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1. Sept 8 – Dihedral symmetries

For n ≥ 3, let Cn denote a regular n-gon (embedded in R3). A dihedral symmetry
of Cn is any “rigid motion” of R3 which moves Cn back to itself.

For example, let n = 6:

1

23

4

5 6

Dihedral symmetries of C6 include:

• Rotations around the center for C6 (by multiples of 60◦).
• “Flips” (called reflections) along an axis – either through two opposite ver-

tices, or through the centers of two opposite sides.
• The “identity” symmetry (which does nothing).

Definition. D2n = the set of all dihedral symmetries of Cn.

Note: In geometry the set is called Dn.

D2n clearly includes:

• n rotations (including the identity symmetry), by multiples of 2π/n radians.
• n reflections.

Let’s prove that there are no other dihedral symmetries than these.

Lemma. |D2n| = 2n.

Proof. We’ve already seen that |D2n| ≥ 2n. To prove the opposite inequality, suppose
σ is an arbitrary dihedral symmetry of Cn. Then σ must send 1 to some vertex
i ∈ {1, 2, . . . , n}. Since σ preserves edges, it must send 2 to i+ 1 or i− 1. Thus there
are only n×2 possibilities for (σ(1), σ(2)). Since σ(1), σ(2) determine σ (think about
it), we have |D2n| ≤ 2n. �

We can combine or “multiply” dihedral symmetries, by applying one first and then
the other. Convention: σ · τ means “τ first, then σ.”

Example. Let σx be the reflection through the x-axis, and τ the reflection through
the line through the centers of 12 and 45. Then σx · τ is
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Thus σx · τ = rotation clockwise by 60◦.

Exercise: check that τ · σx = rotation counter-clockwise by 60◦.

We adopt the following convention (slightly different from the text). When n is
understood, we let:

• r denote the rotation counter-clockwise by 2π/n radians.
• s denote reflection through the x-axis.
• 1 denote the identity symmetry.

Thus r2 (= r · r) is rotation by 4π/n radians ccw, r3 is rotation by 6π/n radians ccw,
etc. rn = 1. What is rn−1? We also write this symmetry as r−1.

One can check that:

• sr = reflection through the line through center of 1n.
• sr2 = reflection through the line through n.
• sr3 = reflection through the line through the center of n−1, n.
• Etc.

Thus s, sr, sr2, . . . , srn−1 enumerate all n reflections. Hence we can write

D2n = {ri : 0 ≤ i < n} ∪ {sri : 0 ≤ i < n}.
The expressions 1, r, r2, . . . , rn−1, s, sr, sr2, . . . are called the normal forms for the
symmetries they represent.

In addition:

• rs = srn−1 (= sr−1).

This last fact gives us an easy way to multiply two symmetries. E.g.,

sr2 · sr = srrsr = (sr)(rs)r = (sr)(sr−1)r = s(rs) = s(sr−1) = r−1.

(Note that s2 = 1.) In fact, all that we need to know to calculate products is

rn = s2 = 1 and rs = sr−1 .
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2. Sept 9 – Permutations

Definition. Let X be any non-empty set.

(1) A permutation of X is a bijection σ : X → X.
(2) SX is the set of all permutations of X.
(3) If X = {1, 2, 3, . . . , n} then we denote SX by Sn.

What is |Sn|? (Answer: n!) Proof: there are n choices for σ(1); once chosen, there
are n−1 choices for σ(2); etc. The total number of choices for values is n·(n−1) · · · 2·1.

When X is finite we use a special notation to describe permutations. Example: let
σ ∈ S8 be the function

x 1 2 3 4 5 6 7 8
σ(x) 4 8 6 3 5 1 2 7

Start with x = 1; where does σ send it? to 4. Then where does σ send 4? to 3.
Repeat:

1 7→ 4 7→ 3 7→ 6 7→ 1.

We encode this information as (1 4 3 6). It gives the values of σ at 1, 3, 4 and 6.
We can start with 2: 2 7→ 8 7→ 7 7→ 2. We record this information as (2 8 7).
All that is left is the element 5. 5 7→ 5 and we record this as (5).
We put it all together and write

σ = (1 4 3 6)(2 8 7)(5).

This notation completely specifies σ. Note that we could have also written

σ = (2 8 7)(5)(1 4 3 6)

= (3 6 1 4)(5)(7 2 8)

etc. There is no uniqueness of notation. What is unique is the individual cycles. In
this example we say that σ decomposes into one 4-cycle, one 3-cycle, and one 1-cycle.
Also note that in cycle notation, the cycles are (pairwise) disjoint.

Convention: We do not write 1-cycles. Thus in this example, σ = (1 4 3 6)(2 8 7).

Inverses. Note that if σ ∈ SX , then σ−1 exists and is also in SX . The cycle notation
for σ−1 is easy: just reverse the cycles of σ. E.g., if

σ = (1 4 3 6)(2 8 7)

then
σ−1 = (1 6 3 4)(2 7 8).

Composition. Suppose σ, τ ∈ SX . So they are both functions X → X. So we can
compose them to get another permutation σ ◦ τ : X → X, which we write as στ .

For example, suppose σ is as before and let τ = (2 4 8 5)(1 7). In other words, τ
is the function
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x 1 2 3 4 5 6 7 8
τ(x) 7 4 3 8 2 6 1 5

Let’s find στ . We have

(στ)(1) = σ(τ(1)) = σ(7) = 2

(στ)(2) = σ(τ(2)) = σ(4) = 3

(στ)(3) = σ(τ(3)) = σ(3) = 6

and so on. The full table is
x 1 2 3 4 5 6 7 8

(στ)(x) 2 3 6 7 8 1 4 5

Now let’s find the cycle notation for στ (from the table). We see that

στ = (1 2 3 6)(4 7)(5 8).

Actually, we could have found this directly from the cycle notations for σ and τ ,
as follows.

(1) Write the cycle notation for σ followed by the notation for τ :

στ = (1 4 3 6)(2 8 7)︸ ︷︷ ︸
σ

(2 4 8 5)(1 7)︸ ︷︷ ︸
τ

.

(Note that this expression is not cycle notation.)
(2) Start with 1; reading the cycles from right to left, find the first cycle that

moves 1 (1 7→ 7). Continuing to the left, find the first cycle that moves 7
(7 7→ 2); continue to the left, find the first cycle that moves 2 (there is none).
So στ sends 1 7→ 2. Continue in this way to find

στ = (1 2 3 6)(4 7)(5 8).

Let’s compute τσ.

τσ = (2 4 8 5)(1 7)︸ ︷︷ ︸
τ

(1 4 3 6)(2 8 7)︸ ︷︷ ︸
σ

= (1 8)(2 5)(3 6 7 4).

Note that στ 6= τσ. (However στ and τσ do have the same “cycle structure.” Is this
always true?)

Special notation, terminology.

(1) 1 denotes the identity permutation in SX (so 1(x) = x for all x ∈ X).
(2) The cycle notation for 1 is . (Empty)
(3) Given σ ∈ SX , the support of σ is the set

supp(σ) = {x ∈ X : σ(x) 6= x}.
Equivalently, supp(σ) is the set of elements mentioned in the cycle notation
of σ.

(4) σ, τ are disjoint if supp(σ) ∩ supp(τ) = ∅.
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3. Sept 9 – Definition of a group

Definition. Let A be a non-empty set. A binary operation on A is a function ∗
whose domain is A×A (the set of all ordered pairs from A) and which maps into A.

Notational convention: we write a∗ b for the value of ∗ at (a, b), instead of writing
∗(a, b).

Definition 3.1. A group is an ordered pair (G, ∗) where

• G is a non-empty set;
• ∗ is a binary operation on G;

which jointly satisfy the following further conditions:

(i) ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G;
(ii) There exists an identity element e ∈ G: a ∗ e = e ∗ a = a for all a ∈ G;

(iii) Every a ∈ G has a 2-sided inverse, i.e., an element a′ ∈ G which satisfies
a ∗ a′ = a′ ∗ a = e.

Examples

(1) (Z,+).
• a, b ∈ Z implies a+ b ∈ Z.
• + is associative.
• 0 ∈ Z satisfies a+ 0 = 0 + a = 0 for all a ∈ Z.
• Every n ∈ Z has an inverse −n ∈ Z, and n+ (−n) = (−n) + n = 0.

(2) (D2n, ·) for each n ≥ 3. (Called the dihedral group of order 2n.)
• σ, τ ∈ D2n implies σ · τ ∈ D2n.
• · is associative (e.g. because it is composition of functions).
• 1 (the identity symmetry) satisfies σ · 1 = 1 · σ = σ for all σ ∈ D2n.
• Every σ ∈ D2n has an inverse symmetry σ−1 ∈ D2n (doing σ in reverse),

and σ · σ−1 = σ−1 · σ = 1.
(3) (Sn, ◦) for each n ≥ 2. (Called the symmetric group of degree n.)

• σ, τ ∈ Sn implies σ ◦ τ ∈ Sn.
• ◦ is associative (because it is composition of functions).
• 1 (the identity permutation) satisfies σ ◦ 1 = 1 ◦ σ = σ for all σ ∈ Sn.
• Every σ ∈ S2n has an inverse function σ−1 ∈ Sn and σ◦σ−1 = σ−1◦σ = 1.

(4) ({all invertible n×nmatrices over R}, matrix multiplication). CalledGLn(R).
(5) (Zn, + mod n).

The groups in (2), (3) and (5) are finite, while those in (1) and (4) are infinite.

Notation:

• Denote a group (G, ∗) by G.
• Write ab for a ∗ b (most of the time).
• Denote the identity element of G by 1 (most of the time).
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• Denote the inverse a′ of an element a by a−1 (most of the time).
• The order of a group G, denoted |G|, is the number of its elements.
• A group (G, ∗) is abelian if ∗ is commutative (a ∗ b = b ∗ a for all a, b ∈ G),

and is non-abelian otherwise.

Powers

Definition. In any group G, if a ∈ G then define a0 = 1 and an+1 = a · an for n ≥ 0.
Also define a−n = (an)−1 for n ≥ 1.

This notation satisfies the usual rules for exponents:

Fact. Let (G, ·) be a group, a ∈ G, and m,n ∈ Z.

(1) a1 = a.
(2) am · an = am+n.
(3) (am)n = amn.
(4) a−n = (an)−1 = (a−1)n.

The proofs are by induction and case-analysis, depending on whether m,n > 0,
= 0, or < 0, heavily using associativity.

Warning. In general, it is not true that (ab)n = anbn. E.g., (ab)2 = abab, a2b2 =
aabb. We would need ba = ab, which is not always true.

Warning. In groups for which the operation is addition, this notation can be alarm-
ing. E.g., in the group (R,+), if a ∈ R and n ≥ 2, then an = a+ a+ · · · a︸ ︷︷ ︸

n

, which we

prefer to write as na. (Similarly, a1 is 1a = 1, a−1 is −a which we write as (−1)a,
and a0 is 0a = 0.)

Finite groups exhibit periodicity in the following way. Suppose a ∈ G and consider
a, a2, a3, a4, . . . ,. If G is finite, then there must be a repeat, say ai = aj with i < j.
Multiply both sides by a−1 to get ai−1 = aj−1. Repeat i times until getting 1 = aj−i.
This proves the existence of n > 0 such that an = 1. Then an+1 = ana1 = 1 · a = a,
an+2 = a2, etc.

Definition. For a group G and element a ∈ G, the order of a (denoted |a| or ◦(a))
is the least integer n > 0 such that an = 1, if it exists. If no such n exists, then the
order of a is defined to be ∞.

Examples.

• In D2n, the rotation r has order n because r 6= 1, r2 6= 1, . . . , rn−1 6= 1 but
rn = 1. [Question: what is the order of a reflection in D2n?]
• In Z4, what is the order of 1? (1 6= 0, 1 + 1 6= 0, 1 + 1 + 1 6= 0, but

1 + 1 + 1 + 1 = 0.)
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4. Sept 15 – Elementary properties of groups

Proposition 1.2. Let G be a group and a, b, u, v ∈ G.

(1) Left and right cancellation:
(a) If au = av, then u = v.
(b) If ub = vb, then u = v.

(2) The equations ax = b and ya = b have unique solutions for x, y ∈ G.

Proof. (1) Assume au = av. Then a−1(au) = a−1(av). Thus

u = 1u = (a−1a)u = a−1(au)
∗
= a−1(av) = (a−1a)v = 1v = v.

The proof of right cancellation is similar.
(2) Let x := a−1b. x is one solution to ax = b: a(a−1b) = (aa−1)b = 1b = b.

Conversely, suppose u is a solution. Then au = ax, so u = x. Similarly, y := ba−1 is
the unique solution to ya = b. �

Corollary. In any group G, the identity element is unique.

Proof. Suppose d, e are both identity elements of G. Thus xd = dx = x and xe =
ex = x for all x ∈ G. In particular, xd = xe. Hence d = e by left cancellation. �

Similar tricks let us prove the following.

Proposition 1.1. Suppose G is a group.

(1) Each a ∈ G has a unique inverse a−1.
(2) (a−1)−1 = a for all a ∈ G.
(3) (ab)−1 = (b−1)(a−1) for all a, b ∈ G.

Proof. (1) Suppose that a has two inverses a′ and a∗. That means aa′ = a′a = 1 and
aa∗ = a∗a = 1. Find a way to use left cancellation to deduce a′ = a∗.

(2) Let b = a−1. We are required to show that b−1 = a. We know that bb−1 =
b−1b = 1 and ab = ba = 1. Use left cancellation.

(3) We’ll use a similar trick. Let c = ab and d = b−1a−1. We want to show c−1 = d,
so it suffices to show cc−1 = cd. Well, cc−1 = 1, while

cd = (ab)(b−1a−1) = a(bb−1)a−1 = a1a−1 = (a1)a−1 = aa−1 = 1.

Thus cc−1 = cd, so c−1 = d by left cancellation. �

Definition. If (G, ∗) is a finite group, with elements ordered {g1, g2, . . . , gn}, then
the table for G (with respect to this ordering) is the n× n matrix whose (i, j) entry
is gi ∗ gj.

For example, the table for Z4 with respect to the standard ordering is
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+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Fact. Suppose G is a finite group. In the table for its operation,

(1) Each row is a permutation of G.
(2) Each column is a permutation of G.

To see why, suppose that some element u occurs twice in row a, so

· 1 · · · b · · · c · · ·
1 1 · · · b · · · c · · ·
...
a a u u
...

This means ab = ac, but b 6= c, contradicting left cancellation. Hence no element
occurs more than once in the row labeled by a. Thus the function f : G → G given
by f : x 7→ ax is injective. Since G is finite, it follows that f is a bijection, i.e., a
permutation of G.

The same thing works for any row, and a similar argument works for any column.



PMATH 347 LECTURES 9

5. Sept 16 – Isomorphisms, subgroups

Some jargon:

(1) G is abelian (named for Niels Henrik Abel, 1802–1829) if ab = ba for all
a, b ∈ G.

(2) If a ∈ G then 〈a〉 denotes the set {an : n ∈ Z}. Thus 〈a〉 ⊆ G.
(3) G is cyclic if there exists a ∈ G such that G = 〈a〉.

• In this case we call a a generator of G.

Examples

(1) (Z,+), (R,+), (Zn,+ (mod n)), (Z×n , · (mod n)) are abelian.
(2) D2n, Sn are not abelian (n ≥ 3).
(3) Suppose F is a field (e.g., F could be R, Q, C, or Zp (p prime)). GLn(F)

denotes the set of all invertible n × n matrices with entries from F. GLn(F)
with matrix multiplication is a group (exercise). It is nonabelian if n ≥ 2.

(4) (Z,+) is cyclic, generated by 1. This is because 〈1〉 = {n1 : n ∈ Z} = Z.
(5) Similarly, (Zn,+) is cyclic for every n ≥ 1.
(6) (R,+) is not cyclic. Are D2n, Sn cyclic? No: every cyclic group is abelian

(exercise).
(7) Is (Z×n , ·) cyclic?

Section 1.6: Isomorphisms

The most fundamental relation between groups is that of isomorphism.

Definition. Let G = (G, ?) and H = (H, �) be groups. A function ϕ : G→ H is an
isomorphism from G to H if it is a bijection and

ϕ(x ? y) = ϕ(x) � ϕ(y) for all x, y ∈ G.

Example. Suppose G = (Z4,+) and H = (Z×5 , ·).
(1) The map ϕ : G → H given by ϕ(i) = i + 1 is not an isomorphism. It is a

bijection, but when x = y = 3, the requirement ϕ(x + y) = ϕ(x) · ϕ(y) fails
because

ϕ(3 + 3) = ϕ(2) = 3 while ϕ(3) · ϕ(3) = 4 · 4 = 1.

(2) The map ψ : G→ H given by ψ(i) = 2i (mod 5) is an isomorphism.

(a)
i 0 1 2 3

ψ(i) 1 2 4 3
, so ψ is a bijection.

(b) Regarding the condition ψ(x + y) = ψ(x) · ψ(y), note first that for all
a, b ∈ Z, if a ≡ b (mod 4) then 2a ≡ 2b (mod 5). Now suppose i, j, k ∈
Z4 with i + j = k (in Z4, meaning i + j ≡ k (mod 4)). Then 2i+j ≡ 2k

(mod 5), so

ψ(i+ j) = ψ(k) = 2k (mod 5) = 2i+j (mod 5) = 2i · 2j (mod 5) = ψ(i) · ψ(j).
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Exploring the last example, consider the tables for (Z4,+) and for (Z×5 , ·). If we
order Z4 as (0, 1, 2, 3) and order Z×5 as (1, 2, 4, 3), then the tables are

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 1 2 4 3
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

The tables are “the same” modulo identifying 0 7→ 1, 1 7→ 2, 2 7→ 4, and 3 7→ 3;
i.e., x 7→ ψ(x).
Theology:

(1) If ϕ is an isomorphism from G to H, then the operation tables for G and H
are “the same” (modulo the translation given by ϕ).

(2) If the operation tables for G and H are “the same” in this sense, then G and
H are “essentially the same group.”

Definition. We say that group G and H are isomorphic and write G ∼= H if there
exists an isomorphism ϕ : G→ H.

Chapter 2

Definition. Let G = (G, ·) be a group. A subgroup of G is a subset H ⊆ G satisfying

(1) H 6= ∅.
(2) H is closed under products; i.e., a, b ∈ H implies ab ∈ H.
(3) H is closed under inverses; i.e., a ∈ H implies a−1 ∈ H.

Example. Suppose G = (Z,+).

(1) Let E = {. . . ,−4,−2, 0, 2, 4, . . .}. Obviously nonempty. If a, b ∈ E then a, b
are even, so a + b is even, so a + b ∈ E. Similarly, if a is even then so is −a,
so E is closed under inverses. Thus H is a subgroup of (Z,+).

(2) The set of odd integers is not a subgroup of (Z,+).
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6. Sept 18 – Cosets, Lagrange’s Theorem

Fact: if G = (G, ·) is a group and H is a subgroup of G, then H = (H, ·�H) is a
group in its own right.

In particular, 1 ∈ H. We can prove this as follows: pick any a ∈ H (can do,
H 6= ∅). Then a−1 ∈ H, so a · a−1 ∈ H. X

Conventions.

(1) We also say that H is a subgroup of G.
(2) We don’t distinguish between H and H (or between G and G).
(3) We write H ≤ G to mean H is a subgroup of G.

Example. Let G be a group and a ∈ G. Recall that 〈a〉 = {an : n ∈ Z}.
Claim: 〈a〉 ≤ G.

Proof. Clearly 〈a〉 ⊆ G and 〈a〉 6= ∅. We check closure under the operation and
under inverses.

(1) Given an, am ∈ 〈a〉, we have an · am = an+m ∈ 〈a〉. X
(2) Given an ∈ 〈a〉, its inverse (in G) is (an)−1 = a−n, which is in 〈a〉. X �

〈a〉 is called a cyclic subgroup of G generated by a.

Chapter 3

Definition. SupposeG is a group, H ≤ G, and a ∈ G. The left coset of H determined
by a is the set

aH := {ah : h ∈ H}.

E.g., 1H = H. Caution: aH is generally not a subgroup of G.

Lemma. For all a ∈ G, |aH| = |H|. Hence all left cosets of H have the same size
as H.

Proof. We define a bijection from H to aH in the only reasonable way. Define f :
H → aH by f(h) = ah. f is surjective by definition. Suppose f(h1) = f(h2). I.e.,
ah1 = ah2. Then h1 = h2 by left cancellation, so f is injective. Thus f is a bijection
from H to aH. Hence |H| = |aH|. �

Caution: It can happen that aH = bH even if a 6= b.

Proposition 3.4. Suppose H ≤ G. The set of left cosets of H partition G; that is,

(1)
⋃
{aH : a ∈ G} = G

(2) If aH 6= bH then aH ∩ bH = ∅.
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Proof. (1) Every a ∈ G is an element of aH (since 1 ∈ H), so clearly G ⊆
⋃
{aH :

a ∈ G}. The other inclusion is obvious.
(2) I’ll show the contrapositive: aH ∩ bH 6= ∅ implies aH = bH. Suppose x ∈

aH ∩ bH. Thus x = ah = bh′ for some h, h′ ∈ H. Then a = xh−1 = (bh′)h−1 = bh1
where h1 = h′h−1. Observe that h ∈ H implies h−1 ∈ H, and with h′ ∈ H implies
h1 = h′h−1 ∈ H. As a = bh1, this proves a ∈ bH.

Now let ah2 be an arbitrary element of aH. Then ah2 = (bh1)h2 = bh3 ∈ bH. This
proves aH ⊆ bH. A symmetric argument proves bH ⊆ aH. �

Theorem 3.8 (Lagrange’s Theorem). Suppose G is a finite group and H ≤ G. Then
|H| divides |G|.

Proof. Let |G| = n and |H| = k. H has only finitely many distinct left cosets; list
them as H, a2H, . . . , amH. They partition G and all have the same size, namely k.
Hence n = mk. �

Corollary. If G is a finite group and a ∈ G, then |〈a〉| divides |G|.

Proof. Because 〈a〉 ≤ G. �

On Assignment 2 you will show that |〈a〉| = ◦(a). Hence:

Corollary. Suppose G is a finite group and a ∈ G. Then ◦(a) divides |G|.

Here are two nice applications.

Corollary 3.9. If G is a finite group and |G| = n, then xn = 1 for all x ∈ G.

Proof. Given x ∈ G, let k = ◦(x). Then xk = 1. We have k|n by the previous
Corollary, say n = km. Then xn = xkm = (xk)m = 1m = 1. �

Corollary 3.10. If G is a finite group and |G| = p is prime, then G is cyclic.

Proof. Pick any a ∈ G satisfying a 6= 1. Then ◦(a)|p, so ◦(a) = 1 or p. If ◦(a) = 1
then a1 = 1, contradicting a 6= 1. So ◦(a) = p. Hence |〈a〉| = p. But 〈a〉 ⊆ G and
|G| = p, which forces 〈a〉 = G. So G is cyclic. �



PMATH 347 LECTURES 13

7. Sept 22 – Cosets (continued), Normal subgroups

Consider the dihedral group D12 of symmetries of the regular hexagon C6.

1

23

4

5 6

Also recall that D12 = {ri : 0 ≤ i < 6} ∪ {sri : 0 ≤ i ≤ 6} where

• r = rotation ccw by π/3 radians = (1 2 3 4 5 6).
• s = reflection through the x-axis = (2 6)(3 5).
• r6 = s2 = 1 and rs = sr−1.

What are some subgroups of D12?
For starters, we know that |D12| = 12, so by Lagrange’s theorem, a subgroup can

only have order 1, 2, 3, 4, 6 or 12.
Looking at cyclic subgroups, we find

〈1〉 = {1}
〈r〉 = {1, r, r2, r3, r4, r5}
〈s〉 = {1, s}
〈sr〉 = {1, sr}, etc. for any reflection

Can we find a subgroup of order 3? (Yes: 〈r2〉.)
Can we find a subgroup of order 4? (Yes: 〈r3, s〉. This subgroup is not cyclic.)

Each subgroup has left cosets. For example:

• The left cosets of 〈r〉 are 〈r〉 = {1, r, r2, r3, r4, r5} and s〈r〉 = {s, sr, sr2, sr3, sr4, sr5}.
• Let H = 〈s〉. The left cosets of H are

H = {1, s},
rH = {r, rs} = {r, sr5},
r2H = {r2, r2s} = {r2, sr4},
r3H = {r3, r3s} = {r3, sr3},
r4H = {r4, r4s} = {r4, sr2},
r5H = {r5, r5s} = {r5, sr}.
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Subgroups also have right cosets. For example, the right cosets of H = 〈s〉 are

H = {1, s},
Hr = {r, sr},
Hr2 = {r2, sr2},
Hr3 = {r3, sr3},
Hr4 = {r4, sr4},
Hr5 = {r5, sr5}.

Note that H has the same number of right and left cosets, but they aren’t the
same sets.

Definition. If G is a group and H ≤ G, the index of H in G, denoted [G : H], is
the number of distinct left (or right) cosets of H.

Of course, if G is finite then [G : H] = |G|
|H| .

Definition. Suppose H ≤ G. We say that H is a normal subgroup, and write
H CG, if aH = Ha for all a ∈ G.

Of course if G is abelian then every subgroup is normal. In the example above,
〈r〉CD12 but 〈s〉 6C D12.

Definition. If H,K ≤ G, then HK := {hk : h ∈ H and k ∈ K}.

For example, HH = {h1h2 : h1, h2 ∈ H} = H. In general, H ⊆ HK and K ⊆
HK, but HK need not be a subgroup. For example, in D12 let H = 〈s〉 = {1, s} and
K = 〈sr〉 = {1, sr}. Then

HK = {1, s}{1, sr}
= {1(1), 1(sr), s(1), s(sr)}
= {1, sr, s, r}.

This isn’t a subgroup because r, s ∈ HK but rs 6∈ HK.

Proposition. Suppose G is a group and H,K ≤ G. If either H CG or K CG, then
HK ≤ G.

Proof. Assume H CG. I’ll first show HK = KH. Indeed,

HK =
⋃
k∈K

Hk =
⋃
k∈K

kH = KH.

Now I’ll show HK ≤ G. Certainly HK ⊆ G and HK 6= ∅.
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• Given a, b ∈ HK, write a = h1k1 and b = h2k2 with h1, h2 ∈ H and k1, k2 ∈ K.
We have k1h2 ∈ KH, so k1h2 ∈ HK, so k1h2 = h3k3 for some h3 ∈ H and
k3 ∈ K. Then

(h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK
since H,K ≤ G. This proves closure under ·.
• Suppose a ∈ HK, say a = hk. Then a−1 = k−1h−1 ∈ KH = HK, proving

closure under inverses. �

Definition. Suppose G is a group and H ≤ G. The normalizer of H, denoted
NG(H), is the set

NG(H) = {a ∈ G : aH = Ha}.

Note that H CG iff NG(H) = G. Also note that the proof of the previous Propo-
sition didn’t use the full assumption that H C G; it only needed kH = Hk for all
k ∈ K, or equivalently, K ⊆ NG(H). Hence:

Corollary 3.15. Suppose G is a group and H,K ≤ G. If K ⊆ NG(H) (or H ⊆
NG(K)), then HK ≤ G.
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8. Sept 23 – Direct products

Recall that we write H C G if aH = Ha for all a ∈ G. The following is a useful
characterization.

Theorem 3.6. Suppose H ≤ G. TFAE:

(1) H CG.
(2) aHa−1 = H for all a ∈ G.
(3) aHa−1 ⊆ H for all a ∈ G.
(4) If h ∈ H, then aha−1 ∈ H for all a ∈ G.

Proof. (1) ⇔ (2) ⇒ (3) ⇔ (4) is obvious. To finish, it suffices to prove (3) ⇒ (2).
Assume (3). In particular, a−1Ha = a−1H(a−1)−1 ⊆ H. Multiply on left by a and
on right by a−1 to get H ⊆ aHa−1. With (3) this gives H = aHa−1 for all a ∈ G,
giving (2). �

Here is a cute application.

Lemma. Suppose H,K C G and H ∩ K = {1}. Then hk = kh for all h ∈ H and
k ∈ K.

Proof. We use the following trick. Given a, b ∈ G, their commutator is [a, b] =
a−1b−1ab. It is easy to show that ab = ba iff [a, b] = 1 (exercise). So now let h ∈ H
and k ∈ K and consider [h, k] = h−1k−1hk. We can write

[h, k] = h−1(k−1hk).

Since h ∈ H CG and k−1 ∈ G we get k−1hk ∈ H, say k−1hk = h1. Then

[h, k] = h−1h1 ∈ H.
Similarly,

[h, k] = (h−1k−1h︸ ︷︷ ︸
∈K

)k ∈ K.

Hence [h, k] ∈ H ∩K = {1}, proving [h, k] = 1, so hk = kh. �

Let (G1, ?) and (G2, �) be groups. Their direct product is (G1 ×G2, ∗) where

(a1, a2) ∗ (b1, b2) = (a1 ? b1, a2 � b2).
Fact: If G1, G2 are groups, then G1 ×G2 is also a group.

Proof sketch. Let’s check existence of inverses. (The identity element is 1 = (11, 12)
where 1i is the identity element of Gi.) For any a = (a1, a2) ∈ G1 ×G2, I claim that
a−1 := (a−11 , a−12 ) is an inverse to a.

a ∗ a−1 = (a1, a2) ∗ (a−11 , a−12 )
df
= (a1 ? a

−1
1 , a2 � a−12 ) = (11, 12) = 1.

A similar proof shows a−1 ∗ a = 1, so we’re good. �
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Notation.

(1) If both ? and � are written as +, then we may write ∗ as +.
(2) Products of more factors are defined analogously. Gn = G×G× · · · ×G︸ ︷︷ ︸

n

.

Consider (Z2,+)2. It has 4 elements: (0, 0), (0, 1) (1, 0), (1, 1). Its table:

+ (0,0) (1,0) (0,1) (1,1)
(0,0) (0,0) (1,0) (0,1) (1,1)
(1,0) (1,0) (0,0) (1,1) (0,1)
(0,1) (0,1) (1,1) (0,0) (1,0)
(1,1) (1,1) (0,1) (1,0) (0,0)

If we rename its elements 1, b, c, d we get the table

· 1 b c d
1 1 b c d
b b 1 d c
c c d 1 b
d d c b 1

We recognize this from Assignment 1; it is the table for Z×8 . Hence Z×8 ∼= (Z2,+)2.
We have factored Z×8 .

Theorem 5.9. Let G be a group. Suppose there exist H,K CG satisfying

(1) H ∩K = {1};
(2) HK = G.

Then G ∼= H ×K.

Proof. Define a function ϕ : H × K → G by ϕ((h, k)) = hk. Let’s prove that
ϕ is an isomorphism. First check that it is a bijection. It is surjective because
HK = G. We’ll prove that it’s injective using H ∩ K = {1}. Indeed, suppose
ϕ((h1, k1)) = ϕ((h2, k2)), i.e., h1k1 = h2k2. Multiply on left by h−12 and on right
by k−11 to get h−12 h1 = k2k

−1
1 . The left side is in H while the right side is in K, so

both sides are in H ∩K = {1}, proving h−12 h1 = 1 = k2k
−1
1 . These equations imply

h1 = h2 and k1 = k2, proving ϕ is injective.

[To be continued]
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9. Sept 25 – Homomorphisms

Proof of Theorem (continued). Recall that G is a group, H,K C K, H ∩ K = {1}
and HK = G. The claim is that G ∼= H × K. I’ve defined ϕ : H × K → G by
ϕ((h, k)) = hk and shown that it is a bijection.

Finally we must prove that

ϕ((h1, k1) ∗ (h2, k2)) = ϕ((h1, k1)) · ϕ((h2, k2)),

i.e.,
ϕ((h1h2, k1k2)) = ϕ((h1, k1)) · ϕ((h2, k2)),

i.e., (h1h2)(k1k2) = (h1k1)(h2k2). This follows because h2k1 = k1h2 by yesterday’s
cute lemma. �

Example. Let G = (Z6,+). Let H = 〈2〉 = {0, 2, 4} and K = 〈3〉 = {0, 3}. Clearly

• H,K ≤ Z6. (Cyclic subgroups are subgroups)
• H,K C Z6. (Because Z6 is abelian)
• H ∩K = {0}.
• H +K = {h+ k : h ∈ {0, 2, 4} and k ∈ {0, 3}} = Z6.

Hence by the Theorem, (Z6,+) ∼= H ×K.
It is also easy to see that H ∼= (Z3,+). (The isomorphism Z3 → H is the map

x 7→ 2x.) Similarly, K ∼= (Z2,+). Hence (Z6,+) ∼= (Z3,+)× (Z2,+).
A similar argument shows (Zmn,+) ∼= (Zm,+)× (Zn,+) provided gcd(m,n) = 1.

Definition. Let G = (G, ?) and H = (H, �) be groups. A function ϕ : G → H is a
homomorphism if

ϕ(x ? y) = ϕ(x) � ϕ(y) for all x, y ∈ G.

Example.

(1) Any isomorphism is a homomorphism.
(2) The parity function par : Z→ {0, 1} given by

par(n) =

{
0 if n is even
1 if n is odd

is a homomorphism from (Z,+) to (Z2,+), because par(x+y), i.e., the parity
of x+ y, is the mod-2 sum of par(x) and par(y).

(3) More generally, the function Z → Zn given by x 7→ (x (mod n)) is a homo-
morphism.

(4) Let G = (C×, ·) and H = (R×, ·). The function ϕ : C× → R× given by
ϕ(z) = |z| is a homomorphism, because ϕ(zw) = |zw| = |z||w| = ϕ(z)ϕ(w).

Definition 9.1. Let ϕ : G→ H be a homomorphism.
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(1) im(ϕ) denotes the image (or range) of ϕ.
(2) The kernel of ϕ is the set

{x ∈ G : ϕ(x) = 1}.
It is denoted kerϕ.

Proposition 3.1. Let ϕ : G→ H be a homomorphism.

(1) ϕ(1G) = 1H .
(2) ϕ(g−1) = ϕ(g)−1 for all g ∈ G.
(3) More generally, ϕ(gn) = ϕ(g)n for all n ∈ Z.
(4) kerϕ ≤ G and im(ϕ) ≤ H.

Proof. (1) Pick g ∈ G. We have ϕ(1G)ϕ(g) = ϕ(1G · g) = ϕ(g) = 1H · ϕ(g). Right
cancellation in H gives ϕ(1G) = 1H .

(2) Let h = ϕ(g). Then hϕ(g−1) = ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(1G) = 1H = hh−1.
Left cancellation gives ϕ(g−1) = h−1 = ϕ(g)−1.

(3) Exercise.
(4) Clearly kerϕ ⊆ G and im(ϕ) ⊆ H. Since ϕ(1G) = 1H by (1) we have 1G ∈ kerϕ

and 1H ∈ im(ϕ), so kerϕ, im(ϕ) 6= ∅. Remains to check closure under products and
inverses.

First kerϕ:

• Suppose a, b ∈ kerϕ, meaning ϕ(a) = ϕ(b) = 1H . Then ϕ(ab) = ϕ(a)ϕ(b) =
1H · 1H = 1H , proving ab ∈ kerϕ.
• Suppose a ∈ kerϕ, meaning ϕ(a) = 1H . Then ϕ(a−1) = ϕ(a)−1 (by (2))

= (1H)−1 = 1H , proving a−1 ∈ kerϕ.

Next im(ϕ):

• Suppose x, y ∈ im(ϕ). So there exist a, b ∈ G with x = ϕ(a) and y = ϕ(b).
Then xy = ϕ(a)ϕ(b) = ϕ(ab). As ab ∈ G, this proves xy ∈ im(ϕ).
• Suppose x ∈ im(ϕ), say x = ϕ(a) where a ∈ G. Then x−1 = ϕ(a)−1 = ϕ(a−1)

by (2). Since a−1 ∈ G, this proves x−1 ∈ im(ϕ).

�

More is true:

Proposition. Let ϕ : G→ H be a homomorphism. Then kerϕCG.

Proof. It suffices to show g ∈ kerϕ implies aga−1 ∈ kerϕ for all a ∈ G. So suppose
g ∈ kerϕ and a ∈ G. To show aga−1 ∈ kerϕ, we evaluate it under ϕ:

ϕ(aga−1) = ϕ(a)ϕ(ga−1) = ϕ(a)ϕ(g)ϕ(a−1) = ϕ(a) · 1H · ϕ(a−1) (because g ∈ kerϕ)

= ϕ(a) · ϕ(a−1) = ϕ(a · a−1) = ϕ(1G) = 1H .

Hence aga−1 ∈ kerϕ. �
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10. Sept 29 – Quotient groups

(Section 3.1, but not following the text closely.)

Definition. Suppose G is a group and H ≤ G. Then G/H denotes the set of all left
cosets of N .

Examples.

(1) If G = (Z,+) and H = 〈5〉 = 5Z, then G/H = Z/5Z = {5Z, 1 + 5Z, 2 +
5Z, 3 + 5Z, 4 + 5Z}.

(2) IfG = (C×, ·) andH = S = {z : |z| = 1}, thenG/H = C×/S = {all circles centred at 0}.
In general, we want to define an operation · on G/H. That is, given two left cosets

C,D of H, we want to define another left coset C ·D. The most natural choice is

C ·D df
= CD = {cd : c ∈ C, d ∈ D},

or equivalently, (aH) · (bH) = (aH)(bH). There is a problem: (aH)(bH) might not
be a left coset of H. However there is no problem when H is normal.

Proposition 3.5 (1). Suppose N CG.

(1) aN, bN ∈ G/N implies (aN)(bN) ∈ G/N .
(2) (aN)(bN) = (ab)N for all a, b ∈ G.

Proof. (aN)(bN) = a(Nb)N = a(bN)N (by normality) = (ab)NN = (ab)N , which is
a left coset of N . �

Definition. If N CG, then · is defined on G/N by (aN) · (bN)
df
= (ab)N .

Notation. If the operation of G is +, then we write + instead of · for the operation

on G/N as well. In this case the definition is (a+N) + (b+N)
df
= (a+ b) +N .

Example. In C×/S, let C = {z : |z| = r} and D = {z : |z| = s}. What is C ·D?

Solution. Then C = rS and D = sS, so

C ·D = (rS)(sS)

= {(reiθ)(seiϕ) : θ, ϕ ∈ R}
= {rsei(θ+ϕ) : θ, ϕ ∈ R}
= {rsei(ψ) : ψ ∈ R}
= (rs)S.

Example. Let G = (Z5,+) and N = 5Z. If C = 3 + 5Z and D = 4 + 5Z, what is
C +D?

Solution. (3 + 5Z) + (4 + 5Z) = (3 + 4) + 5Z = 7 + 5Z = 2 + 5Z.

Proposition 3.5 (2). Suppose N CG. Then (G/N, ·) is a group.
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Proof. We’ve already seen that · is an operation on G/N . What remains is to prove
that · is associative, has a 2-sided identity element, and every left coset of N has a
2-sided inverse (with respect to ·).

Associativity: For all aN, bN, cN ∈ G/N ,

aN · (bN · cN) = aN · (bc)N
= a(bc)N

= (ab)cN

= (ab)N · cN
= (aN · bN) · cN.

Identity: Obviously N = 1N ∈ G/N . We will show that N is an identity
element with respect to ·. For any aN ∈ G/N ,

aN ·N = aN · 1N = (a1)N = aN.

Similarly, N · aN = aN .
Inverses: For any aN ∈ G/N , of course we have a−1N ∈ G/N . We will show

that a−1N is an inverse to aN .

aN · a−1N = (aa−1)N

= 1N

= N

and similarly a−1N · aN = N .

�

Definition. Suppose N C G. The group (G/N, ·) is called the quotient group of
G by N (or of G modulo N).

Examples.

(1) Z/5Z. Though complicated (its elements are the 5 cosets of 5Z), this quotient
group is easily seen to be isomorphic to Z5. The isomorphism Z5 → Z/5Z
sends a 7→ a+ 5Z. (In fact, most textbooks define Z5 to be Z/5Z.)

(2) More generally, Z/nZ ∼= Zn.
(3) C×/S. One can show that this quotient group is isomorphic to (R>0, ·) in the

obvious way.
(4) Let N be the subgroup of D12 given by N = 〈r3〉 = {1, r3}. One can check

(by tedious calculations) that N C D12. Hence we can form the quotient
group D12/N . Its elements are the left cosets of N in D12. What is D12/N
isomorphic to?
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11. Sept 30 – 1st Isomorphism theorem

Section 3.3

Definition. Suppose N CG. Define πN : G→ G/N by πN(g) = gN .

πN is called the “mod N projection map.”

Lemma. If N CG, then πN : G→ G/N is a homomorphism and kerπN = N .

Proof. πN(ab) = (ab)N = (aN)(bN) = πN(a)πN(b), proving πN is a homomorphism.
kerπN = {g ∈ G : πN(g) = 1G/N} = {g ∈ G : gN = N} = N . �

Consider now an arbitrary homomorphism ϕ : G→ H. In general we can’t assume
that ϕ is injective or surjective. Let N = kerϕ and H0 = im(ϕ) and recall that NCG
and H0 ≤ H.

For each h ∈ H0, the preimage ϕ−1(h) := {g ∈ G : ϕ(g) = h} is called the fiber of
ϕ above h. Note that the fiber above 1H is kerϕ = N .

ϕ−1(h)

1H H

G

ϕ

1G
N

H0

h

Proposition 3.2. Suppose ϕ : G → H is a homomorphism and N = kerϕ. The
fibers of ϕ are precisely the (left) cosets of N .

Proof. Let h ∈ im(ϕ) and choose a ∈ ϕ−1(h). I will show that ϕ−1(h) = aN .

ϕ−1(h) ⊆ aN . Let b ∈ ϕ−1(h). Then

ϕ(a−1b) = ϕ(a−1)ϕ(b) = ϕ(a)−1ϕ(b) = h−1h = 1H .

Hence a−1b ∈ N . So b = a(a−1b) ∈ aN .

aN ⊆ ϕ−1(h). Let x ∈ aN , so x = an for some n ∈ N . Then

ϕ(x) = ϕ(an) = ϕ(a)ϕ(n) = h · 1H = h

so x ∈ ϕ−1(h). �



PMATH 347 LECTURES 23

Observe that ϕ is injective iff each of its fibers consists of just one element. By the
previous result, this holds iff |N | = 1. This proves:

Corollary 3.17. A homomorphism ϕ : G→ H is injective iff kerϕ = {1G}.

We are ready for our second important theorem (the first was Lagrange’s theorem).

Theorem 3.16 (1st Isomorphism Theorem). Suppose ϕ : G → H is a surjective
homomorphism. Then G/ kerϕ ∼= H.

Proof. Let N = kerϕ. Define ϕ : G/N → H by the rule ϕ(aN) = ϕ(a). ϕ will be
our isomorphism. We must first check that this is well-defined: i.e., if aN = bN do
we have ϕ(a) = ϕ(b)? Yes: if aN = bN , then a, b belong to the same coset of N , so
they belong to the same fiber of ϕ by Proposition 3.2, meaning ϕ(a) = ϕ(b).

Next we check that ϕ is a homomorphism. The question is whether, for any
aN, bN ∈ G/N , we have

ϕ(aN · bN)
?
= ϕ(aN)ϕ(bN).

Well, ϕ(aN · bN) = ϕ((ab)N) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aN)ϕ(bN). So ϕ is a
homomorphism.

Clearly ϕ is surjective (because ϕ is). It remains only to check that ϕ is injective,
or equivalently, that kerϕ = {N}. Suppose aN ∈ G/N . Then

aN ∈ kerϕ ⇐⇒ ϕ(aN) = 1H ⇐⇒ φ(a) = 1H ⇐⇒ a ∈ N ⇐⇒ aN = N.

Hence kerϕ = {N} = {1G/N}, proving ϕ is injective. In summary, ϕ : G/N ∼= H. �

Examples.

(1) Define ϕ : C× → R>0 by ϕ(z) = |z|. We’ve already seen that this is a
homomorphism, and it is easy to see that it is surjective. Thus by the 1st
Isomorphism Theorem, C×/ kerϕ ∼= R>0. What is kerϕ? Clearly kerϕ =
{z ∈ C× : |z| = 1} = S, the unit circle. Thus C×/S ∼= R>0.

(2) Recall that D12 = {ri : 0 ≤ i < 6} ∪ {sri : 0 ≤ i < 6} where r is a counter-
clockwise rotation by 60◦ and s is the reflection through the x-axis. Let’s write
D6 = {ti : 0 ≤ i < 3} ∪ {sti : 0 ≤ i < 3} where t is the counter-clockwise
rotation by 120◦. Then clearly t = r2, so D6 = {1, r2, r4} ∪ {s, sr2, sr4}.

Now define a function ϕ : D12 → D6 by ϕ(ri) = r2i and ϕ(sri) = sr2i. One
can check (by a tedious consideration of cases) that ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ D12; hence ϕ is a homomorphism. Clearly ϕ is surjective, and it’s easy
to calculate that kerϕ = {1, r3}.

It follows by the 1st Isomorphism Theorem that D12/{1, r3} ∼= D6.
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12. Oct 2 – 2nd and 3rd Isomorphism theorems

In the proof of the 1st Isomorphism theorem, recall that ϕ satisfied (in fact was
defined by)

ϕ(aN) = ϕ(a) for all a ∈ G.
This can be restated as

ϕ(πN(a)) = ϕ(a) for all a ∈ G

which is equivalent to

ϕ ◦ πN = ϕ.

We say that ϕ factors through πN via ϕ. Pictorially,

G

H

G/N

ϕ

πN

∼=ϕ

Applications

(1) Given any group, we can define ϕ : G → G by ϕ(x) = x. It is easy to see
that ϕ is a surjective homomorphism and kerϕ = {1}. Hence by the 1st
Isomorphism Theorem,

G/{1} ∼= G.

(2) Suppose we have a group G, a normal subgroup NCG, and another subgroup
H ≤ G. We can form G/N . Define a function ϕ : H → G/N by ϕ(a) = aN .
It is easy to check that ϕ is a homomorphism: a, b ∈ H implies ϕ(ab) =
(ab)N = (aN)(bN) = ϕ(a)ϕ(b). But ϕ need not be onto.

What is im(ϕ)? As a ranges over H, aN ranges over the left cosets of N
in HN . Hence im(ϕ) = HN/N .

Incidentally, we know that HN ≤ G because N CG (Sept 22), so HN is a
group. Clearly N ≤ HN . Now

N CG ⇐⇒ gNg−1 = N for all g ∈ G
=⇒ gNg−1 = N for all g ∈ HN
⇐⇒ N CHN.

Thus N CHN , so HN/N is in fact a group. Thus ϕ is a surjective homo-
morphism from H to HN/N .
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By the 1st Isomorphism Theorem, HN/N ∼= H/ kerϕ. So we calculate
kerϕ:

kerϕ = {h ∈ H : hN = N} = {h ∈ H : h ∈ N} = H ∩N.
Hence HN/N ∼= H/(H ∩N). This proves:

Theorem 3.18 (2nd Isomorphism Theorem). Suppose G is a group and H,N ≤ G
with N CG. Then HN/N ∼= H/(H ∩N).

(3) Now suppose G is a group and we have two normal subgroups N,K C G
with N ≤ K. We can form G/N and G/K. Define ϕ : G/N → G/K by
ϕ(aN) = aK. We have to check that this is well-defined: if aN = bN , then
N = a−1bN , so a−1 ∈ N . This implies a−1b ∈ K, so a−1bK = K, so bK = aK.
This proves ϕ is well-defined.

Obviously ϕ is surjective.
We check that ϕ is a homomorphism: for all aN, bN ∈ G/N ,

ϕ((aN) · (bN)) = ϕ((ab)N) = (ab)K = (aK)(bK) = ϕ(aN)ϕ(bN).

Thus ϕ is a surjective homomorphism from G/N to G/K. Hence by the 1st
Isomorphism Theorem, G/K ∼= (G/N)/ kerϕ. What is kerϕ? Calculate:

kerϕ = {aN ∈ G/N : aK = K} = {aN : a ∈ K} = K/N.

This proves:

Theorem 3.19 (3rd Isomorphism Theorem). Suppose G is a group and N,K C G
with N ≤ K. Then K/N CG/N and (G/N)/(K/N) ∼= G/K.

(4) Finally, suppose G is a group and N,KCG satisfy NK = G and N∩K = {1}.
Recall that we know that this implies G ∼= N ×K. What can we say about
G/N and G/K?

By the 2nd Isomorphism theorem, NK/K ∼= N/(N ∩K). Since NK = G
and N ∩K = {1}, this gives G/N ∼= K/{1} ∼= K. By symmetry, G/K ∼= N .



26 R. WILLARD

13. Oct 6 – Group actions

Sections 1.7 and 4.1

Definition. Let G be a group and X a set. An action of G on X is a map
g 7→ πg which assigns to each g ∈ G a permutation πg ∈ SX , and which “respects the
operation of G,” in the sense that if g, h ∈ G then πgh = πg ◦ πh.

In other words, an action of G on X is a homomorphism π : G→ SX .

Examples.

(1) SX acts naturally on X via the map σ 7→ σ.
(2) D2n acts naturally on the set {1, 2, . . . , n} via the picture

1

23

4

n· · ·
· · ·

For example, in D12 we have πr = (1 2 3 4 5 6) and πs = (2 6)(3 5), and

πsr = (1 6)(2 5)(3 4) = (2 6)(3 5)(1 2 3 4 5 6) = πs ◦ πr.
In general, we naturally have a map π : D2n → Sn and it is a homomorphism.

(3) G naturally acts on itself in a number of ways. Here is one of them. For each
g ∈ G let ψg : G → G given by ψg(x) = gxg−1. ψg is an automorphism of G
so is certainly a permutation of G. Moreover, for any g, h ∈ G,

ψgh(x) = (gh)x(gh)−1 = (gh)xh−1g−1 = g(hxh−1)g−1

= gψh(x)g−1 = ψg(ψh(x)) = (ψg ◦ ψh)(x),

true for all x ∈ G, so ψgh = ψg◦ψh. Hence the map g 7→ ψg is a homomorphism
ψ : G→ SG.

Notation. If π is an action of G on X, and g ∈ G and a, b ∈ X, then we express
πg(a) = b by writing g · a = b and say g moves a to b. Note that πgh = πg ◦ πh
translates to (gh) · a = g · (h · a) for all a ∈ X. Note also that π1 = id, which
translates to 1 · a = a for all a ∈ X.

Definition. Let π be an action of G on X.

(1) The kernel of the action is the kernel of π as a homomorphism G→ SX .
(2) The action is faithful if its kernel is {1} (equivalently, if π is injective).
(3) Given a ∈ X, the orbit of a is the set G · a = {g · a : g ∈ G} of places to

which a gets moved by elements of G.

Note: if G acts faithfully on X, then G is isomorphic to a subgroup of SX . (π is
the isomorphism.)
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Proposition 4.2 (1). Suppose G acts on X. The orbits of the action partition X.

Proof. As a ∈ G · a for each a ∈ X, the orbits clearly cover X. Suppose G · a,G · b
are two orbits with G · a ∩G · b 6= ∅. Pick x ∈ G · a ∩G · b; thus pick g, h ∈ G with
g · a = x = h · b. Then

(h−1g) · a = h−1 · (g · a) = h−1 · (h · b) = (h−1h) · b = 1 · b = b,

proving b ∈ G · a. It is easy to show that b ∈ G · a implies G · b ⊆ G · a. Dually we
get G · a ⊆ G · b. So G · a = G · b. �

Definition. An action of G on X is transitive if it has only one orbit (X).

Example. The natural action of D2n on {1, 2, . . . , n} is transitive, since for any
i, j ∈ {1, . . . , n} we can find g ∈ D2n such that g · i = j.

Definition. Let π be an action of G on X. Given a ∈ X, the stabilizer of a is the
set

Ga = {g ∈ G : g · a = a}.

Proposition 4.2 (2). Suppose G acts on X. For every a ∈ X:

(1) Ga ≤ G.
(2) |G · a| = [G : Ga].

Hence if G is finite, then every orbit has size dividing |G|.

Proof. (1) Exercise.
(2) Recall that G · a = {g · a : g ∈ G}. Observe that for g, h ∈ G,

g · a = h · a ⇐⇒ h−1 · (g · a) = h−1 · (h · a)

⇐⇒ (h−1g) · a = a ⇐⇒ h−1g ∈ Ga ⇐⇒ hGa = gGa.

In other words, the g · a depends only on gGa. Thus the number of distinct values of
g · a equals the number of distinct left cosets of Ga in G. �

Example. Consider the natural action of G = D2n on {1, 2, . . . , n}. This action is
transitive. Thus for any i ∈ {1, 2, . . . , n}, |G · i| = n. Hence by the Orbit-Stabilizer
Theorem, the stabilizer of i must have order 2.
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14. Oct 7 – Permutation representations and Cayley’s Theorem

Let G be a group. G acts on itself by left multiplication: g · a = ga. Call this
action λ; so for g ∈ G, λg is the permutation in SG given by λg(a) = ga.

Note that λ is a homomorphism G→ SG, since for any g, h ∈ G,

λgh(a) = (gh)a = g(ha) = λg(λh(a)) = (λg ◦ λh)(a) for all a ∈ G,

proving λgh = λg ◦ λh.
Note also that if g 6= 1 then λg(1) = g1 = g 6= 1, so λg 6= id. Hence kerλ = {1}, so

the action is faithful. Hence G is isomorphic to a subgroup of SG. This proves

Cayley’s Theorem (Corollary 4.4) Every group is isomorphic to a subgroup of a
symmetric group. If |G| = n, then G is isomorphic to a subgroup of Sn.

We proved Cayley’s theorem by exhibiting a faithful action of G on a |G|-element
set (namely, G itself). Sometimes we can find smaller sets on which G faithfully acts.

Example. Suppose {1} < H < G. Recall that G/H is the set of left cosets of H. G
acts on G/H by left multiplication:

g · aH = (ga)H.

It is easy to check that this is an action (i.e., the map λH : G → SG/H where λHg is

the permutation aH 7→ (ga)H is a homomorphism). Let N = kerλH . Note that if
g ∈ N then λHg = id, so λHg (H) = H, meaning gH = H, which implies g ∈ H. Thus
N ⊆ H.

Proposition. Suppose G is a finite group, {1} < H < G, and G has no normal
subgroups contained in H except for {1}. Then G is isomorphic to a subgroup of Sm
where m = [G : H].

Proof. Let λH be the action of G on G/H by left multiplication. The kernel of λH

is a normal subgroup of G contained in H, so must be {1}. Hence λH is faithful, so
λ : G ∼= Im(λH) ≤ SG/H ∼= Sm. �

The action of G on G/H is also the key to the proof of the following.

Corollary 4.5. Suppose G is a finite group and p is the smallest prime dividing |G|.
If H ≤ G with [G : H] = p, then H CG.

Proof. Let λH be the action of G on G/H by left multiplication. Let N = kerλH .
Thus N C G and N ⊆ H. Whether or not λH is injective, we know from the 1st
Isomorphism Theorem that G/N ∼= im(λH) ≤ SG/H ∼= Sp, so G/N is isomorphic to
a subgroup of Sp. Hence |G/N | divides |Sp| = p! by Lagrange’s theorem. What else
can we say about |G/N |?
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Because N ⊆ H, we can define [H : N ] = k and get

|G/N | = |G|
|N |

=
|G|
|H|
· |H|
|N |

= pk.

Thus pk|p!, and hence k|(p− 1)! But k divides |H|, which divides |G|, so every prime
divisor of k must be ≥ p (by choice of p). This forces k = 1, which implies N = H,
so H CG (as N CG). �

Here is one final result of this kind. Suppose G is a group with |G| = 52, and
H ≤ G with |H| = 13. I claim that these assumptions imply H C G. Here’s why.
Let λH be the action of G on G/H. Let N = kerλH . Then N CG and N ⊆ H. The
latter fact implies |N | divides |H| = 13 (by Lagrange), so |N | = 1 or 13.

Suppose |N | = 1. Then λH is faithful, so λH : G ∼= Im(λH) ≤ S[G/H], proving G
is isomorphic to a subgroup of S4. But |G| = 52 while |S4| = 4! = 24, so G can’t
possibly be isomorphic to a subgroup of S4. This case is impossible.

Hence |N | = 13. But N ⊆ H and |H| = 13. These facts imply N = H. As N CG,
it follows that H CG.
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15. Oct 9 – Class equation and Cauchy’s theorem

Let’s explore the action of G on itself by conjugation: ψg is the map x 7→ gxg−1.
Thus g · a = gag−1. Given a ∈ G, what is the orbit G · a?

G · a = {gag−1 : g ∈ G}, the set of conjugates of a.

Let’s denote this set by Conj(a). It is called the conjugacy class of a.

Example. If G = S3, then

Conj(id) = {π ◦ id ◦ π−1 : π ∈ S3} = {id}
Conj((1 2)) = {π ◦ (1 2) ◦ π−1 : π ∈ S3} = {(1 2), (1 3), (2 3)}

Conj((1 2 3)) = {π ◦ (1 2 3) ◦ π−1 : π ∈ S3} = {(1 2 3), (1 3 2)}.

By general properties of actions, we get:

(1) G is partitioned by its conjugacy classes.
(2) For any a ∈ G, |Conj(a)| = [G : Ga].

In particular, |Conj(a)| divides |G| when G is finite.

What is the stabilizer Ga?

Ga = {g ∈ G : g · a = a} = {g ∈ G : gag−1 = a} = {g ∈ G : ga = ag} = CG(a).

Thus

Proposition 4.6. In any group G, |Conj(a)| = [G : CG(a)].

Of particular interest are the 1-element conjugacy classes. Observe that

Conj(a) = {a} ⇐⇒ |Conj(a)| = 1

⇐⇒ [G : CG(a)] = 1

⇐⇒ CG(a) = G

⇐⇒ ga = ag for all g ∈ G
⇐⇒ a ∈ Z(G).

Hence

Proposition. Every group G is the disjoint union of Z(G) and its nontrivial conju-
gacy classes.

This fact is called the class equation. It has useful consequences.

Theorem 4.7. If p is a prime and |G| = pn, then Z(G) 6= {1}.
Proof. By the class equation,

pn = |G| = |Z(G)|+
m∑
i=1

|Conj(ai)|
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where Conj(a1), . . . ,Conj(am) are the nontrivial conjugacy classes. Each |Conj(ai)|
divides pn and is > 1. Hence |Z(G)| ≡ 0 (mod p), so |Z(G)| ≥ p. �

Cauchy’s Theorem. Suppose G is a finite group. If p is prime and p divides |G|,
then there exists an element in G of order p.

Proof. Note that it suffices to prove the existence of a ∈ G such that p|◦(a). (If
◦(a) = pk, then ◦(ak) = p.)

We first prove this weaker claim for abelian groups, by induction on |G|.
Base: |G| = p. Then G is cyclic of order p, done.

Inductive step: |G| = pm, m > 1. Pick any element a ∈ G \ {1}.
Case 1: p divides ◦(a). Then we’re done.

Case 2: p does not divide ◦(a).
Let N = 〈a〉. Clearly {1} < N < G. Also, N CG (as G is abelian) so we get G/N .
|N | > 1 implies |G/N | < |G|. Also |G| = |N | · |G/N | so p divides |G/N |. In fact,
G/N is an abelian group (exercise), so the inductive hypothesis applies and we get
an element bN ∈ G/N of order p.

Let n = ◦(b). Then bn = 1, so (bN)n = N , so p|n, so we’re done.

Now we prove the general case, again by induction onG. Look at the class equation:

|G| = |Z(G)|+
m∑
i=1

|Conj(ai)|.

Case 1. For some i we have that |Conj(ai)| is not divisible by p.

Since |Conj(ai)| = |G|
|CG(ai)| it must be that p divides CG(ai). Note that CG(ai) ≤ G,

and CG(ai) 6= G (as ai 6∈ Z(G)). So we can apply the inductive hypothesis to CG(ai)
to get an element of order p.

Case 2. p divides every |Conj(ai)|.
Then p divides |Z(G)|. Note that Z(G) is abelian so our earlier argument gives an

element of order p. �
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16. Oct 14 – Finite abelian groups

Lemma. Suppose G is an abelian group and m ∈ Z. Define G(m) = {a ∈ G :
am = 1}. Then G(m) ≤ G.

Proof. a, b ∈ G(m) =⇒ am = bm = 1 =⇒ (ab)m = ambm = 1 =⇒ ab ∈ G(m).
Similarly, a ∈ G(m) =⇒ a−1 ∈ G(m). �

Lemma. Suppose G is finite abelian, |G| = mk with gcd(m, k) = 1. Then

(1) G ∼= G(m) ×G(k).
(2) |G(m)| = m and |G(k)| = k.

Proof. (1) First, suppose a ∈ G(m) ∩ G(k). Then am = ak = 1. Pick x, y ∈ Z with
mx+ ky = 1. Then

a = amx+ky = (am)x · (ak)y = 1x · 1y = 1.

This proves G(m) ∩G(k) = {1} .

Next, note that if a ∈ G then 1 = amk = (ak)m = (am)k, proving ak ∈ G(m) and
am ∈ G(k). Hence

a = amx+ky = (ak)y︸ ︷︷ ︸
∈G(m)

· (am)x︸ ︷︷ ︸
∈G(k)

∈ G(m) ·G(k).

This proves G = G(m) ·G(k) . Obviously G(m), G(k) CG . So G ∼= G(m) ×G(k).

(2) Let |G(m)| = m′ and |G(k)| = k′. Clearly mk = |G| = m′k′ by (1). Suppose
gcd(m, k′) 6= 1. Then we can choose a prime p dividing both m and k′. By Cauchy’s
theorem, there exists a ∈ G(k) with ◦(a) = p. But p|m implies am = 1, so a ∈ G(m).
Hence a = 1, contradiction. This proves gcd(m, k′) = 1.

Now m|m′k′ and gcd(m, k′) = 1 imply m|m′ and hence m ≤ m′. A similar argu-
ment gives k ≤ k′. As mk = m′k′, this can only happen if m = m′ and k = k′. �

Corollary. Suppose G is finite abelian and |G| = n = pn1
1 · · · p

nk
k where p1, . . . , pk are

distinct primes.

(1) G ∼= G(p
n1
1 ) × · · · ×G(p

nk
k )

(2) |G(p
ni
i )| = pni

i for each i.

This is called the primary decomposition of G.

Example. Let G = Z×13. |G| = 12 = 22 · 3.

G(4) = {a ∈ Z×13 : a4 = 1} = {1, 5, 8, 12}
G(3) = {a ∈ Z×13 : a3 = 1} = {1, 3, 9}

By the Lemma, {1, 5, 8, 12}{1, 3, 9} = Z×13 ∼= {1, 5, 8, 12} × {1, 3, 9}.
Definition. A finite group is a p-group if |G| = pn for some n ≥ 1.
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17. Oct 16 – Finite abelian groups (continued)

On Tuesday we saw that every finite abelian group can be factored as a direct
product of finite abelian p-groups (i.e., of order pn where p is prime). Today we will
see how to factor finite abelian p-groups.

Definition. Let G be an abelian group. A basis for G is a sequence a1, . . . , at ∈ G
satisfying

(1) ai 6= 1 for all i.
(2) G = 〈a1〉〈a2〉 · · · 〈at〉.
(3) For all i < t,

〈a1〉〈a2〉 · · · 〈ai〉 ∩ 〈ai+1〉 = {1}.
Suppose a1, . . . , at is a basis for G. Let Ni = 〈ai〉 and Hi = N1N2 · · ·Ni. Condition

(3) says Hi ∩Ni+1 = {1} for all i < t. Note that HiNi+1 = Hi+1. Since G is abelian
we of course have Hi, Ni+1 CHi+1. Hence Hi+1

∼= Hi ×Ni+1 (for each i < t). Thus

G = Ht by (2)
∼= Ht−1 ×Nt

∼= (Ht−2 ×Nt−1)×Nt

...
∼= N1 ×N2 × · · · ×Nt.

Thus

Proposition. If G is abelian and G has a basis, then G is isomorphic to a direct
product of cyclic groups.

Theorem. Every finite abelian p-group has a basis.

Proof sketch. Let |G| = pn. Start be choosing a1 to be an element of G with ◦(a1)
maximum, say ◦(a1) = pn1 . If n1 = n then G = 〈a1〉 and we’re done. Otherwise,
let H1 = 〈a1〉, form G/H1, and pick an element bH1 ∈ G/H1 with ◦(bH1) maximum.
Observe that |G/H| = pn/pn1 = pn−n1 , so ◦(bH1) = pn2 for some n2 ≤ n− n1.

Also let ◦(b) = pk. Then k ≤ n1 (by choice of a1). Furthermore, bp
k

= 1, so

(bH1)
pk = H, so pn2|pk, so n2 ≤ k. Thus n2 ≤ k ≤ n1.

Claim. There exists a2 ∈ bH1 with ◦(a2) = pn2.

Proof. From (bH)p
n2 = H we get bp

n2 ∈ H1 = 〈a1〉. Write bp
n2 = ai1. Then

aip
n1−n2

1 = (bp
n2 )p

n1−n2 = bp
n1 .

Note that k ≤ n1 (proved above), so ◦(b) = pk|pn1 , so bp
n1 = 1 . Hence aip

n1−n2

1 = 1,
which implies ◦(a1)|ipn1−n2 , i.e., pn1 |ipn1−n2 , which implies pn2|i, say i = jpn2 . Now
define a2 = ba−j1 ∈ bH1. Note that:
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(1) (a2)
pn2 = (ba−j1 )p

n2 = bp
n2 (ajp

n2

1 )−1 = bp
n2 (ai1)

−1 = 1.
(2) If 0 ≤ t < pn2 and at2 = 1, so (ba−j1 )t = 1, then bt ∈ 〈a1〉 = H1, so (bH1)

t = H1.
As ◦(bH1) = pn2 , this forces t = 0.

Together, these facts prove ◦(a2) = pn2 as claimed. �

Claim. H1 ∩ 〈a2〉 = {1}.

Proof. Assume 0 ≤ t < pn2 and at2 ∈ H1. The same calculation proving item (2) above

shows bt ∈ H1, so (bH1)
t = H1, so t = 0. Thus H1 ∩{1, a2, a22, . . . , a

pn2−1
2 } = {1}. �

Now we let H2 = 〈a1〉〈a2〉, If H2 = G then we’re done. Otherwise, form G/H2, and
pick an element cH2 ∈ G/H2 with ◦(cH2) maximum. We get ◦(cH2) = pn3 for some
n3 ≤ n−(n1+n2). We can prove cp

n1 = 1 and (cH1)
pn2 = H1 by our choice of a1, bH1.

(For example, ◦(cH1) = p` for some `, and ◦(cH1) ≤ ◦(bH1) = pn2 by our choice of

bH1, so ` ≤ n2, so p`|pn2 , so (cH1)
pn2 = H1.) Hence cp

n1 = 1 and cp
n2 ∈ H1 .

Claim. There exists a3 ∈ cH2 with ◦(a3) = pn3.

Proof sketch. (cH2)
pn3 = H2 = 〈a1〉〈a2〉, so cp

n3 = ai11 a
i2
2 for some i1, i2. The two

boxed facts above can be shown to imply pn3|i1 and pn3|i2 respectively.
(Details: recall that cp

n2 ∈ H1. But

cp
n2 = (cp

n3 )p
n2−n3 = (ai11 a

i2
2 )p

n2−n3 = (ai1p
n2−n3

1 )(ai2p
n2−n3

2 ).

Hence ai2p
n2−n3

2 = cp
n2 (ai1p

n2−n3

1 )−1 ∈ H1 as both factors are in H1. This implies
(a2H1)

i2pn2−n3 = H1, so ◦(a2H1) = pn2|i2pn2−n3 , which in turn implies pn3|i2. Next
we prove pn3|i1. Start with the fact, proved above, that cp

n1 = 1. This implies

1 = cp
n1 = (cp

n3 )p
n1−n3 = (ai11 a

i2
2 )p

n1−n3 = (ai1p
n1−n3

1 )(ai1p
n1−n3

2 ),

which implies

ai1p
n1−n3

1 = (ai1p
n1−n3

2 )−1 ∈ 〈a2〉.
Obviously ai1p

n1−n3

1 ∈ 〈a1〉 = H1. So ai1p
n1−n3

1 ∈ H1 ∩ 〈a2〉, implying ai1p
n1−n3

1 = 1.
But ◦(a1) = pn1 , so pn1|i1pn1−n3 , implying pn3 |i1.)

Now let i1 = j1p
n3 and i2 = j2p

n3 and define a3 = ca−j11 a−j22 . This works. �

Claim. H2 ∩ 〈a3〉 = {1}.

Proved similarly to H1 ∩ 〈a2〉 = {1}.
Now if G = H2〈a3〉 then we can stop. Otherwise, we must look for a4. Start

by letting H3 = H2〈a3〉 and forming G/H3. Choose (dH3) ∈ G/H3 with ◦(dH3)
maximum . . .

And so on. As G is finite, this process must eventually stop, at which point
a1, a2, . . . , at will be a basis for G. �
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18. Oct 20 – Definition of a ring

Definition. A ring is an ordered triple (R,+, ·) where

• R is a non-empty set;
• + and · are binary operations on R;

which jointly satisfy the following conditions:

(i) (R,+) is an abelian group;
(ii) · is associative;

(iii) There exists 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.
(iv) (Distributive laws): for all a, b, c ∈ R,

(a+ b) · c = (a · c) + (b · c)
a · (b+ c) = (a · b) + (a · c).

Notation/jargon.

• We denote (R,+, ·) by R.
• The identity element of (R,+) is denoted 0.
• The inverse of a in the group (R,+) is denoted −a, and is called the additive

inverse.
• We write a− b for a+ (−b).
• The element 1 is called the multiplicative identity. It is (provably) unique.
• We say that R is commutative if it satisfies a · b = b · a for all a, b ∈ R, and is

noncommutative otherwise.

Example.

(1) Z (with usual addition and multiplication) is a commutative ring; it is the
prototypical example of a commutative ring.

(2) Q,R,C are also commutative rings.
(3) For every n ≥ 2, the set Mn(R) of all n × n matrices over R (with matrix

addition and multiplication) is a noncommutative ring. Similarly, Mn(Z),
Mn(Q), Mn(C).

(4) Zn is a (finite) commutative ring for every n ≥ 2.
(5) Let C(R) be the set of all continuous, everywhere-defined functions f : R→ R

(a very big set). Define f + g and f · g pointwise; that is,

(f + g)(x) := f(x) + g(x)

(f · g)(x) := f(x) · g(x).

Then (C(R),+, ·) is a commutative ring. What is its zero element? Its identity
element?

(6) Is (C(R),+, ◦) a ring?
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Warning: In general, you cannot assume that · satisfies left or right cancellation.
For example in Z we have 0 · x = 0 · y, but that does not imply x = y. In some rings,
even if a 6= 0, one cannot assume that a · b = a · c implies b = c.

Proposition 7.1. Let R be a ring. Then

(1) 0a = a0 = 0 for all a ∈ R.
(2) −a = (−1)a = a(−1) for all a ∈ A.
(3) (−a)b = a(−b) = −(ab) for all a, b ∈ R.
(4) (−a)(−b) = ab.

Proof. (1) 0 + 0 = 0, so 0a = (0 + 0)a = (0a) + (0a). Hence 0a + 0 = 0a + 0a, so
cancelling (in the group (R,+)) gives 0a = 0. Similar proof works for a0 = 0.

(2) 1 + (−1) = 0. Hence 0 = 0a = (1 + (−1))a = (1a) + (−1)a = a + (−1)a.
Hence a + (−a) = a + (−1)a, so cancelling gives (−1)a = −a. Similar proof works
for a(−1) = −a.

(3) (−a)b = (a(−1))b = a((−1)b) = a(−b). Also, (−a)b = ((−1)a)b = (−1)(ab) =
−(ab).

(4) Exercise. �

Definition. Let R be a ring.

(1) An element a ∈ R is a unit if there exists b ∈ R satisfying ab = ba = 1. (We
also say that a is invertible. b is called the inverse of a and is denoted a−1; it
is provably unique.)

(2) R× denotes the set of units in R.

Remark. 2 is a unit in Q but is not a unit in Z. Q× = Q \ {0} while Z× = {1,−1}.
In general, (R×, ·) is a group; called the group of units of R.

Can 0 = 1 in a ring? If 0 = 1, then a = a1 = a0 = 0 for all a ∈ R, i.e., R = {0}.
A 1-element ring is called trivial. Thus a ring is nontrivial iff it satisfies 0 6= 1.

Definition.

(1) A division ring is a ring D satisfying 0 6= 1 and D× = D \ {0} (i.e., every
nonzero element is a unit).

(2) A field is a commutative division ring.

Example.

(1) Q,R,C,Zp (p prime) are fields.



PMATH 347 LECTURES 37

19. Oct 21 – Integral domains, subrings

Notation. Let R be a ring and a ∈ R.

(1) For n > 1 we let na denote a+ a+ · · ·+ a︸ ︷︷ ︸
n

.

(2) For n ≥ 1 we let (−n)a denote −(na). (Thus na is defined for all n ∈ Z.)
(3) Za = {na : n ∈ Z}.

Note that Za is the cyclic subgroup of (R,+) generated by a.

Recall:

Definition.

(1) A division ring is a ring D satisfying 0 6= 1 and D× = D \ {0} (i.e., every
nonzero element is a unit).

(2) A field is a commutative division ring.

Is M2(R) a division ring?

Example. H, the ring of real Hamiltonion quaternions, is the set of all expressions
a+ bi+ dj + dk where a, b, c, d ∈ R and i, j, k are primitive symbols.

(1) Addition is defined obviously:

(a+ bi+ cj + dk) + (a′ + b′i+ c′j + d′k) = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k

(2) Multiplication is first defined on the primitive symbols:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.
(3) Then multiplication is extended to expressions by assuming ai = ia, aj = ja,

ak = ka for all a ∈ R, and assuming distributivity.

It can be shown that H is a ring. If a+ bi+ cj + dk 6= 0 then

(a+ bi+ cj + dk)−1 =
a

e
− b

e
i− c

e
j − d

e
k

where e = a2 + b2 + c2 + d2, so H is a division ring. H is not a field (as ij 6= ji).

Definition. Let R be a ring. A zero divisor is an element a ∈ R such that

(1) a 6= 0, and
(2) There exists b ∈ R with b 6= 0 such that either ab = 0 or ba = 0.

Example.

(1) Z has no zero divisors (since ab = 0 implies a = 0 or b = 0).
(2) 2, 3, 4 are zero divisors in Z6, since 2 · 3 = 4 · 3 = 0.

(3)

[
1 0
0 0

]
is a zero divisor in M2(R), since

[
1 0
0 0

] [
0 0
0 1

]
=

[
0 0
0 0

]
.
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Proposition 7.2. Suppose R is a ring and a ∈ R with a 6= 0. If a is not a zero
divisor, then we can “cancel by a.” That is, for all b, c ∈ R,

ab = ac =⇒ b = c

ba = ca =⇒ b = c.

Proof. Assume ab = ac. Then a(b− c) = a(b+ (−c)) = ab+ a(−c) = (ab) +−(ac) =
ab − ac = ab − ab = 0. Since a 6= − but a is not a zero divisor, it must be that
b− c = 0, i.e., b = c. The other implication is proved similarly. �

Lemma. If R is a ring and a ∈ R×, then a is not a zero divisor. Hence we can
always “cancel by units.”

Proof. Argue by contradiction. Assume a ∈ R× and a is a zero divisor. Thus a−1

exists in R, and there exists b ∈ R with b 6= 0 such that either ab = 0 or ba = 0.
Suppose ba = 0; then b = b1 = b(aa−1) = (ba)a−1 = 0a−1 = 0, contradiction. The
equation ab = 0 also leads to a contradiction. �

Definition. A ring R is called an integral domain (or domain) if it is commutative,
satisfies 0 6= 1, and has no zero divisors.

For example, Z is an integral domain.

Corollary 7.3. Every field is an integral domain.

Proof. Follows from the previous lemma. �

Definition. Suppose R is a ring. A subring of R is a subset S ⊆ R such that

(1) S is a subgroup of (R,+).
(2) S is closed under multiplication (i.e., a, b ∈ S implies ab ∈ S).
(3) 1 ∈ S.

Write S ≤ R to denote that S is a subring of R.

As was the case for groups, every subring of a ring is itself a ring (with operations
inherited from the larger ring).

Example.

(1) Z ≤ Q. R ≤ C.
(2) Zn � Z.
(3) Is M2(R) a subring of M3(R)? (No.)
(4) Is M2(Z) a subring of M2(R)? (Yes.)
(5) Recall C(R), the ring of all continuous functions R→ R. Define P (R) to be

the set of all polynomial functions (i.e., defined by polynomials, say with real
coefficients). P (R) ≤ C(R).
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20. Oct 27 – Polynomial rings

Section 7.2

Let R be a ring. Let x be a formal variable.

• A polynomial in x over R is an expression

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n ≥ 0, a0, . . . , an ∈ R, and if n > 0 then an 6= 0.
• We also denote this by

∑n
i=0 aix

i.
• Note that if n = 0 then the expression is just a0. When n = 0 and a0 = 0 the

expression is just 0. (This is the zero polynomial.)
• An expression aix

i is called a term of the polynomial.
• The elements a0, a1, . . . , an of R are called the coefficients of the polynomial.
• The degree of the polynomial is n, except for the zero polynomial which has

no degree.
• If the polynomial is not 0, then the leading term is anx

n, and the leading
coefficient is an.
• By definition, two polynomials are equal iff they have the same degree and

the same coefficients.

Definition. R[x] denotes the set of all polynomials in x over R.

Key fact: every p(x) ∈ R[x] can be viewed as a formula which defines a function
p : R→ R. However, the polynomial is not the same thing as the function it defines.

• For example, if R = Z2, then Z2[x] is an infinite set, but there are only 4
different polynomial functions Z2 → Z2.

For convenience, we also define sloppy polynomials over R to be all expressions
of the form

∑n
i=0 aix

i (a0, . . . , an ∈ R). Here the degree is n even if an = 0. Every
sloppy polynomial determines a unique “tidy” polynomial (by deleting zero terms).

Definition. Given a ring R, define + and · on R[x] “in the obvious way.” That is,
given p(x), q(x) ∈ R[x]:

(1) To define p(x) + q(x):
Write p(x) and q(x) as sloppy polynomials of the same degree and use(

n∑
i=0

aix
i

)
+

(
n∑
i=0

bix
i

)
=

n∑
i=0

(ai + bi)x
i.

(2) To define p(x) · q(x):



40 R. WILLARD

Write p(x) =
∑m

i=1 aix
i and q(x) =

∑n
j=0 bjx

j. Then(
m∑
i=0

aix
i

)
·

(
n∑
j=0

bjx
j

)
= (a0 + a1x+ a2x

2 + · · · ) · (b0 + b1x+ b2x
2 + · · · )

= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·

=
m+n∑
k=0

(∑
i+j=k

aibj

)
xk.

(In both formulas, the right-hand sides must be trimmed if sloppy.)

Theorem. R[x] is a ring containing R as a subring.

Proof sketch. A nightmare. To illustrate, I will prove that · is associative. Let p(x) =∑
i aix

i, q(x) =
∑

j bjx
j, and r(x) =

∑
k ckx

k. Then p(x) · q(x) =
∑

s dsx
s where

ds =
∑
i+j=s

aibj,

so (p(x) · q(x)) · r(x) =
∑

t etx
t where

et =
∑
s+k=t

dsck =
∑
s+k=t

(∑
i+j=s

aibj

)
ck =

∑
i+j+k=t

aibjck.

It can similarly be proved that p(x) · (q(x) · r(x)) has the same coefficients. �

The next theorem describes a property of the functions defined by polynomials.

Theorem. Suppose q(x), r(x) ∈ R[x] and let p(x) = q(x) ·r(x). If R is commutative,
then p(c) = q(c) · r(c) for all c ∈ R.

Proof sketch. Write q(x) =
∑

i aix
i and r(x) =

∑
j bjx

j. Then

q(c) · r(c) = (a0 + a1c+ a2c
2 + · · · ) · (b0 + b1c+ c2c

2 + · · · )
= a0b0 + a0(b1c) + a0(b2c

2) + a0(b3c
3) + · · ·

+(a1c)b0 + (a1c)(b1c) + (a1c)(b2c
2) + · · ·

+(a2c
2)b0 + (a2c

2)(b1c) + · · ·
If R is commutative, then the terms can be rearranged to get

a0b0 + (a0b1 + a1b0)c+ (a0b2 + a1b1 + a2b0)c
2 + · · · = p(c). �

We can generalize this as follows. Given a ring R, its center is the set Z(R) =
{a ∈ R : ab = ba for all b ∈ R}. Z(R) is a subring of R.

Corollary. Suppose q(x), r(x) ∈ R[x] and let p(x) = q(x)·r(x). then p(c) = q(c)·r(c)
for all c ∈ Z(R).
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21. Oct 28 – Homomorphisms, ideals

Section 7.3

Definition. Let R, S be rings. A function ϕ : R → S is a homomorphism (of
rings) if

(1) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R.
(2) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.
(3) ϕ(1R) = 1S.

Examples.

(1) Z→ Zn, k 7→ k (mod n).
(2) If R is a commutative ring and c ∈ R, then ϕc : R[x]→ R given by ϕc(p(x)) =

p(c). Called “evaluation at c.”
We saw yesterday that ϕc preserves multiplication. Preserving addition is

easy. If p(x) is 1, then p(c) is also 1, so ϕc(1) = 1.

Suppose ϕ : R → S is a ring homomorphism. Then it is automatically a group
homomorphism ϕ : (R,+)→ (S,+). Hence it has a kernel,

ker(ϕ) = {a ∈ R : ϕ(a) = 0S}.
Furthermore, ϕ is injective iff ker(ϕ) = {0R}.

Definition. As in the case of groups,

(1) An isomorphism is a bijective homomorphism.
(2) Write R ∼= S if there exists an isomorphism from R to S.

Definition. Let R be a ring and I ⊆ R.

(1) I is a left ideal of R if
(a) I is a subgroup of (R,+).
(b) If r ∈ R and a ∈ I, then ra ∈ I.

(2) Right ideals are defined dually (a ∈ I, r ∈ R =⇒ ar ∈ I).
(3) I is an ideal if it is both a left and right ideal.

Warning: Dummit & Foote say that an ideal must also be a subring of R. They
mean “subrng.”

Proposition. If I is an ideal of R and 1 ∈ I, then I = R.

Proof. For every every r ∈ R we have r ∈ R, 1 ∈ I =⇒ r1 = r ∈ I, so R ⊆ I, so
R = I. �

Proposition 7.5. Let R, S be rings and ϕ : R→ S a homomorphism.

(1) Im(ϕ) is a subring of S.
(2) ker(ϕ) is an ideal of R.
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Proof. (1) is routine. Focus on (2). We already know that ker(ϕ) is a (normal)
subgroup of (R,+). Suppose a ∈ ker(ϕ) and r ∈ R. Then ϕ(ra) = ϕ(r)ϕ(a) =
ϕ(r) · 0S = 0S, proving ra ∈ ker(ϕ). A similar proof shows ar ∈ ker(ϕ). �

Suppose I is an ideal of R. Then I is a (normal) subgroup of the group (R,+), so
we may form the quotient group (R,+)/I. Its elements are the cosets of I, which we
write additively as a+ I. The group operation is (a+ I) + (b+ I) = (a+ b) + I.

Claim. The rule (a+ I) · (b+ I) := (ab) + I defines an operation · on R/I.

Proof. We must show that the rule is well-defined. Suppose a + I = a′ + I and
b+ I = b′ + I, so a− a′ ∈ I and b− b′ ∈ I. We must show (ab) + I = (a′b′) + I, and
to do that it suffices to show ab− a′b′ ∈ I. Well

ab− a′b′ = ab− a′b+ a′b− a′b′

= (a− a′)b+ a′(b− b′).
Since I is an ideal and a− a′, b− b′ ∈ I, the above expression is in I as required. �

Claim. If R is a ring and I is an ideal, then (R/I,+, ·) is a ring.

We call (R/I,+, ·) a quotient ring and denote it R/I.

Theorem 7.7 (First Isomorphism Theorem for rings). Suppose R, S are rings and
ϕ : R→ S is a surjective homomorphism. Then R/ ker(ϕ) ∼= S.

An important example of a subring of R is Z1 = {n1 : n ∈ Z}. It is certainly
a subgroup of (R,+) and contains 1. Must check closure under products. Given
m1, n1 ∈ Z1, assume first that m,n > 0. Thus

m1 · n1 = (1 + 1 + · · ·+ 1︸ ︷︷ ︸
m

) · (1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

).

Using distributivity repeatedly, one can prove that this equals (mn)1 so is in Z1.
(One also must check the cases where m < 0 or n < 0.) We call Z1 the prime subring
of R and denote it R0. It is the smallest subring of R, contained in all other subrings.
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22. Oct 30 – Principal ideals

Let R be a ring. Recall that R0 = Z1 = {n1 : n ∈ Z}. The same calculations
that showed that R0 is a subring of R also show that the function ϕ : Z → R0

given by ϕ(n) = n1 is a ring homomorphism. It is obviously surjective. By the First
Isomorphism Theorem, Z/ ker(ϕ) ∼= R0. Since ker(ϕ) is a subgroup of (Z,+), it must
equal nZ for some n ≥ 0. If n = 0 then ϕ is injective, so is an isomorphism from Z
to R0. If n > 0 then Z/nZ ∼= R0.

Definition. Let R be a ring. The characteristic of R is the integer n in the previous
discussion.

Section 7.4.

Definition. Let R be a ring and a ∈ R.

(1) Ra = {ra : r ∈ R}.
(2) aR = {ar : r ∈ R}.
(3) (a) denotes the smallest ideal of R containing a. (More precisely, (a) is the

intersection of all ideals containing a.)

We call (a) the principal ideal generated by a.

Lemma. Suppose R is a ring and a ∈ R.

(1) Ra is a left ideal. It is the smallest left ideal of R containing a.
(2) Similarly, aR is the smallest right ideal of R containing a.
(3) Ra ∪ aR ⊆ (a).

Proof. (1) Obviously Ra 6= ∅. Suppose ra, sa ∈ Ra. Then ra + sa = (r + s)a ∈ Ra
and −(ra) = (−r)a ∈ Ra, so Ra is a subgroup of (R,+). Clearly if ra ∈ Ra and
s ∈ R then s(ra) = (sr)a ∈ Ra, proving Ra is a left ideal. Clearly a = 1a so a ∈ Ra.
Now suppose that I is any left ideal of R containing a. Since a ∈ I and I is a left
ideal, we get ra ∈ I for all r ∈ R; hence Ra ⊆ I. This proves Ra is contained in
every left ideal containing a, so is the smallest such left ideal.

(2) is proved similarly. (3) Since (a) is an ideal and a ∈ (a), it follows that
ra, ar ∈ (a) for all r ∈ R. This proves Ra ∪ aR ⊆ (a). �

Note: If R is commutative, then Ra = aR and Ra is an ideal of R containing a.
Since (a) is by definition the smallest ideal containing a, we get (a) ⊆ Ra. We already

know that Ra ⊆ (a). Hence (a) = Ra = aR if R is commutative .

Example. Consider the ring R[x]. Let I = (x2 + 1), the principal ideal generated by
x2 + 1. Thus

I = {(x2 + 1)q(x) : q(x) ∈ R[x]} = {f(x) ∈ R[x] : x2 + 1 is a factor of f(x)}.
(In the expression (x2+1)q(x), (x2+1) does NOT denote the ideal I; the parentheses
are just being used to surround the factor of x2 + 1. It will be your job to recognize



44 R. WILLARD

when parentheses are being used as brackets and when they are being used to name
a principal ideal.)
I is an ideal, so we can form the quotient ring R[x]/I. What is this quotient ring

isomorphic to? Take an arbitrary element, i.e. a coset f(x)+I. Divide f(x) by x2 +1
to get

f(x) = (x2 + 1)q(x) + (a+ bx),

Hence

f(x) + I = [(x2 + 1)q(x) + I] + [(a+ bx) + I]

= I + [(a+ bx) + I] because x2 + 1 ∈ I
= (a+ bx) + I because I is the zero element of R[x]/I.

In other words, every coset of I can be expressed as (a + bx) + I for some a, b ∈ R.
Hence

R[x]/I = {(a+ bx) + I : a, b ∈ R}.

Let’s explore how addition and multiplication work in R[x]/I. Let (a + bx) + I,
(c+ dx) + I be two elements of R[x]/I. Their sum is easily computed.

[(a+ bx) + I] + [(c+ dx) + I] = [(a+ bx) + (c+ dx)] + I

= [(a+ c) + (b+ d)x] + I.

Similarly,

[(a+ bx) + I] · [(c+ dx) + I] = [(a+ bx) · (c+ dx)] + I

= [(ac) + (ad+ bc)x+ (bd)x2] + I.

We can simplify this last expression as follows. Since x2+1 ∈ I we get x2+I = −1+I,
so (bd)x2 + I = −bd+ I, so

[(a+ bx) + I] · [(c+ dx) + I] = [(ac) + (ad+ bc)x− bd] + I

= [(ac− bd) + (ad+ bc)x] + I.

This resembles multiplication in C. We might conjecture that R[x]/I ∼= C. To prove
this conjecture, define ϕ : R[x] → C by ϕ(p(x)) = p(i). One can show that ϕ is a
homomorphism. (See the 2nd example from Oct 28.) Obviously ϕ is surjective, since
for any complex number a+ ib we have a+ ib = ϕ(a+ bx). I claim that ker(ϕ) = I.
Indeed, if f(x) ∈ ker(ϕ), i.e., f(i) = 0, then both i,−i are roots of f(x) so x2 + 1
is a factor of f(x), meaning f(x) ∈ (x2 + 1) = I. This proves ker(f) ⊆ I. For the
converse inclusion, note that ker(ϕ) is an ideal which contains x2 + 1 (obviously), so
(x2 + 1) ⊆ ker(ϕ) (since (x2 + 1) is contained in every ideal containing x2 + 1). This
proves ker(ϕ) = I.

Now apply the First Isomorphism Theorem to get R[x]/I ∼= C.
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23. Nov 3 – Maximal ideals

The ideals of a ring R are ordered by inclusion and hence form a partially ordered
set (poset). We can schematically draw this poset with R at the top, {0} at the
bottom, and other ideals in between.

Lemma. Suppose I, J are ideals of R.

(1) I ∩ J is an ideal; it is the largest ideal of R contained in both I and J .
(2) I + J := {a+ b : a ∈ I and b ∈ J} is the smallest ideal of R containing both

I and J .

Proof. (2) I, J are both (normal) subgroups of (R,+), so I+J is also a subgroup and
containing I and J . Suppose a+b ∈ I+J and r ∈ R. Then r(a+b) = ra+rb ∈ I+J
and similarly (a + b)r = ar + br ∈ I + J , so I + J is an ideal. We’ve already noted
I, J ⊆ I + J . Suppose K is any other ideal with I, J ⊆ K. Then for all a+ b ∈ I + J
we have a, b ∈ K so a+ b ∈ K, proving I + J ⊆ K. �

Definition. Let R be a ring.

(1) An ideal I is proper if I 6= R. (Equivalently, if 1 6∈ I.)
(2) If I, J are ideals, then J properly contains I if I ⊆ J and I 6= J .
(3) I is a maximal ideal if (i) it is a proper ideal, and (ii) the only ideal properly

containing it is R.

Proposition 7.12. Suppose R is a commutative ring and I is an ideal. R/I is a
field iff I is a maximal ideal.

Proof. Throughout the proof, if a ∈ R then a denotes a + I ∈ R/I. In particular,
0 = 0 + I is the zero of R/I and 1 = 1 + I is the multiplicative identity of R/I.

(⇒) Assume R/I is a field. Then 0 6= 1, meaning I 6= 1+I, so 1 6∈ I, so I is proper.
Suppose J is an ideal properly containing I. Pick a ∈ J\I. Thus a+I 6= I, i.e., a 6= 0.
As R/I is a field, there exists b ∈ R/I such that a · b = 1̄, i.e., (a+ I)(b+ I) = 1 + I,
so 1 = ab + c for some c ∈ I. As a, c ∈ J and J is an ideal, we get 1 ∈ J so J = R.
This proves I is maximal.

(⇐) Suppose I is maximal. We run through the defining properties of being a
field.

(1) R/I is commutative (because R is).
(2) 1 6∈ I because I is proper, so I 6= 1 + I, so 0 6= 1.
(3) Let a ∈ R/I with a 6= 0. (Thus a 6∈ I.) We must show that a has a

multiplicative inverse in R/I. Recall that (a) = Ra. By hypothesis, a 6∈ I,
but clearly a ∈ (a) + I, so (a) + I properly contains I, so (a) + I = R. In
particular, 1 ∈ (a) + I, so there exists r ∈ R and c ∈ I such that 1 = ar + c.
Hence 1+I = ar+I = (a+I)(r+I), meaning 1 = a ·r, so r is a multiplicative
inverse to a. �
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24. Nov 4 – Prime ideals, Zorn’s Lemma

Recall that a ring is an integral domain if it is commutative, satisfies 0 6= 1, and
has no zero divisors. This last condition is equivalent to ab = 0 implying a = 0 or
b = 0.

Suppose R is commutative and I is an ideal. What properties of I determine
whether R/I is an integral domain? R/I is already commutative (because R is).
Clearly we need I to be proper (so 0 6= 1). To achieve the final condition, we need
a · b = 0 to imply a = 0 or b = 0.

• a · b = 0 means (a+ I)(b+ I) = I, i.e., ab ∈ I.
• a = 0 or b = 0 means a+ I = I or b+ I = I, i.e., a ∈ I or b ∈ I.

Thus we need: ab ∈ I implies a ∈ I or b ∈ I. Ideals with this property (and proper)
are called prime ideals.

Every maximal ideal (of a commutative ring) is a prime ideal (because R/I is a
field, so is an integral domain). The converse is not true. (Example: in Z, {0} is a
prime ideal but is clearly not a maximal ideal.)

Proposition 7.11. Let R be a ring. Every proper ideal of R is contained in a
maximal ideal of R.

Proof. Here is the idea of the proof. Let I be a proper ideal of R. define I0 = I.
If I0 is maximal then we’re done. Otherwise, there exists a proper ideal I1 properly
containing I0. If I1 is maximal, we’re done, and if not, then there exists a proper
ideal I2 properly containing I1. In this way we either reach a maximal ideal or we
construct an infinite sequence of proper ideals:

I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · ·

Define I∞ =
⋃∞
n=0 In. We claim that I∞ is a proper ideal of R.

• Suppose a, b ∈ I∞. Then there exists n with a, b ∈ In. so a+b,−a ∈ In ⊆ I∞.
• Suppose a ∈ I∞ and r ∈ R. Then a ∈ In for some n. Hence ra ∈ In ⊆ I∞.
• Thus I∞ is an ideal. To show it is proper, suppose instead that I∞ = R. Then

1 ∈ I∞. Hence 1 ∈ In for some n. But then In isn’t proper, contradiction.
Hence I∞ is proper.

We continue the argument. If I∞ is maximal we’re done. Otherwise, there exists a
proper ideal I∞+1 properly containing I∞. Continue: either a maximal ideal I∞+n is
found, or we get another infinite sequence of proper ideals:

I∞ ⊂ I∞+1 ⊂ I∞+2 ⊂ · · · ⊂ I∞+n ⊂ · · ·

Define I∞+∞ =
⋃∞
n=0 I∞+n. Again this is a proper ideal.

The intuition is that this cannot go on forever. To prove it, we must clarify what
we mean by “forever.” This is the job of set theory; for example, countable sequences
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(no matter how many times applied) do not capture “forever.” We can “sweep this
under the carpet” by a trick from set theory.

Definition. A chain of proper ideals is set S of proper ideals with the property
that for all I, J ∈ S, either I ⊆ J or J ⊆ I. (Note: S can be uncountable.)

By a similar argument as above, if S is a chain of proper ideals, then
⋃
I∈S I is still

a proper ideal. In particular, for every chain of proper ideals there exists a proper
ideal containing all the elements of the chain.

Now let I(R) be the set of all proper ideals of R. The relation ⊆ is a partial
ordering of I(R) (reflexive, antisymmetric, transitive). We have proved that every
chain in (I(R),⊆) has an upper bound in I(R).

Lemma (Zorn’s Lemma). Suppose (A,≤) is a set equipped with a partial order. If
every chain in (A,≤) has an upper bound in A, then every element of A lies below a
maximal element.

If we apply this with (A,≤) = (I(R),⊆) we get the Proposition. �

Commentary. The proof of Zorn’s Lemma is a souped-up version of the intuitive
proof presented above. It constructs a “transfinite” chain

a = a0 < a1 < a2 < · · · < a∞ < a∞+1 < · · · < a∞+∞ < · · ·
of elements of A. However, “constructs” is not quite right. At stage α, we have
an element aα which is not maximal. To “construct” aα+1, we need to choose
one element (from potentially many) which properly extends aα. There may be
no natural way to do this (even though we know some such element must exist).
Some mathematicians and philosophers have objected to “constructions” that require
infinitely many ad hoc choices. The Axiom of Choice (in set theory) asserts that
constructions of this kind are OK, so Zorn’s Lemma is correct (unless the Axiom of
Choice is false . . . ).
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25. Nov 6 – Rings of fractions

Section 7.5. Suppose R is an integral domain and D ⊆ R is a subset of R satisfying

(1) 1 ∈ D.
(2) 0 6∈ D.
(3) D is closed under multiplication (i.e., a, b ∈ D implies ab ∈ D).

(For example, the set D = R \ {0} satisfies these properties.)
I will show that the standard construction of Q (as fractions n/d where n, d ∈ Z

with d 6= 0) can be carried out to construct an integral domain of “fractions” r/d
where r ∈ R and d ∈ D.

Let F = R×D = {(r, d) : r ∈ R, d ∈ D}. Define a relation ∼ on F by

(r, d) ∼ (s, e) iff re = sd.

Claim. ∼ is an equivalence relation on F.

Proof. It is easily shown to be reflexive and symmetric. For transitivity, suppose
(r, d) ∼ (s, e) and (s, e) ∼ (t, f). Thus re = sd and sf = te. Hence

ref = sdf = sfd = ted,

so (rf − td)e = 0. As R is an integral domain, we can deduce rf − td = 0 or e = 0.
However, e ∈ D so e 6= 0 by (2). Hence rf − td = 0, so (r, d) ∼ (t, f), proving ∼ is
transitive. �

For (r, d) ∈ F let r/d denote the equivalence class of ∼ containing (r, d). That is,

r/d = {(s, e) ∈ F : (r, d) ∼ (s, e)}.
Define F to be the set of these equivalence classes:

F = {r/d : (r, d) ∈ F}.
Note that r/d = s/e means (r, d) ∼ (s, e).

By (1), r/1 ∈ F for all r ∈ R. We call r/1 the image of r. Note that distinct
elements of R have distinct images in F , since r/1 = s/1 implies (r, 1) ∼ (s, 1), i.e.,
r1 = s1, i.e., r = s.

Next, we define + and · on F in the “grade school” way:

r/d+ s/e := (re+ sd)/de

(r/d) · (s/e) := rs/de.

Note that d, e ∈ D implies de ∈ D by (3), so the right-hand sides make sense.

Theorem.

(1) + and · are well-defined.
(2) (F,+, ·) is an integral domain.
(3) {r/1 : r ∈ R} is a subring of F isomorphic to R.
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Commentary. The assertion that “+ is well-defined” means the following: for
all r1, r2, s1, s2 ∈ R and all d1, d2, e1, e2 ∈ D, if r1/d1 = r2/d2 and s1/e1 = s2/e2,
then (r1e1 + s1d1)/d1e1 = (r2e2 + s2d2)/d2e2; equivalently, if (r1, d1) ∼ (r2, d2) and
(s1, e1) ∼ (s2, e2), then ((r1e1 + s1d1), d1e1) ∼ ((r2e2 + s2d2), d2e2). The proof of this
claim, and everything else claimed in this theorem, is left as an excellent exercise.
(In particular, 0/1 will be the zero element and 1/1 will be the identity element of
F .)

In practice, we identify each element r ∈ R with its image r/1 ∈ F . This makes R
a virtual subring of F .

Definition. The ring F constructed above is called the ring of fractions of R over
D, and is denoted D−1R.

Claim. If D = R \ {0}, then F is a field.

Proof. We already know that D−1R is an integral domain, so it remains to show that
every nonzero element has a multiplicative inverse. Suppose r/d ∈ D−1R is nonzero,
i.e., r/d 6= 0/1. This means r/d 6= 0/1, i.e., (r, d) 6∼ (0, 1), i.e., r1 6= 0d, so r 6= 0. So
r ∈ D. So d/r ∈ F , and clearly (r/d) · (d/r) = (rd, rd) = 1/1. Hence r/d is invertible
with inverse d/r. �

Example. Let R = R[x] and D = R \ {0}. Then D−1R is a field containing R[x]
(virtually) as a subring, and every element of D−1/R can be expressed as a fraction
p(x)/q(x) for some p(x), q(x) ∈ R[x] with q(x) 6= 0. This field is denoted R(x) and is
called the field of rational functions over R, but note that the elements of R(x)
are not functions; they are equivalence classes of a relation ∼ defined on the set F

of pairs (p(x), q(x)).

Example. Let R = Z and D = {d ∈ Z : 36 | d}. D satisfies assumptions (1)–(3),
so the above construction gives an integral domain D−1Z properly containing Z, in
which every integer in D becomes a unit. More precisely,

D−1Z = {n/d : n, d ∈ Z, d 6≡ 0 (mod 3)}.
Note that D−1Z is not a field, since e.g. the element 3 is not invertible.

Example. More generally, suppose R is an integral domain and I is a prime ideal of
R. Let D = R \ I, i.e., the complement of I. Then D satisfies assumptions (1)–(3)
(exercise), so D−1R is defined. It is called the localization of R at the prime
ideal I.
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26. Nov 10 – Chinese Remainder Theorem

Section 7.6

(Took up problem 2(a) from Assignment 7.)

Consider the ring Z. Fix m ≥ 1, let I = (m), and consider the quotient ring Z/I.
Note that for all a, b ∈ Z,

a+ I = b+ I ⇐⇒ b− a ∈ I
⇐⇒ b− a ∈ (m)

⇐⇒ m|b− a
⇐⇒ a ≡ b (mod m).

This motivates the next definition.

Definition. If R is a ring, I is an ideal, and a, b ∈ R, then we write

a ≡ b (mod I)

to mean a+ I = b+ I (equivalently, b− a ∈ I).

Consider again the ring Z. Suppose m,n ∈ Z are coprime, i.e., gcd(m,n) = 1.
We know from MATH 135 that there exist r, s ∈ Z with rm+ sn = 1.

Now let I = (m) and J = (n). By the above, we have rm ∈ I and sn ∈ J , so
1 = rm+ sn ∈ I + J . Since I + J is an ideal, this proves I + J = Z. This motivates:

Definition. Let R be a ring. Two ideals I, J are comaximal if I + J = R.

Theorem (Chinese Remainder Theorem). Suppose R is a ring and I, J are comax-
imal ideals. For all a, b ∈ R then there exists c ∈ R such that

c ≡ a (mod I), and

c ≡ b (mod J).

Proof. Because I+J = R, there exist e ∈ I and f ∈ J with 1 = e+f . Let c = af+be.
Observe that

e ≡ 0 (mod I) as e ∈ I
f ≡ 1 (mod I) as 1− f = e ∈ I

Hence
c = af + be ≡ a1 + b0 (mod I)

i.e., c ≡ 0 (mod I). A similar proof shows c ≡ b (mod J). �

Definition. Suppose R = (R,+, ·) and S = (S,+, ·) are rings. Their direct prod-
uct is (R× S,+, ·) where + and · are defined coordinatewise:

(r1, s1) + (r2, s2) := (r1+r2, s1+s2)

(r1, s1) · (r2, s2) := (r1·r2, s1·s2).



PMATH 347 LECTURES 51

It is a ring. (R× S,+) is just the direct product of the groups (R,+) and (S,+).
The zero element of R× S is (0R, 0S). The identity element of R× S is (1R, 1S).

On Sept 23 I explained the test for recognizing direct products of groups: if H,KC
G and H ∩K = {1} and HK = G, then G ∼= H×K. On Oct 2 I showed that, under
the same hypotheses, we have G/H ∼= K and G/K ∼= H. Hence

G ∼= G/H ×G/K.
This last fact has a version that works for rings.

Corollary. Suppose R is a ring and I, J are comaximal ideals.

(1) R/(I ∩ J) ∼= R/I ×R/J .
(2) If I ∩ J = {0} then R ∼= R/I ×R/J .

[Proof to follow tomorrow]
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27. Nov 11 – PIDs

Proof of yesterday’s Corollary. (2) follows from (1) since R ∼= R/{0}. To prove (1),
define ϕ : R→ R/I ×R/J by

ϕ(r) = (r + I, r + J).

The idea is to show that ϕ is a surjective ring homomorphism and apply the 1st
Isomorphism Theorem. I won’t check that ϕ is a homomorphism (but it is a good
exercise in understanding definitions).

I will prove that ϕ is surjective. Suppose (a+ I, b+ J) is an arbitrary element of
R/I ×R/J . By the Chinese Remainder Theorem, there exists c ∈ R with

c ≡ a (mod I), and

c ≡ b (mod J).

Thus
ϕ(c) = (c+ I, c+ J) = (a+ I, b+ J).

Finally, we compute the ker(ϕ). If r ∈ R, then

r ∈ ker(ϕ) ⇐⇒ ϕ(r) = 0 = (I, J)

⇐⇒ (r + I, r + J) = (I, J)

⇐⇒ r ∈ I and r ∈ J
⇐⇒ r ∈ I ∩ J.

Hence ker(ϕ) = I ∩ J . �

Example. Let R = Z and I = (m) and J = (n) where gcd(m,n) = 1. Then

I ∩ J = {a ∈ Z : m|a and n|a}
= {a ∈ Z : mn|a} (because gcd(m,n) = 1

= (mn).

Thus Z/I ∼= Zm, Z/J ∼= Zn, and Z/(I ∩ J) ∼= Zmn, so the CRT gives

Zmn ∼= Zm × Zn.

Chapter 8 – Principal ideal domains

Proposition. Every ideal of Z is principal.

Proof. Suppose I is an ideal of Z. If I = {0} then I = (0). Otherwise, pick a ∈ I
with a 6= 0 and |a| minimum. Clearly (a) ⊆ I. To prove ⊇, assume b ∈ I. Divide b
by a to get quotient q and remainder r, so

b = aq + r, 0 ≤ r < |a|.
a, b ∈ I implies r = b− aq ∈ I. Hence r = 0, so b = aq, proving b ∈ (a). �
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Definition. An ring R is a Principal Ideal Domain (or PID) if

(1) R is an integral domain (commutative, 0 6= 1, no zero divisors).
(2) Every ideal of R is principal.

Example. The following are examples of PIDs.

(1) Z.
(2) Any field. (Because a field F only has two ideals: {0} = (0) and F = (1).)
(3) R[x].

Proof. It is an integral domain. Let I be an ideal. If I = {0} then I = (0).
Otherwise pick f(x) ∈ I with f(x) 6= 0 and with deg(f(x)) minimum. Clearly
(f(x)) ⊆ I. For ⊇, assume g(x) ∈ I. Divide g(x) by f(x) to get quotient q(x)
and remainder r(x) (in R[x]), so

g(x) = f(x)q(x) + r(x), r(x) = 0 or deg(r(x)) < deg(f(x)).

f(x), g(x) ∈ I implies r(x) = g(x) − f(x)q(x) ∈ I. Hence r(x) = 0, so
g(x) = f(x)q(x), proving g(x) ∈ (f(x)). �

(4) More generally, F [x] where F is a field. (Same argument, using the division
algorithm in F [x].)

(5) Even more generally, any integral domain for which we have a “division algo-
rithm” which, given any a, b ∈ R with a 6= 0, produces a quotient/remainder
pair q, r ∈ R satisfying
• b = aq + r.
• r is “strictly simpler” than a.

There are several ways to formulate this. A standard way leads to the defi-
nition of Euclidean domains. Z[x] and polynomial rings F [x] (where F is a
field) are examples of Euclidean domains. We won’t study Euclidean domains
in this course.
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28. Nov 13 – Primes and irreducibles

Recall that if R is a ring than R× denotes the set of units (invertible elements)
of R. Also recall (Assign. 7) that in a commutative ring R we say a divides b and
write a|b if b = ar for some r ∈ R.

Example.

(1) Z× = {1,−1}.
(2) Z[i] = {a + ib : a, b ∈ Z} is the ring of Gaussian integers. It is a subring

of C, so is an integral domain. Its set of units is Z[i] = {1, i,−1,−i}.
(3) Z[

√
3] = {a + b

√
3 : a, b ∈ Z} is a subring of R. Its set of units is infinite,

containing e.g. ±1, ±2±
√

3, ±7± 4
√

3, . . ..
(4) Z[

√
−5] = {a+ ib

√
5 : a, b ∈ Z} is a subring of C. Its set of units is {1,−1}.

Lemma. In a commutative ring R, an element u is a unit iff u|1.

Proof. u|1 iff 1 = uv for some v ∈ R, iff v = u−1, i.e., u ∈ R×. �

Corollary. In a commutative ring R, u is a unit iff (u) = (1).

Proof. (u) = (1) iff (1) ⊆ (u) (since the opposite inclusion is always true, as (1) = R).
(1) ⊆ (u) iff u|1 (by Assign. 7 problem 3(a)). �

Definition. We say that a and b are associates and write a ∼ b if a = ub for some
unit u ∈ R×.

Example.

(1) In Z, a ∼ b iff a = ±b.
(2) In R[x], 2x+ 3 ∼ x+ 3

2
since 2x+ 3 = 2(x+ 3

2
) and 2 is invertible in R[x].

Lemma. In an integral domain R, a ∼ b iff a|b and b|a.

Proof. (⇒). Assume a ∼ b, so a = ub with u ∈ R×. Then obviously b|a. And
u−1a = b with u−1 ∈ R, by assumption, so a|b.
(⇐). Assume a|b and b|a. This means b = ar and a = bs for some r, s ∈ R. Hence
a = bs = (ar)s = a(rs), so a(1 − rs) = 0. As we are in an integral domain, we can
deduce a = 0 or 1− rs = 0.

Case 1. a = 0
Then b = ar implies b = 0, so we can write e.g. a = 1b. 1 is a unit so a ∼ b.

Case 2. 1− rs = 0
Then rs = sr = 1, so s is a unit, so a = sb gives a ∼ b.

Thus a ∼ b in either case, proving (⇐). �

Corollary. In an integral domain R, a ∼ b iff (a) = (b).
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Proof. (a) = (b) iff (a) ⊆ (b) and (b) ⊆ (a). By problem 3(a) of Assign. 7, this is
equivalent to b|a and a|b. �

Definition. Let R be an integral domain. Assume a ∈ R with a 6= 0 and a 6∈ R×.

(1) A nontrivial factorization of a is an equation a = bc where b, c ∈ R and
neither b nor c is a unit.

(2) a is reducible if it has a nontrivial factorization in R.
(3) Otherwise a is irreducible (equivalently, a = bc implies b or c is a unit).
(4) We say that a is a prime if for all b, c ∈ R, if a|bc then a|b or a|c.

Note that these definitions are always relative to R. For example,

• 3 is a both prime and irreducible in Z.
• 3 is reducible in Z[

√
3], because 3 = (

√
3)(
√

3) is a nontrivial factorization.
• 3 is neither reducible nor irreducible in R, because it is a unit there.

Proposition 8.10. In an integral domain, every prime is irreducible.

Proof. Suppose p is prime and p = bc. We can write p1 = bc, so p|bc, so by definition
of being a prime, p|b or p|c.
Case 1: p|c.

We also have c|p (from p = bc). So p ∼ c, say p = uc with u ∈ R×. Obviously
c 6= 0 (as p 6= 0), so bc = uc implies b = u so b ∈ R×.

Case 2. p|b.
Then a similar argument shows p ∼ b and c ∈ R×. Since either Case 1 or 2 holds,

we’ve shown that if p = bc then b or c is a unit. So p has no nontrivial factorization
in R, meaning it is irreducible. �

The converse is not always true, as the next example shows.

Example. Let R be the set of all complex numbers of the form a + bi
√

5 where
a, b ∈ Z. R is a subring of C and so is an integral domain. It is possible to show that
R× = {1,−1} and that 3 is irreducible in R, i.e., cannot be factored nontrivially. Let
c = 2 + i

√
5 and d = 2− i

√
5. So c, d ∈ R and cd = 4 + 5 = 9, so 3|cd. But 3 divides

neither c nor d in R (since 2
3
± 1

3
i
√

5 6∈ R). Thus 3 is not a prime in R.
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29. Nov 17 – Complete factorizations

Recap: in an integral domain R, suppose a 6= 0 and a 6∈ R×.

• A factorization a = bc is trivial if b or c is a unit, and is nontrivial otherwise.

We can picture nontrivial factorizations in the partially ordered set of ideals of R.

(1)

(a)

(0)

R =

{0} =

The hypothesis translates as follows:

• a 6= 0 ⇐⇒ (a) 6= (0).
• a 6∈ R× ⇐⇒ (a) 6= (1).

Now suppose a = bc. Focus on (b).

• If this factorization is trivial, then b or c is a unit.
– If b is a unit, then (b) = (1).
– If c is a unit, then b ∼ a, so (b) = (a).

• If the factorization is nontrivial, then neither b nor c is a unit, Because b is
not a unit, (b) 6= (1). Because c is not a unit, b 6∼ a, so (b) 6= (a). Of course
(b) ⊆ (1). Finally, b|a so (a) ⊆ (b). Hence (a) ⊂ (b) ⊂ (1). (Similar remarks
hold for (c).)

(1)

(a)

(0)

(b) (c)

Hence the factorization is nontrivial iff (a) ⊂ (b) ⊂ (1). This proves:

Proposition. Suppose R is an integral domain and a ∈ R. Then a is irreducible iff
(a) 6= (0), (a) 6= (1), and there is no principal ideal (b) properly between (a) and (1).
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Example. Draw a picture of the principal ideals in Z.

(1)

(2) (3) (5) · · ·

(4) (6) (10) (9) (15) (25) · · ·

(8) (12) (20) (18) (30) (50) (27) (45) · · ·

...

(0)

Notice:

• 6 = 2 · 3 translates to (2) and (3) above (6), below (1).
• 4 = 2 · 2 translates to just (2) above (4), below (1).
• Irreducibles (= primes) are just below the top (they are maximal ideals).
• Can also “see” (12) + (30); it must be the smallest ideal containing both (12)

and (30). We see that it is (6). Consistent with 6 = gcd(12, 30).

Definition. Suppose R is an integral domain, a ∈ R, a 6= 0, and a 6∈ R×. A
complete factorization of a is an equation

a = p1p2, . . . , pn

where n ≥ 1, p1, . . . , pn ∈ R, and each pi is irreducible.

Naive algorithm to find a complete factorization. Given a ∈ R with a 6= 0
and a 6∈ R×:

• If a is irreducible, then done.
• Else pick a nontrivial factorization a = bc.
• Recursively find complete factorizations for b and c:

b = p1p2 · · · pn and c = q1q2 · · · qm.

• Then a = p1p2 · · · pnq1q2 · · · qm is a complete factorization of a.

There is one potential problem with this algorithm? What is the problem?
(Answer: it may never terminate.)
E.g., b might have a nontrivial factorization b = b1b2. Then b2 might have a

nontrivial factorization b2 = b21b22. And so on.
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(a)

(b) (c)

(b1) (b2)

(b21) (b22)

...

The bad thing (failure to terminate) can only happen if there is an infinite strictly
increasing chain (a) ⊂ (b) ⊂ (b2) ⊂ (b21) ⊂ · · · of principal ideals. This proves:

Proposition. Suppose R is an integral domain and R does not have an infinite
strictly increasing chain of principal ideals. Then every a ∈ R with a 6= 0, a 6∈ R×
has a complete factorization.

The previous proposition addresses the existence of complete factorizations. Next
we study uniqueness.

Example. In Z, 6 has four complete factorizations:

6 = (2)(3)

6 = (3)(2)

6 = (−2)(−3)

6 = (−3)(−2).

These are “essentially the same” factorization.

Definition. Let R be an integral domain and a ∈ R with a 6= 0, a 6∈ R×.

(1) Two complete factorizations of a,

a = p1p2 · · · pn and a = q1q2 · · · qm
are essentially the same up provided
(a) m = n, and
(b) After a suitable reordering of the qi’s we have pi ∼ qi for all i = 1, . . . , n.

(2) We say that complete factorizations in R are unique, when they ex-
ist provided for any a ∈ R with a 6= 0 and a 6∈ R×, if a has a complete
factorization, then any two complete factorizations of a are essentially the
same.
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30. Nov 18 – Unique factorization

Recall: if R is an integral domain, we say that complete factorizations in R are
unique, when they exist provided for any a ∈ R with a 6= 0 and a 6∈ R×, if a has
a complete factorization, then any two complete factorizations of a are essentially
the same.

Notation: Let’s write “R has UCF” to abbreviate this mouthful.

Example. Recall the integral domain R = {a+ bi
√

5 : a, b ∈ Z} from Nov 13. The
element 9 has two essentially different complete factorizations:

9 = 3 · 3 and 9 = (2 + i
√

5)(2− i
√

5).

Hence R does not have UCF.

Recall that an element p ∈ R of an integral domain is a prime if for all a, b ∈ R,
p|ab implies p|a or p|b. Suppose p is prime and p|a1a2 · · · an = a1(a2 · · · an). Then
p|a1 or p|a2 · · · an; in the latter case p|a2 or p|a3 · · · an, etc. Hence

Lemma. If p is a prime (in an integral domain) and p|a1a2 · · · an, then p|ai for some
i.

Corollary. Suppose R is an integral domain, p ∈ R is a prime, and a = q1 · · · qm is
a complete factorization of a ∈ R. Then p|a iff p ∼ qi for some i.

Proof. Obviously if p ∼ qi then p|qi so p|a. Conversely, suppose p|a. Then p|qi for
some i, by the Lemma. Thus qi = pu for some u ∈ R. qi is irreducible, so p or u
must be a unit. p is not a unit by definition, so u is a unit. Hence p ∼ qi. �

Proposition. Suppose R is an integral domain in which every irreducible element is
prime. Then R has UCF.

Proof. We repeat the proof from MATH 135/145. Suppose a ∈ R, a 6= 0, a 6∈ R×,
and

a = p1p2p3 · · · pn and a = q1q2q3 · · · qm
where each pi, qj is irreducible. By assumption, each pi is a prime. Clearly p1|a, so
p1|q1q2 · · · qm. As p1 is prime, the Corollary gives p1 ∼ qi for some i. We can re-order
the q’s so that p1 ∼ q1. Then p1 = u1q1, u1 ∈ R×. Thus

(u1q1)p2p3 · · · pn = q1q2q3 · · · qm.
Cancelling q1 gives

u1p2 · · · pn = q2 · · · qm.
p2 divides the left side, so divides the right side. Hence p2 ∼ qj for some j = 2, . . . ,m.
Again we can re-order the remaining q’s and assume p2 ∼ q2, say p2 = u2q2. Then

u1(u2q2)p3 · · · pn = q2q3 · · · qm.
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Cancelling q2 gives
(u1u2)p3 · · · pn = q3 · · · qm.

Continuing in this way, we pair up each pi with one of the remaining q’s, until we
run out of p’s or q’s. If we first run out of q’s, i.e. m < n, then after m steps we will
have

(u1u2 · · ·um)pm+1 · · · pn = 1.

But then pn|1, which is impossible as pn is not a unit. A similar contradiction arises
if we first run out of p’s. Hence m = n and the two factorizations are essentially the
same. �

Summary. Suppose R is an integral domain.

(1) If R does not have an infinite strictly increasing chain of principal ideals, then
complete factorizations always exist. (Nov 17)

(2) If every irreducible in R is a prime, then complete factorizations are unique
(when they exist). (Shown today)

Definition. An integral domain R is a Unique Factorization Domain (UFD) if
(1) R does not have an infinite strictly increasing chain of principal ideals, and (2)
every irreducible in R is a prime.

Example. Z is a UFD.

UFDs are the integral domains in which factorization works “like in Z.”

Here is one nice fact about UFDs.

Definition. Suppose R is an integral domain and a1, . . . , an ∈ R. We say that
a1, . . . , an are coprime if the only common divisors of a1, . . . , an are the units in R×.

Lemma. Suppose R is a UFD and a1, . . . , an ∈ R with at least one ai 6= 0. Then
there exists d ∈ R such that

(1) d|ai for each i = 1, . . . , n.
(2) If ai = da′i for i = 1, . . . , n, then a′1, . . . , a

′
n are coprime.

[Proof on Thursday]
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31. Nov 20 – UFDs and PIDs

Lemma. Suppose R is a UFD and a1, . . . , an ∈ R with at least one ai 6= 0. Then
there exists d ∈ R such that

(1) d|ai for each i = 1, . . . , n.
(2) If ai = da′i for i = 1, . . . , n, then a′1, . . . , a

′
n are coprime.

Proof sketch. The interesting case is when ai 6= 0 and ai 6∈ R× for all i = 1, . . . , n.
Then each ai has a complete factorization ai = pi,1pi,2 · · · pi,ki . Let d be the “greatest
common factor” of these factorizations (noting that an irreducible may may have
many associates). When we divide each ai by d to get a′i, the resulting elements
a′1, . . . , a

′
n have complete factorizations with no common irreducible factor. In a

UFD, this means a′1, . . . , a
′
n are coprime (Assignment 8). �

Recall (Nov 4) that an ideal I of a commutative ring is a prime ideal if I 6= R
and for all a, b ∈ R, if ab ∈ I then a ∈ I or b ∈ I. In particular, every maximal ideal
is a prime ideal (see Nov 4).

Lemma. Let R be an integral domain and p ∈ R with p 6= 0. (p) is a prime ideal iff
p is a prime.

Proof. (⇒) Assume (p) is a prime ideal. We already know that p 6= 0. p cannot be
a unit, since if it were, then we would have (p) = (1), contradicting the assumption
that (p) 6= R. Finally, assume a, b ∈ R and p|ab. Then ab ∈ (p). Since (p) is prime,
we get a ∈ (p) or b ∈ (p), i.e., p|a or p|b. Thus p is prime.

(⇐) Proved similarly (exercise). �

Recall that a Principal Ideal Domain (PID) is an integral domain in which
every ideal is principal.

Proposition. Suppose R is a PID and p ∈ R with p 6= 0. The following are equiva-
lent:

(1) p is irreducible.
(2) p is a prime.
(3) (p) is a maximal ideal.

Proof. (3) ⇒ (2). If (p) is a maximal ideal, then (p) is a prime ideal, so p is prime
by the previous Lemma.

(2) ⇒ (1). Every prime is irreducible (Prop. 8.10, Nov 13).
(1) ⇒ (3). Assume p is irreducible. Then (p) 6= (1) and there is no principal ideal

properly between (p) and (1). But R is a PID, so this means there is no ideal properly
between (p) and (1). That means (p) is a maximal ideal. �

Here is an easy corollary that will be important in PMATH 348.
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Corollary. Suppose R is a PID and p is an irreducible element in R. Then R/(p)
is a field.

Proof. (p) is maximal, so R/(p) is a field (Prop. 7.12, Nov 3). �

Here is the main theorem of this section.

Theorem. Every PID is a UFD.

Proof. Let R be a PID. The previous proposition shows that every irreducible element
of R is a prime. It remains to show that R has no infinite strictly increasing chain of
principal ideals. Suppose, to the contrary, that (a1) ⊂ (a2) ⊂ · · · ⊂ (an) ⊂ · · · is an
infinite strictly increasing chain of principal ideals. Let I =

⋃∞
n=1(an). Recall that I

is an ideal.
Because R is a PID, I is principal, say I = (c). Then c ∈

⋃∞
n=1(an), so c ∈ (an)

for some n. But then (c) ⊆ (an), contradiction. �

Corollary. If F is a field, then F [x] is a UFD.

Proof. F [x] is a PID (because it has a division algorithm – Nov 11). �

Example. Z[x] is not a PID (Assignment 7, prob. 5). So we cannot use the above
theorem to deduce that Z[x] is a UFD. Similarly, the ring of polynomials F [x, y] in
two variables is not a PID, even if F is a field (Assignment 8), so we cannot use the
above theorem to prove that such polynomial rings are UFDs. Next week we will see
results that imply Z[x] and F [x1, . . . , xn] are UFDs.
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32. Nov 24 – Gauss’ Lemma

Lemma. Suppose R is an integral domain and p ∈ R is a prime in R. Then p is
prime in R[x].

Proof. Assume f(x), g(x) ∈ R[x] and p|f(x)g(x). Write

f(x) = a0 + a1x+ · · ·+ amx
m

g(x) = b0 + b1x+ · · ·+ bnx
n.

Thus

f(x)g(x) = c0 + c1x+ · · ·+ cm+nx
m+n where ck =

∑
i+j=k

aibj.

Since p|f(x)g(x), we have p|ck for all k.
Suppose neither f(x) nor g(x) is divisible by p. Thus at least one coefficient of

f(x) and one of g(x) are not divisible by p. Let r and s be the first such that p6 | ar
and p6 | bs. Let k = r + s and look at ck:

ck = (a0bk + · · ·+ ar−1bs+1) + arbs + (ar+1bs−1 + · · ·+ akb0).

By the choice of r and s, p divides each ai for i < r and bj for each j < s. Since p
also divides ck, we get p|arbs. As p is prime, we get p|ar or p|bs, contradicting our
choice of r, s. �

Lemma. Suppose R is a UFD, f(x), g(x) ∈ R[x], and u ∈ R, u 6= 0. If u|f(x)g(x),
then there exists a factorization u = cd of u in R such that c|f(x) and d|g(x).

Proof. If u is a unit (i.e., u ∈ R×), then we use u = u1. Clearly u|f(x) (since u|1)
and 1|g(x).

Assume u is not a unit. Because R is a UFD, u has a complete factorization

u = p1p2 · · · pn, each pi irreducible.

Again because R is a UFD, each pi is prime in R and so is a prime in R[x] by the
previous lemma.

We have p1|f(x)g(x), so p1 divides f(x) or g(x). Say p1|f(x). Let f1(x) ∈ R[x] be
the result of dividing f(x) by p1; then

p1p2 · · · pn|(p1f1(x))g(x).

Cancelling p1, we get
p2 · · · pn|f1(x)g(x).

Repeating the argument, p2 must divide f1(x) or g(x). Continuing in this way, we
can “factor out” each pi. If c is the product of the pi’s we remove from f(x) and d is
the product of the pi’s we remove from g(x), then cd = u, c|f(x), and d|g(x). �

In the next Proposition, think of R being Z and F being Q.
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Proposition 9.5 (Gauss’ Lemma). Suppose R is UFD and F is its field of fractions
{n/d : n, d ∈ R, d 6= 0} Let p(x) ∈ R[x] by a polynomial of degree ≥ 1.

Every nontrivial factorization of p(x) in F [x] can be essentially realized in R[x], in
the following sense: if p(x) = A(x)B(x) is a nontrivial factorization of p(x) in F [x],
then there exists t ∈ F× such that tA(x) ∈ R[x] and t−1B(x) ∈ R[x].

The point is that if a(x) := tA(x) and b(x) := t−1B(x) then p(x) = a(x)b(x) is a
nontrivial factorization of p(x) in R[x].

Example. Let R = Z, F = Q, and p(x) = 2x2 + 7x + 3. A nontrivial factorization
of p(x) in Q[x] is

p(x) = (x+
1

2
)(2x+ 6).

We can multiply the first factor by 2 and the second factor by 1
2

to get an equivalent
factorization

p(x) = (2x+ 1)(x+ 3),

which is a factorization in Z[x].

Proof of Gauss’ Lemma. Each coefficient of A(x) is a fraction ni/di with ni, di ∈ R.
Let r be the product of all the denominators in A(x) and let f(x) = rA(x). Then
f(x) ∈ R[x] (we have “cleared the denominators”). Similarly let s be the product of
the denominators in B(x) and define g(x) := sB(x) ∈ R[x]. Finally let u = rs and
note that u ∈ R and

up(x) = (rs)A(x)B(x) = f(x)g(x).

By the previous Lemma, there is a factorization u = cd of u in R such that c|f(x)
and d|g(x). Thus f(x) = ca(x) and g(x) = db(x) with a(x), b(x) ∈ R[x]. Note that
cd = rs, so r/c = d/s. Let t = r/c. Then

tA(x) = (r/c)A(x) = (1/c)rA(x) = (1/c)f(x) = a(x) ∈ R[x]

t−1B(x) = (s/d)B(x) = (1/d)sB(x) = (1/d)g(x) = b(x) ∈ R[x]

as required. �
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33. Nov 25 – Primitive polynomials over a UFD

Recall the statement of Gauss’ Lemma from yesterday (not printed here).

The following result is particularly useful in Galois theory (PMATH 348).

Corollary. Suppose f(x) ∈ Z[x], deg(f(x)) ≥ 1, and f(x) is irreducible in Z[x].
Then f(x) is irreducible in Q[x].

Proof. If f(x) has a nontrivial factorization in Q[x], then f(x) has a nontrivial fac-
torization in Z[x] by Gauss’ Lemma. �

The converse is false. For example, 6x+ 8 is irreducible in Q[x] (every polynomial
of degree 1 is irreducible), but it is reducible in Z[x] since 6x + 8 = 2(3x + 4) is a
nontrivial factorization in Z[x] (neither 2 nor 3x+ 4 is a unit).

Definition. Suppose R is an integral domain and f(x) = a0+a1x+· · ·+anxn ∈ R[x].
We say that f(x) is primitive if its coefficients a0, a1, . . . , an are coprime in R.

Corollary. Suppose R is a UFD and F is its field of fractions. Let f(x) ∈ R[x] with
deg(f) ≥ 1. The following are equivalent:

(1) f(x) is irreducible in R[x].
(2) f(x) is primitive in R[x] and irreducible in F [x].

Proof sketch. (1) ⇒ (2) uses Gauss’ Lemma to prove irreducibility in F [x].
(2)⇒ (1). Assume f(x) is primitive and irreducible in F [x] but is reducible in R[x].

Then the nontrivial factorization of f(x) in R[x] must be of the form f(x) = dg(x) (if
both factors had degrees≥ 1 then it would be a nontrivial factorization in F [x]). Thus
d|f(x), so d divides each coefficient of f(x), contradicting that f(x) is primitive. �

Corollary. Suppose R is a UFD. Every nonzero polynomial f(x) ∈ R[x] can be
factored f(x) = dg(x) where d ∈ R, g(x) ∈ R[x], and g(x) is primitive.

Example. In Z[x], 6x+ 8 = 2(3x+ 4) with 3x+ 4 primitive.

Proof of Corollary. Write f(x) = a0 +a1x+ · · ·+anx
n. By the 1st Lemma from Nov

20, there exists d ∈ R which is a common divisor of a0, . . . , an and, if ai = da′i for
i = 0, . . . , n, then a′0, . . . , a

′
n are coprime. Obviously f(x) = d(a′0+a′1x+· · ·+a′nxn) =

dg(x) and g(x) is primitive. �

Crucial Lemma. Suppose R is a UFD, c, d ∈ R are nonzero, and f(x), g(x) ∈ R[x]
are primitive. If (cf) ⊂ (dg), then

(1) (c) ⊆ (d),
(2) deg(f) ≥ deg(g), and
(3) Either (c) ⊂ (d) or deg(f) > deg(g).

Remark. (cf) and (dg) are ideals in R[x]. (c) and (d) denote the ideals in R.
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Proof. Assume (cf) ⊂ (dg). Hence dg(x)|cf(x), so

d|cf(x) and g(x)|cf(x).

The second obviously implies deg(f) ≥ deg(g), proving (2). Because d|cf(x), yester-
day’s second lemma says that d has a factorization d = ab such that a|c and b|f(x).
Because f(x) is primitive, b must be a unit. Hence (using d = ab) we get that d and
a are associates, i.e., d ∼ a, which implies d|a (see Nov 13). As d|a and a|c, we get
d|c and hence (c) ⊆ (d). This proves (1).

To prove (3), assume that (3) fails, i.e., (c) = (d) and deg(f) = deg(g).

• From (c) = (d), we can write d = cu for some unit u ∈ R×.

• From dg(x)|cf(x) and the fact that f, g have the same degree, we get cf(x) = e(dg(x))

for some e ∈ R.
• Hence cf(x) = e(cu)g(x), so cancelling c we get f(x) = eug(x) .

• Hence e|f(x). But f(x) is primitive. Hence e is a unit.

• Hence (from the 2nd bullet) cf(x) ∼ dg(x) .

But that would imply (cf) = (dg), contradicting our assumption. �
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34. Nov 27 – The Big Theorem

Theorem 9.7. If R is a UFD, then so is R[x].

Proof. Assuming R is a UFD, we must show that

(1) R[x] has no infinite strictly increasing chain of principal ideals, and
(2) Every irreducible polynomial in R[x] is prime.

(1) Assume that (f1) ⊂ (f2) ⊂ · · · ⊂ (fn) ⊂ · · · is an infinite strictly increasing
sequence of principal ideals in R[x].

By a Corollary from Tuesday, we can factor each fn(x) = cngn(x) where cn ∈ R
and gn(x) is primitive. Thus

(c1g1) ⊂ (c2g2) ⊂ · · · ⊂ (cngn) ⊂ · · ·
By the Crucial Lemma, we have

(c1) ⊆ (c2) ⊆ · · · ⊆ (cn) ⊆ · · ·
and

deg(g1) ≥ deg(g2) ≥ · · · ≥ deg(gn) ≥ · · ·
and for every i,

(ci) ⊂ (ci+1) or deg(gi) > deg(gi+1).

The second option cannot happen infinitely often, since degrees are nonnegative in-
tegers. Hence beyond some point we always have the first option, meaning

(cN) ⊂ (cN+1) ⊂ · · · ⊂ (cN+k) ⊂ · · ·
But that means R has an infinite strictly increasing chain of principal ideals, contra-
dicting that R is a UFD. This proves (1).

(2) Assume that p(x) is an irreducible polynomial in R[x] and a(x), b(x) ∈ R[x]
with p(x)|a(x)b(x). I must show that p(x)|a(x) or p(x)|b(x).

By a result from Tuesday, we know that p(x) is primitive in R[x] and irreducible
in F [x], where F is the field of fractions of R.

We also know that F [x] is a UFD (because F is a field, so F [x] is a PID). Hence
every irreducible in F [x] is a prime in F [x]. Hence p(x) is a prime in F [x].

Since a(x), b(x) ∈ F [x] and p(x)|a(x)b(x), it follows that p(x)|a(x) in F [x] or
p(x)|b(x) in F [x]. Assume for simplicity that p(x)|a(x) in F [x]. This means there
exists g(x) ∈ F [x] such that a(x) = p(x)g(x).

Our goal is to prove g(x) ∈ R[x], which will imply p(x)|a(x) in R[x]. For now,
however, we do not know that g(x) ∈ R[x].

The coefficients of g(x) are fractions. Let d be the product of all the denominators
and let g1(x) = dg(x). Then d ∈ R and g1(x) ∈ R[x] (this is “clearing denomina-
tors”). Multiplying the equation a(x) = p(x)g(x) by d gives

da(x) = p(x)g1(x)
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where everything is now in R[x] (or R).
Thus d|p(x)g1(x) in R[x]. By the second Lemma from Monday, d has a factorization

d = uv with u, v ∈ R, such that u|p(x) and v|g1(x). But p(x) is primitive, so u
must be a unit, which implies d|g1(x) (in R[x]). Since g1(x) = dg(x), this means
g(x) ∈ R[x]. �

Corollary. Z[x] is a UFD.

Proof. Because Z is a UFD. �

Corollary. If R is a UFD (for example, Z or any field), then the ring R[x, y] of
polynomials over R in two variables is a UFD.

Proof. Every polynomial in two variables, say 3x2y+ 5xy− 2xy2 + 4x− y+ 2, can be
written as a polynomial in one variable (y) whose coefficients are elements of R[x].
For example,

3x2y + 5xy − 2xy2 + 4x− y + 2 = (−2x)y2 + (3x2 + 5x− 1)y + (4x+ 2).

Hence R[x, y] = (R[x])[y]. Since R is a UFD, so is R[x], and hence so is (R[x])[y] by
two applications of the Theorem. �

Obviously we can repeat this to show that R[x1, . . . , xn] is a UFD for any n.
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35. Dec 1 – Vandermonde determinants

Nothing in this lecture will be covered on the final exam.

Some things you didn’t learn

(1) Every permutation σ ∈ Sn is either even or odd, according to whether it can
be written as the product of an even number of 2-cycles, or as a product of
an odd number of 2-cycle.

(2) The set of even permutations in Sn is denoted An. It is a subgroup of Sn of
index 2, called the alternating subgroup. |An| = n!/2.

The notion of even/odd is useful when discussing determinants. Given σ ∈ Sn,
define

sgn(σ) =

{
0 if σ is even
1 if σ is odd

Then for any matrix A = (aij)n×n,

det(A) =
∑
σ∈Sn

(−1)sgn(σ)

(
n∏
i=1

aiσ(i)

)

By last week’s results, you know that the polynomial ring Z[x1, . . . , xn] is a UFD.
Today I’ll show you a cute application of this result.

Definition. A Vandermonde matrix is any n× n matrix of the form

V =


1 α1 α2

1 · · · αn−11

1 α2 α2
2 · · · αn−12

1 α3 α2
3 · · · αn−13

...
...

...
. . .

...
1 αn α2

n · · · αn−1n


Wikipedia claims that

det(V ) =
∏

1≤i<j≤n

(αj − αi).

Let’s prove it. First, replace the αi’s with xi’s:

V =


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12

1 x3 x23 · · · xn−13
...

...
...

. . .
...

1 xn x2n · · · xn−1n


and consider the entries as elements of Z[x1, . . . , xn]. By the above formula for a
determinant, we see that det(V ) is an element of Z[x1, . . . , xn].
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For any i < j, consider the result of subtracting row i from row j:

Vj =



1 x1 x21 · · · xn−11
...

...
...

...
...

1 xi x2i · · · xn−1i
...

...
...

...
...

0 xj − xi x2j − x2i · · · xn−1j − xn−1i
...

...
...

...
...

1 xn x2n · · · xn−1n


Note that

(1) Every member of row j is divisible (in Z[x1, . . . , xn]) by xj − xi.
(2) Hence xj − xi divides det(Vj) (in Z[x1, . . . , xn]).
(3) det(Vj) = det(V ).

Also note that the only units in Z[x1, . . . , xn] are ±1, so xj−xi cannot be an associate
with x` − xk if k < ` but (k, `) 6= (i, j). Also, each xj − xi is clearly irreducible.
Hence the xj − xi’s (i < j) are distinct irreducible factors of det(V ). By unique
factorization, their product divides det(V ), i.e.,∏

i<j

(xj − xi) | det(V ).

Now let’s analyze the degrees of the two polynomials. By earlier analysis, we see that
every term in the sum describing det(V ) has degree 0+1+2+· · ·+(n−1) = n(n−1)/2.
That is also equal to the degree of every term in

∏
i<j(xj − xi) (when expanded).

This implies that

det(V ) = c
∏
i<j

(xj − xi)

for some c ∈ Z. To evaluate c, consider the term xn−1n xn−2n−2 · · ·x23x2 (this is the
product of the diagonal entries). It occurs in

∏
i<j(xj − xi) with coefficient 1, and

also in det(V ) with coefficient 1, so c = 1.
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