Definition:

Let
$$\bigwedge = \sum_{x} p_{xx} |x\rangle \langle x|_{X} \otimes p_{x} \otimes p_{x}$$
.

Measurement on Q with output space Y

The accessible information for ensemble $\{ \{ p_x, p_x \} \}$ is

$(a,b \ge 0)$, $(a^2 + b^2 = 1)$ (most general form of 2 arbitrary pure states)

Optimal measurement: projective, along basis { \(\cdot \), \(\cdot \) \\

Levitin 95, or Fuchs PhD thesis 96 (Ch3.5)

$$p(x=0 \ y=+) = p(x=0) \ p(y=+|x=0)$$

$$\frac{1}{2} \qquad \text{tr} \ |tX+|Y_0XY_0| = \left(\frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}}\right)^2 = \frac{1}{2} \left(a^2 + b^2 + 2ab\right) = \frac{1}{2} + ab$$

$$p(x=1 \ y=+) = \frac{1}{2} \left(\frac{1}{2} - ab\right)$$

$$p(y=+) = 1/2,$$

$$p(x=0|y=+) = 1/2 + ab$$

$$p(x=1|y=+) = 1/2 - ab$$

$$p(y=-) = 1/2,$$

$$H(X|y=+) = h(1/2 + ab)$$

$$H(X|y=-) = h(1/2 - ab) = h(1/2 + ab)$$

$$\frac{1}{2} + ab$$

1. Unknown for most ensembles

For the few ensembles (highly symmetric) with known optimal measurements, there is no simple proof of optimality:(

2. EB Davies, IEEE Trans Info Th, 24, p596, 1978

For any ensemble of states in d dimensions, $\mathcal{E} = \{P \times_i P \times_j P \times_$

- (a) rank(M_y) = 1 and
- (p) $9 \leq 4 \leq 9_5$

Proof (a): If $M_y = \sum_k M_{y,k}$ is a decomp into rank 1 matrices replace measurement M with POVM $\{M_y\}$ by new measurement M' with POVM $\{M_{y,k}\}$ outcome has 2 parts

eg
$$M$$
: $M_0 = \frac{1}{2} |0 \times 0| + \frac{1}{3} |k \times 0|$ $(y=0)$
 $M_1 = \frac{1}{5} |0 \times 0| + \frac{1}{2} |k \times 0|$ $(y=1)$
 $M_2 = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 M' : $M_0, 0 = \frac{1}{2} |0 \times 0|$ $(y=0) \times 10$
 $M_{1,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{1,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{1,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{1,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{2,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{2,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{2,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$
 $M_{2,0} = \frac{1}{5} |0 \times 0|$ $(y=0) \times 10$

- 2. EB Davies, IEEE Trans Info Th, 24, p596, 1978 For any ensemble of states in d dimensions, $\mathcal{E} = \{P \times_i P_i \}$ optimal measurement has POVM $\mathcal{M} = \{M_g\}_{g=1}^n$ with
 - (a) rank(M_y) = 1 and
 - (p) $9 \leq 4 \leq 9$
 - Proof (a): If $M_y = \sum_k M_{y,k}$ is a decomp into rank 1 matrices replace measurement M with POVM $\{M_y\}$ by new measurement M' with POVM $\{M_{y,k}\}$, outcome has 2 parts

2. EB Davies, IEEE Trans Info Th, 24, p596, 1978

For any ensemble of states in d dimensions, $\mathcal{E} = \{ \mathcal{P}_{x_i} \mathcal{P}_{x_i} \}$ optimal measurement has POVM $\mathcal{M} = \{ \mathcal{M}_y \}_{y=1}^n$ with

- (a) rank(M_{y}) = 1 and
- (p) $9 \leq u \leq 9_5$

Proof (b): see e.g., Watrous book, or 1904.10985 Corollary 5.

Based on:

Caratheodory's Theorem:

Let $S \subseteq \mathbb{R}^{t}$, conv(S) convex hull of S.

Then, any $\mathcal{L} \in \text{conv}(S)$ is a convex combination of at most t+1 elements of S.

3. EB Davies, IEEE Trans Info Th, 24, p596, 1978 Sasaki, Barnett, Jozsa, Osaki, Hirota 9812062 Decker 0509122

Informally: many equiprobable ensembles of states with symmetry have optimal measurement with the same symmetry.

3. Ensembles with symmetry

Example 2. Define the ensemble \mathcal{E}_{i} with

$$p(0) = p(1) = p(2) = 1/3, \quad \rho_{\kappa} = |Y_{\kappa}\rangle\langle Y_{\kappa}|, \quad |Y_{0}\rangle = |0\rangle$$

9812062: optimal meas has POVM

$$M_{1} = \{ M_{K} = \frac{2}{3} R^{K} | \Psi \rangle \langle \Psi | R^{K+} \}_{k=0,1,2}$$
where $R = e^{\frac{1}{6} 6 y^{\frac{2}{3} \pi}}$ (note $R^{K} | \Psi_{0} \rangle = | \Psi_{K} \rangle$)

e.g.,
$$\langle Y \rangle = \langle Y \rangle = \langle Y \rangle = \langle Y \rangle$$

$$|\Psi\rangle = |\Psi_0^{\perp}\rangle = |1\rangle.$$

$$|Y_1\rangle = \cos \frac{\pi}{3} |0\rangle + \sin \frac{\pi}{3} |1\rangle$$

 $|Y_2\rangle = \cos \frac{\pi}{3} |0\rangle - \sin \frac{\pi}{3} |1\rangle$

(the trine or "Mercedes" states)

So,
$$M_0 = |Y_0^{\perp}\rangle\langle Y_0^{\perp}| = |1\rangle\langle 1|$$
 $M_1 = |Y_1^{\perp}\rangle\langle Y_1^{\perp}|$, $|Y_1^{\perp}\rangle = Sim_{\frac{\pi}{3}}|0\rangle - Cos_{\frac{\pi}{3}}|1\rangle$
 $M_2 = |Y_2^{\perp}\rangle\langle Y_2^{\perp}|$, $|Y_2^{\perp}\rangle = Sim_{\frac{\pi}{3}}|0\rangle + Cos_{\frac{\pi}{3}}|1\rangle$

3. Ensembles with symmetry

Example 2. Define the ensemble \mathcal{E}_i with

$$p(0) = p(1) = p(2) = 1/3, \quad \rho_{\times} = |\Psi_{\times}\rangle\langle\Psi_{\times}|, \quad |\Psi_{0}\rangle = |0\rangle$$

$$|\Psi_{1}\rangle = \{ M_{K} \}_{k=0,1,2}$$

$$|\Psi_{2}\rangle = (os \frac{\pi}{3} |0\rangle + Sin \frac{\pi}{3} |1\rangle$$

$$|\Psi_{2}\rangle = (os \frac{\pi}{3} |0\rangle - Sin \frac{\pi}{3} |1\rangle$$

$$|\Psi_{1}\rangle = |\Psi_{1}^{\perp}\rangle\langle\Psi_{1}^{\perp}|, \quad |\Psi_{1}^{\perp}\rangle = Sin \frac{\pi}{3} |0\rangle - Cos \frac{\pi}{3} |1\rangle$$

$$|\Psi_{2}\rangle = |\Psi_{2}^{\perp}\rangle\langle\Psi_{2}^{\perp}|, \quad |\Psi_{2}^{\perp}\rangle = Sin \frac{\pi}{3} |0\rangle + Cos \frac{\pi}{3} |1\rangle$$

$$|\Psi_{2}\rangle = |\Psi_{2}^{\perp}\rangle\langle\Psi_{2}^{\perp}|, \quad |\Psi_{2}^{\perp}\rangle = Sin \frac{\pi}{3} |0\rangle + Cos \frac{\pi}{3} |1\rangle$$

Ex: find pr(y|x) for all x,y.

If y=0, pr(x=0|y=0) = 0
pr(x=1|y=0) = pr(x=2|y=0) = 1/2, so H(X|y=0) = 1.
H(X|Y) = p(y=0) H(X|y=0) + p(y=1) H(X|y=1) + p(y=2) H(X|y=2) = 1

$$\frac{1}{3}$$

$$lacc = H(X) - H(X|Y) = (log 3) - 1 = 0.5850.$$