiently large. Moreover, there is a densest subgraph G′ of G
such that |V (G′)∆V (H)| ≤ log2 n.

Proof. Assume G′ is a densest subgraph of Gk̃ and assume U := Gk̃+1 \G′ is nonempty. Let

U denote Gk̃ \ U . Let ρ′ = ρ(G′). By Lemma 6.2, a.a.s. ρ′ = ρ∗(G). We first prove that if G′

is a densest subgraph of Gk̃, then the following conditions are implied.

(a) t(U) ≥ dG
k̃+1

(U)− ρ′|U |;

(b) a.a.s. |G′| ≥ (1.8/e)|Gk̃+1|.

We first prove (b). By Theorem 2.1, a.a.s. |Gk̃+1| = Θ(n). By Lemma 4.5, a.a.s. |G′| ≥ ε|Gk̃+1|,
for some small ε > 0, since a.a.s. there is no subgraph of G ∼ G(n, c/n) with size at most εcn
(εc is the small constant defined in the statement of Lemma 4.5) and density more than 2,

whereas ρ′ > 2 as long as c is sufficiently large. By Lemma 3.1, Gk̃+1 ∼ H(nk̃+1,mk̃+1, k̃ + 1)
conditional on the number of vertices and edges in Gk̃+1 being nk̃+1 and mk̃+1. By the choice

of k̃, we may assume that mk̃+1/nk̃+1 ≤ k̃−δ for some absolute constant δ > 0. Then part (b)
follows immediately from Lemma 4.7 by noting that |Gk̃+1| ≤ |Gk̃|. Next, we show (a). Let
G′ ∪U denote the subgraph induced by all vertices in G′ ∪U . Since G′ is a densest subgraph,
ρ′ = ρ(G′) ≥ ρ(G′ ∪ U). Since

ρ(G′) =
t(G′ ∪ U)− dG′∪U(U) + t(U)

|V (G′ ∪ U)| − |U |
≤
t(G′ ∪ U)− dG

k̃+1
(U) + t(U)

|V (G′ ∪ U)| − |U |
,

we have

ρ(G′ ∪ U) ≤ ρ(G′) ≤
t(G′ ∪ U)− dG

k̃+1
(U) + t(U)

|V (G′ ∪ U)| − |U |
,

and thus,
dG

k̃+1
(U)− t(U)

|U |
≤ ρ(G′ ∪ U) ≤ ρ′,

which implies (a). We will show that (a) fails for all small U except that |U | ≤ log2 n and
cases of all large U lead to contradiction with (b). Then the proof of Lemma 6.4 is complete.

Let nk̃+1 = |V (Gk̃+1)| and mk̃+1 = |E(Gk̃+1)|. Let ε be that |V (Gk̃)| = (1 + ε)nk̃+1. Note
that ε is a random variable here, which a.a.s. goes to 0 as c → ∞ by Proposition 5.1 (b)

(or equivalently, as k̃ → ∞ by Proposition 5.1 (a).). As we have discussed, by conditioning
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on the values of nk̃+1 and mk̃+1, Gk̃+1 ∼ H(nk̃+1,mk̃+1, k̃ + 1) and we may assume that

mk̃+1/nk̃+1 ≤ k̃ − δ for some absolute constant δ > 0, by the choice of k̃,. Let r0 = 1/2. By

Lemma 6.2, a.a.s. bρ∗c ≤ k̃ − 1, which implies a.a.s. ρ∗ ≤ k̃, whereas in Gk̃+1, the minimum

degree is at least k̃ + 1. Thus,

P(∃U ⊆ Gk̃+1 : log2 n ≤ |U | ≤ r0nk̃+1, t(U) ≥ dG
k̃+1

(U)− ρ′|U |)

≤ P(ρ′ 6= ρ∗) + P(ρ∗ > k̃)

+P(ρ∗ ≤ k̃, ∃U ⊆ Gk̃+1 : log2 n ≤ |U | ≤ r0nk̃+1, t(U) ≥ dG
k̃+1

(U)− ρ∗|U |)

≤ o(1) + P(∃U ⊆ Gk̃+1 : log2 n ≤ |U | ≤ r0nk̃+1, t(U) ≥ dG
k̃+1

(U)− k̃|U |) = o(1),

where the last equality holds by Lemma 4.8 (with k = k̃ + 1).
Next we show that |U | ≥ r0nk̃+1 implies |G′| < (1.8/e)nk̃+1, leading to a contradiction

with (b). This follows immediately from the following observation

|G′| ≤ |U | = |Gk̃| − |U | ≤ (1 + ε)nk̃+1 − nk̃+1/2 < (1.8/e)nk̃+1,

provided k̃ is sufficiently large. This is because ε→ 0 as c→∞.
We have shown that if G′ is a densest considerable subgraph, then G′ contains all but at

most log2 n vertices of Gk̃+1. Let H = G′∪Gk̃+1, i.e. a.a.s. G′ misses at most log2 n vertices of

H. By Lemma 4.6, a.a.s. ρ(H)− ρ(G′) = O(log3 n/n). Thus, a.a.s. there is Gk̃+1 ⊆ H ⊆ Gk̃

such that ρ(H) = ρ∗(G) + O(log3 n/n), and |V (H)∆V (G′)| ≤ log2 n, where G′ is a densest
subgraph of G(n, c/n).

Proof of Theorem 2.6. It follows from Lemmas 6.2 and 6.4.
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