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21 / Compactifications of completely regular spaces

Abstract. In this section, we discuss those spaces, S, which can be densely em-
bedded in a compact Hausdorff space. Only completely regular spaces can possess
this property. The process by which we determine such a compact space, αS, for
S, is called compactifying S. The space, αS, is called the compactification of S.
The family of all compactifications of a completely regular space can be partially
ordered. The maximal compactification of S with respect to the chosen partial
ordering is called the Stone-Čech compactification. We discuss methods for its
construction. We will show that only locally compact spaces have a minimal
compactification with respect to the chosen partial ordering. It is called the one-
point compactification.

21.1 Compactifying a space

In this section we will briefly talk about methods for “compactifying a space (S, τS)”.
This essentially means adding a set, F , of points to S, to obtain a larger set, T = S∪F ,
and topologizing T so that (T, τT) is a compact Hausdorff space in which a homeo-
morphic copy of S appears as a dense subspace of T .

With certain bounded subspaces of Rn, this can, sometimes, be quite easy to do. For
example, if S = [−1, 3)∪(3, 7) is equipped with the subspace topology, then by simply
adding the points {3, 7} to S we obtain the set T = S ∪ {3, 7} = [−1, 7] which, when
equipped with the subspace topology, is a compact Hausdorff space which densely
contains a homeomorphic copy of S. In such a case, we will say that T is a compacti-
fication of S. A compactification of a bounded subset of Rn can always be obtained
by taking its closure. This does not mean, however, that there are not others. If we
are given a space such as N or Q, it is not at all obvious how one would go about
compactifying such spaces. We will show techniques which allow us to achieve this
objective.

For what follows, recall that the evaluation map e : S → ∏
i∈J [ai, bi] induced by C∗(S)

(the set of all continuous bounded real-valued functions on S) is defined as

e(x) = <fi(x)>i∈J ∈ ∏
i∈J [ai, bi]

where fi ∈ C∗(S) and fi[S] ⊆ [ai, bi].

Definition 21.1 Let (S, τS) be a topological space and (T, τT) be a compact Hausdorff
space. We will say that T is a compactification of S if S is densely embedded in T .1

1When we say “compactification of S” we always mean a Hausdorff compactification.
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If S is a compact Hausdorff space, then S can be viewed as being a compactification of
itself. Recall that a compact Hausdorff space is normal, and so is completely regular.
Since subspaces of completely regular spaces are completely regular, then

. . . only a completely regular space can have a compactification.

In Theorem 14.7, we showed how any completely regular space can be compactified.
In the proof of that theorem, we witnessed how an evaluation map, e : S → T , induced
by C∗(S) embeds S into a cube,

T =
∏

i∈J [ai, bi]

There may be different ways of describing this type of compactification of S. Since
each interval [ai, bi] is homeomorphic to [0, 1], then there is a homeomorphism, h :
T → ∏

i∈J [0, 1], which maps T onto P =
∏

i∈J [0, 1]. By Tychonoff’s theorem, P is
guaranteed to be compact. So the function, q : S → P , defined as, q = h◦e, embeds S
into

∏
i∈J [0, 1]. Hence clP q[S] is a compact subspace of the product space, P , which

densely contains the homeomorphic image, q[S], of S.2 So, even common topological
spaces such at R, Q, and N have at least the compactification obtained by the method
just described.

21.2 The Stone-Čech compactification.

We have described only one of the various ways to obtain a homeomorphic copy of the
compactification, clT e[S], of S. This particular compactification has a special name.

Definition 21.2 Let (S, τS) be a completely regular topological space. Let

e : S → ∏
i∈I [ai, bi]

be the evaluation map induced by C∗(S) which embeds S in the product space, T =∏
i∈I[ai, bi].

The subspace,
clT e[S]

is called the Stone-Čech compactification of S. The Stone-Čech compactification of S is
uniquely (and universally) denoted by, βS.

2This is just one small example which shows why Tychonoff theorem deserves to be titled and why it is
such an important theorem in topology.
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So we see that a non-compact completely regular space, S, always has at least one
compactification, namely, it’s Stone-Čech compactification, βS. We will soon see that
there can be more than one compactification, for the same space.

Equivalent compactifications

Given a completely regular space S, there is nothing stated up to now which would
lead us to conclude that S has only one compactification. In fact most spaces we will
consider will have many compactifications. Suppose we are given two compactifica-
tions for a space, S, say αS and γS. If there is a homeomorphism

h : αS → γS

mapping αS onto γS such that h(x) = x for all x ∈ S, then αS and γS will be consid-
ered to be equivalent compactifications of S. Two compactifications of the same space
which have been determined to be “equivalent” in this way will be assumed to be the
same compactification, topologically speaking. This equivalence is often expressed by
the symbol, αS ≡ γS. For convenience, it is sometimes expressed by, αS = γS, even
though, strictly speaking, αS and γS may not necessarily be equal sets.

The outgrowth of a topological space.

Given a topological space, S, and a compactification, αS, the set

αS\S

is referred to as being the outgrowth of S with respect to this particular compactifi-
cation or as the remainder of αS. Equivalent compactifications will be considered to
have the same outgrowth. We will sometimes be interested in determining whether
an outgrowth satisfies certain topological properties.

Example 1 : Compactifications of R. Construct two compactifications of the space,
R, one whose outgrowth contains a single point and another one whose outgrowth
contains two points. We will refer to these as a “one-point compactification” and
“two-point compactification” of R.

Solution : A two-point compactification of R. We know that arctan : R → (−π/2, π/2)
maps R homeomorphically onto (−π/2, π/2). Hence R is embedded in the compact
space

γR = clRarctan[R] = clR(−π/2, π/2) = [−π/2, π/2]

with outgrowth {−π/2, π/2}
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A one-point compactification of R. We know that there is a homeomorphism h : R →
(0, 2π) which maps R onto (0, 2π). The function,

h(x) = 2[arctan(x) + π/2]

is an example. Define the homeomorphic function f : (0, 2π) → R2 as

f(x) = (sin(x), cos(x))

Then f◦h : R → R2 densely embeds R into the (closed and bounded) compact set

αR = K = {(sin(x), cos(x)) : x ∈ (0, 2π)} ∪ {(1, 0)}
with the single point, {(1, 0)}, in its outgrowth.

Example 2. Let R+ = {x ∈ R : x ≥ 0}. Is there a two-point compactification of R+?

Solution : No. Suppose αR+ = R+∪{a, b}. Then, since αR+ is Hausdorff, there must
be disjoint open neighborhoods Ba and Bb in αR+ of a and b, respectively. Then
αR+\R+ ⊆ Ba ∪ Bb. Since Ba ∪ Bb is open in αR+ containing αR+\R+, then

K = αR\(Ba ∪ Bb)

is a compact subset of R+. Then there exists k ∈ R+ such that K ⊆ [0, k]. Then
[k,∞) = [(Ba ∪ Bb) ∩ R+]\[0, k). We see that [k,∞) is a connected subspace of R+,
while [(Ba ∪ Bb) ∩ R+]\[0, k) is not. So we have a contradiction. So R+ cannot have
a two-point compactification.

Example 3. There is no three-point compactification of R. Prove this statement.

Solution : Suppose that
αR = R ∪ {a, b, c}

represents a compactification of R with outgrowth αR\R = {a, b, c}. Let R+ = {x ∈
R : x ≥ 0} and R− = {x ∈ R : x ≤ 0}. Then

αR = clαRR

= clαR(R+ ∪ R−)
= clαRR+ ∪ clαRR−

= R+ ∪ R− ∪ {a, b, c}
By the previous example neither R+ nor R− can have a two-point (nor a three-point)
outgrowth. So there is no three-point compactification of R.

We can easily generalize the statement in the previous example to “If the compact-
ification αR has a finite outgrowth, then αR\R must be either a singleton set or a
doubleton set.”
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21.3 A partial ordering of Hausdorff compactifications of a space.

Let’s gather together all compactifications of a completely regular space, S, as follows,

C = {αiS : i ∈ I}
We will partially order the family, C , by defining “�” in the following way:

If αiS and αjS belong to C , we will write

αiS � αjS

if and only if there is a continuous function f : αjS → αiS, mapping αjS\S
onto αiS\S which fixes the points of S.

Notation. Suppose two compactifications αS and γS are such that αS � γS, then by
definition, there is a continuous function f : γS → αS, mapping γS \S onto αS \S
which fixes the points of S. We will represent this continuous function f as,

πγ→α : γS → αS

The function πγ→α explicitly expresses which compactification is larger than (or equal
to) the other. Note that a pair of compactifications need not necessarily be compa-
rable in the sense that one need not necessarily by “less than” the other.

21.4 On C∗-embedded subsets of a topological space.

Given a subset T of a topological space, S, and a continuous bounded real-valued
function f : T → R, it is not guaranteed that there is a bounded continuous function
g : S → R such that g|T = f on T . If there is, then we will say that

“g is a continuous extension of f from T to S”

This motivates the following definition.

Definition 21.3 Let (S, τ) be a topological space and U be a proper non-empty subset of
S. We say that U is C∗-embedded in S if every real-valued bounded function, f ∈ C∗(U),
extends to a function, g ∈ C∗(S), in the sense that g|U = f .3 In this case we will say that. . .

g : S → R is a continuous extension of f : U → R from U to S

3There is an analogous definition for “C-embedded” studied later: We say that U is C-embedded in S if
every real-valued function, f ∈ C(U), continuously extends to a function, f∗ ∈ C(S)
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The notion of “C∗-embedding” is closely related to completely regular spaces and
their Stone-Čech compactification. For this reason, we will discuss this property in
depth now (even though C∗-embeddings may be discussed in other contexts). The
following theorem shows that, for any completely regular space S, S is C∗-embedded
in its Stone-Čech compactification, βS. That is,

...every function, f ∈ C∗(S), extends continuously to a function, fβ ∈ C(βS)

Theorem 21.4 Let S be a completely regular space. Then S is C∗-embedded in βS.

Proof : If f ∈ C∗(S), let If be the range of f . Let

T =
∏

f∈C∗(S)clRIf

Then the evaluation map, e : S → T embeds S in T . Recall that, by definition,

βS = clT e[S] ⊆ ∏
f∈C∗(S)clRIf

Suppose g ∈ C∗(S).

We are required to show that g : S → R extends continuously to some function,
gβ : βS → R.

If πg is the gth-projection map, then

πg :
∏

f∈C∗(S)clRIf → clRIg

where βS = clT e[S] and so,
πg|βS : βS → clRIg

maps βS into clRIg. Let gβ = πg|βS . Then gβ[βS] = gβ[clT e[S]] = clRg[S] ⊆ clRIg.

It follows that gβ : βS → clRIg and, since g[S] ⊆ Ig, for x ∈ S, gβ|S(x) = g(x).

So gβ is a continuous extension of g from S to βS.

Note that, in the case where S is a compact space, e[S] is a compact space densely
embedded in βS and so βS\S = ∅. Then S and βS are homeomorphic.

The above theorem guarantees that every real-valued continuous bounded function,
f , on a completely regular space, S, extends to a continuous function fβ : βS → R.
The function fβ is the extension of f from S to βS. Recall (from Theorem 9.8) that
continuity guarantees that two continuous functions which agree on a dense subset D
of a Hausdorff space, S, must agree on all of S. So there can only be one extension,
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fβ, of f from S to βS.

We will soon show (in Theorem 21.9) that, if αS is a compactification of S and S is
C∗-embedded in αS, then αS must be the compactification, βS. That is,

...βS is the only compactification in which S is C∗-embedded

A generalization of the extension, f → fβ .

The above theorem can be generalized a step further. Suppose C(S, K) denotes all
continuous functions mapping S into a compact set K. We show that every function
f in C(S, K) extends to a function fβ(K) ∈ C(βS, K). Note that neither f nor fβ(K)

need be real-valued. The space, K, represents any compact set which contains the
image of S under f .

Theorem 21.5 Let S be a completely regular (non-compact) space and g : S → K be
a continuous function mapping S into a compact Hausdorff space, K. Then g extends
uniquely to a continuous function, gβ(K) : βS → K.

Proof : We are given that g : S → K continuously maps the completely regular space,
S, into the compact Hausdorff space K. We are required to show that g extends to
gβ(K) : βS → K.

Since K is compact Hausdorff it is completely regular; hence there exists a function
(the evaluation map) which embeds the compact set K in V =

∏
i∈J [0, 1]. Since V

contains a topological copy of K let us view K as a subset of V .

Since g : S → K, then, for every x ∈ S, g(x) = <gi(x)>i∈J ∈ K ⊆ [0, 1]J.

Since S is C∗-embedded in βS, then, for each i ∈ J, gi : S → [0, 1] extends to
gβ
i : βS → [0, 1].

We define the function gβ(K) : βS → V as

gβ(K)(x) = <gi(x)>i∈J ∈ V =
∏

i∈J [0, 1]

Since gβ
i is continuous on βS, for each i, then gβ(K) : βS → ∏

i∈J [0, 1] is continuous
on βS.

See that gβ(K)[βS] = gβ(K)[clβS(S)] = clV (g[S]) ⊆ clV (K) = K.

Since gβ(K)|S = g, then g : S → K continuously extends to gβ(K) : βS → K on βS.
As required.
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Given a completely regular topological space S, and T =
∏

i∈I [ai, bi] we now see that
the evaluation function eC∗(S) : S → ∏

i∈I[ai, bi] (which homeomorphically embeds a
copy of S into T ) then continuously extends to βS as follows:

eβ
C∗(S)

[βS] = eβ
C∗(S)

[clβSS]

= clT eC∗(S)[S]

where
eβ
C∗(S)

(x) = <fβ(x)>f∈C∗(S)

So we can represent the Stone-Čech compactification, βS, of S as being equivalent to

eβ
C∗(S)[βS]

The maximal compactification, βS.

Suppose αS is any compactification of S possibly distinct from βS. We will now
show that, in the partially ordered family, C , of all compactifications of S, αS � βS.
Showing this requires that we produce a continuous function πβ→α : βS → αS such
that πβ→α(x) = x, for all x ∈ S. If we can prove this, then we will have shown that
βS is the unique maximal compactification of a completely regular space, S.

Theorem 21.6 If αS is a compactification of S, then αS � βS.

Proof : By Theorem 21.5, the identity map i : S → αS, extends to a continuous function,

i∗ : βS → αS

Then S ⊆ i∗[βS] ⊆ αS, where i∗[βS] is compact, hence closed in αS. Since S is dense
in αS, , then the open set αS\i∗[βS] must be empty. So the continuous function,

i∗[βS] = i∗[clβSS] = clαSi∗[S] = clαSS = αS

maps βS onto αS. So αS � βS, as required.

Then for any compactification αS, there is the continuous function

πβ→α : βS → αS

which maps βS onto αS where πβ→α fixes the points of S.
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More on C∗-embedded subsets of a space S.

We present a miscellany of results which will help us more easily recognize a C∗-
embedded subset, T of a space S. We will return to our discussion of compactification
immediately following this.

The simplest example of a C∗-embedded subset of R is a compact subset of R.

Theorem 21.7 If K is a compact subset of R, then K is C∗-embedded in R.

Proof : Let K be a compact subset of R and f : K → R be a continuous function on
K. Since every continuous real-valued function is bounded on a compact subset, then
f ∈ C∗(K) = C(K). Suppose

u = sup {K} and v = inf {K}

Since K is closed and bounded in R, then u and v belong to K. Suppose g : R → R

is a function such that

g = f on K

g(x) = f(u), if x ≥ u

g(x) = f(v), if x ≤ v

It is easily verified that g is a continuous extension of f from K to R. Then K is
C∗-embedded in R.

Example 4. The set N is C*-embedded in R. One way of visualizing this is to plot
the points of {(n, f(n)) : n ∈ N} of a function f ∈ C∗(N) in the Cartesian plane R2

and join every pair of successive points (n, f(n)) and (n + 1, f(n + 1) ) by a straight
line. This results in a continuous curve representing a continuous function g on R

which extends f .

Urysohn’s extension theorem.

The following theorem often referred to as Urysohn’s extension theorem provides an
important and useful tool for recognizing C∗-embedded sets.4

4The Urysohn’s extension theorem should not be confused with the Urysohn’s lemma. Urysohn’s lemma
states that “The topological space (S, τS) is normal if and only if given a pair of disjoint non-empty closed sets,
F and W , in S there exists a continuous function f : S → [0, 1] such that, F ⊆ f←[{0}] and W ⊆ f←[{1}]”
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Theorem 21.8 Urysohn’s extension theorem: Let T be a subset of the completely regular
space S. Then T is C∗-embedded in S if and only if pairs of sets which can be completely
separated by some function in C∗(T ) can also be separated by some function in C∗(S).

Proof : ( ⇒ ) Suppose T is C∗-embedded in S and U and V are completely separated
subsets of T . Then there exists f ∈ C∗(T ) such that U ⊆ f←(0) and V ⊆ f←(1).
Then by hypothesis f extends to f∗ ∈ C∗(S). Then U ⊆ f←∗(0) and V ⊆ f←∗(1).
So U and V are completely separated in S.

( ⇐ ) Suppose that pairs of sets which can be completely separated by some function
in C∗(T ) can also be separated by some function in C∗(S).

Let f1 be a function in C∗(T ). We are required to show that there exists a function
g ∈ C∗(S) such that g|T = f1.

Since f1 is bounded on T , then there exists, k ∈ R, such that |f1(x)| ≤ k for all x ∈ T .
Then f1 ≤ k = 3r1 = 3 ·

[
k
2 · (2

3

)1
]

= k (Where r1 = k
2 · ( 2

3

)1)

We now inductively define a sequence of functions {fn} ⊆ C∗(T ). For n = 1, 2, 3, . . .,
there exists fn ∈ C∗(T ) such that −3rn ≤ fn(x) ≤ 3rn where,

3rn = 3 ·
[
k

2
·
(

2
3

)n]
= k ·

(
2
3

)n−1

(Where rn = k
2 · ( 2

3

)n)

For this n, let Un = f←n[ [−3rn,−rn] ] and Vn = f←n[ [rn, 3rn] ].

We see that Un and Vn are completely separated in T . 5

By hypothesis, Un and Vn are completely separated in S. This means there exists
gn ∈ C∗(S) such that, gn[S] ⊆ [−rn, rn], gn[Un] = {−rn} and gn[Vn] = {rn}
(where rn =

[
k
2 · (2

3

)n]
). So the sequence, {gn : n = 1, 2, 3, . . .}, thus constructed is

well-defined in C∗(S).

We now inductively define the sequence {hn} ⊆ C∗(T ) initiating the process with
h1 = f1 and continuing with

hn+1 = hn − gn|T
Then for each n,

|hn+1| ≤ 2r1 = 2 · k

2
·
(

2
3

)n

= 3 · k

2
·
(

2
3

)n+1

= 3rn+1

5To see this: the function hn = (−rn ∨ fn) ∧ rn) has Un ⊆ Z(hn − (−rn) ) and Vn ⊆ Z(hn − rn).
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So gn|T = hn − hn+1. Define g : S → R as the series

g(x) =
∑

n∈N\{0}
gn(x)

See that g(x) is continuous on S: Since |gn(x)| ≤ k
2

(
2
3

)n, and
∑

n∈N\{0}
k
2

(
2
3

)n is a
converging geometric series, then

∑
n∈N\{0} gn(x) converges uniformly to g(x). Since

each gn(x) is continuous on S, then g ∈ C∗(S). So g is a continuous on S.

Also see that, g|T = f1:

g|T (x) = lim
m→∞

m∑
n=1

gn|T (x)

= lim
m→∞(h1(x)− h2(x)) + (h2(x)− h3(x)) + · · ·+ (hm(x)− hm+1(x))

= lim
m→∞h1(x)− hm+1(x)

= h1(x) = f1(x) (Since limm→∞ 3rm+1 = 0)

Then, g|T = f1 so f1 extends continuously from T to S. We are done.

Example 5. Use Urysohn’s extension lemma to show that any compact subset, K, of
a completely regular space, S, is C*-embedded in S.

Solution: Let U and V be disjoint subsets of the compact set, K, which are completely
separated in K. Then there is a function f ∈ C(K) such that U ⊆ A = f←[{0}] and
V ⊆ B = f←[{1}]. Both A and B are disjoint closed subsets of compact K and so are
compact sets. Then A and B are compact in the completely regular space, S. Then
A and B are completely separated in S. So U and V are completely separated in S.
By Urysohn’s extension lemma, K is C∗-embedded in S. We conclude that . . .

. . . any compact subset, K, of a completely regular space, S, is C*-embedded
in S.

Uniqueness of βS.

We are now able to prove that, up to equivalence, the Stone-Čech compactification of
S is the only compactification in which S is C∗-embedded. By this we mean that, if
S is C∗-embedded in the compactification, γS, of S, then γS is equivalent to βS. So
the symbol, βS, is strictly reserved for the Stone-Čech compactification of S.
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Theorem 21.9 The completely regular space S is C∗-embedded in the compactification,
γS if and only if γS ≡ βS.

Proof : We are given that S is completely regular.

( ⇐ ) Suppose γS ≡ βS. Then there is a homeomorphism, h : γS → βS, mapping
γS onto βS such that h(x) = x, for all x ∈ S. We are required to show that S is
C∗-embedded in γS.

If f ∈ C∗(S), then f extends to fβ : βS → R. Then fβ◦h : γS → R. Define
fγ = fβ◦h. We see that fγ : γS → R is the continuous extension of f from S to γS.
Then S is C∗-embedded in γS.

( ⇒ ) Suppose S is C∗-embedded in γS. We are required to show that γS and βS

are equivalent compactifications.

Let i : S → S be the identity map. Then, by Theorem 21.5, i extends to i∗ : βS → γS.
Also, just as shown in the proof of theorem 21.5, i← extends to i←ˆ : γS → βS. Then
i←◦i and i◦i← are both identity maps on S and, since S is dense in both βS and γS,
respectively, then i∗◦i←ˆ and i←ˆ◦i∗ are identity maps on γS and on βS, respectively.
Then both i∗ and i←ˆ are homeomorphisms. Hence γS and βS are equivalent com-
pactifications.

Example 6. Show that if F is a closed subset of a metric space S, then F is C∗-
embedded in S.

Solution : Let F be a closed subset of the metric space S. We will set up the solution
so that we can invoke the Urysohn extension theorem.

Let A and B be completely separated in F . Then, by definition, there is a function f in
C∗(F ) such that A ⊆ Z(f) and B ⊆ Z(f−1). Then clF A ⊆ Z(f) and clF B ⊆ Z(f−1).
Since F is closed in S, then so are the disjoint sets clF A and clF B. It is shown on
page 215 that in metric spaces closed subsets are the same as zero-sets. So clF A and
clF B are disjoint zero-sets in S, say clF A = Z(k) and clF B = Z(g) in S. If

h =
|k|

|k|+ |g|
on S, clF A = Z(h) and clF B = Z(h − 1) in S. So A and B are completely sepa-
rated in S. By Urysohn’s extension lemma every closed subset of a metric space is
C∗-embedded.

Because of this, it is useful to remember that,

. . . any closed subset of R is C∗-embedded in R
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21.5 Associating compactifications to subalgebras of C∗(S).

To each compactification αS we can associate a subset, Cα(S), of C∗(S) defined as

Cα(S) = {f |S ∈ C∗(S) : f ∈ C(αS)}

That is, f ∈ Cα(S) if and only if f extends to fα ∈ C(αS). If αS and γS are two
compactifications of S such that αS � γS it is normal to wonder how Cα(S) compares
to Cγ(S) in C∗(S).

Theorem 21.10 Let αS and γS be two compactifications of S such that αS � γS. Let
Cα(S) denote the set of all real-valued continuous bounded functions on S that extend to
αS. Let Cγ(S) denote the set of all real-valued continuous bounded functions on S that
extend to γS. Then Cα(S) ⊆ Cγ(S).

Proof : We are given that αS � γS. Then there is a continuous function πγ→α : γS → αS

such that πγ→α(x) = x on S.

Suppose t ∈ Cα(S). It suffices to show that t ∈ Cγ(S). Then there a function
tα : αS → R is such that tα|S = t. Define the function g : γS → R as

g = tα◦πγ→α

Since πγ→α : γS → αS and tα : αS → R are both continuous, then g is continuous on
γS and

g|S(x) = (t◦πγ→α)(x) = t(x)

So t = g|S ∈ Cγ(S). Hence

αS � γS ⇒ Cα(S) ⊆ Cγ(S)

as required.

Equivalent functions in C∗(S).

In what follows we will refer to pairs of functions in C∗(S) which are “equivalent”.

We define a particular subset, Cω(S) , of C∗(S) as follows:

Cω(S) = {f ∈ C∗(S) : fβ is constant on βS\S}
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The subset Cω(S) is easily seen to be closed under addition, multiplication, scalar
multiplication and contains all constant functions. We say that it is a subalgebra of
C∗(S).

We will say that two functions f and g in C∗(S) are equivalent functions in C∗(S) if

f − g ∈ Cω(S)

Equivalent functions f and g are sometimes expressed by the notation

f ∼= g

The next theorem shows that there are as many compactifications of S as there are
subalgebras of C∗(S) of a certain type.

Suppose (S, τ) is a completely regular space and F is a subalgebra of C∗(S) which
contains Cω(S) and separates points and closed sets. We can invoke Theorem 7.17
and Theorem 10.16 to obtain a compactification,

αS = eβ
F [βS] = clT eF [S]

of S, generated by F . We can associate to the compactification αS, the set Cα(S) ⊆
C∗(S) of real-valued continuous functions. In the following theorem we show condi-
tions that F must satisfy to guarantee that F = Cα(S).

Theorem 21.11 Let (S, τ) be a completely regular space and F be a subalgebra of C∗(S)
which separates points and closed sets in S. Suppose F generates the compactification

αS = e
β
F [βS] = clT eF [S]

If F satisfies the properties:

1) F contains Cω(S).
2) every f ∈ Cα(S) is equivalent to some function g ∈ F .

then F = Cα(S).

Proof : We are given that F separates points and closed sets of S and Cω(S) ⊆ F . Then

eβ
F [βS] = clT eF [S] = αS

is a compactification of S (generated by F ) where Cα(S) = {f |S : f ∈ C(αS)}.
We are also given that every function in Cα(S) is equivalent to some function in F .
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We are required to show that F = Cα(S).

Claim #1: F ⊆ Cα(S). Note that eβ
F
← : αS → βS. Let f ∈ F . We define the

real-valued function fα : αS → R as

fα = fβ◦ eβ
F
←

We see that fα ∈ C(αS) and so is a continuous extension of f ∈ F . We then conclude
that F ⊆ Cα(S), as claimed.

Claim #2: Cα(S) ⊆ F . Suppose g ∈ Cα(S). Then, by hypothesis, there is a function
f ∈ F such that g − f = h ∈ Cω(S). Then g = f + h. Since both f and h belong
to the subalgebra F , then g ∈ F . We can then conclude that Cα(S) ⊆ F , as claimed.

Then Cα(S) = F , as required.

The converse is easily seen to be true. That is, if F = Cα(S), then F satisfies the
two given properties.

The reader can expect to encounter, a bit later, similar theorem statements, one of
which is called The Stone-Weierstrass theorem in 30.3, the other is Theorem 30.4.6

Suppose γS is a compactification of S and Cγ(S) = {f |S ∈ C(S) : f ∈ C(γS)}. That
is, Cγ(S) is the set of all function, f , in C∗(S) which extend to fγ : γS → R. We
have shown that γS � βS and Cγ(S) is a subalgebra of C∗(S). We have also seen
that there is a continuous map πβ→γ : βS → γS which fixes the points of S.

In the following lemma we show that we can express the function πβ→γ : βS → γS in
a form which better describes the mechanism behind the function itself.

Lemma 21.12 Let γS be a compactification of the space S. Let G = Cγ(S). Then

πβ→γ = eG
γ←◦eG

β

where eG is the evaluation map generated by G .

6The Stone-Weierstrass theorem states: “Let S be a compact topological space. Let F be a complete
subring of C∗(S) which contains the constant functions. If F separates the points of S, then F = C∗(S)”.

A consequence of the Stone-Weierstrass statement is the Theorem 30.4 which roughly states that:
“If the set, C∗(S) contains a subring, F , which is complete and contains Cω(S), then F = Cα(S) for some
compactification, αS, of S.”
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Proof : If f ∈ Cγ(S), for x ∈ βS, fβ(x) = (fγ◦πβ→γ)(x). Then, for x ∈ βS,

eG
β(x) = < fβ(x) >f∈Cγ(S)

= < (fγ◦πβ→γ)(x) >f∈Cγ(S)

= < fγ(πβ→γ(x)) >f∈Cγ(S)

= eG
γ(πβ→γ(x))

= (eG
γ ◦πβ→γ)(x)

Then eG
β = (eG

γ◦πβ→γ) on βS. Then πβ→γ = eG
γ←◦eG

β.

21.6 Limits of z-ultrafilters in βS.

For what follows, recall the definitions of terms related to z-filters in 14.10.

Suppose Z = {Z(f) : f ∈ M ⊆ C∗(S)} is a free z-ultrafilter in the locally compact
Hausdorff space S, where M is the corresponding free maximal ideal in C∗(S). Let

Z ∗ = {clβSZ(f) : f ∈ M}
denote a family of closures of the elements in Z . Since βS is compact Hausdorff
and Z is a filter, Z ∗ satisfies the finite intersection property. Then Z ∗ must have
non-empty intersection in βS. Then it is fixed and so must have a unique limit point,

{p} = ∩{clβSZ(f) : f ∈ M}
in βS\S. We clearly have clβSZ(f) ⊆ Z(fβ) for each f ∈ M ⊆ C∗(S). Since fβ |Z(f)

agrees with fβ on clβSZ(f), then its extension to Z(fβ) agrees with fβ on Z(fβ). So

clβSZ(f) = Z(fβ) (∗)
So,

“. . . for any free z-ultrafilter, Z = {Z(f) : f ∈ M ⊆ C∗(S)} in Z[S], we
can write,

{p} = ∩{clβSZ(f) : f ∈ M} = ∩{Z(fβ) : p ∈ Z(fβ)}
where p ∈ βS\S. So the points in βS\S are precisely the unique limits of
a unique free z-ultrafilter in Z[S].”

Of course, if Z is a fixed z-ultrafilter in Z[S], then

{p} = ∩{Z(f) : f ∈ M}
for some p in S.
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Theorem 21.13 Suppose T is a dense subset of the completely regular space S. Then the
following are equivalent:

a) The subset, T , is C∗-embedded in the space S

b) Disjoint zero-sets in T have disjoint closures in S.

c) Every point of S is the limit of a unique z-ultrafilter on T .

Proof : We are given that S is completely regular.

( a ⇒ b ) Suppose T is a C∗-embedded dense subset of S. Let h, g ∈ C∗(T ) be such
that Z(h) and Z(g) are disjoint zero-sets of T . Then Z(h) and Z(g) are completely
separated in T .7

By Urysohn’s extension theorem, Z(h) and Z(g) are completely separated in S. Then
there exists t ∈ C∗(S) such that Z(h) ⊆ Z(t) and Z(g) ⊆ Z(t − 1). Then clSZ(h) ⊆
Z(t) and clSZ(g) ⊆ Z(t − 1). We can then conclude that clSZ(h) ∩ clSZ(g) = ∅, as
required.

( b ⇒ c ) Suppose that disjoint zero-sets in T have disjoint closures in S. Let Z1 and
Z2 be disjoint zero-sets in T .

Claim #1: We claim that clS(Z1 ∩ Z2) = clSZ1 ∩ clSZ2.

Proof of claim: Of course, LHS ⊆ RHS is always true. Suppose, on the other hand,
that x ∈ clSZ1 ∩ clSZ2.

We are required to show that x ∈ clS(Z1 ∩ Z2). For any zero-set neighborhood, Z, of
x, Z ∩ Z1 is dense in Z ∩ clSZ1 so

x ∈ clS(Z ∩ Z1) ∩ clS(Z ∩ Z2) �= ∅ (∗)

Now both Z ∩ Z1 and Z ∩ Z2 are zero-sets so, by hypothesis, (Z ∩ Z1) ∩ (Z ∩ Z2)
cannot be empty. So Z ∩ (Z1 ∩ Z2) �= ∅. Since Z is any zero-set neighborhood of x,
this means that x ∈ clS(Z1 ∩ Z2).

We conclude clS(Z1 ∩ Z2) = clSZ1 ∩ clSZ2, as claimed.

Claim #2: We claim that each point in S\T is the limit of a unique z-ultrafilter on
T .

Proof of claim: Let y ∈ T . Then y belongs to the closure of a zero-set, Z, in T . Hence
y is the limit point of a z-ultrafilter, Z , in T . Now, if y is also the limit of another
z-ultrafilter, Z1, in T , then Z1, will contain a zero-set Z1 which will not intersect

7To see this, note that Z(|h| + |g|) = ∅ in T and so for the function, k(x) = |h(x)|/[|h(x)| + g(x)|],
Z(h) ⊆ Z(k) and Z(g) ⊆ Z(k − 1).
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some zero-set, Z2, of Z . Then y ∈ clSZ1 ∩ clSZ2 = clS(Z1 ∩ Z2) = ∅. We can only
conclude that every point in S\T is the limit of a unique z-ultrafilter in T . As claimed.

( c ⇒ a ) We are given that S\T is a set of limits of free z-ultrafilters on T . Since
βT \T is the set of all limit points of free z-ultrafilters on T , we can say that

S\T ⊆ βT \T

Now, since S is dense in βS and T is dense in S, then T is dense in βS so we can
view βS as a compactification, say γT , of T with outgrowth

γT \T = (βS\S) ∪ (S\T )

Then for the function πβ→γ : βT → γT , we have, πβ→γ [βT \T ] = γT \T where,

πβ→γ |S(x) = x

Then, for f ∈ C∗(T ) define f∗ : S → R as

f∗(x) = fβ◦πβ→γ |←S (x)

where f∗ is seen to be continuous on S and f∗|S = f on T . So f∗ is a continuous
extension of f from T to S. We conclude that T is C∗-embedded in S.

21.7 Pseudocompact spaces revisited.

Recall (from definition 17.11) that a topological space is said to be pseudocompact if
every continuous real-valued function on S is bounded. That is, if C(S) = C∗(S).

Although the pseudocompact property has a simple and easily understood definition,
it turns out that, when not compact, such spaces are not easily recognizable. It will be
helpful to obtain a few characterizations. In the following theorem, we show that, for
locally compact Hausdorff spaces, pseudocompact spaces are precisely those spaces,
S, where βS\S does not contain a zero-set.

Theorem 21.14 A locally compact Hausdorff space S is pseudocompact if and only if no
zero set Z in Z[βS] is entirely contained in βS\S.
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Proof : Let S be a locally compact Hausdorff space.

( ⇒ ) Suppose S is a pseudocompact space and Z(fβ) ∈ Z[βS]. We are required to
show that Z(fβ) ∩ S �= ∅.

Suppose not. That is, suppose, Z(h) ⊆ βS\S (where h ∈ C(βS). Then, since h|S is
not zero in S, we can define the function g = 1/h|S and so g ∈ C(S). Let z ∈ Z(h).
Since z belongs to clβSS, then there is a sequence, {xi} in S, which converges to z. By
continuity, the corresponding sequence, {h(xi)} in R, must converge to h(z) = 0. So g
is unbounded on S, which contradicts the hypothesis which states that all real-valued
continuous functions on S are bounded. So Z(h) must intersect with S, as required.

( ⇐ ) Suppose now that, for any Z ∈ Z[βS], Z ∩ S �= ∅. We are required to show
that S is pseudocompact.

Suppose S is not pseudocompact. Then C(S) contains an unbounded function g. Let

f = |g| ∧ k

where k > 0. Then f is continuous real-valued unbounded on S. Then for each n ∈ N,
there exists xn ∈ S such that f(xn) ∈ (n,∞). Then h = 1/f is a continuous well-
defined real-valued bounded function on S. Since βS is compact {xn : n ∈ N} has a
converging subsequence {xni : i ∈ N} with limit, say x ∈ βS\S. Since h is continuous
and bounded on S, h extends to hβ : βS → R with hβ(x) = 0. Then Z(hβ) ⊆ βS\S,
a contradiction of our hypothesis. Then S is pseudocompact.

It is interesting to note that, in the above theorem, a property of the outgrowth, βS\S
characterizes a property of the space S.

We point out one easy consequence of the above theorem.

Suppose S is locally compact and completely regular. If S is pseudocompact and
k = fβ(x) ∈ fβ[βS\S], then there exists y ∈ Z(fβ − k) ∩ S, so fβ(y) = k ∈ f [S]. So
fβ[βS\S] ⊆ f [S].

Conversely, suppose fβ [βS \S] ⊆ f [S]. Suppose Z(fβ − t) ∩ βS \S �= ∅. Then
there exists y ∈ βS \S such that fβ(y) = t and x ∈ S such that f(x) = t. Then
x ∈ Z(fβ − t) ∩ S �= ∅. So S is pseudocompact.

“The locally compact completely regular space, S, is pseudocompact if and
only if, for every f ∈ C∗(S), fβ[βS\S] ⊆ f [S].”
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21.8 The one-point compactification.

It was shown in Theorem 18.8, that every locally compact Hausdorff space is com-
pletely regular. Hence a locally compact Hausdorff space, S, has at least one com-
pactification, namely, βS. This compactification is maximal when compared to all
others in the family, C , of all compactifications. Does the family C contain a minimal
element? That is, does C have a compactification, γS, such that γS � αS, for all
compactifications, αS in C ? The answer will depend on the space, S. In a previous
chapter of the book, we, in fact, provided an answer to this question, as we shall soon
see.

In Theorem 18.7, we showed that given a locally compact Hausdorff space (S, τ) and
a point ω �∈ S, we can construct a larger set,

ωS = S ∪ {ω}

By first defining, Bω = {U ∪ {ω} : U ∈ τ and S \U is compact }, we then define a
topology, τω, on ωS as follows:

τω = τ ∪ Bω

We then showed that (ωS, τω) is a compact space which densely contains S. Then
(ωS, τω) satisfies the definition of a compactification of S. Furthermore, and quite
importantly, we show in Theorem 18.7 that ωS is Hausdorff if and only if S is locally
compact.

So a non-compact, locally compact Hausdorff space, S, has a compactification, ωS,
which may be different from βS. We formally define it.

Definition 21.15 Let (S, τ) be a locally compact Hausdorff topological space, ω be a point
not in S and ωS = S ∪ {ω}. If

Bω = {U ∪ {ω} : U ∈ τ and S\U is compact }

and τω = τ ∪ Bω then (ωS, τω) is called...

...the one-point compactification of S 8

We will, more succinctly, denote the one-compactification of S by,

ωS = S ∪ {ω}

8The one-point compactification of S is also referred to as the Alexandrov compactification of S, named
after the soviet mathematician, Pavel Alexandrov, (1896-1982).
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Since we have chosen the symbol ωS as notation, then, to be consistent with the
notation used up to now, we should let

Cω(S) = {f |S : f ∈ C(ωS)}
But the symbol, Cω(S), has already been used in another sense on page 420 where
Cω(S) is used to represent the set of all f ∈ C∗(S) such that fβ is constant on βS\S.
We verify that these are the same set. For f ∈ Cω(S) if and only if,

fβ [βS\S] = fβ [ π←β→ω[{ω}] ] = {fω(ω)} ⊂ R

Then Cω(S) separates points and closed sets of S.9

It is also worth emphasizing the fact that

“...for a space S to have a one-point compactification which is Hausdorff, S
must be locally compact”.

We can even say more. Amongst all the completely regular spaces, S, the only ones
that are open in any compactification are the ones where S is locally compact. We
will prove this now.

Theorem 21.16 Let S be a completely regular topological space and αS be any compact-
ification of S. Then S is open in αS if and only if S is locally compact.

Proof : We are given that S is completely regular and αS is a compactification of S.

( ⇒ ) Suppose S is open in αS. Since the space S is the intersection of the open set
S and the closed set αS, by Theorem 18.3, S is locally compact.

( ⇐ ) Suppose S is locally compact in αS. By Theorem 18.3 part d), S is the inter-
section of an open subset, U , and a closed subset, F . Since F = αS and S is dense in
αS, then S is open in αS, as required.

If S is locally compact, then the map, πβ→ω : βS → ωS, collapses the set βS\S down
to the singleton set {ω}. More generally, if αS is any compactification of S, then
πα→ω continuously collapses the outgrowth αS\S down to {ω} and fixes the points
of S. So for any compactification αS,

ωS � αS and Cω(S) ⊆ Cα(S)
9Had we known this fact before we would has seen that, in the statement of Theorem 21.11, the condition

1) is redundant.
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Theorem 21.17 Uniqueness of ωS. Let S be a locally compact completely regular topo-
logical space. Suppose αS and γS are both compactifications of S which contain only one
point in their compact extension. Then they are equivalent compactifications.

Proof : We are given that S is locally compact completely regular. Suppose αS\S = {ωα}
and γS\S = {ωγ}, both singleton sets.

Consider the map, h : αS → γS, where h(x) = x on S and h(ωα) = ωγ . Then h is
one-to-one and onto. It will suffice to show that h maps open neighborhoods to open
neighborhoods.

Let Uα be any open neighborhood of a point in αS. If Uα ⊆ S, then Uα is open in
S. Then h[Uα] = Uα. Since S is locally compact it is open in γS and Uα = Uα ∩ S is
open in γS.

Suppose ωα ∈ Uα. Since αS\Uα is compact and h|S is continuous, then h[αS\Uα] is a
compact. Since h is one-to-one, h[αS\Uα] = h[αS]\h[Uα] = γS\h[Uα], a compact set
which doesn’t contain ωγ . So h[Uα] is open. Hence h : αS → γS is a homeomorphism.
We can conclude that αS ≡ γS.

From this theorem we can conclude that the one-point compactification is unique, up
to equivalence. We now consider a few examples involving compactifications of a space.

Example 7. Suppose that S is locally compact and its one-point compactification,
ωS, of S is metrizable. Show that S must be second countable.

Solution : Suppose ωS is metrizable. In the proof of theorem 15.8 it is shown that
countably compact metric spaces are separable. By Theorem 5.11, a separable metric
space is second countable. Since ωS is compact and so is countably compact, then, by
combining these two results we obtain that ωS is second countable. By theorem, 5.13,
subspaces of second countable spaces are second countable. So S is second countable.
As required.10

It may happen that βS and ωS are the same compactification. We provide an exam-
ple where they are not equivalent.

Example 8. Consider the set S = (0, 1] equipped with the usual subspace topology.
Determine ωS. Show that the one-point compactification, ωS = [0, 1], of S is not

10The converse of the statement in this example is true. That is, “Locally compact second countable
spaces have a metrizable one-point compactification” has been proven. But its proof is fairly involved. So
we will not show it here.



Part VII: Topics 429

equivalent to βS.

Solution : Since [0, 1] is a compact set which densely contains S, and the one-point
compactification is unique, then ωS = [0, 1]. Note that, since the function f(x) = sin 1

x
is a bounded continuous function on S, then it extends to βS. (Plot f(x) = sin 1

x .)
Verify that f does not extend continuously to [0, 1].
Then [0, 1] cannot be the Stone-Čech compactification of S.

The following theorem provides an example of a space, S, such that βS = ωS.

Theorem 21.18 If S is the ordinal space [0, ω1) (where ω1 is the first uncountable or-
dinal), then βS \S = {ω1} and so βS = ωS = [0, ω1], the one-point compactification of
S.

Proof : Given: The space, S, is the ordinal space [0, ω1). Then ωS = [0, ω1] is its one-point
compactification. So S is completely regular and locally compact.
We are required to show that βS = ωS = [0, ω1].

In the example on page 311, it is shown that S = [0, ω1) is countably compact but
non-compact. In Theorem 15.9 it is shown that, if S is countably compact every
function in C(S) is bounded and so has a compact image in R.

Let f ∈ C∗(S) = C(S). Then

fβ[βS] = fβ[clβSS] = clRf [S] = f [S] ⊆ R

To show that βS = ωS, it suffices to show that fβ [βS\S] is a singleton set in f [S].
Suppose q and q∗ are two points in fβ[βS\S] ⊆ f [S] ⊆ R.

We claim: That q = q∗.
Proof of claim: Express f [S] as a net

N = {f(α) : α ∈ S = [0, ω1)}
Both q and q∗ are accumulation points of the net N = f [S]. So, for each n ∈ N, both
B1/2n(q) and B1/2n+1(q∗) each contain a cofinal subset of the tail end of the net N .
We can then choose, {αn : n ∈ N} strictly increasing in S such that f(α2n) ∈ B1/2n(q)
and f(α2n+1) ∈ B1/2n+1(q∗). If sup {αn} = κ, then sup {α2n} = κ = sup {α2n+1}.
Hence

lim
n→∞ f(α2n) = q = f(κ) = q∗ = lim

n→∞ f(α2n+1)

So q = q∗ as claimed.

From this we can conclude that, for all f ∈ C∗(S), fβ is constant on βS \S. Then
βS = [0, ω1] = ωS, the one-point compactification of S.
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In the following statement an n-sphere , Sn, refers to a subset of Rn+1 defined as
{	x ∈ Rn+1 : ‖	x‖ = 1}. For example, S2 is a subset of R3 where (x, y, z) ∈ S2 if and
only if ‖(x, y, z)‖ = 1. We will show that, the 2-sphere, S2 is homeomorphic to ωR2.

Theorem 21.19 Let Sn denote the n-sphere in Rn+1. Then the “punctured n-sphere”,
Sn minus a single point, (Sn\{p}), is homeomorphic to Rn. Then, Sn is homeomorphic to
the one-point compactification, ωRn, of Rn.

Proof : We are given that Sn is the n-sphere which is a subset of Rn+1 and that p =
(0, 0, 0, . . . , 0, 1) is a point in Rn+1 which belongs to Sn. We will first show that Sn\{p}
is homeomorphic to Rn. We achieve this by showing that the function g : Sn\{p} → Rn

defined as

g(x1, x2, . . . , xn, xn+1) =
1

1− xn+1
(x1, x2, . . . , xn−1, xn) 11

maps Sn\{p} homeomorphically onto Rn.

Since p = (0, 0, . . . , 1), then 1 − xn+1 �= 0, so g is well-defined.

Let a = (a1, a2, . . . , an+1) and b = (b1, b2, . . . , bn+1) be distinct points in Sn\{p}. Then
ak �= bk for at least one k ∈ {1, 2, . . . , n + 1}. Then

1
1− an+1

(a1, a2, . . . , an−1, an) �= 1
1 − bn+1

(b1, b2, . . . , bn−1, bn)

So g is one-to-one. The function g is also verified to be onto Rn.

To prove continuity of g : Sn\{p} → Rn, it suffices to show that πi◦g is continuous for
each i ∈ {1, . . . , n}, and invoke 7.11. See that

(πi◦g)(x1, x2, . . . , xn, xn+1) = πi

[
1

1 − xn+1
(x1, x2, . . . , xn−1, xn)

]

=
xi

1 − xn+1

=
πi(x1, x2, . . . , xn)

1− xn+1

=
(

πi

1 − xn+1

)
(x1, x2, . . . , xn)

11The function, g, is known as a stereographic projection
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so πi◦g is continuous for each i.

Also, since π is an open map, the function g is an open map.

Then g maps Sn\{p} homeomorphically onto Rn, as we claimed earlier.

We now define a function g∗ : Sn → ωRn and show it is a homeomorphism.

Let g∗ : Sn → ωRn be a function mapping the one-point compactification, Sn, of
Sn\{p} onto the one-point compactification, ωRn = R ∪ {ω}, of Rn which is defined
as

g∗|Sn\{p}(x) = g(x)
g∗(p) = ω

If U is an open subset of ωRn which doesn’t contain ω, then g∗←[U ] is open in Sn\{p},
and so is open in Sn.

If U is an open subset of ωRn which contains ω then g∗←[U ] = {p} ∪ g←[U ∩ Rn].
Now, ωRn\U is compact in ωRn and so is compact in Rn. Then g←[ωRn\U ] is com-
pact in Sn. So, g∗←[U ] is an open neighborhood of p in Sn. So g∗ is continuous on Sn.

Similarly, g∗ maps open subsets of Sn to open subsets of ωRn.

So g∗ is a homeomorphism between the compact sets Sn and ωRn.

We also showed along the way that g∗|Sn\{p} = g maps the punctured n-sphere, Sn\{p},
homeomorphically onto Rn.

21.9 Topic: Cardinality of some common Stone-Čech compactifications.

We know the cardinality of the most common sets we encounter (such as N, Q and
Rn). We can sometimes determine the cardinality of associated sets such as their
Stone-Čech compactification. We know the cardinality, |N|, of the set N is ℵ0, while
|R| = c = 2ℵ0. In the following theorem we compute the cardinalities of βN, βQ and
βR. This is good practice in working with these particular compactifications.

Theorem 21.20 The cardinality, |βN|, of the set βN is 2c.

Proof : We are given the compactification, βN, of N.

Claim#1. We first claim that |βN| ≥ 2c.
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Proof of claim#1: In Theorem 7.10, it is shown that, since [0, 1] is separable, then
the product space, K =

∏
i∈R[0, 1], with |R| = c factors, is also separable. This means

that there is a countably infinite set, D, contained in K. There then exist a function

g : N → D ⊂ K

which indexes the elements of D. Note that g is continuous on N and densely embeds
D in K. By Tychonoff’s theorem, K is compact. See that g extends continuously
from N to

gβ(K) : βN → K

Then

gβ(K)[βN] = gβ(K)[clβNN]

= clKgβ(K)[N]
= clKD

= K

Now |K| = |∏i∈R[0, 1]| = cc = 2c. (See footnote)12. Since βN is the domain of the
function gβ(K) (which could possibly not be one-to-one), then

|βN| ≥ |K| = 2c

as claimed.

Claim#2. That |βN| ≤ |K| = 2c.

Proof of claim#2: We know that each function in C∗(N) can be seen as a sequence
{xi : i ∈ N} in RN. Then

|C∗(N)| = |RN| = cℵ0 = c (See footnote)
2

That is, if I = |C∗(N)|, then

C∗(N) = {fi : N → R : i ∈ I}
contains I = c distinct functions.

Let T =
∏

i∈I[ai, bi] ⊆
∏

i∈IR where, by Tychonoff theorem, T is compact.

Recall that eC∗(N) : N → ∏
i∈I R is the evaluation map generated by C∗(N), explicitly

defined as

eC∗(N)(n) = <fi(n)>fi∈C∗(N) ∈ eC∗(N)[N] ⊆ T ⊆ ∏
i∈IR

12The proof of |Q
i∈R

[0,1]| = cc = 2c is shown in an example of Section 24.2 of Set theory: An introduction

to Axiomatic Reasoning, R. André, in which we compute the cardinality of RR

2The proof of |RN| = c is shown in theorem 25.2 of Set theory: An introduction to Axiomatic Reasoning,
R. André
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Then eC∗(N)[N] ⊆ T =
∏

i∈I[ai, bi], and |T | ≤ |R|I = cc = 2c. So,

e
β
C∗(N)[βN] = e

β
C∗(N)[clβSN]

= clT eC∗(N)[N]
⊆ T

So |βN| ≤ |T | ≤ 2c. This establishes our second claim.

Since |βN| ≤ 2c and |βN| ≥ 2c, then |βN| = 2c. We are done.

Now, N contains countably many points and so |βN\N| = 2c. Since we can associate
to each point in βN\N a unique free z-ultrafilter in Z[N], the above theorem confirms
that there are 2c free z-ultrafilters in Z[N].

The cardinality of βN will help us determine the cardinalities of βR and βQ.

Theorem 21.21 The sets βN, βR and βQ each have a cardinality equal to 2c.

Proof : We have already shown that |βN| = 2c.

Claim #1 : |βQ| ≤ 2c.

Proof of claim #1. We know N and Q are countable so both have cardinality ℵ0.
Then there exists a one-to-one function, f : N → βQ, mapping N onto Q ⊆ βQ. Since
N is discrete f is continuous on N. By Theorem 21.5, f : N → βQ extends to

fβ(βQ) : βN → clβQf [N] = clβQQ = βQ

Then
fβ(βQ)[βN] = fβ(βQ)[clβNN] = clβQf [N] = clβQQ = βQ

So |βQ| ≤ |βN| = 2c. This establishes claim #1.

Claim #2 : |βR| ≤ |βQ|.
Proof of claim #2. Since Q is dense in R and R is dense in βR, then it is dense in
βR; then clβRQ = βR. Consider the continuous inclusion function

i : Q → clβRQ = βR
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By Theorem 21.5, i : Q → clβRQ = βR extends to

iβ(βR) : βQ → βR

Then
iβ(βR)[βQ] = iβ(βR)[clβQQ] = clβRi[Q] = clβRQ = βR

So |βR| ≤ |βQ|. This establishes claim #2.

Up to now we have shown that |βR| ≤ |βQ| ≤ |βN| = 2c.

Claim #3 : |βR| ≥ |βN|.
Proof of claim #3. We know that N is C∗-embedded in R. (See example on page 415
or Theorem 21.8.) Then, if i : N → βN is the continuous inclusion map, since N is
C∗-embedded in R, i : N → βN extends continuously to

i∗ : R → βN

Also, i∗ : R → βN extends continuously to i∗β : βR → βN. Then

βN = clβNN

= clβNi[N]
⊆ clβNi∗[R] (Since i embeds N in i∗ [R])

= i∗β[clβRR]
= i∗β[βR]

Since i∗β[βR] contains βN, , then |βN| ≤ |βR|. This establishes claim #3.

Combining the results in the three claims above we conclude that |βR| = |βQ| =
|βN| = 2c as required.

21.10 Compactifying a subset T of S ⊆ βS.

If T is a non-compact subset of S, it is interesting to reflect on how clβST compares
with βT . Does it make sense to say that βT ⊆ βS? We examine this question in the
following example.

Example 9. Let T be a non-empty subspace of a completely regular space, S. Show
that

clβST is equivalent to βT

Solution: We are given that T ⊆ S. Since subspaces of completely regular spaces
are completely regular, then T is completely regular. Let i : T → βS be the identity
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function which embeds T into βS. By Theorem 21.5, i : T → βS extends continuously
to iβ(βS) : βT → βS. Then

βT = iβ(βS)[βT ]
= iβ(βS)[clβTT ]
= clβSi[T ]
= clβST

So clβST is equivalent to βT .

Suppose now that F is a closed non-empty subset of the completely regular space S.
The statement in the above example will allow us to say something more about F .

To see this, suppose f ∈ C∗(S). As stated in the example,

clβSF = βF

So F is C∗-embedded in clβSF . Since F is closed in S, then

(clβSF )\F ⊆ βS\S

So f : F → R extends to fβ : βF → R. Since βF is compact in βS, then fβ extends
to fβ∗ : βS → R. So

fβ∗|S : S → R

is a continuous extension of f on F to fβ∗|S on S (via fβ∗ on βS).

Then F is C∗-embedded in S. We conclude that,

“If F is a closed non-empty subset of a completely regular space S, then F
is C∗-embedded in S.”

21.11 The zero-sets of βN are clopen.

Zero-sets in βN play a role in the solution of the following example. If Z is a zero-set
in N, then it is clopen in N. It is easily seen that any zero-set in N is a zero-set of a
characteristic function, g : N → {0, 1}, on N. Since g extends to gβ : βN → {0, 1},
gβ←(0) = Z(gβ) = clβNZ is a clopen zero-set in βN. As well, gβ←(1) = βN \ Z(gβ)
is a clopen zero-set in βN. So, for every zero-set Z(g) in N, Z(gβ) is clopen in βN.
Hence zero-sets of βN are clopen in βN.

Example 10. The compactification, βN, is easily seen to be separable (N is a dense
subset of βN.). Show that βN\N is not separable.
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Solution: Suppose that βN\N is separable. Then, βN\N contains a dense countable
subset

D = {xi : i ∈ N}
Since the cardinality of βN is 2c (shown above), we can fix two points

n∗ ∈ (βN\N)\D and n ∈ N

Now, for each i ∈ N, {xi} and {n∗, n} form disjoint closed subsets of βN.
Since βN is normal, for each xi ∈ D, there is a clopen zero-set, Zi = Z(gβ) such that

xi ∈ Zi and {n∗, n} ⊆ βN\Zi

Then {βN\Zi : i ∈ N} is a family of zero-set clopen neighborhoods of {n∗, n}.
If W = ∩{βN\Zi : i ∈ N}, then W is a countable intersection of zero-sets and so is,
itself, a zero-set which contains {n∗, n} (see page 209) which does not intersect D.
Since n∗ ∈ βN\N ∩W , then W ∩ βN\N is a non-empty clopen subset of βN\N which
does not intersect D. Since D is dense in βN\N we have a contradiction. So βN\N is
not separable.

Since subspaces of separable metrizable spaces were shown to separable (see page 90),
then βN cannot be a metrizable space.

Concepts review:

1. Suppose S is a topological space and T is a compact Hausdorff space. What does it
mean to say that T is a compactification of S?

2. If S has a compactification, αS, what separation axiom is guaranteed to be satisfied
by S?

3. Given a completely regular space S let e : S → πi∈I [ai, bi] be the evaluation map on
S induced by C∗(S). Give a definition of the Stone-Čech compactification of S which
involves this evaluation map.

4. What does it mean to say that the two compactifications of S, αS and γS, are
equivalent compactifications?

5. If C = {αiS : i ∈ I} denotes the family of all compactifications of S. Define a partial
ordering of C .
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6. If U is a subset of the topological space S, what does it mean to say that U is C∗-
embedded in S?

7. If S is C∗-embedded in the compactification, αS, of S what can we say about αS?

8. Suppose S is completely regular and g : S → K is a continuous function mapping
S into a compact Hausdorff space K. For which compactifications, αS, does the
following statement hold true: “the function g extends to a continuous function g∗ :
αS → K”?

9. Suppose S is locally compact and Hausdorff. Define the one-point compactification,
ωS, of S.

10. What can we say about those subspaces of a compactification, αS, which are locally
compact? What can we say about those subspaces of a compactification, αS, which
are open in αS?

11. What is the Stone-Čech compactification of the ordinal space [0, ω1)?

12. State a characterization of the pseudocompact property stated in this chapter.


