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1. Introduction

To a differentiable manifold M one may associate the tangent bundle TM which is itself
a differentiable manifold whose points encode the information of a point in M together
with a tangent direction. Through the Zariski tangent space construction, there is a nat-
ural extension of the notion of a tangent bundle to algebraic varieties and more generally
to schemes. This algebraic version of the tangent bundle admits several different inter-
pretations in terms of derivations, dual number valued points, maps on the cotangent
sheaf, infinitesimal neighbourhoods, etc. In generalizing the tangent bundle construction
to produce spaces adapted to higher differential structure, the various aspects of the
tangent bundle diverge and one may study jet spaces (in the sense of differential geom-
etry), higher-order infinitesimal neighbourhoods (in the sense of Grothendieck), sheaves
of differential operators, and arc spaces amongst other possibilities.

Jet and arc spaces and their ilk appear in difference and differential algebra as prolonga-
tion spaces used to algebraise difference and differential varieties. For example, if (K, ∂) is
a differential field and X is an algebraic variety defined over the ∂-constants of K, then for
any K-point a ∈ X(K), relative to the usual presentation of the Zariski tangent bundle,
we have (a, ∂(a)) ∈ TX(K). Generalizing these considerations to higher-order differential
operators, one may understand algebraic differential equations in terms of algebraic sub-
varieties of the arc spaces of algebraic varieties. The constructions employed in difference
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and differential algebra bear many formal analogies and may be understood as instances
of a general theory of geometry over rings with distinguished operators.

In this paper we lay the groundwork for a careful study of several of these constructions
of these spaces encoding higher-order differential structure. For us, the main goal is to
develop a robust theory of linearization for difference and differential equations, but to
achieve this end we must study the properties of jet, arc and prolongation spaces in
general.

This paper is organized as follows. We begin by discussing the Weil restriction of
scalars construction. This construction is, of course, well-known but we were unable to
find a sufficiently detailed account in the literature. We then introduce our formalism of
E-rings simultaneously generalizing difference and differential rings. With these algebraic
preliminaries in place, we define prolongation spaces of algebraic varieties over E-rings
and study the geometric properties of prolongation spaces. We then switch gears to study
the construction of algebraic jet spaces, which, for us, are not the same as the jet spaces
considered in differential geometry. The jet spaces of differential geometry are essentially
our arc spaces, while our jet spaces are the linear spaces associated to the sheaves of
higher-order differential operators. Finally, we introduce a functorial map comparing the
jet space of a prolongation space with the prolongation space of a jet space and then
study this interpolation map. We conclude this article by showing that over smooth
points, this interpolation map is surjective.

In the sequel to this paper [7] we apply the geometric theory developed here to build
a general theory of E-algebraic geometry generalizing Kolchin’s theory of differential
algebra and Cohn’s theory of difference algebra, and in analogy with Buium’s theories of
arithmetic differential algebraic geometry. In particular, the final surjectivity theorem of
the present article will be used to show that under appropriate separability assumptions,
E-jet spaces determine the E-varieties, thus generalizing the principal results of Pillay
and Ziegler [10] on finite-rank difference and differential varieties.

Some conventions

All our rings are commutative and unitary and all our ring homomorphisms preserve
the identity. All our schemes are separated. If X is a scheme over a ring A and we wish
to emphasize the parameters we may write XA for X. Similarly, for R an A-algebra, we
may write XR := X ×A R. By X(R) we mean the set of R-points of X over A. Note that
if k is an A-algebra and R a k-algebra, then there is a canonical identification of Xk(R)
with X(R).

2. Weil restriction of scalars

The prototypical example of a prolongation space construction in algebraic geometry is
that of the Zariski tangent bundle which has as its higher-order analogue the arc spaces.
Here for a scheme X over a field k and a natural number n, one finds a scheme Arcn(X)
also over k so that Arcn(X)(k) naturally identifies with the k[ε]/(εn+1)-rational points
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on X.∗ In the case of n = 1, Arcn(X) is just the Zariski tangent bundle. If X is presented
as a closed sub-scheme of some affine space, X ⊆ A

m
k , then TX = Arc1(X) is the closed

sub-scheme of A
2m
k = Spec(k[x(0)

1 , . . . , x
(0)
m ; x(1)

1 , . . . , x
(1)
m ]) defined by the ideal generated

by

{f(x(0)
1 , . . . , x(0)

m ) : f ∈ I(X)} ∪ {df(x(0)
1 ,...,x

(0)
m ) · (x(1)

1 , . . . , x(1)
m ) : f ∈ I(X)},

where I(X) is the ideal of X. The defining equations for the higher-order arc spaces
may be found by performing a higher-order Taylor polynomial expansion on the defining
equations for X. That is, for each f ∈ I(X) one expands f(x(0) + εx(1) + ε2x(2) +
· · · + εnx(n)) as

∑n
j=0 fjε

j and the components fj will be the defining equations for
Arcn X ⊆ A

(n+1)m
k .

The above construction is a special case of the Weil restriction of scalars construction
which forms the theoretical basis for our general prolongation spaces. We review some of
the basic facts. The material covered here, as well as further details, can be found in § 7.6
of [1] and in the appendix to [9].

Let S be a scheme and T → S a scheme over S. Given a scheme Y over T , let
RT/SY : Scheme /S → Sets be the functor which assigns to any scheme U over S the set
HomT (U ×S T, Y ).

Proposition 2.1 (cf. Theorem 4 of [1]). Suppose k is a ring, R is a k-algebra that is
finite and free as a k-module, S = Spec(k), and T = Spec(R). If the induced morphism
T → S is one-to-one then there exists a covariant functor

RT/S : Schemes /T → Schemes /S

such that for any scheme Y over T , RT/S Y represents the functor RT/SY . The
equivalence of the functors HomS(· , RT/S Y ) and RT/SY is given by the existence
of a T -morphism rY : RT/S Y ×S T → Y such that for any scheme U over S, p �→
rY ◦ (p ×S idT ) defines a bijection between HomS(U,RT/S Y ) and RT/SY (U).

We can drop the assumption that T → S is one-to-one if we restrict RT/S to the
category of schemes over R that have the property that every finite set of (topological)
points is contained in an open affine sub-scheme.

Proof. The proposition is implicit in the proof of Theorem 4 of [1]. For the sake of
completeness we provide some details here.

Choosing a basis, let R =
⊕t

j=1 k · ej . We first define the functor RT/S on affine
schemes over T . Suppose Y = Spec(R[y]/I), where y is a (possibly infinite) tuple of
indeterminates. Let ȳ = (yj)1�j�t be t copies of y. Then let RT/S Y := Spec(k[ȳ]/I ′)
where I ′ is obtained as follows. Let ρ : R[y] → k[ȳ] ⊗k R be the R-algebra map given
by ρ(y) =

∑t
j=1 yj ⊗ ej for all y ∈ y, and ρ(r) = 1 ⊗ r for all r ∈ R. Given P ∈ R[y],

ρ(P ) =
∑t

j=1 Pj ⊗ ej where P1, . . . , Pt ∈ k[ȳ] are such that

P

( t∑
j=1

yjej

)
= P1e1 + P2e2 + · · · + Ptet (2.1)

∗ The differential geometers often call these ‘jets of order n on X’, but we reserve the term ‘jet’ for a
somewhat different but related construction discussed in § 5.
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in
⊕t

j=1 k[ȳ] · ej . If for each 1 � j � t we let πj : k[ȳ] ⊗k R → k[ȳ] be the map which
first identifies k[ȳ] ⊗k R with

⊕t
j=1 k[ȳ] · ej and then projects onto the ej factor, then

I ′ is the ideal generated by
∑t

j=1 πjρ(I). That is, I ′ is the ideal generated by the Pjs
in (2.1) as P ranges over all polynomials in I.

Note that ρ induces an R-algebra map r∗
Y : R[y]/I → k[ȳ]/I ′ ⊗k R which in turn

induces an R-morphism Spec(k[ȳ]/I ′) ×k R → Spec(R[y]/I). This is the T -morphism
rY : RT/S Y ×S T → Y whose existence is asserted in the proposition.

We need to define RT/S on morphisms. Suppose p : Y → Z is an R-morphism, where
Z = Spec(R[z]/J). Then RT/S(p) : Spec(k[ȳ]/I ′) → Spec(k[z̄]/J ′) is the map induced
by the k-algebra map zj �→ πjr

∗
Y (p∗z), where p∗ : R[z]/J → R[y]/I is the R-map on

coordinate rings associated to p and r∗
Y and πj are as in the preceding paragraphs. It is

routine to check that RT/S thus defined is indeed a functor from affine schemes over T

to affine schemes over S.
Next we show that RT/S Y does indeed represent the functor RT/SY (still restricting

to affine schemes). Suppose U = Spec(A) is an affine scheme over k. We first show that
p �→ rY ◦ (p ×k idR) defines a bijection between Homk(U,RT/S Y ) and RT/SY (U) =
HomR(U ×k R, Y ). Working with the coordinate rings instead, we need to show that
f �→ (f × idR) ◦ r∗

Y gives a bijection from Homk(k[ȳ]/I ′, A) to HomR(R[y]/I, A ⊗k R).
For injectivity we just observe that if (f × idR) ◦ r∗

Y = (g × idR) ◦ r∗
Y then

t∑
j=1

f(yj + I ′) ⊗ ej =
t∑

j=1

g(yj + I ′) ⊗ ej for all y ∈ y.

But since A ⊗k R =
⊕t

j=1 A · ej , this implies that f(yj +I ′) = g(yj +I ′) for all y ∈ y and
all 1 � j � t. So f and g agree on the generators of k[ȳ]/I ′ and hence are equal. For surjec-
tivity, suppose α ∈ HomR(R[y]/I, A⊗kR). For each y ∈ y write α(y + I) =

∑t
j=1 aj ⊗ ej ,

where aj ∈ A. Now define f : k[ȳ]/I ′ → A by f(yj+I ′) := aj . Then f ∈ Homk(k[ȳ]/I ′, A)
and we compute that

[(f × idR) ◦ r∗
Y ](y + I) = (f × idR)

( t∑
j=1

(yj + I ′) ⊗ ej

)
=

t∑
j=1

aj ⊗ ej = α(y + I)

for each y ∈ y, as desired.
It is routine to check that the above bijection is functorial in U and therefore does

establish the desired equivalence of functors, at least restricted to affine schemes.
It remains therefore only to go from affine schemes to schemes in general. In Theorem 4

of [1] there is an argument going from the representability of RT/SY for affine schemes
Y to the representability of RT/SZ where Z has the property that every finite set of
(topological) points is contained in some open affine sub-scheme. As a matter of fact of
the proof given there, one only has to worry about finite sets in Z of cardinality bounded
by the cardinality of the fibres of T → S (they work with the weaker assumption that
T → S is finite and locally free). Hence, in the case that T → S is one-to-one, the extra
assumption on Z is unnecessary.
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So RT/S extends to a functor on all schemes over T . Finally, from the fact that the
morphism rY defined above for affine schemes is functorial in Y , it is not hard to check
that it extends to all schemes over T with the desired property. �

Definition 2.2. Suppose k is a ring, A is a k-algebra that is finite and free over k, and
Y is a scheme over A such that either Spec(A) → Spec(k) is a homeomorphism or Y has
the property that every finite set of points is contained in an affine open subset. Then the
scheme RSpec(A)/ Spec(k) Y given by the above proposition is called the Weil restriction
of Y from A to k and will be denoted by RA/k Y .

The following fact, which is stated in a seemingly weaker but in fact equivalent form
in § 7.6 of [1], is a routine diagram chase.

Fact 2.3. Weil restriction is compatible with base change. That is, if T → S and S′ → S

are schemes over S, and T ′ := T ×S S′, then for any scheme Y over T ,

RT/S Y ×S S′ = RT ′/S′(Y ×T T ′)

whenever RT/S Y and RT ′/S′(Y ×T T ′) exist.

Fact 2.4. If T → S is a scheme over S and f : X → Y is a smooth (respectively
étale) morphism of schemes over T , then RT/S(f) : RT/S X → RT/S Y is also smooth
(respectively étale)—whenever RT/S X and RT/S Y exist.

Proof. This proof is essentially the same as the argument for part (h) of Proposition 5
in § 7.6 of [1]. We spell out some of the details.

We use the characterization of smooth and étale maps given by Proposition 6 of § 2.2
of [1]; namely that it suffices to show that for any affine scheme Z → RT/S(Y ) and
all closed sub-schemes Z0 of Z whose ideal sheaf is square zero, the canonical map
HomRT/S Y (Z,RT/S X) → HomRT/S Y (Z0, RT/S X) is surjective (respectively bijective).
So given a : Z0 → RT/S X over RT/S Y we want to lift it (uniquely) to Z. Base changing
up to T we obtain

Z0 ×S T

�������������
a×id �� RT/S X ×S T

RT/S(f)×id

��

rX �� X

f

��
RT/S Y ×S T

rY �� Y

Since f is smooth rX ◦ (a × id) lifts to a map p : Z ×S T → X over Y . Now, under the
identification of X(Z ×S T ) with RT/S X(Z), p corresponds to a map p̃ : Z → RT/S X

such that p = rX ◦ (p̃ × id). So we get

Z ×S T

�������������
p̃×id �� RT/S X ×S T

RT/S(f)×id

��

rX �� X

f

��
RT/S Y ×S T

rY �� Y
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Since p = rX ◦ (p̃ × id) extends rX ◦ (a × id), p̃ is our desired extension of a. Moreover, if
p̃′ were another lifting of a to Z then rx ◦(p̃′ × id) would be another lifting of rX ◦(a× id).
Hence, if f is étale then p̃ is the unique extension of a to Z. �

Example 2.5 (arc spaces). Let X be a scheme over a ring k. Letting k(n) :=
k[ε]/(εn+1), the nth arc spaces discussed at the beginning of the section are the Weil
restrictions of X ×k k(n) from k(n) to k. (Note that Spec(k(n)) → Spec(k) is a homeo-
morphism so that the Weil restriction does exist.) In particular, Arcn(X)(k) is canonically
identified with the k(n)-points of X ×k k(n), which in turn can be identified with X(k(n)).
Note that Arc1(X) is the tangent bundle TX.

The quotient k(n) → k induces a structure map Arcn(X) → X as follows. For any k-
algebra R, Arcn(X)(R) is identified with X(R⊗k k(n)). Now R⊗k k(n) = R[ε]/(ε(n+1)) =
R(n), and we have the natural quotient map ρR

n : R(n) → R inducing ρR
n

: Spec(R) →
Spec(R(n)). Composition with ρR

n
defines a map from the X(R(n)) to X(R). That is,

from Arcn(X)(R) to X(R).

3. E-rings

In the arc space construction the finite free k-algebra k(n) = k[ε]/(εn+1) plays a dual role:
we first take a base extension from k to k(n) and then the Weil restriction from k(n) to
k. Our general prolongation space construction will come from treating these two roles
separately and generalizing both of them. The purpose of this section is to introduce
these generalizations of k(n). But first a preliminary definition.

Definition 3.1. By the standard ring scheme S over A we mean Spec(A[x]) with the
usual ring scheme structure. So S(R) = (R, +, ×, 0, 1), for all A-algebras R. An S-algebra
scheme E over A is a ring scheme together with a ring scheme morphism sE : S → E
over A. We view S as an S-algebra via the identity id : S → S. A morphism of S-algebra
schemes is then a morphism of ring schemes respecting the S-algebra structure. Similarly
one can define S-module schemes and morphisms. By a finite free S-algebra scheme we
will mean, somewhat unnaturally, an S-algebra scheme E together with an isomorphism
of S-module schemes ψE : E → S

�, for some � ∈ N.

The intention behind fixing the isomorphism ψE : E → S
� is to give us a canonical way

of presenting E(R) uniformly in all A-algebras R. Indeed, we get E(R) = R[(ei)i��]/IR,
where the ei are indeterminates and IR is the ideal generated by expressions that describe
how the monomials in the eis can be written as A-linear combinations of the eis.

Remark 3.2. It follows from the above discussion that for any A-algebra, α : A → R, we
can canonically identify E(R) and E(A) ⊗A R, both as R-algebras and as E(A)-algebras
(where the E(A)-algebra structure on E(R) is by E(α) : E(A) → E(R)). The converse is
also true: given any finite and free A-algebra B, by choosing a basis we can find a finite
and free S-algebra scheme E over A such that E(R) = B ⊗A R for any A-algebra R.



Jet and prolongation spaces 397

Here is the central notion of this section.

Definition 3.3. Suppose E is a finite free S-algebra scheme over a ring A. An E-ring is
an A-algebra k together with an A-algebra homomorphism e : k → E(k).

Note that E(k) has two k-algebra structures, the standard sk
E : k → E(k) and the

exponential e : k → E(k). (These will correspond to the two roles played by k(n) in the
arc space construction.) Both induce the same A-algebra structure. In order to distinguish
these notationally, we will denote the latter by Ee(k).

One may equally well describe an E-ring by giving a collection of operators {∂i : k →
k}i�� via the correspondence ψE ◦ e = (∂1, . . . , ∂�). That the collection {∂i} so defines an
E-ring structure on k is equivalent to the satisfaction of a certain system of functional
equations.

We now discuss some examples.

Example 3.4 (pure rings). For any A-algebra k, (k, id) is an S-ring.

Example 3.5 (rings with endomorphisms). Fix n � 0 and consider the finite free
S-algebra scheme En = S

n with the product ring scheme structure and s : S → S
n being

the diagonal. If k is a ring and σ0, . . . , σn−1 are endomorphisms of k, then (k, en) is an
En-ring where en := (σ0, σ1, . . . , σn−1). In particular, if σ is an automorphism of k, then
setting σ0 = id, and setting σ2m−1 = σm and σ2m = σ−m for all m > 0, we see that the
difference ring structure is captured by {(k, en) : n ∈ N}.

Example 3.6 (Hasse-differential rings). For each n � 0, consider the finite free
S-algebra scheme En (over Z) where for any ring R

• En(R) = R[η1, . . . , ηr]/(η1, . . . , ηr)n+1, where η1, . . . , ηr are indeterminates;

• sR : R → En(R) is the natural inclusion; and

• ψR : En(R) → R�n is the identification via the standard monomial basis of
R[η1, . . . , ηr]/(η1, . . . , ηr)n+1 over R.

We leave it to the reader to write down the equations which verify that such a finite free
S-algebra scheme exists.

Recall that a Hasse derivation on a ring k is a sequence of additive maps from k to k,
D = (D0, D1 . . . ), such that

• D0 = id and

• Dm(xy) =
∑

a+b=m Da(x)Db(y) for all m > 0.

Suppose D1, . . . ,Dr is a sequence of r Hasse derivation on k and set

E(x) =
∑

α∈Nr

D1,α1D2,α2 · · ·Dr,αr
(x)ηα.

Then E : k → k[[η1, . . . , ηr]] is a ring homomorphism. Let en be the composition of E with
the quotient k[[η1, . . . , ηr]] → k[η1, . . . , ηr]/(η1, . . . , ηr)n+1. Then (k, en) is an En-ring. The
Hasse-differential ring structure is captured by the sequence {(k, en) : n ∈ N}.
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This example specializes to the case of partial differential fields in characteristic zero.
Suppose k is a field of characteristic zero and ∂1, . . . , ∂r are derivations on k. Then

Di,n :=
∂n

i

n!
,

for 1 � i � r and n � 0, defines a sequence of Hasse derivations on k. The En-ring
structure on k is given in multi-index notation by

en(x) :=
∑

α∈Nr, |α|�n

1
α!

∂α(x)ηα,

where ∂ := (∂1, . . . , ∂r).
On the other hand, we can specialize in a different direction to deal with fields of finite

imperfection degree. The following example is informed by [12]: suppose k is a field of
characteristic p > 0 with imperfection degree r. Let t1, . . . , tr be a p-basis for k. Then
t1, . . . , tr are algebraically independent over Fp. Consider Fp[t1, . . . , tr] and for 1 � i � r

and n ∈ N, define

Di,n(tα1
1 · · · tαr

r ) :=

(
αi

n

)
tα1
1 · · · tαi−n

i · · · tαr
r

and extend by linearity to Fp[t1, . . . , tr]. The sequence (D1, . . . ,Dr) forms a sequence of
r Hasse derivations on this domain. Moreover, they extend uniquely to Hasse derivations
on k (see Lemma 2.3 of [12]). This gives rise to an En-ring structure on k for all n.

The above examples can also be combined to treat difference–differential rings.
Next we consider an example interpolating between differential and difference rings.

The notion of D-ring was introduced by the second author in [11].

Example 3.7 (D-rings). Let A be a commutative ring having a distinguished element
c ∈ A. For any A-algebra R we define Ec(R) to be the A-module R×R with multiplication
defined by (x1, x2) · (y1, y2) := (x1y1, x1y2 + x2y1 + cx2y2). To give R the structure of
an Ec-ring we need only produce an A-linear map D : R → R for which R → Ec(R)
given by x �→ (x, D(x)) is a homomorphism of A-algebras. Note that if c = 0, then
Ec(R) is the ring of dual numbers over R and D is a derivation. At the other extreme,
if c ∈ A×, then from any A-algebra endomorphism τ : R → R, we give R an Ec-ring
structure via D(x) := c−1[τ(x) − x]. Considered at the level of the ring schemes, we see
that (Ec)A[1/c] ≈ SA[1/c] × SA[1/c] while (Ec)A/(c) ≈ (S[ε]/(ε2))A/(c). In particular, when
A is a field, an Ec-ring is essentially either a difference ring or a differential ring.

Finally, let us discuss an example of a ring functor which does not fit into our formalism,
but for which some of our constructions still make sense.

Example 3.8 (λ-rings). Fix A a commutative ring of characteristic p with a finite
p-independent set B. For each natural number n and A-algebra R, define En(R) := R[{sb :
b ∈ B}]/({spn

b − b : b ∈ B}) and take for its basis over R the monomials in {sb : b ∈ B}
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in which each variable appears to degree less than pn. As it stands, an En-ring (k, ψ) is
simply a Hasse differential ring for which certain linear differential operators must vanish
identically. However, we might consider a variation on the definition of an E-ring. Letting
Pn : En(R) → R be given by x �→ xpn

, we might ask for a map λ : R → En(R) for which
the composite Pn ◦ λ is the identity on R. (Note that λ is then not A-linear, and hence
does not give an En-ring structure in our sense.) With this construction we recover the
formalism of λ-functions used in the study of the theory of separably closed fields.

As the above examples suggest, one is usually interested in a whole sequence of En-ring
structures on k that satisfy certain compatibility conditions. A more systematic study of
such systems, generalized Hasse systems, with their attendant geometry, is carried out
in the sequel to this paper [7].

Notation 3.9. Suppose (k, e) is an E-ring. The ring homomorphism e : k → E(k)
also induces a second k-algebra structure on E(R), for any k-algebra R. Namely, given
a : k → R we obtain

k
e �� E(k)

E(a) �� E(R).

We denote this k-algebra by Ee(R). Alternatively, if we identify E(R) with R ⊗k E(k) as
in Remark 3.2, then Ee(R) is described by

k
e �� E(k) �� R ⊗k E(k).

Note that in general Ee(R) 	= R ⊗k Ee(k) as k-algebras.

4. Abstract prolongations

We fix a finite free S-algebra scheme E over a ring A and an E-ring (k, e). The following
definition is partly informed by, and generalizes, a construction of Buium’s in the case of
an ordinary differential ring (cf. [2, 9.1]).∗

Definition 4.1 (prolongations). Suppose X is a scheme over k. The prolongation space
of X with respect to E and e, denoted by τ(X, E , e), is the Weil restriction of X ×k Ee(k)
from E(k) to k, when it exists. Note that we are taking the base extension with respect
to the exponential e : k → E(k), while we are taking the Weil restriction with respect to
the standard sk

E : k → E(k). When the context is clear we may write τ(X) for τ(X, E , e).

So for any k-algebra R, using the fact (Remark 3.2) that E(R) = E(k) ⊗k R, we have
that τ(X)(R) = (X ×k Ee(k))(E(R)).

Note that if X is quasi-projective then the prolongation space necessarily exists regard-
less of the E-ring—this is because every finite set of points in a quasi-projective scheme
is contained in an affine open subset, and that is the condition for the existence of the

∗ Buium calls his construction a differential ‘jet space’, which conflicts badly with our terminology in
several ways.
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Weil restriction. On the other hand, for particular E-rings, the prolongation spaces may
exist for other schemes—for example, if sk : Spec(E(k)) → Spec(k) is one-to-one then
τ(X, E , e) exists for all schemes X over k (cf. Proposition 2.1). In the rest of this paper
we implicitly assume that our schemes and E-rings are such that the the relevant pro-
longation spaces exist. If the reader is uncomfortable with this sleight of hand, he/she is
welcome to assume that all our schemes are quasi-projective.

Example 4.2.

(a) If E = S and e = sk
E = id, then τ(X) = X.

(b) Arc spaces are prolongations. If E is the S-algebra scheme given by E(R) =
R[ε]/(εn+1) and e = sk

E is the standard k-algebra structure on k[ε]/(εn+1), then
τ(X) = Arcn(X) of Example 2.5.

(c) Difference rings. If En(k) = kn is as in Example 3.5, and en = (σ0, . . . , σn−1) is
a sequence of endomorphisms of k, then τ(X, En, en) = Xσ0 × · · · × Xσn−1 , where
Xσi = X ×σi k. Indeed, for any scheme U over k, a kn-morphism from U ×s kn to
X ×en

kn determines and is determined by a sequence of k-morphisms from U to
Xσi , i = 0, . . . , n − 1.

(d) Differential rings. Suppose E is the S-algebra scheme given by E(R) = R[η]/(η2)
with the standard k-algebra structure. Suppose k is a field of characteristic zero and
δ is a derivation on k and let e : k → E(k) be e(a) = a + δ(a)η. If X is the affine
scheme Spec(k[x1, . . . , xm]/〈P1, . . . , Pt〉), then the Weil restriction computations
shows that τ(X, E , e) is the affine sub-scheme of A

2m whose ideal is generated by
P1(x), . . . , Pt(x) together with

m∑
i=1

∂

∂xi
Pj(x) · yi + P δ

j (x)

for j = 1, . . . , t, where P δ is obtained from P by applying δ to the coefficients. So
if X is over the constants of δ then this prolongation space is the tangent bundle.

Definition 4.3. By the canonical morphism associated to τ(X, E , e), denoted

rX
E,e : τ(X) ×k E(k) → X,

we mean the composition of the E(k)-morphism τ(X) ×k E(k) → X ×k Ee(k) given
by the representability of the Weil restriction (cf. Proposition 2.1) and the projection
X ×k Ee(k) → X.
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Remark 4.4. The canonical morphism rX
E,e : τ(X) ×k E(k) → X is not a k-morphism if

we view τ(X) ×k E(k) as over k in the usual way. However we do have

τ(X) ×k E(k)

��������������

rX
E,e �� X

��

Spec(E(k))

e
������������

Spec(k)

where e is the morphism of schemes induced by e : k → E(k).

As mentioned earlier, the prolongation space is characterized by the property that, for
any k-algebra R, τ(X)(R) = (X ×k Ee(k))(E(R)). However, the following lemma gives
another useful description of the R-points of the prolongation.

Lemma 4.5. For any k-algebra R, τ(X)(R) = X(Ee(R)). More precisely, the R-points
of τ(X) over k can be functorially identified with the Ee(R)-points of X over k. This
identification is given by p �→ rX

E,e ◦ (p ×k E(k)).

Proof. First of all, the defining property of the Weil restriction implies that

τ(X)(R) = X ×k Ee(k)(R ⊗k E(k)),

where the identification is obtained by associating to

Spec(R)
p �� τ(X)

the E(k)-morphism

Spec(R ⊗k E(k))
p×kE(k) �� τ(X) ×k E(k) �� X ×k Ee(k),

where τ(X)×k E(k) → X ×k Ee(k) is given by the representability of the Weil restriction
(cf. Proposition 2.1). On the other hand,

X ×k Ee(k)(R ⊗k E(k)) = X(Ee(R)).

Indeed, given

Spec(R ⊗k E(k))
q �� X ×k Ee(k)

consider the following diagram

Spec(R ⊗k E(k))

��������������

��������������
q �� X ×k Ee(k)

������������

�������������

Spec(R)

��������������
Spec(E(k))

e
�������������

sk
E��												

X

		











Spec(k) Spec(k)
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where e and sk
E are the morphisms on schemes induced by e and sk

E , respectively. We see
that composing q with the projection X ×k Ee(k) → X gives us the natural identification
of the (R ⊗k E(k))-points of X ×k Ee(k) over E(k) with the (R ⊗k E(k))-points of X over
k where R ⊗k E(k) is viewed as a k-algebra by

k
e �� E(k) �� R ⊗k E(k).

But Ee(R) is canonically isomorphic to R⊗k E(k) with the above k-algebra structure (cf.
Notation 3.9). Hence τ(X)(R) = X(Ee(R)), as desired. �

The prolongation space construction is a covariant functor. If f : X → Y is a morphism
of schemes over k then τ(f) = RE(k)/k(f ×k Ee(k)) is the morphism given by the Weil
restriction functor applied to f ×k Ee(k) : X ×k Ee(k) → Y ×k Ee(k). Alternatively,
τ(f) can be described on R-points for any k-algebra R, after identifying τ(X)(R) with
X(Ee(R)) and τ(Y )(R) with Y (Ee(R)), as composition with f .

Proposition 4.6. If f : X → Y is an étale morphism (respectively a closed embedding,
a smooth morphism), then τ(f) : τ(X) → τ(Y ) is étale (respectively a closed embedding,
smooth). In particular, if X is smooth then so is τ(X).

Proof. Weil restrictions preserve smooth morphisms, étale morphisms (Fact 2.4) and
closed embeddings (the latter is clear from the construction, see the proof of Propo-
sition 2.1). This is also true of base change. It therefore follows that the prolongation
functor preserves all these properties. Since X being smooth is equivalent X → Spec(k)
being smooth, it follows that τ(X) is smooth if X is. �

There is a natural map ∇ = ∇X
E,e : X(k) → τ(X)(k) induced by e as follows: writing e

as a k-algebra homomorphism e : k → Ee(k) we see that it induces a map from the X(k)
to X(Ee(k)). This, together with the identification τ(X)(k) = X(Ee(k)) from Lemma 4.5,
gives us ∇ : X(k) → τ(X)(k).

Proposition 4.7. Suppose f : X → Y is a morphism of schemes over k.

(a) The following diagram commutes:

τ(X)(k)
τ(f) �� τ(Y )(k)

X(k)

∇X





f �� Y (k)

∇Y





(b) Suppose a ∈ Y (k). Then τ(X)∇(a) = τ(Xa), where τ(X)∇(a) is the fibre of τ(f) :
τ(X) → τ(Y ) over ∇(a).

Proof. Identifying τ(X)(k) with X(k⊗e E(k)) and τ(Y )(k) with Y (k⊗e E(k)), τ(f) and
f on k-points are both given by composing with f . On the other hand, by definition,
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under the same identifications, ∇X and ∇Y are both given by pre-composition with
e : Spec(k ⊗e E(k)) → Spec(k). Part (a) follows immediately.

We check part (b) at R-points for any given k-algebra R. Under the canonical identi-
fications, ∇(a) ∈ τ(Y )(k) is given by e(a) ∈ Y (Ee(k)) as in the diagram

Spec(Ee(k))

e

��

e(a)

������������

Spec(k) a �� Y

Thus τ(X)∇(a)(R) is identified with Xe(a)(Ee(R)) where Xe(a) := X ×Y Spec(Ee(k)).
On the other hand, under the same canonical identification, we have τ(Xa)(R) =
Xa(Ee(R)), where Xa := X ×Y Spec(k). But note that Xe(a) = Xa ×k Ee(k) and so
Xe(a)(Ee(R)) = Xa(Ee(R)). �

4.1. Comparing prolongations

Fix two finite free S-algebra schemes E and F over a ring A, together with a ring-
scheme morphism α : E → F over A. Suppose k is an A-algebra and e and f are such
that (k, e) is an E-ring, (k, f) is an F-ring, and α ◦ e = f (so that αk : Ee(k) → Ff (k)
is a k-algebra homomorphism). For any k-algebra R, since αR lifts αk, it follows that
αR : Ee(R) → Ff (R) is also a k-algebra homomorphism.

Given a scheme X over k, α induces a morphism of schemes α̂ : τ(X, E , e) → τ(X, F , f).
Indeed, for any k-algebra R, pre-composition with the induced morphism of schemes
Spec(Ff (R)) → Spec(Ee(R)) over k, in turn induces a map from X(Ee(R)) to X(Ff (R)).
We now point out some of the properties of this morphism.

Proposition 4.8.

(a) The following diagram commutes:

τ(X, E , e)(k) α̂ �� τ(X, F , f)(k)

X(k)
∇E

������������ ∇F

������������

(b) Suppose f : X → Y is a morphism of schemes over k. Then the following diagram
commutes:

τ(X, E , e)

α̂X

��

τE(f) �� τ(Y, E , e)

α̂Y

��
τ(X, F , f)

τF (f) �� τ(Y,F , f)

(c) If α : E → F is a closed embedding, then so is α̂ : τ(X, E , e) → τ(X, F , f).
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Proof. Part (a) is immediate from the definitions using the fact that α preserves the
k-algebra structures coming from e and f .

We show the diagram in part (b) commutes by evaluating on R-points for an arbitrary
k-algebra R. Making the usual identifications, we need to show that the following diagram
commutes:

X(Ee(R))

��

�� Y (Ee(R))

��
X(Ff (R)) �� Y (Ff (R))

where the horizontal arrows are given by pre-composition with f itself, while the vertical
arrows are given by pre-composition with Spec(Ff (R)) → Spec(Ee(R)). It is now obvious
that this square commutes.

For part (c), to say that α is a closed embedding means that there is a sub-S-algebra
scheme B � F for which α induces an isomorphism between E and B. As F is affine
over A, B is defined as the kernel of some map of group schemes β : F → G

N
a for some

N . Now, for any k-algebra R, because α is an isomorphism between Ee(R) and Bf (R),
α induces an identification of X(Ee(R)) with X(Bf (R)). That is, α̂ is an isomorphism
between τ(X, E , e) and τ(X, B, f). Note that X(Bf (R)) consists of those Ff (R)-valued
points of X which happen to belong to Bf (R) and this set is cut out by β. These give
us the equations expressing τ(X, B, f) as a closed sub-scheme of τ(X, F , f). �

Lemma 4.9. The following diagram commutes:

τ(X, E , e) ×k F(k)
α̂⊗id ��

id⊗α

��

τ(X, F , f) ×k F(k)

rX
F,f

��
τ(X, E , e) ×k E(k)

rX
E,e �� X

where r·
·,· are the canonical morphisms of Definition 4.3, associated to the respective

prolongations.

Proof. Identifying E = S
�E and F = S

�F we take e0, . . . , e�E−1 to be the standard basis
for E and f0, . . . , f�F −1 to be the standard basis for F . We write α = (α1, . . . , α�F ), where
the α1, . . . , α�F are linear polynomials in �E -variables.

Covering X by affine open subsets, and using functoriality of the maps involved, it is
not hard to see that it suffices to consider affine space X = Spec(k[x]), where x is a
(possibly infinite) tuple of indeterminates. We have identifications

τ(X, E , e) = Spec(k[ȳ]),

where ȳ = (yj)0�j��E−1 is �E copies of x, and

τ(X, F , f) = Spec(k[z̄]),
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where z̄ = (zj′)0�j′��F −1 is �F copies of x. Taking global sections, we need to show that
the following diagram commutes:

k[x]
r∗

F,f ��

r∗
E,e

��

k[z̄] ⊗k F(k)

α∗⊗id
��

k[ȳ] ⊗k E(k)
id⊗α �� k[ȳ] ⊗k F(k)

It is clear that these maps commute on constants, so it suffices to fix x ∈ x and chase it:

α∗ ⊗ id(r∗
F,f (x)) = α∗ ⊗ id

( �F −1∑
j′=0

zj′ ⊗ fj′

)

=
�F −1∑
j′=0

αj′(y0, . . . , y�E−1) ⊗ fj′ .

On the other hand,

id ⊗ α(r∗
E,e(x)) = id ⊗ α

( �E−1∑
j=0

yj ⊗ ej

)

=
�E−1∑
j=0

yj ⊗ α(ej)

=
�E−1∑
j=0

yj ⊗
�F −1∑
j′=0

αj′(ej)fj′

=
�F −1∑
j′=0

( �E−1∑
j=0

αj′(ej)yj

)
⊗ fj′

=
�F −1∑
j′=0

αj′(y0, . . . , y�E−1) ⊗ fj′ ,

as desired. �

4.2. Composing prolongations

Fix two finite free S-algebra schemes E and F over a ring A. For any A-algebra R,
the R-algebra structure on F(R) makes it into an A-algebra as well, and hence it makes
sense to consider E(F(R)). This inherits an R-algebra structure via

R
sR

F �� F(R)
s

F(R)
E �� E(F(R)).

Moreover, E(F(R)) is thereby finite and free over R witnessed by the R-linear isomor-
phism

E(F(R))
ψ

F(R)
E �� F(R)�E

(ψR
F )�E

�� (R�F )�E .
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Let EF denote the corresponding finite free S-algebra scheme. So for any A-algebra R,
EF(R) = E(F(R)), and sR

EF and ψR
EF are the above displayed compositions.

Remark 4.10. Note that EF is canonically isomorphic to E ⊗S F , and hence to FE , as
an S-algebra scheme. Indeed, this is just Remark 3.2: given an A-algebra R, E(F(R)) is
canonically identified with E(R) ⊗R F(R). The induced isomorphism between F(E(R))
and E(F(R)) can be described in coordinates by

F(E(R))

ψR
F◦E

��

E(F(R))

(R�E )�F �� (R�F )�E

(ψR
EF )−1





where (R�E )�F → (R�F )�E is the natural coordinate change.

Now fix an A-algebra k equipped with an E-ring structure (k, e) and an F-ring structure
(k, f). Consider the EF-ring structure on k given by the composition of e with E(f),

k
e �� E(k)

E(f) �� E(F(k)).

We denote this homomorphism by ef : k → EF(k).

Lemma 4.11. The k-algebras EFef (k) and Ee(Ff (k)) are naturally isomorphic. More
precisely, there is a canonical ring isomorphism γ : EF(k) → E(k) ⊗k Ff (k) such that
the following commutes:

EF(k)
γ �� E(k) ⊗k Ff (k)

k

ef





e �� E(k)





Proof. By Remark 3.2, with R = Ff (k), we have a canonical identification of E(Ff (k))
with E(k) ⊗k Ff (k). On the other hand, F(k) and Ff (k) are identical as A-algebras
and hence E(F(k)) and E(Ff (k)) are canonically isomorphic as rings. Hence we obtain
a canonical ring isomorphism γ : E(F(k)) → E(k) ⊗k Ff (k). Now, since ef = E(f) ◦ e,
the desired commuting square reduces to showing that

E(F(k))
γ �� E(k) ⊗k Ff (k)

E(k)
E(f)



�������������

commutes. But this is just the fact that E(Ff (k)) identifies with E(k) ⊗k Ff (k) even as
an E(k)-algebra (cf. Remark 3.2). �
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We wish to describe, in terms of Weil restriction, the composition of the E- and
F-prolongations.

Proposition 4.12. Suppose X is a scheme over k. Then

τ(τ(X, E , e), F , f) = τ(X, EF , ef).

That is, the F-prolongation of the E-prolongation of X is the Weil restriction of X ×ef

EF(k) from EF(k) to k. Moreover, under this identification,

∇F,f ◦ ∇E,e : X(k) → τ(τ(X, E , e), F , f)(k)

becomes
∇EF,ef : X(k) → τ(X, EF , ef)(k).

Proof. For ease of notation, let S := E(k) ⊗k Ff (k). Given any scheme U over k

τF (τE(X))(U) = RF(k)/k(RE(k)/k(X ×k Ee(k)) ×f F(k))(U)

= RF(k)/k(RS/F(k)(X ×k Ee(k) ×E(k) S))(U)

= HomF(k)(U ×k F(k), RS/F(k)(X ×k Ee(k) ×E(k) S))

= HomS(U ×k S, X ×k Ee(k) ×E(k) S),

where the second equality is by the compatibility of Weil restrictions with base change (cf.
Fact 2.3). Now, applying the ring isomorphism γ : E(F(k)) → S given by Lemma 4.11,
and keeping in mind the commuting square given by that lemma, we see that this last
representation of τF (τE(X))(U) identifies with

HomEF(k)(U ×k EF(k), X ×ef EF(k)),

which is REF(k)/k(X ×ef EF(k))(U) as desired.
For the moreover clause, first note that under the identification

τ(τ(X, E , e), F , f)(k) = τ(X, E , e)(Ff (k)),

∇F,f is by definition precomposition with f∗ : Spec(k) → Spec(Ff (k)). Then, under
the further identification of τ(X, E , e)(k) with X(Ee(k)) and of τ(X, E , e)(Ff (k)) with
X(Ee(Ff (k))), it is not hard to see that ∇F,f becomes precomposition with (f ⊗k E(k))∗.
Hence ∇F,f ◦∇E,e, viewed as a map from X(k) to X(Ee(Ff (k))), is just precomposition
with ((f ⊗k E(k)) ◦ e)∗. Now, applying γ from Lemma 4.11, (f ⊗k E(k)) ◦ e : k →
E(k) ⊗k Ff (k) transforms to ef : k → EF(k), and precomposition with (ef)∗ is by
definition ∇EF,ef . So ∇F,f ◦ ∇E,e identifies with ∇EF,ef . �

Corollary 4.13. Prolongation spaces commute. That is, τ(τ(X, E , e), F , f) is canonically
isomorphic to τ(τ(X, F , f), E , e).

Proof. This is immediate from Proposition 4.12 and Remark 4.10. �



408 R. Moosa and T. Scanlon

Lemma 4.14. The following diagram commutes:

τ(X, EF , ef) ×k EF(k)

r
τ(X,E,e)
F,f ×kE(k)

��

rX
EF,ef

��������������������

X

τ(X, E , e) ×k E(k)
rX

E,e

��������������������

where r·
·,· are the canonical morphisms of Definition 4.3 associated to the respective

prolongations.

Proof. We make the usual abbreviation of τE(X) for τ(X, E , e).

Remark 4.15. Since

r
τE(X)
F,f : τF (τE(X)) ×k F(k) → τE(X)

is not a morphism over k in the usual sense (cf. Remark 4.4), we need to make clear what
we mean by r

τE(X)
F,f ×k E(k). First of all, we use Proposition 4.12 to identify τEF (X) ×k

EF(k) with τF (τE(X)) ×k E(F(k)). Now consider the F(k)-morphism

τF (τE(X)) ×k F(k) → τE(X) ×k Ff (k)

given by the Weil restriction. We can base change it up to E(F(k)) to get an F(k)-
morphism

a : τF (τE(X)) ×k F(k) ×F(k) E(F(k)) → τE(X) ×k Ff (k) ×F(k) E(F(k)).

Next, considering the following commuting diagram of k-algebras

F(k) �� E(F(k))

k

f





�� E(k)

E(f)





we have that τE(X) ×k Ff (k) ×F(k) E(F(k)) = τE(X) ×k E(k) ×E(f) E(F(k)), and so we
can compose a with the natural projection

b : τE(X) ×k E(k) ×E(f) E(F(k)) → τE(X) ×k E(k).

So r
τE(X)
F,f ×k E(k) : τF (τE(X)) ×k E(F(k)) → τE(X) ×k E(k) is b ◦ a.

Now we proceed with the proof of Lemma 4.14. Identifying E = S
�E and F = S

�F we
take e0, . . . , e�E−1 to be the standard basis for E , f0, . . . , f�F −1 to be the standard basis
for F , and {ej ⊗ fj′ : 0 � i � �E , 0 � j′ � �F} the corresponding standard basis for
EF = E ⊗S F .
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Covering X by affine open subsets, and using functoriality of the Weil restrictions, it is
not hard to see that it suffices to consider X = A

r
k = Spec(k[x]), where x is a (possibly

infinite) tuple of indeterminates. We have identifications

τ(X, E , e) = Spec(k[ȳ]),

where ȳ = (yj)0�j��E−1 is �E copies of x, and

τ(X, EF , ef) = Spec(k[z̄]),

where z̄ = (zj,j′)0�j��E−1, 0�j′��F −1 is �E�F copies of x. Taking global sections we need
to show that the following diagram commutes:

k[z̄] ⊗k EF(k)

k[x]
(rX

EF,ef )∗

�����������������

(rX
E,e)∗

�����������������

k[ȳ] ⊗k E(k)

(rτE (X)
F,f ×kE(k))∗





Let us first check this on constants a ∈ k. Going clockwise we have a �→ 1⊗ ef(a). Going
counterclockwise we have that

a �→ 1 ⊗ e(a) �→ (rτE(X)
F,f ×k E(k))∗(1 ⊗ e(a)).

Now, using the explanation of what r
τE(X)
F,f ×k E(k) is in Remark 4.15, and the fact that

E(f)(e(a)) = ef(a) by definition, we see that

(rτE(X)
F,f ×k E(k))∗(1 ⊗ e(a)) = 1 ⊗ ef(a).

So the diagram commutes on constants.
It remains to chase fixed x ∈ x. Going clockwise we have x �→

∑
j,j′

zj,j′ ⊗ (ej ⊗ fj′).

Going counterclockwise,

x �→ (rτE(X)
F,f ×k E(k))∗

( ∑
j

yj ⊗ ej

)
.

Since

(rτE(X)
F,f )∗(yj) =

∑
j′

zj,j′ ⊗ fj′ ,

we have that the diagram commutes on each x ∈ x, and hence commutes. �
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4.3. The structure of the prolongation space

In this section we specialize to the case when k is a field and in this case describe the
structure of the prolongation space. Fix a finite free S-algebra schemes E and an E-field
(k, e).

Proposition 4.16 (k a field). There exist finite free local S-algebra schemes F1, . . . ,Ft

with ring homomorphisms fi : k → Fi(k) such that

τ(X, E , e) =
t∏

i=1

τ(X, Fi, fi),

for any scheme X over k.

Proof. The ring E(k) is an artinian k-algebra and hence can be expressed as a finite
product of local artinian k-algebras, say B1, . . . , Bt. After choosing bases, we obtain, for
each i = 1, . . . , t, finite free S-algebra schemes Fi over A such that Fi(R) = Bi ⊗k R

for any k-algebra R. Let fi : k → Fi(k) be the composition of e : k → E(k) with the
projection E(k) → Bi = Fi(k). It is not hard to see, using Remark 3.2, that for any
k-algebra R,

E(R) =
t∏

i=1

Fi(R) and Ee(R) =
t∏

i=1

Ffi

i (R).

Hence,

τ(X, E , e)(R) = X(Ee(R))

= X

( t∏
i=1

Ffi

i (R)
)

=
t∏

i=1

X(Ffi

i (R))

=
( t∏

i=1

τ(X, Fi, fi)
)

(R).

These identifications being functorial in all k-algebras R, we get

τ(X, E , e) =
t∏

i=1

τ(X, Fi, fi),

as desired. �

Proposition 4.16 largely reduces the study of prolongation spaces (over fields) to the
case when E is local. The following proposition describes the structure of the prolongation
space in the local case under the additional hypothesis that the residue field is the base
field.
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Proposition 4.17. Suppose k is field and E(k) is a local (finite free) k-algebra with
maximal ideal m and such that E(k)/m = k. Let d be greatest such that md 	= (0) (by
artinianity). Consider the sequence

E = Ed → Ed−1 → · · · → E1 → E0 = S,

where Ei(k) = E(k)/mi+1 and ρi : Ei+1(k) → Ei(k) is the quotient map. Let ei :=
ρi ◦ · · · ◦ ρd−1 ◦ e : k → Ei(k) be the induced Ei-field structures on k. (So ed = e and e0

is an endomorphism of k.)
Let X be a smooth and absolutely irreducible scheme over k, and consider the induced

sequence of morphisms

τ(X, E , e) → τ(X, Ed−1, ed−1) → · · · → τ(X, E1, e1) → Xe0 ,

where Xe0 = τ(X, E0, e0) is the transform of X by e0. Then for each i = 0, . . . , d − 1,

(a)i τ(X, Ei, ei) is smooth and absolutely irreducible and

(b)i τ(X, Ei+1, ei+1) → τ(X, Ei, ei) is a torsor for a power of the tangent bundle of Xe0 ;
that is, letting m = dimK(mi+2/mi+1), there is a morphism

(TXe0)m ×Xe0 τ(X, Ei+1, ei+1)

������������������
γ �� τ(X, Ei+1, ei+1)

��������������

τ(X, Ei, ei)

such that for every b ∈ τ(X, Ei, ei) with image a ∈ Xe0 , γb defines a principal
homogeneous action of (TaXe0)m on τ(X, Ei+1, ei+1)b.

In particular, τ(X, E , e) is smooth and absolutely irreducible.

Proof. Note that since E0(k) = k, e0 is an endomorphism of k, and so τ(X, E0, e0) = Xe0

by Example 4.2 (c). Hence τ(X, E0, e0) is smooth and absolutely irreducible. Now observe
that (a)0 together with (a)i and (b)i imply (a)i+1. Hence it will suffice to show that (a)i

implies (b)i.
We assume that τ(X, Ei, ei) is smooth and define the action γ uniformly on the fibres.

We will work at the level of R-points where R is a fixed arbitrary k-algebra. Let I :=
ker(E(R) → E0(R) = R). Then Ii+2 = ker(E(R) → Ei+1(R)). Note that (mi+1/mi+2) ⊗k

R = Ii+2/Ii+1. So if v1, . . . , vm is a k-basis of (mi+1/mi+2) then Ii+2/Ii+1 is a free
R-module with basis w1 = v1 ⊗k 1R, . . . , wm = vm ⊗k 1R.

Working locally we may assume that X is affine, defined by a sequence of poly-
nomials g := (g1, . . . , gr) over k. Let b ∈ τ(X, Ei, ei)(R) = X(Eei

i (R)) with image
a ∈ τ(X, E0, e0)(R) = Xe0(R) = X(Ee0

0 (R)). By smoothness of τ(X, Ei, ei) we can lift
b to an element of X(Eei+1

i+1 (R)). Let c be any such lifting of b. We view c as a tuple
of elements in E(R) representing elements of E(R)/Ii+2 such that c = b mod Ii+1 and
ge(c) = 0 mod Ii+2, where ge denotes the sequence of polynomials over E(k) obtained
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from g by applying e to the coefficients. Given y = (y1, . . . , ym) ∈ (TaXe0)m(R) we need
to define γ(y, c). Observe that d ge0

a (yj) = 0 for all j = 1, . . . , m, where ge0 denotes the
sequence of polynomials obtained from g by applying e0 to the coefficients. Hence if we
set γ(y, c) := (c + y1w1 + · · · + ymwm) mod Ii+2, then γ(y, c) also lifts b and

ge(γ(y, c)) = ge(c + y1w1 + · · · + ymwm) mod Ii+2

= ge(c) +
( m∑

j=1

d ge0
a (yj)wj

)
mod Ii+2

= 0 mod Ii+2

so that γ(y, c) ∈ X(Eei+1
i+1 (R)). Conversely, if c and c′ both lift b then c′ = c mod Ii+1 and

so c′ = (c+ y1w1 + · · ·+ ymwm) mod Ii+2 for some y1, . . . , ym ∈ R. The same calculation
as above shows that each yj is an R-point of the tangent space to Xe0 at a. That is, γ

defines a principal homogeneous action of (TaXe0)m(R) on τ(X, Ei+1, ei+1)b(R). �

Corollary 4.18 (k a field). The prolongation space of a smooth and absolutely irre-
ducible scheme is itself smooth and absolutely irreducible.

Proof. First of all, by Proposition 4.16 it suffices to consider the case when E(k) is
a local k-algebra. If the residue field is k then Proposition 4.17 describes the com-
plete structure of the prolongation space, and shows in particular that it is smooth
and absolutely irreducible. In general, the residue field, E0(k) in the notation of 4.17,
may be a finite extension of k. The proof of Proposition 4.17 still goes through except
for the description of the base τ(X, E0, e0). That is, we obtain the same description
of the fibrations τ(X, Ei+1, ei+1) → τ(X, Ei, ei) for i = 0, . . . , d − 1, but now as tor-
sors for a power of the tangent bundle of τ(X, E0, e0). Hence, to prove the corollary
we need only prove that τ(X, E0, e0) is smooth and absolutely irreducible. But by defini-
tion τ(X, E0, e0) = RE0(k)/k(X ×k Ee0

0 (k)). Now base change to a field extension preserves
smoothness and absolute irreducibility, and in general Weil restrictions preserve smooth-
ness (cf. Fact 2.4). The corollary then follows from the fact that if K is a finite field
extension of k and Y is a smooth and absolutely irreducible scheme over K then the
Weil restriction RK/k(Y ) is absolutely irreducible. �

Remark 4.19. As can be seen already at the level of tangent spaces, without smoothness,
absolute irreducibility is not necessarily preserved under prolongations.

Remark 4.20. Indeed, the question of when prolongations are irreducible is rather sub-
tle. For example, in the special case of arc spaces, Mustaţă shows that for X a locally
complete intersection variety in characteristic zero, the arc spaces (he calls them ‘jets’ !)
of X are irreducible if and only if X has only rational singularities (see [8]). For prolon-
gations coming from differential fields (as in Example 4.2) the question of irreducibility
of the prolongation was studied by Kolchin using differential algebra (see [6]), but also
from the scheme-theoretic point of view by Gillet in [3]. Similar results should be true
for general prolongation spaces, but we have not investigated this matter.
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5. Algebraic jet spaces

There are various kinds of ‘jet spaces’ for algebraic varieties in the literature. The one we
are interested in is essentially the linear space associated with the sheaf of differentials.
While the arc space construction generalizes tangent spaces to higher-order, so, too, do
the jet spaces, but with markedly different results. In particular, the fibres of the jet
spaces are always vector spaces while the fibres of the higher-order arc spaces do not
possess a natural group structure. With the explicit equations in Proposition 5.12 below,
these differences become more evident.

We recall a number of the fundamental properties of jet spaces here. With the reader
unfamiliar with this literature in mind, we will provide proofs of these well-known results.

We begin with some simple observations in commutative algebra.

Lemma 5.1. Given a ring C suppose R and B are C-algebras and D is an ideal of R.
For any n ∈ N, let πn : R ⊗C B → (R/Dn) ⊗C B be the quotient map tensored with B.
Then ker(πn) = (kerπ1)n.

Proof. This is a straightforward computation using the fact that ker(πn) is generated
by elements of the form r ⊗ b where r ∈ Dn. �

Lemma 5.2. Fix a ring A and A-algebras B and C, together with a map of A-algebra
α : C → B. Let J be the kernel of α⊗ id : C⊗AB → B. We regard C⊗AC as a C-algebra
via multiplication on the left. Let D be the kernel of the C-algebra map C ⊗A C → C

given by x ⊗ y �→ x · y. Then the B-algebra isomorphism f : (C ⊗A C) ⊗C B → C ⊗A B

given by (x⊗y)⊗b �→ y⊗α(x)·b induces a B-linear isomorphism between (D/Dn+1)⊗C B

and J/Jn+1.

Proof. A simple diagram chase shows that the following diagram commutes:

(C ⊗A C) ⊗C B
f ��

π

��

C ⊗A B

ρ

��
[(C ⊗A C)/D] ⊗C B

≈ �� (C ⊗A B)/J

where π is the quotient map tensored with B, ρ is the quotient map, and the bottom
isomorphism is the natural identification of both rings with B. It follows that if we let
D̃ = ker π then f(D̃) = J . So f(D̃n+1) = Jn+1 for any n. On the other hand,

D̃n+1 = ker[(C ⊗A C) ⊗C B → [(C ⊗A C)/Dn+1] ⊗C B]

by Lemma 5.1. It follows that f induces a B-algebra isomorphism between [(C ⊗A

C)/Dn+1] ⊗C B and (C ⊗A B)/Jn+1, which restricts to an isomorphism between
(D/Dn+1) ⊗C B and J/Jn+1, as desired. �

Let us now fix a scheme X over a ring k.
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Definition 5.3. Consider OX ⊗k OX as an OX -algebra via f · (g ⊗ h) := (fg) ⊗ h.

(a) By the sheaf of nth co-jets on X we will mean the coherent OX -module
P(n)

X := I/In+1 where I is the kernel of the OX -algebra map OX ⊗k OX → OX

given on sections by f ⊗ g �→ f · g.

(b) The nth jet space over X, denoted by Jetn(X), is the linear space associated to
P(n)

X .

That is, Jetn(X) → X represents the functor which associates to every X-scheme g :
Y → X the set HomOY

(g∗P(n)
X , OY ).∗

We recall the (local) construction of the the linear space associated to a coherent sheaf
F on a scheme X. Working locally, let us assume that X = Spec(A) and that F has a
finite presentation over X given by the exact sequence

Ap a �� Aq b �� Γ (X, F) �� 0.

Writing a = (aij) as a p × q matrix over A, xj �→
∑q

i=1 aijyi determines a map
A[x1, . . . , xp] → A[y1, . . . , yq]. Taking spectra we obtain a map of group schemes

(Ga
X)q a∗

��

����������
(Ga

X)p

����������

X

The linear space L(F) → X associated to F is the kernel of a∗ as a group sub-scheme of
(Ga

X)q → X. Note that in the case when F is locally free, the linear space associated to
F is dual to the vector bundle associated to F .

Remark 5.4.

(a) If X is a smooth and irreducible then so is Jetn(X).

(b) Jet spaces commute with base change: Jetn(X ×k R) = Jetn(X) ×k R for all k-
algebras R.

Proof. Smoothness of X implies that P(n)
X is a locally free sheaf on X, and so the linear

space associated to it is dual to the associated vector bundle. In particular, if X is smooth
then Jet(n)

X is a vector bundle over X.
For part (b), setting f : X ×k R → X to be the projection, we first observe that

P(n)
X×kR = f∗P(n)

X . Fix U an affine open set in X and let ρ be the natural quotient map

[OX(U) ⊗k OX(U)] ⊗k R → [(OX(U) ⊗k OX(U))/I(U)] ⊗k R.
∗ Some discussion of the terminology here is warranted. Our jet space is closely related to, but different

from, Kantor’s [5] ‘sheaf of jets’: he does not take the associated linear space, but rather works with the
sheaf itself. Moreover, his sheaf of jets Pn

X is (OX ⊗kOX)/In+1 while our sheaf of co-jets P(n)
X is I/In+1.

Our jet spaces also differ, more seriously, with Buium’s [2] ‘jet spaces’, which are what we have called
arc spaces (in the pure algebraic setting) and what we have called prolongation spaces (in the differential
setting). Our co-jets coincide in the smooth case with the sheaf of differentials of Grothendieck [4].
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Identifying

[OX(U) ⊗k OX(U)] ⊗k R = (OX(U) ⊗k R) ⊗R (OX(U) ⊗k R)

and
[(OX(U) ⊗k OX(U))/I(U)] ⊗k R = OX(U) ⊗k R,

we see that ρ coincides with (a ⊗ r) ⊗ (b ⊗ s) �→ ab ⊗ rs. Hence, using Lemma 5.1, we see
that

P(n)
X×kR(U ×k R) = ker ρ/(ker ρ)n+1

= [I(U)/In+1(U)] ⊗k R

= f∗P(n)
X (U ×k R).

So P(n)
X×kR = f∗P(n)

X . Taking linear spaces of both sides, we get

Jetn(X ×k R) = Jetn(X) ×X (X ×k R) = Jetn(X) ×k R,

as desired �

Definition 5.5. Given a scheme S over k and a morphism p : S → X, we denote by
Jetn(X)p the scheme Jetn(X) ×X S and we call it the nth jet space of X at p.

Note that Jetn(X)p is the linear space over S associated to the OS-module

p∗P(n)
X = p−1P(n)

X ⊗p−1OX
OS .

The following proposition gives an alternative and useful presentation of p∗P(n)
X .

Proposition 5.6. Suppose S is a scheme over k and p : S → X is an S-point of X. Let
Jp be the kernel of the OS-algebra map p
 ⊗ id : p−1OX ⊗k OS → OS .

Then for each n, p∗P(n)
X is naturally isomorphic to Jp/J n+1

p . It follows that

Jetn(X)p(S) = HomOS
(Jp/J n+1

p , OS).

In particular, if k is a field and p ∈ X(k) then

Jetn(X)p(k) = Homk(mp/m
m+1
p , k),

where mp is the maximal ideal at (the topological point associated to) p.

Proof. We describe an isomorphism p∗P(n)
X → Jp/J n+1

p on sections. Fix an open set
U in S and an open set V in X containing p(U). Let αV : OX(V ) → OS(U) be the
composition of the map from OX(V ) to OS(p−1(V )) induced by p together with the
restriction from OS(p−1(V )) to OS(U). Note that p
 on U is obtained as the direct
limit of αV as V ranges over open subsets of X containing p(U). Moreover, Jp(U) is
the corresponding direct limit of JV := ker(αV ⊗ id). Now Lemma 5.2 applied to (A =
k, B = OS(U), C = OX(V ), α = αV ) yields a natural isomorphism

[I(V )/In+1(V )] ⊗OX(V ) OS(U) → JV /Jn+1
V .
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Taking direct limits we obtain an isomorphism

p∗P(n)
X (U) = p−1P(n)

X (U) ⊗p−1OX(U) OS(U) → Jp/J n+1
p (U).

As mentioned earlier, Jetn(X)p is the linear space over S associated to p∗P(n)
X . Hence,

Jetn(X)p(S) = HomOS
(p∗P(n)

X , OS)

= HomOS
(Jp/J n+1

p , OS),

as desired.
Finally, if k is a field and p ∈ X(k) then setting S = Spec(k) and applying the above

result yields that Jetn(X)p(k) = Homk(mp/mm+1
p , k). �

The jet space construction is a covariant functor: if f : X → Y is a morphism of
schemes over k then we have the induced OX -algebra map f∗P(n)

Y → P(n)
X and hence a

morphism of linear spaces over X, Jetn(X) → Jetn(Y ) ×Y X, which in turn induces
Jetn(f) : Jetn(X) → Jetn(Y ) over f . At the level of S-points, under the identi-
fication given by Proposition 5.6, Jetn(f)p is the one induced by the natural map
p−1(f 
) : f(p)−1(OY ) → p−1OX . It is routine to check that if f is a closed embedding
then so is Jetn(f).

Lemma 5.7. Let f : X ↪→ Y be a closed embedding of affine schemes over a field k. Let
p ∈ X(k) be a k-rational point. Then the image Jetn(f)(Jetn(X)p(k)) is

{ψ ∈ Homk(mY,f(p)/m
n+1
Y,f(p), k) : ψ(f) = 0 for all f ∈ I(X) · (OY,f(p)/m

n+1
Y,f(p))}.

Proof. Let f∗ : OY,f(p) → OX,p be the associated homomorphism on local rings. Read
through the identification of Jetn(X)p(k) with Homk(mX,p/m

n+1
X,p , k), the map Jetn(f) is

given by ψ �→ ψ ◦ f∗. Since ker(f∗) = I(X) · OY,f(p) and Im(f∗) = OX,p, this proves the
lemma. �

Corollary 5.8. Suppose Z is an algebraic variety (i.e. a separated, integral scheme of
finite type) over a field k. If X and Y are irreducible closed subvarieties over k, and
p ∈ X(k) ∩ Y (k) has the the property that Jetn(X)p = Jetn(Y )p for all n ∈ N, then
X = Y .

Proof. If U ⊆ Z is a dense open affine containing p and U ∩ X = U ∩ Y , then X = Y .
Thus, we may assume that Z is affine. We show now that I(X) ⊆ I(Y ). The opposite
inclusion is shown by reversing the roles of X and Y . If f ∈ I(X), then by the descrip-
tion of the image of the Jetn(X)p(k) in Jetn(Z)p(k) from Lemma 5.7, every element
of Jetn(X)p(k) � Homk(mZ,p/m

n+1
Z,p , k) vanishes on f . As Z (and, hence, the local ring

OZ,p) is noetherian, ⋂
n�0

(mn+1
Z,p + I(Y ) · OZ,p) = I(Y ) · OZ,p.

If f /∈ I(Y ), then as I(Y ) is primary, f /∈ I(Y ) · OZ,p. So, for some n we have
f /∈ m

n+1
Z,p + I(Y ) · OZ,p. Again by the description of the image of Jetn(Y )p(k), there
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would be some element of the image which did not vanish on f . Since Jetn(X)p(k) and
Jetn(Y )p(k) have the same image by assumption, this is impossible. �

Lemma 5.9. Suppose f : X → Y is a dominant separable morphism of varieties over a
field k. Then Jetn(f) : Jetn(X) → Jetn(Y ) is a dominant morphism.

Proof. We may take k = kalg. As f is dominant and separable, there is a dense open U ⊆
X on which f is smooth. That is, for every point p ∈ U(k) the map f∗ : mY,f(p)/m2

Y,f(p) →
mX,p/m2

X,p is injective. It follows that for every n > 0 the map

f∗ : mY,f(p)/m
n+1
Y,f(p) → mX,p/m

n+1
X,p

is injective. Hence, taking duals, Jetn(f)p : Jetn(X)p(k) → Jetn(Y )f(p)(k) is surjective.
As f(U(k)) is dense in Y , we have that Jetn(f)(Jetn(X)(k)) is Zariski-dense in Jetn(Y ).

�

Lemma 5.10. Suppose f : X → Y is an étale morphism of schemes of finite type
over a field k. Then Jetn(f) : Jetn(X) → Jetn(Y ) is étale. Moreover, if R is a k-
algebra with Spec(R) finite, and p : Spec(R) → X is an R-point of X over k, then
Jetn(f)p : Jetn(X)p → Jetn(Y )f(p) is an isomorphism.

Proof. Since f is étale, for every topological point q ∈ X, f induces an isomorphism of
finite-dimensional k-vector spaces, mf(q)/mm

f(q) → mq/mm
q , for all m > 0. Now for each

x ∈ Spec(R) we have the associated local k-algebra homomorphisms p

x : OX,p(x) → Rx.

Set Jpx
:= ker(p


x ⊗ id : OX,p(x) ⊗k Rx → Rx). Specializing Proposition 5.6 to the case of
S = Spec(R) we see that

p∗P(n)
X =

⊕
x∈Spec(R)

Jpx
/Jn+1

px

and

f(p)∗P(n)
Y =

⊕
x∈Spec(R)

Jf(p)x
/Jn+1

f(p)x
.

Hence it suffices to show that for each x ∈ Spec(R), f induces an isomorphism between
Jf(p)x

/Jn+1
f(p)x

and Jpx
/Jn+1

px
. Since the maximal ideal mx in R(x) must be nilpotent, Jn+1

px

contains m�
p(x) ⊗ 1 and Jn+1

f(p)x
contains m�

f(p)(x) ⊗ 1, for some � > 0. But f does induce
an isomorphism

(OX,p(x) ⊗k Rx)/(m�
p(x) ⊗ 1) → (OY,f(p)(x) ⊗k Rx)/(m�

f(p)(x) ⊗ 1)

which will take Jn+1
px

to Jn+1
f(p)(x). So f induces an isomorphism between f(p)∗P(n)

Y and
p∗P(n)

X , and hence an isomorphism between Jetn(Y )f(p) and Jetn(X)p, as desired.
The first part of the lemma now follows on general grounds. To show that Jetn(f) is

étale we need to check that it is smooth and of relative dimension zero. These properties
are local. As on the base Jetn(f) is simply f which is étale and Jetn(f) is an isomorphism
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fibrewise, Jetn(f) is of relative dimension zero. For smoothness consider the following
diagram for any point p̃ ∈ Jetn(X)(kalg) lying above some point p ∈ X(kalg):

Tp̃(Jetn(X)p)

��

dp̃(Jetn(f)p) �� TJetn(f)(p̃)(Jetn(Y )f(p))

��
Tp̃ Jetn(X)

��

dp̃ Jetn(f) �� TJetn(f)(p̃) Jetn(Y )

��
TpX

dpf �� Tf(p)Y

As Jetn(f) restricts to isomorphism between Jetn(X)p and Jetn(Y )f(p) we see that
dp̃(Jetn(f)p) is an isomorphism between Tp̃(Jetn(X)p) and TJetn(f)(p̃)(Jetn(Y )f(p)). As
f itself is étale, dpf is an isomorphism between TpX and Tf(p)Y . Hence, dp̃ Jetn(f) is an
isomorphism and so Jetn(f) is étale. �

Remark 5.11. It follows from Lemma 5.10 that if U is a Zariski open subset of X then
Jetn U → U is the restriction of Jetn X → X to U .

5.1. A coordinate description of the jet space

Let X ⊂ A
�
k be an affine scheme of finite type over a ring k. We wish to give a

coordinate description of Jetn(X) as a sub-scheme of Jetn(A�
k).

If x = (x1, . . . , x�) are coordinates for A
�
k then Γ (A�

k, P(n)
A�

k
) = J/Jn+1 where J is the

ideal in k[x, x′] generated by elements of the form zi := (x′
i −xi). Setting z = (z1, . . . , z�)

we have that z = x′ − x. Now let

Λ :=
{

α ∈ N
� : 0 <

�∑
i=1

αi � n

}
.

We use multi-index notation so that for each α ∈ Λ, zα :=
∏�

i=1 zαi
i . Note that J/Jn+1

is freely generated as a k[x]-module by {zα(mod Jn+1) : α ∈ Λ}. That is, Jetn(A�
k) is the

affine space Spec(k[x, (zα)α∈Λ]).
Suppose X = Spec(k[x]/I). Now Γ (X, P(n)

X ) = 〈JII ′〉/〈Jn+1II ′〉 where I ′ is just I

in the indeterminates x′. As a k[x]/I-module Γ (X, P(n)
X ) is generated by the image of

{zα(mod Jn+1) : α ∈ Λ}. By the construction of linear spaces, to describe Jetn(X) we
need to describe the relations among these generators. The relations are obtained by
writing P (x′), for each P ∈ I, as a k[x]-linear combination of {zα(mod Jn+1) : α ∈ Λ}
in k[x, x′]/Jn+1.

To this end, for each α ∈ N
� let Dα be the differential operator on k[x] given by

Dα

( ∑
β∈B

rβxβ

)
=

∑
β∈B, β�α

rβ

(
β

α

)
xβ−α.
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That is, for any P ∈ k[x], P (x + z) =
∑

α(DαP )(x)zα. Note that if α! := α1! · · ·α�! is
invertible in k then Dα is just the differential operator

1
α!

∂|α|

∂xα1
1 · · · ∂xα�

�

.

Now consider P (x) =
∑

β∈B rβxβ ∈ I. Then

P (x′) = P (x + z)

=
∑
α

(DαP )(x)zα

=
∑
α∈Λ

(DαP )(x)zα mod Jn+1.

We have thus shown the following proposition.

Proposition 5.12. With the above notation, if X = Spec(k[x]/I) then as a sub-scheme
of the affine space Jetn(A�

k) = Spec(k[x, (zα)α∈Λ]), Jetn(X) is given by the equations:

P (x) = 0,∑
α∈Λ

(DαP )(x)zα = 0

for each P ∈ I.

Remark 5.13. The coordinate description of the jet space given by Proposition 5.12
agrees with the way that jet spaces of algebraic varieties are defined in [10].

6. Interpolation

Unlike arcs, jets are not a special case of our abstract prolongation space construction;
they do not come from Weil restrictions. In particular, as can be seen even by sheer
dimension calculations, it is not the case (in general) that jets commute with prolon-
gations. Nevertheless, there is a natural morphism that compares the jet space of a
prolongation to the prolongation of the jet space, which is generically linear and sur-
jective over the prolongation. In this final section we introduce this map, establish its
fundamental properties, and compute explicit equations for it in coordinates. This mor-
phism will allow us in the sequel to this paper [7] to define the Hasse-differential jet
spaces of Hasse-differential varieties.

Fix a finite free S-algebra scheme E over a ring A, an A-algebra k, an A-algebra
homomorphism e : k → E(k), and a scheme X over k. Let τ(X) = τ(X, E , e) be the
prolongation of X with respect to E and e. (Recall that our standing assumption is that
this prolongation space exists, which is the case for example when X is quasi-projective.)
Fix also m ∈ N. We construct a map

φX
m,E,e : Jetm(τ(X)) → τ(Jetm(X))
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over X, which we will call the interpolating map of X (with respect to m, E , and e). We
will define φX

m,E,e by expressing its action on the R-points of Jetm τ(X), for arbitrary
k-algebras R. It should be clear from the construction, and will also follow from the
coordinate description given in the next section, that φX

m,E,e is a morphism of schemes
over k.

Our map will be the composition of two other maps which we now describe. Suppose
p : Spec(R) → τ(X) is an R-point of τ(X) over k. Then p ×k E(k) : Spec(E(R)) →
τ(X) ×k E(k) is an E(R)-point of τ(X) ×k E(k) over E(k).

Lemma 6.1. Base change from k to E(k) induces a natural map

u := uX,p
m,E,e : Jetm(τ(X))p(R) → Jetm(τ(X) ×k E(k))p×kE(k)(E(R)).

Proof. Recall that Jetm(τ(X))p(R) = HomR(p∗P(m)
τ(X), R) and

Jetm(τ(X) ×k E(k))p×kE(k)(E(R)) = HomE(R)((p ×k E(k))∗(P(m)
τ(X)×kE(k)), E(R))

= HomE(R)(p∗P(m)
τ(X) ⊗k E(k), E(R)),

where the identification

(p ×k E(k))∗(P(m)
τ(X)×kE(k)) = p∗P(m)

τ(X) ⊗k E(k)

is by the fact that P(m)
τ(X)×kE(k) is just the pullback of P(m)

τ(X) under the projection τ(X)×k

E(k) → τ(X).
Now define u to be the map that assigns to the R-linear map ν : p∗P(m)

τ(X) → R the E(R)-
linear map ν ⊗k E(k) : p∗P(m)

τ(X) ⊗k E(k) → E(R). That is, u is given by base change. �

Under the usual identification p corresponds to an Ee(R)-point of X over k, p̂ :
Spec(Ee(R)) → X.

Lemma 6.2. Applying the Jetm functor to rX
E,e : τ(X) ×k E(k) → X, the canonical

morphism associated to τ(X), induces a map

v := vX,p
m,E,e : Jetm(τ(X) ×k E(k))p×kE(k)(E(R)) → Jetm(X)p̂(Ee(R)).

Proof. Note that as E(k)-algebras E(R) = Ee(R). So p ×k E(k) can also be viewed as
an Ee(R)-point of τ(X) ×k E(k) over E(k).

Applying the jet functor we get Jetm(rX
E,e) : Jetm(τ(X) ×k E(k)) → Jetm(X). Since

p̂ = rX
E,e ◦ (p ×k E(k)) (see Lemma 4.5), this morphism restricted to the fibre at the

Ee(R)-point p ×k E(k) yields a morphism

Jetm(τ(X) ×k E(k))p×kE(k) → Jetm(X)p̂.

Evaluating at Ee(R)-points yields the desired map v. �
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Our interpolating map is now just the composition of the maps given in the above
two lemmas. More precisely, if p ∈ τ(X)(R) and ν ∈ Jetm(τ(X))p(R) then we define our
interpolating map by

φX
m,E,e(p, ν) := (p̂, v(u(ν))),

where u is from Lemma 6.1 and v is from Lemma 6.2. Note that

φX
m,E,e(p, ν) ∈ Jetm(X)(Ee(R)) = τ(Jetm(X))(R).

Depending on what we wish to emphasize/suppress, we may drop one or more of the
subscripts and superscripts on φX

m,E,e.

Lemma 6.3. The interpolating map φX
m,E,e : Jetm τ(X) → τ Jetm(X) is a morphism of

linear spaces over τ(X).

Proof. That φ is a morphism of schemes over τ(X) can be derived from the definition,
but also follows from the coordinate description given in the next section.

First note that the prolongation functor preserves products and that τ(Sk) = Ek.
Hence, it takes the Sk-linear space Jetm(X) → X to an Ek-linear space τ(Jetm(X)) →
τ(X). The latter obtains an Sk-linear space structure from s : S → E . It is with respect
to this structure that the lemma is claiming φ is linear.

It is clear from the definition of u and v in Lemmas 6.1 and 6.2 respectively, that for an
arbitrary k-algebra R, and an arbitrary R-point p of τ(X), u and v are R-linear. Hence
φ is R-linear on the R-points of the fibre above p. As R and p were arbitrary, this implies
that φ is a morphism of linear spaces. �

The fundamental properties of the interpolating map are given in the following propo-
sition.

Proposition 6.4. The interpolating map satisfies the following properties.

(a) Functoriality. If g : X → Y is a morphism of schemes over k, then for each m, n ∈ N

the following diagram commutes:

Jetm τ(X)
Jetmτ(g) ��

φX

��

Jetm τ(Y )

φY

��
τ Jetm(X)

τ Jetm(g)
�� τ Jetm(Y )

(b) Compatibility with composition of prolongations. Suppose F is another finite
free S-algebra scheme and f : k → F(k) is a ring homomorphism agreeing with sk

F
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on A. Then the following commutes:

Jetm τ(X, EF , ef)

φX
EF,ef

��

φ
τ(X,E,e)
F,f

���������������������

τ(Jetm τ(X, E , e), F , f)

τ(φX
E,e,F,f)���������������������

τ(Jetm(X), EF , ef)

(c) Compatibility with comparing of prolongations. Suppose F is another finite
free S-algebra scheme, f : k → F(k) is a ring homomorphism agreeing with sk

F on A,
and α : E → F is a morphisms of ring schemes such that αk ◦e = f . Then the following
diagram commutes:

Jetm τ(X, E , e)

φE

��

Jetm(α̂) �� Jetm τ(X, F , f)

φF

��
τ(Jetm(X), E , e)

α̂Jetm(X)
�� τ(Jetm(X), F , f)

Proof. For part (a), fix p ∈ τ(X)(R). By the funtoriality of the Weil restriction (see
Proposition 2.1) it follows that the following diagram commutes:

τ(X) ×k E(k)
τ(g)×kE(k) ��

rX
E,e

��

τ(Y ) ×k E(k)

rY
E,e

��
X

g �� Y

Taking jets and evaluating at Ee(R)-points we get

Jetm(τ(X) ×k E(k))p×kE(k)(Ee(R))
Jetm(τ(g)×kE(k)) ��

vX,p

��

Jetm(τ(Y ) ×k E(k))τ(g)(p)×kE(k)(Ee(R))

vY,τ(g)(p)

��
Jetm(X)p̂(Ee(R))

Jetm(g) �� Jetm(Y )
̂τ(g)(p)(E

e(R))

On the other hand, that the following diagram commutes is clear from the fact that the
map u in Lemma 6.1 is just given by base change:

Jetm(τ(X))p(R)

uX,p

��

Jetm(τ(g)) �� Jetm(τ(Y ))τ(g)(p)(R)

uY,τ(g)(p)

��
Jetm(τ(X) ×k E(k))p×kE(k)(E(R))

Jetm(τ(g)×kE(k)) �� Jetm(τ(Y ))τ(g)(p)×kE(k)(E(R))
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Putting these two commuting squares together yields

Jetm(τ(X))p(R)

vX,p◦uX,p

��

Jetm(τ(g)) �� Jetm(τ(Y ))τ(g)(p)(R)

vY,τ(g)(p)◦uY,τ(g)(p)

��
Jetm(X)p̂(Ee(R))

Jetm(g) �� Jetm(Y ) ̂τ(g)(p)
(Ee(R))

By the construction of the interpolating map, this in turn implies

Jetm τ(X)
Jetmτ(g) ��

φX

��

Jetm τ(Y )

φY

��
τ Jetm(X)

τ Jetm(g)
�� τ Jetm(Y )

as desired.
For part (b), let us make the systematic abbreviation τE(X) for τ(X, E , e). Fixing

p ∈ τEF (X)(R) we have the associated points p̂ ∈ X(EFef (R)) and p̂F ∈ τE(X)(Ff (R)).
The contribution to the interpolating map from base change (namely from the map given
by Lemma 6.1) will cause no difficulty and so we only check commuting for the relevant
diagram coming from the Weil restriction map (i.e. the map from Lemma 6.2). From
Lemma 4.14 we have the following commuting triangle:

τEF (X) ×k EF(k)

r
τE (X)
F,f ×kE(k)

��

rX
EF,ef

������������������

X

τE(X) ×k E(k)
rX

E,e

������������������

This induces the following morphism of sheaves of EF(R)-algebras:

p∗(P(m)
τEF (X)) ⊗k EF(k)

p̂∗(P(m)
X )

������������������

������������������

p̂∗
F (P(m)

τE(X)) ⊗k E(k)
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Taking duals, and making natural identifications we obtain

HomEF(R)(p∗(P(m)
τEF (X)) ⊗k EF(k), EF(R))

vX,p
EF

����������������������

v
τE (X),p
F ⊗kE(k)

��

HomEFef (R)(p̂∗(P(m)
X ), EFef (R))

HomE(Ff (R))(p̂∗
F (P(m)

τE(X)) ⊗k E(k), E(Ff (R)))

v
X,p̂F
E

����������������������

From here part (b) is easily verified.
For part (c) we continue to use the abbreviation τE(X) for τ(X, E , e), and we work

with a fixed point p ∈ τE(X)(R) for some fixed k-algebra R. Again we are going to
break the desired commutative diagram into two pieces, one coming from each of the two
ingredients of the interpolating map (namely from the map given by Lemma 6.1 and the
map from Lemma 6.2). To do so, note first of all that there is a natural map

α̃ : Jetm(τE(X) ×k E(k))p×kE(k)(E(R)) → Jetm(τF (X) ×k F(k))α̂(p)×kF(k)(F(R)).

Indeed, α̃ is just the composition of the map

Jetm(τE(X) ×k E(k))p×kE(k)(E(R)) → Jetm(τE(X) ×k F(k))p×kF(k)(F(R))

induced by base change from E(k) to F(k) using α, with Jetm(α̂ ×k F(k)):

Jetm(τE(X) ×k F(k))p×kF(k)(F(R)) → Jetm(τF (X) ×k F(k))α̂(p)×kF(k)(F(R)).

Hence, to obtain the desired commuting diagram it will suffice to prove that:

(1) the following diagram commutes

Jetm(τE(X))p(R)

��

Jetm(α̂) �� Jetm(τF (X))α̂(p)

��
Jetm(τE(X) ×k E(k))p×kE(k)(E(R)) α̃ �� Jetm(τF (X) ×k F(k))α̂(p)×kF(k)(F(R))

where the vertical arrows are the base change maps of Lemma 6.1; and

(2) the following diagram commutes

Jetm(τE(X) ×k E(k))p×kE(k)(E(R))

��

α̃ �� Jetm(τF (X) ×k F(k))α̂(p)×kF(k)(F(R))

��
Jetm(X)p̂(Ee(R)) α̂Jetm(X)

�� Jetm(X) ̂̂α(p)(F
f (R))

where the vertical arrows are the maps of Lemma 6.2.
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Diagram (1) is easily seen to commute by unravelling the definitions and using that fact
that jet spaces commute with base change. So we focus on proving that diagram (2)
commutes.

From Lemma 4.9 we have the following commuting diagram:

τF (X) ×k F(k)

rX
F,f �������������

τE(X) ×k F(k)

rX
E,e◦(id⊗α)�������������

α̂⊗idF(k)��

X

where rX
E,e ◦ (id ⊗ α) : τE(X) ×k F(k) → X is the composition of the projection

τE(X) ×k F(k) = τE(X) ×k E(k) ×E(k) F(k) → τE(X) ×k E(k)

with rX
E,e : τE(X)×k E(k) → X. Taking the co-jet sheaves and pulling back by the appro-

priate morphisms we obtain the following commuting diagram of sheaves on Spec(F(R)):

(α̂(p) ×k F(k))∗Pm
τF (X)×kF(k)

c �� (p ×k F(k))∗Pm
τE(X)×kF(k)

̂̂α(p)
∗
Pm

X

b

�����������������
a

����������������

Note that rX
E,e ◦ (id ⊗ α) really does take p ×k F(k) to ̂̂α(p) since ̂̂α(p) = p̂ ◦ α.

Now, let us consider diagram (2) above. Unravelling the definitions it is not hard to
verify that given γ ∈ Jetm(τE(X) ×k E(k))p×kE(k)(E(R)),

• going clockwise along diagram (2) takes γ to (γ ⊗E(k) F(k)) ◦ c ◦ b; while

• going counterclockwise along diagram (2) takes γ to (γ ⊗E(k) F(k)) ◦ a.

Hence diagram (2) is commutative, as desired. �

6.1. The interpolating map in coordinates

We wish to give a coordinate description of the interpolating map for affine schemes
of finite type. Since the jet and prolongation functors preserve closed embeddings, func-
toriality allows us to reduce this task to affine space.

Fix a finite free S-algebra scheme E over a ring A and an A-algebra k equipped with
an A-algebra homomorphism e : k → E(k). Let (e0 = 1, e1, . . . , e�−1) be a basis for E(k)
over k.

Consider A
r
k = Spec(k[x1, . . . , xr]). Then τA

r
k = Spec(k[ȳ1, . . . , ȳr]), where each ȳi =

(yi,0, . . . , yi,�−1). Let x = (x1, . . . , xr) and ȳ = (ȳ1, . . . , ȳr).
Suppose R is a k-algebra, ā ∈ τA

r
k(R) and a ∈ A

r
k(Ee(R)) is the point corresponding

to ā. A straightforward computation using Proposition 5.6 shows that

Jetm(τA
r
k)ā(R) = HomR(R[ȳ]ā/(ȳ − ā)m+1, R),

Jetm(Ar
k)a(Ee(R)) = HomEe(R)(Ee(R)[x]a/(x − a)m+1, Ee(R)),
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where R[ȳ]ā is the localization of R[ȳ] at {f ∈ R[ȳ] : f(ā) ∈ R×}, and Ee(R)[x]a is the
localization of Ee(R)[x] at {f ∈ Ee(R)[x] : f(a) ∈ Ee(R)×}. Our interpolating map

HomR(R[ȳ]ā/(ȳ − ā)m+1, R) → HomEe(R)(Ee(R)[x]a/(x − a)m+1, Ee(R))

is given by f �→ (f ×k E(k)) ◦ r∗ where

r∗ : Ee(R)[x]a/(x − a)m+1 → E(R)[ȳ]ā/(ȳ − ā)m+1

is the map induced by xi �→
∑�−1

j=0 yi,jej . So to compute the interpolating map on coordin-
ates, we need to compute r∗ on the monomial basis for Ee(R)[x]a/(x− a)m+1 over E(R).
To that end, fix β ∈ N

r with 0 < |β| � m and compute in multi-index notation

r∗(xβ) =
r∏

i=1

( �−1∑
j=0

yi,jej

)βi

=
∑

γ=(γ1,...,γr)∈N�r, |γi|=βi

ȳγ(e0, . . . , e�−1)
∑r

i=1 γi .

Set Γβ := {γ = (γ1, . . . , γr) ∈ N
�r : |γi| = βi} and for each γ ∈ Γβ , expand

(e0, . . . , e�−1)
∑r

i=1 γi =
�−1∑
j=0

cγ,jej (6.1)

for some cγ,j ∈ A. So we have

r∗(xβ) =
�−1∑
j=0

( ∑
γ∈Γβ

cγ,j ȳ
γ

)
ej . (6.2)

Remark 6.5. Fix β ∈ N
r with 0 < |β| � m. Let

β̂ := (β1, 0, . . . ; β2, 0, . . . ; · · · ; βr, 0, . . . , 0) ∈ Γβ ⊂ N
�r.

Then

• cβ̂,0 = 1,

• cβ̂,j = 0 for all j 	= 0, and

• cγ,0 = 0 for all γ ∈ Γβ \ {β̂}.

Indeed, this is because e0 = 1 and if γ ∈ Γβ \ {β̂} then (e0, . . . , e�−1)
∑r

i=1 γi is in the
kernel of the reduction map E(k) → k.

We can already prove the following surjectivity result.

Proposition 6.6. The interpolating map on affine space, φ : Jetm τA
r
k → τ Jetm

A
r
k, is

surjective.
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Proof. Fix a k-algebra R, a point ā ∈ τA
r
k(R), and let a ∈ A

r
k(Ee(R)) be the point

corresponding to ā, as above. We need to show that

HomR(R[ȳ]ā/(ȳ − ā)m+1, R) → HomEe(R)(Ee(R)[x]a/(x − a)m+1, Ee(R))

given by f �→ (f ×k E(k)) ◦ r∗ is surjective. Fix an arbitrary β ∈ N
r with 0 < |β| � m

and let ν ∈ HomEe(R)(Ee(R)[x]a/(x − a)m+1, Ee(R)) be such that it takes xβ to 1 and
all other monomial basis elements to 0. It suffices to show that ν is in the image of the
interpolating map. Define f ∈ HomR(R[ȳ]ā/(ȳ − ā)m+1, R) such that f(ȳβ̂) = 1 and f

sends all other monomial basis elements to 0. Then

(f ×k E(k)) ◦ r∗(xβ) =
�−1∑
j=0

f

( ∑
γ∈Γβ

cγ,j ȳ
γ

)
ej

=
�−1∑
j=0

cβ̂,jej

= e0

= 1,

where the first equality is by (6.2) and the penultimate equality is by Remark 6.5. On
the other hand, for β′ 	= β, since β̂ /∈ Γβ′ , a similar calculation shows that (f ×k E(k)) ◦
r∗(xβ′

) = 0. So (f ×k E(k)) ◦ r∗ = ν, as desired. �

We return to the computation of the interpolating map on coordinates. Fix γ =
(γ1, . . . , γr) ∈ N

�r such that 0 < |γ| � m and consider the basis element fγ ∈
HomR(R[ȳ]ā/(ȳ − ā)m+1, R) which takes ȳγ to 1 and sends all other monomial basis
elements to 0. We now compute what the interpolating map does to fγ . Fix β ∈ N

r with
0 < |β| � m,

(fγ ×k E(k)) ◦ r∗(xβ) =
�−1∑
j=0

fγ

( ∑
γ′∈Γβ

cγ,j ȳ
γ′

)
ej

=

⎧⎪⎪⎨⎪⎪⎩
�−1∑
j=0

cγ,jej if γ ∈ Γβ ,

0 otherwise,

where the first equality is by (6.2) and the coefficients cγ,j ∈ A are from (6.1). Set
γ̃ = (|γ1|, . . . , |γr|) ∈ N

r. So γ̃ is the multi-index such that γ ∈ Γγ̃ . We have shown that

φ(fγ) =
( �−1∑

j=0

cγ,jej

)
gγ̃ ,

where gγ̃ ∈ HomEe(R)(Ee(R)[x]a/(x − a)m+1, Ee(R)) takes xγ̃ to 1 and all other monomial
basis elements to 0.
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For an arbitrary element f =
∑

γ∈N�r, 0<|γ|�m uγfγ of HomR(R[ȳ]ā/(ȳ − ā)m+1, R),
where the uα ∈ R, we can then compute

φ(f) =
∑

γ∈N�r, 0<|γ|�m

uγ

( �−1∑
j=0

cγ,jejgγ̃

)

=
∑

β∈Nr, 0<|β|�m

( �−1∑
j=0

( ∑
γ∈Γβ

uγcγ,j

)
ej

)
gβ .

We have shown the following proposition.

Proposition 6.7. If R is a k-algebra and (ā, f) ∈ Jetm τA
r
k(R), where

f =
∑

γ∈N�r, 0<|γ|�m

uγfγ ,

then φ(ā, f) ∈ τ Jetm
A

r
k(R) is given by(

ā, uβ̂ ,

( ∑
γ∈Γβ

uγcγ,1

)
,

( ∑
γ∈Γβ

uγcγ,2

)
, . . . ,

( ∑
γ∈Γβ

uγcγ,�−1

))
β∈Nr, 0<|β|�m

,

where the coefficients cγ,j ∈ A come from (6.2) above. Stated another way, on coordinate
rings,

φ∗ : k[ȳ, {wβ,i : 0 � i � � − 1, β ∈ N
r, 0 < |β| � m}]

→ k[ȳ, {zγ : γ ∈ N
�r, 0 < |γ| � m}]

is given by

• ȳ �→ ȳ,

• wβ,0 �→ zβ̂ for each β ∈ N
r, 0 < |β| � m,

• wβ,j �→ (
∑

γ∈Γβ
cγ,j)zγ for each β and j = 1, . . . , � − 1.

The following corollary of the above coordinate description will be useful in a sequel
to this article where we study ‘E-schemes’ and their ‘E-jets’.

Corollary 6.8. Suppose k is a field and X is of finite type over k. If p ∈ X(k) is smooth
then φ restricts to a surjective linear map between the fibres of Jetm τ(X) and τ Jetm(X)
over ∇(p) ∈ τ(X)(k).

Proof. By Lemma 6.3, φ is a morphism of linear spaces over τ(X), and so all that
requires proof is the surjectivity.

By smoothness at p, there exists an étale map from a non-empty smooth Zariski
open subset U ⊆ X containing p to A

r
k for some r � 0. Note that ∇(p) ∈ τ(U) and
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Jetm(τU) = Jetm(τX)|τU . Hence Jetm(τU)∇(p) = Jetm(τX)∇(p). Also, since Jetm(U) =
Jetm(X)|U , we have

(τ Jetm(U))∇(p) = τ(Jetm Up) = τ(Jetm Xp) = (τ Jetm(X))∇(p),

where the first and final equalities are by Proposition 4.7 (b). So, without loss of gener-
ality, we may replace X by U , and assume there is an étale map f : X → A

r
k. Indeed,

under this hypothesis, we will show that for any p′ ∈ τ(X)p(kalg), φp′ is a surjection from
Jetm(τX)p′ to (τ Jetm X)p′ . For X = A

r
k this is Proposition 6.6.

By Proposition 4.6, τ(f) is étale, and so by Lemma 5.10, Jetm(τ(X))p′ is isomor-
phic to Jetm(τ(Ar

k))τ(f)(p′). It remains therefore to prove that τ(Jetm(f)) induces an
isomorphism between the fibres over p′ and τ(f)(p′) in the following diagram:

τ(Jetm(X))
τ(Jetm(f)) ��

��

τ(Jetm(Ar
k))

��
τ(X)

τ(f) �� τ(Ar
k)

This in turn reduces to showing that if p̂ is the Ee(kalg)-point of X corresponding to p′,
then in the following diagram

Jetm(X)
Jetm(f) ��

��

Jetm(Ar
k)

��
X

f �� Ar
k

Jetm(f) induces an isomorphism between the fibres over p̂ and f(p̂). But as f is étale,
this is just Lemma 5.10 with R = Ee(kalg) applied to p̂. �
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5. J. M. Kantor, Formes et opérateurs différentiels sur les espaces analytiques complexes,
Soc. Math. France Bull. Suppl. Mémoire 53 (1977), 5–80.
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