CO781 / QIC 890:

Theory of Quantum Communication

Topic 3, part 1

Joint Typicality

Copyright: Debbie Leung, University of Waterloo, 2020

References:

Cover & Thomas, Chapter 8

<u>From entropy (typicality) to correlations (Joint Typicality)</u> Consider 2 random variables X, Y.

Will see: under n iid draws of p(xy), the jointly typical set occurs with prob -> 1, so we can safely use its properties ...

X

For each such y^n , the above two conditions say that

Proof: similar to the proof for the AEP.

This observation is crucial for the Joint AEP ...

The 2 parts above are similar to the AEP.

Note that the jointly typical set is defined wrt p(xy) drawn n times iid. Once defined, it is just a set.

Now we ask questions about the set concerning OTHER distributions.

but there are only $2^{nH(XY)}$ elements in the jointly typical set.

The 2 parts above are similar to the AEP.

The third part captures the "jointness" of X and Y

** if ** $x^n y^n$ are not from the joint distribution for XY,

but $x^n y^n$ are independent, $x^n y^n$ unlikely in the jointly typical set.

the "unlikelihood" is exp in I(X:Y)

Proof (see Cover & Thomas), based on AEP and union bound etc.

Joint typicality gives the most critical tool to analyse classical comm through classical noisy channels. Here's an example of a joint distribution that will be relevant for this aim.

Example:

NB. e = probability for XY to disagree, say, <math>e = 0.1

e.g.
$$H(XY) = 2(-\frac{1}{2})(1-e)\log(\frac{1}{2}(1-e)) + 2(-\frac{e}{2})\log(\frac{e}{2})$$

= 1+ h(e) = 1.469

where $h(a) = -a \log a - (1-a) \log(1-a)$ binary entropy function

From JAEP (1):

For any e, H(X) = H(Y) = 1

For e = 0.1,

$$H(X|Y) = H(XY) - H(Y)$$

= 0.469

For e = 0.1,

$$I(X:Y) = H(X) - H(X|Y)$$

= 0.531

For an xn	chosen ran	domly for to	e typical set	b, X1 Xn,
Prob (x 4 +	A 114) =	$= 2^{nH(x Y)}$	e typical set, = 2 nI(x:x) =	2 -0.531m
		5, H(x)		