The little we know ...

Degradable channels

Definition.

N is degradable if \exists another channel M s.t. N^c = M \circ N.

The little we know ...

Degradable channels

Definition.

N is degradable if \exists another channel M s.t. N^c = M \circ N.

Capacities for degradable channels

Theorem [Devetak-Shor 04] If N is degradable then $Q(N) = Q^{(1)}(N)$.

The little we know ...

Degradable channels

Definition.

N is degradable if \exists another channel M s.t. N^c = M \circ N.

Capacities for degradable channels

Theorem [Devetak-Shor 04] If N is degradable then $Q(N) = Q^{(1)}(N)$.

Idea: $\frac{1}{2}$ [I(R:B) – I(R:E)] (max of this gives Q⁽¹⁾) = subadditive quantity + S(E') – S(E) \longrightarrow 0 if N deg where E' = output of M \circ N for any M.

An idea that doesn't work well enough ...

Use continuity bounds for capacities [L, Smith 09]. e.g., Q(N) $\stackrel{\downarrow}{\approx}$ Q(N') + (-) 4 $\epsilon \log \epsilon$ = Q⁽¹⁾(N') + (-) 4 $\epsilon \log \epsilon$

for any M degradable, $|| N-N' ||_{\diamond} \le \epsilon$.

An idea that doesn't work well enough ...

Use continuity bounds for capacities [L, Smith 09] : e.g., $Q(N) \approx Q(N') + (-) 4 \epsilon \log \epsilon$ $= Q^{(1)}(N') + (-) 4 \epsilon \log \epsilon$ for any M degradable, || N-N' ||_{\diamond} $\leq \epsilon$. <u>A nice twist</u> [Sutter, Scholz, Winter, Renner 14]

The little we know ...

Definition [approx degradable channel] N is η -degradable if \exists channel M s.t. $||N^{c} - M \circ N||_{\diamond} \leq \eta$. <u>A nice twist</u> [Sutter, Scholz, Winter, Renner 14]

The little we know ...

Definition [approx degradable channel] N is η -degradable if \exists channel M s.t. $||N^{c} - M \circ N||_{\diamond} \leq \eta$.

When $\eta = 0$, N is degradable.

A nice twist [Sutter, Scholz, Winter, Renner 14]

The little we know ...

Definition [approx degradable channel] N is η -degradable if \exists channel M s.t. $||N^{c} - M \circ N||_{\diamond} \leq \eta$.

```
Theorem [Sutter, Scholz, Winter, Renner 14]
If N is \eta-degradable,
then | Q(N) - Q<sup>(1)</sup>(N) | \leq -\eta \log \eta + O(\eta)
```

```
Similarly | P(N) - Q<sup>(1)</sup>(N) | \leq O(\eta \log \eta) ...
```

Throughout this talk, every story on Q(N) has a parallel in P(N) ...

A nice twist [Sutter, Scholz, Winter, Renner 14]

The little we know ...

approx deg

Definition [approx degradable channel] N is η -degradable if \exists channel M s.t. $||N^{c} - M \circ N||_{\diamond} \leq \eta$.

```
Theorem [Sutter, Scholz, Winter, Renner 14]
If N is \eta-degradable,
then | Q(N) - Q<sup>(1)</sup>(N) | \leq -\eta \log \eta + O(\eta)
```

```
Original Devetak-Shor

Idea: \frac{1}{2} [I(R:B) – I(R:E)] (max of this gives Q<sup>(1)</sup>)

= subadditive quantity + S(E') – S(E) 

where E' = output of M \circ N for any M.

Here:

r use version

well-behaved

by continuity

bounds if N
```

A nice twist [Sutter, Scholz, Winter, Renner 14]

The little we know ...

Definition [approx degradable channel] N is η -degradable if \exists channel M s.t. $||N^{c} - M \circ N||_{\diamond} \leq \eta$.

```
Theorem [Sutter, Scholz, Winter, Renner 14]
If N is \eta-degradable,
then | Q(N) - Q<sup>(1)</sup>(N) | \leq -\eta \log \eta + O(\eta)
```

Advantage:

- M and η can be numerically minimized as an SDP

Remaining problem:

- the gap is still O(- η log η) which has infinite slope wrt η

<u>Outline</u>

* Background

Quantum channel & capacities

* The quantum don't-knows

Superadditivity, superactivity, $Q \neq P$

* The quantum knows (5 mins?)

Degradable channels, continuity, approx degradability

* Application to low noise channels (10mins?)

* Consequences

What we found:

 η is much smaller than expected for low noise channels !!

1. If [] N – I [] $_{\diamond} \leq \epsilon$, $\eta \leq 2 \ \epsilon^{1.5}$.

2. For depolarizing channel N_p ($||N_p-I||_{\diamond}=2p$), $\eta = O(p^2)$!

What we found:

 η is much smaller than expected for low noise channels !!

1. If || N – I ||_ $_{\diamond} \leq \epsilon$, $\eta \leq 2 \ \epsilon^{1.5}$.

2. For depolarizing channel N_p ($||N_p-I||_{\diamond}=2p$), $\eta = O(p^2)$!

Consequences:

1. Q(N) \approx P(N) \approx Q⁽¹⁾(N) up to O($\epsilon^{1.5} \log \epsilon$) corrections

2. Q(N_p) \approx P(N_p) \approx Q⁽¹⁾(N_p) = 1 - h(p) - p log3 up to O(p² log p) corrections

Consequences:

1. Q(N) \approx P(N) \approx Q⁽¹⁾(N) up to O($\epsilon^{1.5} \log \epsilon$) corrections

2.
$$Q(N_p) \approx P(N_p) \approx Q^{(1)}(N_p) = 1 - h(p) - p \log 3$$

up to O(p² log p) corrections

- * $Q(N) \approx P(N)$ to the same order. Key rate does not exceed quantum data rate. (NB Quantum data is private, $Q(N) \ge P(N)$.)
- * A random non-degenerate code for sending quantum data, and simple privacy amplification and classical ECC for sending key achieve rate Q⁽¹⁾(N). Our results show that these simple techniques are almost rate optimal. No need to work any harder !!

Why is η so small for low noise channels $\ref{eq:started}$

$$|| N_{p}^{c} - N_{p+ap}^{c}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

$$|| N_{p}^{c} - N_{p+ap}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

To min
$$\eta = ||N_p^c - M \circ N_p||_\diamond$$

 $\approx |$

$$|| N_{p}{}^{c} - N_{p+ap}{}^{2}{}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

Why $N_{p+ap^2}^{c}$ is a good degrading map:

To min
$$\eta = ||N_p^c - M \circ N_p||_\diamond$$

 \uparrow

First try: $M = N_P^c !!$ Got $\eta \le 2p^{1.5} !$ Works for all N !!

$$|| N_{p}^{c} - N_{p+ap}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

$$|| N_{p}^{c} - N_{p+ap}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

$$|| N_{p}^{c} - N_{p+ap}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

$$|| N_{p}^{c} - N_{p+ap}^{c} \circ N_{p} ||_{\diamond} \le 8/9 (6+\sqrt{2}) p^{2} + O(p^{3})$$

Extensions:

Similar results hold for the Pauli channel:

$$N(\rho) = (1-p_0) \rho + p_1 X \rho X + p_2 Y \rho Y + p_3 Z \rho Z$$

There are more features in N^c to model, but we have more parameters in the degrading map to play with \dots For example this includes the BB84 channel used for QKD \dots

Similar results hold for higher dimensional Pauli channels