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In section:

5.8 Topic : Hereditary topological properties.

. . .

. . .

. . .

Definition 5.12 A topological property, say P , of a space (S, τS) is said to be a hereditary

topological property provided every subspace, (T, τT), of S also has P .

Example 15. Show that metrizability is a hereditary property.

Solution : Suppose (S, τ) is metrizable. Then there exists a metric ρ such that (S, τ)

and (S, ρ) have the same open sets. Suppose T ⊆ S has the subspace topology and
ρt : T × T → R is the subspace metric on T . Then (T, τt) and (T, ρt) have the same

open sets and so T is metrizable. So subspaces of metrizable spaces are metrizable.

“First countable” is another example of a hereditary topological property.

1



However, the reader may want to verify that, if S is separable and V is an open

subspace of S, then V is separable. But, in general, separability is not a hereditary

property. (An example supporting this fact is found later in the book on page ??.9)

We now show that the “second countable” property is hereditary.

Theorem 5.13 Suppose (S, τS) is a second countable topological space. Then any non-
empty subspace of S is also second countable. So “second countable” is a hereditary prop-

erty.

Proof : Suppose (S, τS) has a countable base B = {Bi : i ∈ N}. Suppose (T, τ) is a non-
empty subspace of S. Let U be an open subset of T . Then there exists an open subset

U∗ of S such that U = U∗∩T . Then there exists N ⊆ N such that U∗ = ∪{Bi : i ∈ N}.
Then U = ∪{Bi ∩ T : i ∈ N}. So BT = {Bi ∩ T : i ∈ N} is a countable basis of T .

Hence T inherits the second countable property from its superset S.

“Separable metrizable” is hereditary.

It is immediately worth noting that the above results allow us to conclude that sub-

spaces of separable metrizable spaces are separable. That is, the “separable metrizable”

property is hereditary. To see this, simply note that if T is a subspace of the a separa-
ble metrizable space S then T is metrizable (by the above example). We claim that T

is separable: From theorem 5.11 , the metrizable space, S, must be second countable.
By theorem 5.13, the second countable property is hereditary. So T must be both

metrizable and second countable. Since second countable spaces are separable (by
theorem 5.10, then T is a both metrizable and separable.

So, for example, should one want to argue that the irrationals, J (equipped with the

usual topology), forms a separable space, it suffices to justify that R is both metrizable
and second countable.

9Where it is shown that βN\N is not separable even though βN is known to be separable.

2



In section:

6.8 Topic: The Pasting lemma and a generalization.

. . .

. . .

. . .

Note that, in the above theorem, if the members of the collection F are all open

subsets (rather than all closed as hypothesized in the theorem) the family F need not

be locally finite for the statement to hold true. That is...

Let S and T be topological spaces and {Oi : i ∈ I} be a collection of open

subsets of S which covers all of S. Let f : S → T be a function. Then,

f : S → T is a continuous function on S if and only if the restriction, f |Oi
,

of f to Oi is continuous for each i ∈ I.

It is left as an easy exercise for the reader to verify that this holds true.

Corollary 6.19 . . .

. . .

. . .

. . .

In section:

13.6 Other properties of filters.

Remove Theorem 13.11
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In section:

14.3 Properties of compact subsets.

. . .

. . .

. . .

Example 6. Suppose S and T are topological spaces. We know that projection maps

on product spaces are open maps. (See theorem on page 124)

Show that, in the case where the space T is compact then the projection map,
π1 : S × T → S, is a closed map.

Solution : Let K be a closed subset of S × T . We are required to show that π1[K] is

closed. It then suffices to show that S\π1[K] is open in S.

Let u ∈ S\π1[K]. Then ({u} × T ) ∩ K = ∅. Since T is compact then we easily see

that {u} × T is compact. Since K is closed in S × T , for each (u, x) ∈ {u} × T there
is an open neighborhood, V x

u ×Ux, which does not meet K. In this way we obtain an

open cover

{V x
u × Ux : x ∈ T}

of {u} × T which then has a finite subcover

{V xi
u × Uxi

: xi ∈ F ⊆ T}

Then ∩{V xi
u × Uxi

: xi ∈ F ⊆ T} forms an open neighborhood of u which does not
intersect π1[K]. So S\π1[K] is open in S, as claimed. We conclude that π1 : S×T → S

is a closed projection map.

In section:

17.2 Example of a compact space which is not sequentially compact.

Example 1. Let S = [0, 1][0,1] be equipped with the product topology. That is, we view

S as
∏

i∈[0,1][0, 1]i.

(a) Show that S is compact, hence countably compact.

(b) Show that, in spite of its compactness, S is not sequentially compact.

Solution : We are given that the space S = [0, 1][0,1] viewed as
∏

i∈[0,1][0, 1]i is equipped
with the product topology.
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(a) Since [0, 1] is compact and given the fact that any product space of compact sets
is compact (by Tychonoff theorem), then S =

∏

i∈[0,1][0, 1]i is compact. Since

any compact set is countably compact, then S is also countably compact.

(b) We are given that S = [0, 1][0,1] is equipped with the product topology. That is,
we view S as

∏

j∈[0,1][0, 1]j, a compact set. We will construct a sequence in S

which has no converging subsequence.

Suppose each element, x, of [0, 1] is expressed in its binary expansion form, [0, 1]2.
For n ∈ N\{0} we will define the function fn : [0, 1]2 → {0, 1} as,

fn(x) = “the nth digit in the binary expansion of x”

to form a sequence {f1, f2, f3, f4, . . .} each mapping [0, 1] into {0, 1}.
For example, given a particular value of x = 0.1011101010 . . . ∈ [0, 1]2

f1(x) = 1, f2(x) = 0, f3(x) = 1, f4(x) = 1 . . .

with which we form the ordered sequence, {f1(x), f2(x), f3(x), f4(x), . . .} = {1, 0, 1, 1, . . .}.

Then

T = {fn : n = 1, 2, 3, . . .}

is a sequence of functions each mapping [0, 1] into {0, 1}. So T ⊂
∏

i∈[0,1]2
{0, 1}.

We will show that T cannot have a convergent subsequence.

For suppose {fnk
: k = 1, 2, 3, . . .} is a subsequence of T which converges to the

function f ∈
∏

i∈[0,1]2
{0, 1}. Then, for every x ∈ [0, 1]2, {fnk

(x) : k = 1, 2, 3, . . .}
must converge to f(x).

We will choose q ∈ [0, 1]2 so that fn2k
(q) = 0 and fn2k−1

(q) = 1.

But the subsequence,

{fn1(q), fn2(q), fn3(q), . . . , } = {1, 0, 1, 0, 1, . . .}

clearly, does not converge (when it should converge to f(q)).

So the sequence of functions T in the compact space
∏

i∈[0,1]2
{0, 1} does not have

a convergent subsequence.

So S cannot be sequentially compact.
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In section:

22.5 More on equivalent singular compactifications.

. . .

. . .

. . .

Add Examples 9 and 10.

In the following example we see how we can use a singular function to construct, from

a rectangle, a cylindrical shell.

Example 9. Consider the non-compact subspace, S = [0, 2π]× (0, 2π) of R2 equipped
with the usual topology. Consider the function f : S → [0, 2π] defined as f [{x} ×

(0, 2π)] = {x}. Verify that the function f is continuous and that the singular set, S(f),
of f is the closed interval, [0, 2π]. Then verify that f [S] ⊆ [0, 2π] so that S ∪f S(f) is

a singular compactification of S. Also verify that the singular compactification of S,
induced by f , is (topologically speaking) a closed and bounded cylindrical shell with

radius 1.

Solution : For x ∈ [0, 2π], f←[Bε(x)] = Bε(x) × [0, 2π] is open in S and so f is
continuous on S. See that, for all x ∈ [0, 2π], clSf←[Bε(x)] is not compact in S so

S(f) = [0, 2π]. Since f [S] is a (proper) subset of S(f) = [0, 2π] then f is a singular
map and so S ∪f [0, 2π] is a singular compactification of S.

Then what geometric representation can we provide for S ∪f [0, 2π]? Well, let’s
consider the point x in S(f) viewed as an element of the compactification S ∪f S(f).

An open neighborhood base of x in S ∪f S(f) would look something like this

{ Bε(x) ∪ [ f←[Bε(x)] \ [0, 2π]× [δ, 2π − δ] ] : ε, δ > 0 }

where [0, 2π]× [δ, 2π− δ] is seen to be a compact subset of S. So S(f) appears to be

the edge which provides the material necessary to seal together the bottom and the
top edges of the rectangle [0, 2π]× (0, 2π) to form a cylindrical shell.

Example 10. Consider the non-compact subspace, S = [0, 2π]×(0, 2π) of R2 equipped

with the usual topology. Consider the function g : S → [0, 2π] defined as

g[{x}× (0, 2π)] = {2π − x}

Verify that that S ∪g S(g) (where S(g) = [0, 2π]) is a singular compactification.

Also, if f : S → [0, 2π] is the function as defined in the previous example, show that
S ∪f S(f) and S∪g S(g) are not equivalent compactifications (in spite of the fact that
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S(f) = S(g) = [0, 2π]).

Solution : The proof that S ∪g S(g) is a singular compactification of S mimics the
proof which appears in the previous example for S ∪f S(f).

Suppose γS = S ∪f S(f) and αS = S ∪g S(g). We verify that γS and αS are not

equivalent compactifications.

Suppose γS ≡ αS. Then there exists a homeomorphism πγ→α : γS → αS which fixes

the points of S. Then πγ→α|γS\S maps [0, 2π] homeomorphically onto [0, 2π] and so is
monotone. Suppose without loss of generality that it is increasing and so maps 0 to

0 and 2π to 2π.

Consider the open ball B = Bε(2π) in [0, 2π]. Let

D = πγ→α[B]

an open subset of S(g). Then

f←[B] = (2π − ε, 2π]× (0, 2π)

g←[D] = [0, δ)× (0, 2π)

We can of course choose ε so that f←[B] ∩ g←[D] = ∅.

Recall that g : S → S(g) extends to gα : αS → S(g) such that gα fixes the points of

S(g), so we have

gα←[D] = D ∪ g←[D] (An open subset of αS)

πγ→α[B ∪ f←[B]] = D ∪ f←[B] (An open subset of αS)

Then

(D ∪ g←[D]) ∩ (D ∪ f←[B]) = D ∪ (g←[D]) ∩ f←[B])

= D ∪ ∅

= D

so D is an open subset of αS which is contained in αS \S. A contradiction! So
γS 6≡ αS. 5

5See that the compactification S ∪g S(g) constructed in this way is a Möbius strip.
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In section:

24.1 Realcompact space: Definitions and characterizations.

. . .

. . .

. . .

Definition 24.1: Let S be a completely regular space.

a) If f ∈ C(S) . . .

All through subsection 24.1 replace the expression “locally compact and Hausdorff” with
“completely regular”.

In section:

24.3 The Hewitt-Nachbin realcompactification of a space S.

. . .

. . .

. . .

Add:

Theorem 24.7 Suppose S is completely regular. The space S is realcompact if and only

if S is homeomorphic to a closed subspace of a power of R.

Proof : We are given that S is completely regular. Then S is densely contained into

its realcompactification υS. Then every (real-valued) function f in C(S) extends
continuously to (a real-valued function) fυ ∈ C(υS). Let F = C(S). Then the

evaluation map eF : S →
∏

f∈F
Rf extends continuously to the evaluation map on

υS defined as

eυ
F (x) =< fυ(x) >f∈F ∈

∏

f∈F

Rf

Since υS is completely regular (given that υS ⊆ βS) then C(υS) separates points and
closed sets of υS. Then eυ

F
maps υS homeomorphically onto a subset of

∏

f∈F
Rf

8



(as argued in the embedding theorem I in 7.17).

Claim: We claim that eυ
F

[υS] is a closed subset of
∏

f∈F
Rf .

Proof of claim: Recall that the evaluation map,

e
f(ω)
C(βS,ωR) : βS →

∏

f∈C(βS,ωR)

ωRf

maps βS continuously onto a compact subset, say K, of
∏

f∈C(βS,ωR) ωRf with the

function defined as

e
β(ω)
C(βS,ωR)

(x) = < fβ(ω)(x) >f∈C(βS,ωR) ∈ K

Let G = {πf : f ∈ F} where πf : K → Rf is defined as

πg[< fυ(x) >f∈F ] = gυ(x) ∈ Rg

See that G separates points and closed sets of K (check!) and that the function
g : K →

∏

f∈Rf
defined as,

g(x) = eG (x) = < πf(x) >πf∈G = < fυ(x) >f∈F = eυ
F (x) ∈

∏

f∈F

Rf

so g◦e
β(ω)
C(βS, ωR)[βS] = g[K] = eυ

F
[υS] is closed in

∏

f∈F
Rf , as claimed.

Let A =
∏

f∈F
R. We then have

eF [S] ⊆ clAeF [S]

⊆ eυ
F [υS] (Since eυ

F
[υS] is closed in A)

= eυ
F [clυSS]

⊆ clAeF [S] (By continuity of eυ

F
.)

So
eυ
F [υS] = clAeF [S]

We conclude,

S = υS ⇔ eυ
F [υS] = clAeF [S] = eF [S]

⇔ eF [S] = clAeF [S] ⊆ A

We conclude that S is realcompact if and only if the homeomorphism, eF , maps S

onto a closed subset of a power of R.

9



In section:

29.2 A base for a uniformity.

. . .

. . .

. . .

Example 3. Consider the set of real numbers R. For κ > 0, let

Bκ = {(a, b) ∈ R × R : |a − b| < κ}

Verify that the collection,

B = {Bκ : κ > 0}

forms a base for some uniformity on R.

Solution : We verify that B satisfies the four base properties for a uniformity.

U1. Since (x, x) ∈ Bκ for all κ, then B satisfies U1.

U2∗. For κ1 and κ2 larger than 0, let κ3 = min{κ1, κ2}. If (x, y) ∈ Bκ3 , then (x, y)

are strictly within a distance of κ3 from each other. So (x, y) ∈ Bκ1 ∩ Bκ2 . Then
Bκ3 ⊆ Bκ1 ∩ Bκ2 . It follows that B satisfies U2∗.

U3. Let Bκ ∈ B. We claim there exists λ such that Bλ◦Bλ ⊆ Bκ.

Let λ = κ/4. Recall that

U ◦V = {(u, v) : (u, y) ∈ V and (y, v) ∈ U for some y ∈ im V .}

Let (u, v) ∈ Bκ/4◦Bκ/4. We claim that |u − v| < κ.

See that (u, v) ∈ Bκ/4◦Bκ/4 implies that there exists z ∈ imBκ/4 such that (u, z) ∈

Bκ/4 and (z, v) ∈ Bκ/4.

Then |u − z| < κ/4 and |z − v| ∈ κ/4. We have,

|u − v| ≤ |u− z| + |z − v|

< κ/4 + κ/4

= κ/2 < κ

Then (u, v) ∈ Bκ. So Bκ/4◦Bκ/4 ⊆ Bκ.
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We conclude that B satisfies U3.

U4. Let Bκ ∈ B. Since Bκ = {(x, y) : |x − y| < κ} = {(x, y) : |y − x| < κ} = B−1
κ ,

then B satisfies U4.

Then
B = {Bκ : κ > 0}

is a base which generates a uniformity on R. Then the uniformity on R is

U = {V ∈ P(R × R) : Bκ ⊆ V for some κ > 0}

In section:

29.4 The uniform topology, τU , generated by a uniformity, U , on a set.

. . .

. . .

. . .

Theorem 29.8 Let S be a non-empty set, U be a uniformity on S and B be a base

for U . For x ∈ S, and B in U , let B(x) denote the image of {x} (in S) under the
relation, B. Let

τU = {U ∈ P(S) : for each x ∈ U there exists B ∈ U such that B(x) ⊆ U}

Then τU is a topology on S.

Add Theorem 29.10:

Theorem 29.10: Let S be a non-empty set and U be a uniformity on S. Let τU be

the topology on S generated by the uniformity, U . If B ∈ U and x ∈ S, let B(x)
denote the image of {x} under B. Let T be a subset of S and intST be the non-empty

interior of T with respect to the uniform topology, τU , on S. Then x ∈ intST if and
only if there is some B ∈ U such that B(x) ⊆ T . Hence

B(x) = {B(x) : B ∈ U }

forms a base for the neighborhood system of x.
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Proof : Let
M = {x ∈ S : B(x) ⊆ T}

We claim that M is open with respect to the uniform topology. By theorem 29.8,

to show this, it suffices to verify that, for every x in M , there is a B ∈ U such
that B(x) ⊆ M .

Proof of claim: Suppose x ∈ M . This means there is some B ∈ U such that

x ∈ B(x) ⊆ T . By U3, there exists V ∈ U such that V ◦V ⊆ B. Suppose
z ∈ V (x). Then

V (z) ⊆ V ◦V (x) ⊆ B(x) ⊆ T

Since V (z) ⊆ T then z ∈ M . So every element of V (x) belongs to M . We
conclude that V (x) ⊆ M . We have shown that for any x ∈ M there is a V ∈ U

such that V (x) ⊆ T . By theorem 29.8, M is open with respect to the uniform
topology. This establishes the claim.

Since M is the largest open subset of S which is contained in T then M = intST .

We can then conclude that for any neighborhood T of x in S there is a B ∈ U

such that x ∈ B(x) ⊆ T . So for each x ∈ S, B(x) = {B(x) : B ∈ U } forms a
base for a neighbourhood system of x.

. . .

At the end of Example 6:

See that,

x ∈ (x − ε/4, x + ε/4)

= π2

[

({x} × S ) ∩ Bε/2

]

= (Bε/2)(x)

⊆ (x − ε, x + ε)

⊆ A

Then x ∈ (Bε/2)(x) ⊆ (x − ε, x + ε) ⊆ A.

We conclude that τ ⊆ τU , as claimed.

So τU = τ .
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