Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state j—;—f;,l1>®li>
and Alice can send an s-dimensional quantum
system to Bob. Then, Alice can communicate t=s*
messages to Bob!
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Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state £z el
and Alice can send an s-dimensional quantum
system to Bob. Then, Alice can communicate t=s*
messages to Bob!

How to think about guantum protocols:

Which party has what classical information 7
Alice has a message v&£{0,x,y,z}. Bob has nothing.

Which party has what quantum system ?

Initially, Alice (Bob) has the 1st reqgister A (B) of the
shared state. Alice also has another s-dim system C.
She sends C to Bob. Then, Bob has both B and C.



Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state £z el
and Alice can send an s-dimensional quantum
system to Bob. Then, Alice can communicate t=s*

messages to Bob!

How to think about guantum protocols:

What operations he/she is allowed to do ?

Before Alice sends C to Bob, she can apply any
operation on AC that depends on v. C depends
on A and v, and C can be A itself.

After Bob receives C from Alice, he can apply any
operation on AC that does not depend on v.



Proof: for simplicity, first consider s=2.
Suppose Alice & Bob share the state |2,) = (|oo>+||.>)

so that Alice (Bob) holds the first (second) qub|t A (B).



Proof: for simplicity, first consider s=2.
Suppose Alice & Bob share the state |2.) = (|oo>+m>)

so that Alice (Bob) holds the first (second) qublt A (B).

Recall the Pauli matrices:

60:(27?)' by = (IO> éj_(w) 6t=(<l>3)



Proof: for simplicity, first consider s=2.
Suppose Alice & Bob share the state |2.) = (|oo>+|n>)

so that Alice (Bob) holds the first (second) qublt.
Recall the Pauli matrices:

6o=(07), éx:(lO) éj_(LO> 6, = (o )

Suppose Alice wants to communicate a message v
from the set {o, x,y, 2}.

If her message is v, she applies ¢, to A.
The shared state [2.) on AB is transformed by ¢, T .



For [2.) = (|00>+|u>)

o= (), dem €L, &= (2 6m 42

|§o>=éo®1|§)=J—‘:(|oo>+lu>)

29 = 6.8 T |2.) = 7 (l10)+101)

2= 6,8 T |2.) = 15 (tl1ory—1ion)
A

@)= 6.8 T [2.) = 15 (100)y =111))

These 4 states are mutually orthogonal, forming

the "Bell basis". Note that Alice operates on a 2-dim
system A, but the shared state on AB traverses to

1 out of 4 possible distinguishable (ortho) states.



For |2.) =% (100) +111))

6o=(<|>?); éx:(lO) éj—(w) 6, = (o )

[2.)=€.0T |2,

I

I- (il

= (100y +111y)

I

)
(2= 6.8 T |2.) = = (110r+1o1)

|3,) = €y @ L |2,) = J—(L|l0>-(_|0|))

l__

[2:)= 6.8 T |2,) = 5 (100)=1i)

These 4 states are mutually orthogonal, forming

the "Bell basis". Note that Alice operates on a 2-dim
system A, but the shared state on AB tranverses to
1 out of 4 possible distinguishable (ortho) states.

If Alice sends C=A to Bob, he has AB in the state |2.)
He can measure AB along the Bell basis to find v !



Communication protocol:

Initial state shared
between Alice and
Bob. Alice is holding
system A; Bob is
holding system B.



Communication protocol:

@

Initial state shared
between Alice and
Bob. Alice is holding
system A; Bob is
holding system B.

@

If Alice wants to
communicate "v"

< {0,x,y,z} to Bob
she applies ¢, to

qubit A.
(4 possibilities)



Communication protocol:

Alice
sends system A

Sy —\io Bob (2-dim).

@

Initial state shared
between Alice and
Bob. Alice is holding
system A; Bob is
holding system B.

@

If Alice wants to
communicate "v"
€ {0,x,y,z} to Bob
she applies ¢, to
qubit A.

(4 possibilities)



Communication protocol:

Alice
A sends system C=A
2. —\_
B — \/
Initial state shared If Alice wants to Having both

between Alice and communicate "v" systems A & B,
Bob. Alice is holding «¢{0,x,y,z} to Bob Bob measures
system A; Bob is she applies ¢, to  along the Bell

holding system B. qubit A. basis.

- OQutcome is v
(4 possibilities) i certainty.



Thoughts:
1. Entanglement enables the operation on a 2-dim
system to map the shared state over 4 dimensions.

2. Bob has a 4-dim system (AB) after the channel
transmission, so superdense coding Is consistent
with Holevo's bound.

3. Is there a catch? Does Alice also need to prepare
the entangled state in AB and send B to Bob before
superdense coding so altogether she sends 4 dims?

Not really. Bob can prepare the entangled state in
AB and send A to Alice instead, or a common friend
Charlie can prepare the entangled state and send
A to Alice and B to Bob.

SD turns entanglement or back quantum comm into
iIncreased forward classical communication !!



Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state f;—i:,m@m
and Alice can send an s-dimensional quantum
system to Bob. Then, Alice can communicate t=s*
messages to Bob!

Converting the units of various resources:

s-dim quantum state = log s qubits
s> classical messages = 2 log s bits
max entangled state of local dim s = log s "ebits"

L , A An BB,
Dividing everything by log s, on average,

SD coding uses 1 ebit and sends 1 qubit
to communicate 2 bits (doubling the rate).



What if Alice wants to communicate a quantum
state to Bob by sending only classical data?

For simplicity, she wants to communicate a qubit
¥Y= aloY+ bl1) to Bob.

Case (i): Alice knows a,b (she authors the message)

She can send approximations of a and b to Bob.

For Bob to decode a qubit closer and closer to|y)
she has to send more and more bits.

Case (ii): Alice is given the state to be communicated
(she runs Qedex, usual setting)

She does not know a,b, and cannot know more than
1 bit of information about them by Holevo's bound.

Can't comm gquantum states by sending classical data.



Free entanglement is like free love
-- It changes the world.

Charles Bennett, Cambridge, 1999



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit |§°>=J_‘__(|oo>+|..>)
= .

How to think about guantum protocols:

Which party has what classical/qguantum information 7
Which party has what quantum system ?

What operations he/she is allowed to do ?



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit |§°>=J‘__(|oo>+“ y)
= .

Schematic diagram to be completed: Black: Alice's
Red: Bob's
Blue: classical
_ M meas
Y= afoy + b indep message from
A of |y c Alice to Bob
|§o>=J—‘E-(|OD>+||I>) < _ 5
B l ¥

|
indep of |y)



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

1
@y +bid)  F(100+1n)

= (A 1000y + @ loli1y +bl100) +blIT1Y) . ff



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

A1
@y +bIn) F(1o0+1n)

:(alooo>+G{lOH>+b\|OO>+b\lll>)MAB n\—if

= = (100) +1113),,, Ay + bl

]7
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+ 5 (100y =11n) (@7 =blY),
1 1
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+ 15 (loy=110)),, (@IHh—=bbY), 5



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

|
0 [ — 00 +l|l
@loy+b11y) (100 +11)
:(alooo>+a10”>+b\loo>+lDHH>>MA8ILZ:
= J-,“Z:<[OO>+H|>>MA (\QIW“HDH»% ]? }no cross terms
%

gives @1000)

+ 5= (100y =111)),,, (@) —blIY), s
= 1

+ E(lm>+1IO>)MA(OK\I>+b[o>)B -
= (l01)~— - 1

+ = (lon—=loy),,, (@IH=blo)) 3



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

A1
@y +bIn) 100+ 1n)

l
= (A 1000) + @&l011) +bl100) +bllID) ., . 5
_ J—,“Z:([OO>+\||>)MA(\GK|0>+\D\|>){3 ]? %nocrossterms
_\i

l gives & |000)
+EOO@““|>>MA(\0U°>"“‘D\|>) + bl

oy

+ %OOWMIO»MA(Q“H b oY)

1
, B < %:alow
1 — — 1 [ +bllo0)
+ 1= (lo1y—=110y) ,, (@lH—=bloy). 5



+ :r-'\;(lom—llo))MA
+ = (lon=110)),,,

4
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(01[0>+b\|>)M

= (100) +111)), (@Y + bl
+ 7= (100) —111)), ., (@bY=bl1))
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H?\’ (g7
[00)+11
(oqu—lom) = (100} +1 ;>)A%
4.7~ E< oo>~t—\ll>)MA (\OUO>+&D\|>)% L
4.) __*t J'\‘“(lOO%H )y (07 =BI1Y), L
& R (00+10),,, @b, &
+ = (1019=10),, (@AID—=bbY), £

0\/

Paulis: 6, = (5%), 6x= (7o), 6 =(23),

Bell |3,) =
basis:



N B lOOHm;}m )
(@ +b113) he =

4.7~ L ([oo>+\l |>) (ouo>+m N7

B 2
ER +F(IOO%HW)MA(W”“,%“Z/@|Y>
2 T :
+H(O'>+“O>) @l IH‘D’@_]Z/QL\‘F)
+ = (101=110)), , (@ID=bIoY), +-
~ T A
UE)— 7 6y 1) /%
Pauli's: ¢, = (é?), Cx = (?é), éj - (OO>/ 6a:= (é?)
Bell  [2.) = =(lo0) + 11 = 15 (threy=tilol
el 18 = (199 100, 15) = fahor-iio)
|§x>=J‘—_(llo>+lm>) |§)=J‘—_(|OD>~HI>)



AN , AEN, .
(Oklo7+loll>)M EUOOH]W)A{% —

ERNA I—%([oo)-\*\Il))MA(\alD)er\ e

>

1
A
A _ —
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If Alice measures MA along the Bell basis, each
outcome k< {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is |3,V ® €k [¥)5 .



A
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(al0>+b\|>)M
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J"‘ —
H“OO>+1H>)AB

EIENN ILZ (100) +11 |>)MA (a(o>+m 47

3,) J': (100) =1113),,., (@Y= bl1))
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If Alice measures MA along the Bell basis, each
outcome k< {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is |3,V ® €« [¥)s .

If Alice sends k to Bob, he can apply ¢« to B, turning

Ce 1Y) to [W)m.



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit |§°>=Ji__( 100 +111y)
= .

Schematic diagram: Black: Alice's
Red: Bob's
Y= aloY + bl M Bell Blue: classical
meas message from
A k  Alice to Bob

|

2.y === (100) +111)) C
E( < B D
bk

¥




Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit ‘§O>ZJ_‘__(|OD>+“.>)
= .

Exercise: verify the following specific implementation

Y= aloY + bl — IH —H
A o (X W\
| 2, =1 (100Y 411 \
>J3:(O +|>)<B 7]L
éx_gz_‘ H/>
D

Here, k is given by 2 bits (v,w). Note also 6&6 = G2 €x .




General: V)= 2_ailL)|0> onRS.
N T~

real ortho-normal unit vectoron S
For any measurement on S given by projectors {Fki

Lobly) = Z ailu) @ Bl
pr(k) = I ToRIY) [I* = 2 a7 1% In> [1°
= 2. Q5 T Be <0l P
= ZE A; T Pe <
= f- B (Z 07 gl ) where 0 ls = <o T 1w,

- ,
fs . density matrix on S

dxd if d = dim(S)

trace 1, positive semidefinite




Revised f \ati F QM:
Revised description of qguantum state:

V) = Zj, i[> — YY) —) L: 0 i <1 =5)g

1. outer product 2. partial trace

revised description of measurement:

pr(k) = || TeRelw) I*  —  prik) = T B s

Define partial trace (describing a state on S from a

state on RS) so postmeasurement states & dynamics
also makes sense.



The partial trace

/Ach

Recall the trace of a matrix M is the sum of all the
diagonal elements. In the Dirac notation:

d d
Tr M = Tr(M <) = L <Ml

nsert - tris cyc{;c -
identity {l)\] _
‘ and linear : . g
basis d dim, basis{Iu)}

/
Definition: the partial trace of system B, denoted Ty J

Is defined on matrices acting on systems AB as
T : |

Trg M = Z_((I\@@\l) M (191 .
A B

\cz\,xdx O\Acl
_

—

Cl;\ X Cl,\




The partial trace (example for 2 qubits)

Io<ol =[1o]l® [ ol =([1ollool)=[1000]
0 1) [0 o] [ 0]) 0o | 0
Tolil =[tol® lo11=[[o (][00l =[0100)
(0 | [o o] Lo 1], L0 00D |

(To<l) M (T®lo)) = [I 000D ]/m" w,, @ w.) (@) = {m“ M'BJ

O 0ol O

Ma M My My OO0 My my,
Py, M3 By M ol
(Mg, My My My | | O 0 )
(I®<I|)H(I®|]>) - [O |0 DJ/MH M,y My an.\ /OO\ — [Muﬂ\zq]
0 0 0 | My M My Moy | D My, My
My My Mgy My 00
(M, My My g | (O]

-
L1
—

"1?8 M= 5 (I®<i|) M (I@lz?) = [’““*M“ W"”"‘“J
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Exercise:

Tr
Tr
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\
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My My |my, M, | =
Mu Mo [ My My
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summing dia-
gonal blocks
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™My Wy
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Example: A, B are 3- and 2-dim respectively. (M: 6x6)

M =

{\/\() M I Ml3
{\/\11 Mn MZB
lv\31 Mn MB

—I'rAT’l = M, + M, + M,

—I—‘WBH

/

—l—f Mn

+fMlz

N

Tr M

Tr M,

_I—;/ Mn

Tr M

—I—;/ Mg,

\

+f Mn

A

Each H-\S IS a 2x2 matrix.

(note, the reduced matrix
on B is 2x2)

(note, the reduced matrix
on A is 3x3)



Remark:

The trace of an r-dim system is a linear map from
r X r matrices to real numbers.

The partial trace of an r-dim system is a linear
map from rs x rs matrices to s x s matrices where
the trace is applied to R, and the identity map on S.

It acts on tensor product matrices as:

fer Meo s = (fe Me) ; Ms

scalar scalar product
and extends to any rs x rs matrix.



What is the most general transformation allowed by QM?

Any reasonable transformation N should take quantum
states to quantum states !

Viewing N as a mapping from matrices to matrices:
(1) N is linear (QM is)

(2) N Is trace preserving: tr(N(M)) = tr(M)
(conservation of probability when M =/J )

(3) N is completely positive: M>0 =3 T N(M)I=D

N applied to 1 out of 2 systems takes a valid initial
joint state f >0 to a valid new joint stateI®N (f);o,

e.g., hold for conjugation by unitaries and partial trace.



The identity map:

Consider the map T(™M) = M . ltis linear, trace

preserving and completely positive. It represents the
evolution in which nothing happens.

The identity map is most often used when one of two
system is being transformed.

Pl

On a tensor product input, Te N (@gi) = 6® N (i\

Then, linearity allows the most general T® N (f\
to be computed.



Definition: a quantum operation is a mapping from
matrices to matrices that is linear, trace-preserving,

and completely positive.

Synonyms: quantum channel, TCP map ...

Fairly immediate from the definition:

1. Composition of two quantum ops is a guantum op.
(All 3 properties are preserved by composition.)

2. Tensor product of two quantum ops (applied to
two disjoint systems) is a quantum op.



Example 1: Conjugation by unitary le )= Up Ut
Example 2: Partial trace N [p) = Trr Pre -

Example 3: N({)) = Tre (U po IoXele UT) is @ quantum
operation for any system E and any U.

l/;— LN

E E _
é ¢ partial trace

Proof: by examples 1-2 and composition.

Extensions: E can start in any other density matrix

uncorrelated with 2, and partial trace can be taken
over a system of any size.



Example: amplitude damping channel

We can define U by its action on a pure qubit state:

A (Vo) + b = ) b (5% (o o
0 \od + ﬂA 00>EB+ (¥ | I>"'\)’E\}Y>)Eg
the excitation iIs transfered from Ato E

NB A, B, E all 2-dim.



Example: amplitude damping channel

We can define U by its action on a pure qubit state:

A(oved+b1y) = dloo).  + b (J=x (01> +J¢ (D
7/3\ g (= {o1) HD)EE

U=(1 0) 1
0 I the excitation is transfered from A to E
g Jg NB A, B, E all 2-dim.
/

\



Example: amplitude damping channel

We can define U by its action on a pure qubit state:

UWlavod +61y) = dloo)  + b (Fr (01> + 5% (o))
A B =

UW=(1 o 1
= the excitation is transfered from Ato E
0 X NB A, B, E all 2-dim.
\0 ©

/

On a general density matriX/> = {C c\] )
e f

/lo\ca[looo]=’cﬁc\mo\
O S| le ] 0JFs K O Jrge (Fof RiFf 0
ER Xe Rif ¢f O
O

\ / \D O D D

\Ag\/\*:

/



Teg Ug U™ = Trgfc mid 5a 0

Jrge (POt Rirgf 0
JXe Rigf f O
.0 O 0 O

/
= ¢ Jwd] + «f
Jrge (Fof 0 0O

= [ et sd
Jrge  (Fo)f



Tre WU = Trg(c md g 0

Srge (FOf Kirgf 0
J¥e Kirf ¥ O
(0 ©o 0 0

/
= e wd| + [¢ o
Jrge (Fof 0 0O
= [ et Jxd
Jrye (Fe)f

So, the channel take5/> - [C A] to [C“Hf IRA]
e § =1 (Fe)f

A fraction ¥ of the (1,1) entry is moved to the (0,0)
entry, and the off diagonal terms are diminished.



What is N ({3) in terms of U? %

uoa MOI MOL .
dz -1 dig-)
J— < < - —_ 10 i UH. =
Let \A"Z,ZIAXK[EQQMjk = || YU
1=0 k=0 Ureo || Uz \Au\

E: 1st register.




What is N ({)) in terms of U? - | )

Moo Wol U, -
-1 dg-]
L 10 1 LAR =t
let A= T 7 [1Xkle @ Uy = || Lel
3 0 k 0 LAIO UII Mll\

E: 1st reqister.

E'|chl E

:Tre( Z“Xk[ ®U\Jk)(|OX0[ ®f\ kz— k'X:‘[E@M;'k')



\[S‘OVV\e'leﬁ

| | /
What is N({J) in terms of U? Ulwtu, -
dg-1 dg)
Let |\ = ZZMXKL@\AJK = || Lo M) Yo
\\ 0\( D uw UM M‘-"—
E: 1st reqgister. ‘
N\ /
N(p) = Tre (U po loXele U)
de-l dg-| de1 de-l
:‘]’re( 213X klg ®Mjk)([o){0[ ®J0\ ZZ,IKXH ®\AJk)
1=0k=0 7=0 k=0

JE—-\ ‘IE"

— I % ,
—— — | - i .

. b d
isometry (0 be o mtre




What is N (J in terms of U? Ul -
let A= 15 | Ko ® Uy = || Lo
—SZ/\(Z—‘ [\XX € Jk U UU M"-l
E: 1st reqister. -
\ /
N(p) = Tre [U po loXele UT)
de-! de-| o1 de-
= fre (L1 laxele ® Ug ) (10X0l@p) | %%lkm ® Ugi )
de-| de-1

1

- iy T
TrE(KZ;D [3>E ®Mjo>(f§(§0 <3[E®\Aj'o)
—— — |- dim

b ntred
4 isometry (1 be o mtie
o

_Z Uso p ko mixture of states f’ 8 0P Fi Usg U
/ _‘.f MAO MJ(;J)
not nec unitary

I




More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

N\
U = A( d8
Av_ de
dede d¢ blocks

Ak | each taking
dn to de dims

J | AdE

iy

dE

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

M—:/\W%Ae N(p>=Tre(ufu*)=§ AKIMJ
A

e Kraus representation of N
o‘gJE AE blocks

Ac’s : Kraus operators
T -
Ak | each taking not Mg s

da to de dims

“dp>
dE

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

u:’\r%s Nip)=Tre (Upur) = I heg N
Aa

8 Kraus representation of N
dedE de blocks

Ak’s : Kraus operators
Ak | each taking * A map w/ Kraus representation
datode dims IS linear and completely positive

“dp >
de

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

N(p)=Tre (uput) = ?: Ak P Ae

N\
U = A %ﬂe
|
Ao | | de Kraus representation of N
Ak’s : Kraus operators
c‘gJE AE blocks

A | each taking * A map w/ Kraus representation
dntodadims IS linear and completely positive

. 1
1A *Uisometry & U U =1,
JE
Ch & > Nhe=1,
JdEe
: & N trace preserving

Stinespring dilation,
Isometric extension



Example: amplitude damping channel

U=(1 0" /\[} Nip) = AspAs + Ap Al
0 S o Ji-v

] A, = [OWJ Ex: check Mg Aot ATA, =T
O

O
\D ) O O



Example: amplitude damping channel

U=(1 0 /\O:{w} Nip) = AsgAs + Ap AT

0 Jrx o Ji-Y
0 KX A, = (o 5% Ex: check Mg Aot ATAH, =T
\D D/ 0 D/\(

If the initial state is vy = atle) tbi> (¢ = (1)<¢1)
output is the mixture of two unnormalized states:

Aol¥)= Qo) +Jxb(1)
Al = W\o‘\\)



Example: amplitude damping channel

U=(1 0" /—\f"“} NIy = AsgRAs + Ap Al

O—

SFx Lo -0
0 K A, = (o 1% Ex: check As Aot ATA, =T
\D D/ 0 OJ

If the initial state is |y = al>tb 1> (¢ = (1<)
output is the mixture of two unnormalized states:

Aol¥)= Qlo) +Jx L)
P\( H’) = W\o‘\>

Interpretation: [0) = ground state
|1y : excited state

A : de-excitation (with prob ¥ )

Ko = no de-excitation, but diminished
amplitude for |15



Execise: evaluate N (= L+aX+t 7+ ) and find how N
transform the Bloch sphere. 0

NA
// ’

The ground state 10><ol is a fixed point of N.
N is not unital (taking the identity matrix to itself).




Theorem: any quantum operation N from system A to
system B can be represented as N(!) =Trg (U puT)
for some system E and some Stinespring dilation U.

Proof omitted. See arxiv.org/abs/quant-ph/0201119



Representations of gquantum operations:

v 1. Unitary representation p A

—— NI
N((J):Tfe(ufw) ’ z

¢ partial trace
de + dE %
/2a. Krausrep: N(p) = T hep A, 5 AeAe=1,
X= | =
2b. Conversely, given dc operators A\< mapping from
d Jde
system A to B satisfying KZE( Ae A = Loy U= gt;l [kde ® Ag

de
is an isometry, and Trg | Uput) = KZ Ag ¢ Me

3. N ({)) as an explicit function of () e.g. [ 4] . {C-H]c m}

e f JT¥e (v

4. Choil matrix (reading)



