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No free entanglement even with a catalyst:
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No free entanglement even with a catalyst:

Alice

Bob

U

V

|0i

|0i

|φi|ψi |ψi IMPOSSIBLE

Embezzlement of entanglement:

Theorem. 8 ε > 0, 8 d, |φiA'B' 2 Cd ⊗ Cd

9 N, |ψiAB 2 CN ⊗ CN, 

9 U, V  s.t. (UAA' ⊗ VBB') |ψiAB |00iA'B' ¼ ε |ψiAB |φiA'B' !

Any state |φi can be embezzled to any accuracy w/ some |ψi.
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van Dam & Hayden 2002 

- conceived such possibility ! 

- one |ψi (universal)

fits all (8 2-party |φi of fixed d)

Embezzlement of entanglement:
Any state |φi can be embezzled to any accuracy w/ some |ψi.

|ψi ∝ ∑k=1
N (1/k) |kiA |kiB

Theorem. 8 ε > 0, 8 d, |φiA'B' 2 Cd ⊗ Cd

9 N, |ψiAB 2 CN ⊗ CN, 

9 U, V  s.t. (UAA' ⊗ VBB') |ψiAB |00iA'B' ¼ ε |ψiAB |φiA'B' !



van Dam & Hayden 2002 

- conceived such possibility ! 

- one |ψi (universal)

fits all (8 2-party |φi of fixed d)

Embezzlement of entanglement:

Theorem. 8 ε > 0, 8 d, |φiA'B' 2 Cd ­ Cd

9 N, |ψiAB 2 CN ­ CN, 

9 U, V  s.t. (UAA' ­ VBB') |ψiAB |00iA'B' ¼ ε |ψiAB |φiA'B' !

Any state |φi can be embezzled to any accuracy w/ some |ψi.
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Alternative (& obvious) embezzlement scheme

Want: (UAA' ­ VBB') |ψiAB |00iA'B' ¼ ε |ψiAB |φiA'B'
L, Toner, Watrous 08

Given: A’B’, |Ái
what AB, |ψi?



Choose: A = A1 ... An , B = B1 ... Bn , 8 i, Ai » A', Bi » B'
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Alternative (& obvious) embezzlement scheme

Want: (UAA' ­ VBB') |ψiAB |00iA'B' ¼ ε |ψiAB |φiA'B'
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⊗ |ψiAB|00iA'B'

∝ ∑r=1
n-1 |00i⊗r |φi⊗n-r

|φiA'B' ⊗ |ψ'iAB

∝ ∑r=1
n-1 |00i⊗r+1 |φi⊗n-r-1

≈ ε |ψiAB if n = 1/ε

|ψiAB

What U,V?



Summary of the embezzlement scheme

² dim(AB) = dim(A'B')(1/ε) (close to optimal)

² works 8 |ηiA'B' ! |φiA'B' using |ψi = C ∑r=1
n-1 |ηi⊗r |φi⊗n-r

² works for multipartite |ηi & |φi

² works for other reason why |ηi $ |φi . 

|ψiAB |00iA'B' $ |ψ'iAB |φiA'B' ¼ ε |ψiAB |φiA'B'

C ∑r=1
n-1 |00i⊗r |φi⊗n-r C ∑r=2

n |00i⊗r |φi⊗n-r



References for embezzlement:

²  van Dam and Hayden, 0201041 

²  Leung, Toner and Watrous, 0804.4118

² Leung and Wang, 1311.6842

² Connes and Stormer, J functional analysis 28, 187 (1978)

∞-dim generalization, self-embezzlement:

²  Haagerup, Scholz and Werner (in preparation)

² Cleve, Liu, Paulsen, 1606.05061 

² Cleve, Collins, Liu, Paulsen, 1811.12575

Mismatched descriptions of what to embezzle:

² Steurer, Dinur, Vidick, 1310.4113



Open problems on embezzlement:

1. van Dam - Hayden scheme        LTW scheme

catalyst universal 8|φi catalyst depends on |φi

unitaries depends on |φi unitaries independent of |φi

bipartite states  multi-partite states   

LTW scheme can use a universal catalyst: tensor product of
catalysts for an ε-net of target states and a fixed initial state.

For embezzlement of multipartite state, is there a more 
efficient universal catalyst?  

2. L, Wang 2013 showed that finite-dim embezzlement catalyst  
is essentially unique for universal embezzlement in the 
bipartite setting.  Same for multi-partite setting?



Outline:

1. Embezzlement

2. Approximate violation of conservation laws 
& macroscopically controlled coherent operations

3. Finite Bell inequality that cannot be violated maximally 
with finite amount of entanglement

4. Quantum reverse Shannon theorem



Local operations Superselection rules

Entanglement Conserved quantities
(charge, spin etc)

SSR: Restricted Hamiltonian or 
unitary that are block-diagonal

“Block index” is conserved 



Local operations Superselection rules

Entanglement Conserved quantities
(charge, spin etc)

Embezzlement Generic recipe to approx
an otherwise forbidden 
transformation 

Suppose |ηi $ |φi , say, because |ηi , |φi contain different 

amount of a conserved quantity.  

Cyclic permutation conserves the quantity (allowed).    

Using |ψi = C ∑r=1
n-1 |ηi⊗r |φi⊗n-r one can perform

|ψi|ηi = C ∑r=1
n-1 |ηi⊗r |φi⊗n-r |ηi

→ C ∑r=1
n-1 |ηi⊗r+1 |φi⊗n-r-1 |φi ≈ ε |ψi|φi

and "violate" the conservation law !



Furthermore, the approx transformation is coherent, and 

can be performed / not in superposition.

Conditioned on 1st register being |1i , apply |ψi|ηi → ε |ψi|φi

(a|0i|γi + b|1i|ηi) |ψi  $ ε (a|0i|γi + b|1i|φi) |ψi

Thus |ψi makes the superselection rule irrelevant.   



e.g., |0iS : spin down (ground state)

|1iS : spin up (excited state) 

"X gate":  a |0iS + b |1iS $ a |1iS + b |0iS but  |0iS $ |1iS

Allowed: |riL |0iS $ |r-1iL |1iS

where |kiL = k-photon state in laser beam.  

But changes in # photon in laser beam decoheres the spin.  

Solution: use |ψiL = ∑r=1
n-1 |riL : 

|ψiL (a|0iS + b|1iS) $ ∑r=1
n-1 |r-1iL a|1iS + ∑r=1

n-1 |r+1iL b|0iS

≈ |ψiL 

Application: macroscopically-controlled gates

nearly coherent X gate

≈ |ψiL 

≈ |ψiL (a|1iS + b|0iS)



e.g., |0iS : spin down (ground state)

|1iS : spin up (excited state) 

"X gate":  a |0iS + b |1iS $ a |1iS + b |0iS but  |0iS $ |1iS

Allowed: |riL |0iS $ |r-1iL |1iS

where |kiL = k-photon state in laser beam.  

But changes in # photon in laser beam decoheres the spin.  

Solution: use |ψiL = ∑r=1
n-1 |riL : 

|ψiL (a|0iS + b|1iS) $ 

Application: macroscopically-controlled gates

≈ |ψiL (a|1iS + b|0iS)

In the lab, we use the coherent state |ψiL ∝ ∑r=1
n-1 ®r / √(r!) |riL !



Local operations Superselection rules

Entanglement Conserved quantities
(charge, spin etc)

Embezzlement Generic recipe to approx
an otherwise forbidden 
transformation 

Principle: use catalyst to introduce a large uncertainty of 
the conserved quantity to enable approximately violation of 
conservation law

|ψi ∝ ∑r=1
n-1 |00i⊗r |φi⊗n-r

Uncertainty in # of copies of 
|00i vs |φi

|ψiL ∝ ∑r=1
n-1 |riL

Uncertainty in photon #



Kitaev, Mayers, & Preskill (0310088) investigated (in response 
to Popescu) if superselection rules (SSR) help quantum crypto 
by restricting adversarial behavior:

superposition of diff charges possible if a charge reservoir 
(a condensate ~ catalyst) is accessible, and SSR cannot enhance 
quantum cryptography.

Bartlett, Rudolph, and Spekkens (0610030) generalized the 
above, by connection to "reference frames" which are like the 
catalyst in this talk.

Embezzlement ! arbitrary unitary despite SSR ?
Latter solved by Popescu, Sainz, Short, Winter (1804.03730) 
1-party result, does not give embezzlement ...   

More on conservation laws



Outline:

1. Embezzlement

2. Approximate violation of conservation laws 
& macroscopically controlled coherent operations

3. Finite Bell inequality that cannot be violated maximally 
with finite amount of entanglement

4. Quantum reverse Shannon theorem



Embezzlement based Bell inequality that cannot be violated
maximally with finite amount of entanglement

Embezzlement based nonlocal game that cannot be played

optimally with finite amount of entanglement

Non-closure of quantum correlations via embezzlement

References: 

² Leung, Toner, Watrous (0804.4118) 

² Ji, Leung, Vidick (1802.04926)

² Coladangelo (1904.02350) 



Nonlocal games

Player 1

Player 2

:
:

Player k

Referee

Players can coordinate before the game
noncommunicating once the game starts



Nonlocal games

Player 1

Player 2

:
:

Player k

Referee

q1

q2

qk

q = (q1, q2, , qk)

distribution of q 
known to players

a1

a2

ak

W

W: known to players

win/lose

Goal: max prob(winning)
Does entanglement help?



e.g., GHZ game

Player 1

Player 2

:
:

Player 3

Referee

q1

q2

q3

q = (q1, q2, q3)

a1

a2

a3

W:

if q = xxx
win iff
a1a2a3=1

else
win iff
a1a2a3=-1

win/
lose

k=3, q 2R (x,x,x),(y,y,x)
(y,x,y),(x,y,y)

qi 2 {x,y},
ai 2 {1,-1}



e.g., GHZ game

Player 1

Player 2

:
:

Player 3

Referee

q1

q2

q3

q = (q1, q2, q3)

a1

a2

a3

W:

if q = xxx
win iff
a1a2a3=1

else
win iff
a1a2a3=-1

win/
lose

k=3, q 2R (x,x,x),(y,y,x)
(y,x,y),(x,y,y)

Without entanglement, winning prob · ¾ .

With a GHZ state, each party measures σx/y, winning prob = 1!

"Rigid" – unique optimal strategy (mod local isometries), robust.



Nonlocal games

Questions to players

Answers from players

Prob(win) → payoff function

Classical strategy 

Entangled strategy has
strictly higher winning
prob than classical

Bell experiments

Measurement settings

Measurement outcomes

Bell inequality

Local hidden variable model

Violation of Bell inequality

shared randomness



Why nonlocal games?

Computational complexity –
Effects of entanglement in interactive proof systems

Physics –
QM vs local hidden variable model

Crypto –
QKD via rigidity (uniqueness of optimal solution)



Here: how much entanglement is needed to win optimally?

Conjecture since 2009: for some games with finitely many Q&A,
more entanglement always strictly increases the winning prob.    

Proofs:
Numerical evidence: Pal-Vertesi 09 (I3322)
Existential: Slofstra (+Vidick) 17, Dykema-Prakash-Paulsen 17 
Robust: dim lower bound vs deviation from optimal
Explicit: Ji, L, Vidick 18, Coladangelo-Stark 18, Coladangelo 19



Here: how much entanglement is needed to win optimally?

Conjecture since 2009: for some games with finitely many Q&A,
more entanglement always strictly increases the winning prob.    

Proofs:
Numerical evidence: Pal-Vertesi 09 (I3322)
Existential: Slofstra (+Vidick) 17, Dykema-Prakash-Paulsen 17 
Robust: dim lower bound vs deviation from optimal
Explicit: Ji, L, Vidick 18, Coladangelo-Stark 18, Coladangelo 19

JLV18, C19 (elementary proof + physical understanding 
+ exponentially stronger dim bound): 

Turn a game from L, Toner, Watrous 08 into nonlocal games
LTW game has 2 parties, each with 3-dim quantum question 
and 2-dim quantum answer, based on embezzlement.  

JLV18: 3 parties, each with 12 questions and 8 or 4 answers 
C19: 2 parties, 5 or 6 questions and 3 answers each 



The possibility & impossibility of embezzlement

Qualitative no-go thm: |ψiAB |00iA'B' $ |ψiAB |φiA'B' 

Possibility of approximate embezzlement: 

poor "continuity" of no-go thm 

Poor continuity still limits how well one can embezzle

-- high accuracy requires more dim in the catalyst !

Limits to embezzlement of entanglement

Theorem (from Fannes ineq):
If ε > 0, |φiA'B' 2 Cd ⊗ Cd , |ψiAB 2 CN ⊗ CN,

and 9 U, V s.t. hψ|AB hφ|A'B' (UAA' ⊗ VBB') |ψiAB |00iA'B' ¸ 1- ε

then ε ¸ 8 [ E(|φi) / (log N + log d) ]2



"Nonlocal games" with quantum Qns & Ans

Player 1

Player 2

:
:

Player k

Referee

Q1

Q2

Qk

R

Q1, , Qk, A1, , Ak: quantum sys

Initial state on R Q1, , Qk pure  

A1

A2

Ak

W win/lose

Goal: max prob(winning)
Does entanglement help?
How much is needed?

2-outcome POVM meas

known to players



Embezzlement game that cannot be won with finite entanglement

Alice

Bob

Referee

X

Y

R

Initial state on RXY:

A

B

W

LTW082-player

E

F
win if state projected 
onto GHZ state
1 
√2

(|000i+|111i)RAB

|γi=

1_1
√2 [|0i|00i+|1i ]RXY

(|11i+|22i)
√2

Possible strategy:
if X (Y) in span{|1i,|2i}
then reverse-embezzle
|11i+|22i ! |11i.
Winning prob ! 1. 

No other way to win: direct proof 
prob(winning) < 1-log-2 dim(E)



Turning embezzlement game into a nonlocal game:

Regev and Vidick (1207.4939): 

Referee's state R and answers AB classical 
Questions XY remain quantum

Difficulty: distributing the initial state



Alice

Bob

Turning embezzlement game into a nonlocal game:

Referee

X

Y

R

A

B

W

E

F
win if state projected 
onto GHZ state
1 1
√2

(|000i+|111i)RAB

|γi=



Alice

Bob

Turning embezzlement game into a nonlocal game (JLV18):

Victor

X

Y

V

A

B

W

1. referee ! 3rd player Victor
initial state on XYR ! shared entanglement 

E

F
win if state projected 
onto GHZ state
1 
√2

(|000i+|111i)RAB

|γi=
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Turning embezzlement game into a nonlocal game (JLV18):

Victor

X

Y

V

A

B
G

1. referee ! 3rd player Victor
initial state on XYR ! shared entanglement 

2. replace measurement by a rigidity test of the GHZ state

E

F
win if test 
for GHZ 
state passes

meas depend on qns 
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2. replace measurement by a rigidity test of the GHZ state

win if test 
for GHZ 
state passes

meas depend on qns 



Turning embezzlement game into a nonlocal game (JLV18):

G

1. referee ! 3rd player Victor
initial state on XYR ! shared entanglement 

2. replace measurement by a rigidity test of the GHZ state

win if test 
for GHZ 
state passes

meas depend on qns 

3. Real referee R uses questions+winning conditions to enforce 
correct initial state & evolution.  

Referee

Alice

Bob

Victor

XE

YF

V

qA

qB

qV



Resulting game:

3-player, 12 questions each
3-bit answer from Victor, 2 bits from Alice & Bob each

1. Suffices for Victor, Alice, Bob to share entangled state with 

3, O(1/ε), O(1/ε) qubits to win wp > 1-ε. 

2. Necessary for the entangled state to have at least 

Ω(ε-1/32) qubits (exp that of Slofstra-Vidick-17). 

3. Verification of increasing dim based on "1 test".  



Turning embezzlement game into a nonlocal game (C19):

Goal: forcing the players to convert (|11i+|22i)
√2

into |11i

Referee conducts one of 3 possible games G1, G2, G3:

G1 can only be won close-to-optimally with a state close to 

|00i+|11i+|22i
√3

G2 can only be won close-to-optimally with a state close to 

|00i + √2|11i
√3

G3 ensures that the states above live in the same Hilbert space!



Open problems on nonlocal games & quantum games:

1. Is I3322 a game that will proof the conjecture in 2009? 

2. Are there other physical reasons for requiring unbounded 
amount of entanglement to optimize Bell ineq violation?

3. The embezzlement (quantum) game shows: LU-assisted 
by entanglement is not a closed set for 3 input and 2 output
dimensions?  What is the min dim for non-closure?  

5. For nonlocal games, is there a bound on entanglement 
independent of the game but depends only on the approx 
and the # qns and ans? 

4. For LU-assisted by entanglement, if we allow approximations,
is there a bound on the sufficient entanglement that depends 
only on the input/output dims?  

6. Applications of the embezzlement game or nonlocal game 
derived from it?  e.g., JLV18, C19 games verify increasing dims. 



Outline:

1. Embezzlement

2. Approximate violation of conservation laws 
& macroscopically controlled coherent operations

3. Finite Bell inequality that cannot be violated maximally 
with finite amount of entanglement

4. Quantum reverse Shannon theorem



Quantum reverse Shannon theorem:

Quantum Shannon theorem:

Simulate noiseless channel using noisy channel at the best rate 

Capacity C(N) = # qubits sent per channel use

Quantum Reverse Shannon theorem:

Simulate noisy channel N using noisless channel at the rate 1/C(N)

N
⊗n

E D ≈ I
⊗C(N)n

I
⊗n

E’ D’ ≈ N
⊗1/C(N)n

Why?? If true, any channel N can simulate any other channel M

at optimal rate – C(N)/C(M) (N simulates I which simulates M) 
so any channel N is characterized by C(N) ! 



Quantum reverse Shannon theorem:

² Bennett, Devetak, Harrow, Shor, Winter (0912.5537) 

² Berta, Christandl, Renner (0912.3805 – alternative proof) 

Proved for tensor-product inputs when entanglement is free

but different inputs consume different amount of entanglement

so a superposition of inputs is decohered.   

Idea: embezzle away the left-over entanglement to keep the

coherence of a superposition of inputs!



Summary:

1. Embezzlement

2. Approximate violation of conservation laws 
& macroscopically controlled coherent operations

3. Finite Bell inequality that cannot be violated maximally 
with finite amount of entanglement

4. Quantum reverse Shannon theorem
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