CO781 / QIC 890:
Theory of Quantum Communication

Topics 4, part 2

Encoding classical information in quantum states
and retrieving it

Scenario 1: accessible information
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leving it

Goal: learn about X as much as possible viarv Y.

w ~ joint distribution p(xy)
=

e.g.
X: time elapsed Atomic clock Time reported

X: black hole Telescopes generating squeezed states Detector sees signals

X: oracles Quantum circuit meas giving comp answer
X: message Alice's encoding map Bob's decoder giving
+ noisy quantum channels decoded message

Scenarios: who controls each of the steps, measure of success ...
Scenario 0: no control throughout -- a draw of XY.



leving it

Goal: learn about X as much as possible via rv Y.

~ joint distribution p(xy)

Scenario 1: accessible information / states discrimination
Px ,P:L predetermined
Richard draws x with prob p(x), prepares F:L , gives state to Bob
Bob picks measurement
(a) max prob(X=Y): state discrimination
(b) max I(X:Y): accessible information

\

today



leving it

Goal: learn about X as much as possible viarv Y.

e

joint distribution p(xy)

Scenario 2: classical channel

Pm ; Yq predetermined POVM {My } My20, TMy=T
4
Alice chooses X,

corresponding stategi generated, and measured (with fixed meas),
outcome is given to Bob.

For each x, Bob receives y with prob p(y|x) = ’(’r Hj {%c

Last week: for large number of uses,
can create max_p(x) I(X:Y) cbits per use



trieving it

Goal: learn about X as much as possible viarv Y.

Q box X1 |Px

as if Alice presses a
button "x" and Q box
spits out [):L to Bob

Scenario 3: Q box

{31 predetermined

Alice chooses X,

corresponding state Fx” generated and available to Bob.
Bob picks measurement and obtains y.

If Bob sticks to optimal meas for I(X:Y) for each system,
this reduces to scenario 2.



trieving it

Goal: learn about X as much as possible via rv Y.

Q box X[ [P

as if Alice presses a
| button "x" and Q box
Scenario 3: Q box spits out Fx, to Bob

{3& predetermined

Alice chooses X,

corresponding state FX” generated and available to Bob.

Bob picks measurement and obtains y.

Scenario 3: for multiple uses, Bob can choose JOINT measurement.

Next Tue: for large number of uses of Q boxes, can create S(X:Q)
cbits per use, for N\ =7 P )l ® Fx .
x X Q



trievin

it

Goal: learn about X as much as possible viarv Y.,

TR

[ P50

Px_

Scenario 4: classical capacity of qguantum channel

given N

Alice chooses x, and Y (the input to n uses of N)
F:L is the channel output available to Bob.

~Y

o=t

Bob picks measurement and obtains y.
Scenario 4: for multiple uses, Bob can choose JOINT measurement.

Optimized: C(N) classical capacity of guantum channel N (next Thur).



Definition:
Let N\ = g P)L \3L><°c\>( ® [)x@z .

Yq measurement on Q with output space Y

The accessible information for ensemble § = {px,fhc} IS

Toce (£Y = wiax T(X:Y)
"L LD WL(A)



Example1l. x =0, 1, p(0) = p(1) = 1/2, ALSo | ae\d s

== ¥ 7<¥xl L (Fo 7 = alod+ b (most general form of
1Yy = alody—bLi> 2 arbitrary pure states)

Optimal measurement: loy
projective, along basis {19, ->] \Yy > \ \¥o >
Levitin 95, or Fuchs PhD thesis 96 (Ch3.5) -y & S 1+

p(x=0 y=+) = p(x=0) p(y=+|x=0)
[ [
2
5 Arieelextl = (Feg) = (arieal) = Sral

2
p(x=1y=+) = = (3 - als)

ply=+) = 1/2,
p(x=0]y=+) = 1/2 + ab Similarly
H(X]y=+) = h(1/2+ab) H(X]y= - ) = h(1/2-ab) = h(1/2+ab)

C1 HIX[Y) = ply=+) H(X|y=+) + ply=-) H(X]y=-) = h(1/2+ab)
lacc = I(X:Y) = H(X) - H(X|Y) =1 -h(1/2+ab)



How to optimize measurement for lacc?

1. Unknown for most ensembles

For the few ensembles (highly symmetric) with known optimal
measurements, there is no simple proof of optimality :(



How to optimize measurement for lacc?

2. EB Davies, |IEEE Trans Info Th, 24, p596, 1978
For any ensemble of states in d dimensions, €= 1{Px x}
optimal measurement has POVM I = { My} J., with
(a) rank(M, ) =1 and
(b) d s n <4

Proof (a): If My = Zk My.k is a decomp into rank 1 matrices

replace measurement W with POVM {ty}
by new measurement ¥|" with POVM {m,

eq W|: Mo = ool + 3 Wdet| (4=°)
Moz cusite2 el (y=0)
My = S0 ¢ XL (y=L)

W': Moo= Liokol (yao ko) Mou = 3 W0 (Yo kel

Moo= TIGL (=t K=0) o= 3 BDEL (Y= K=1)
M, o= & |1 (\3:1,L:o) M, = + )t (thl,[Li‘l)

L

outcome
'K} - has 2 parts



How to optimize measurement for lacc?

2. EB Davies, |IEEE Trans Info Th, 24, p596, 1978

For any ensemble of states in d dimensions, Z=1px, P}
optimal measurement has POVM | = { My} 7, with

Y1

(a) rank(M, ) =1 and

(b) d s n s4?

Proof (a): If My = & My.x is a decomp into rank 1 matrices

replace measurement W| with POVM {t,}
by new measurement W\ with POVM {M,

S M’

outcome
'K} - has 2 parts

Y
K :__\_8\ if we discard k,
we perform Y\’L

!, lacc (i) ? I(X:Y)L\'@Vl(/\)= I(X:Y)It)V‘/l'(/\)@ |(X:YK)1@M,(M@|8CC

given / q info proc- equal and m’
M opfime] L Pxberixlo Px essing ineq also optimal



How to optimize measurement for lacc?

2. EB Davies, IEEE Trans Info Th, 24, p596, 1978

For any ensemble of states in d dimensions, €= {Px x}
optimal measurement has POVM IV = { My}, with

(a) rank( M, ) =1 and
(b) d s n 4%
Proof (b): see e.qg., Watrous book, or 1904.10985 Corollary 5.

Based on:

Caratheodory's Theorem:
Let S ¢ Rt, conv(S) convex hull of S.

Then, any Y £ conv(S) is a convex combination of at most

t+1 elements of S.



How to optimize measurement for lacc?

3. EB Davies, IEEE Trans Info Th, 24, p596, 1978
Sasaki, Barnett, Jozsa, Osaki, Hirota 9812062

Decker 0509122

Informally: many equiprobable ensembles of states with
symmetry have optimal measurement with the same

symmetry.



How to optimize measurement for lacc?

3. Ensembles with symmetry

Example 2. Define the ensemble ¢, with

P(0) = p(l) = p(2) = 1/3, Pe=1¥e<¥l | (Yo7 = lo)

9812062: optimal meas has POVM

WL = { Mk = 'i“ R® (Y)<¢! RKT}\&O‘I.?_

(,o\\ere_ R = Els

A
‘-ﬁ—f“

e.q., %< EX: optiTaI
yy W= 1wy =0,

SO, My = (Yo Y <Yt 1 = |13
My = ottty

il

((nofe R™1Yo) = 1Ye))

(v, > = Cos-‘g oY + S'm'gl‘ (1>
(Y, 7 = Cos ¥ loY — S'm'EL (>
| Yo >
(Y, > (Y, >

(the trine or "Mercedes" states)

SnE loy — Cos T (1>

Mz = 1Y <t ) W3- > =S¥ loy + Cos T oo



How to optimize measurement for lacc?

3. Ensembles with symmetry
Example 2. Define the ensemble ¢, with

pP(0) = p(1) = p(2) = 1/3, Pr= ¥l (Yo7 = o)

117 = Gos T oy + Sm¥F 0>
WL - { Mk } K=0.1,2

V27 = Cos ¥ 0> — SmF 11>
Mo = 1oy <¥ot 1= 1104
M, = 14 <t | vty = SmE loy — Cos T 11> M1 t’\/ M?2
Mo = 160 <hM T 19> = SnEF Loy + Cos Ty

N

: (Y, > (Y, >
Ex: find pr(y|x) for all x,y. I\\/I/O
If y=0, pr(x=0|y=0) =0
pr(x=1]y=0) = pr(x=2|y=0) = 1/2, so H(X|y=0) = 1.
H(X]Y) = p(y=0) H(X|y=0) + p(y=1) H(X|y=1) + p(y=2) H(X|]y=2) =1
L . | |

2 [ ’3' o ( -E o ‘
lacc = H(X) - H(X]Y) = (log 3) -1 = 0.5850.




How to optimize measurement for lacc?

4. Additivity of accessible info on product ensembles
Let F, = { D 6y, r).)h\] ,Fa= {Pbcl\, 65z y
The product ensemble of F,,F, is
F®F. =1 Poe Poc) | {)m@ 2

Represent F, by A= 2. pu x>0 9 [)x.

3,

,\Fz by A)_: -%:- Pbcz\ \)C-,_><)L,_\ ) 6)(7_

FI®F. by 2o pua Po )00 9 106! @ [)x. 9 6x, = \i® N\,
3 X2 X| XL Ql @)_

Thm. Taee (Fi®@F.) = Tace (Fi) + Tace (Fa)

/ ldea: applying the optimal measurement of Fi on Q1,
and the optimal measurement of F. on Q2,

joint meas , ,
is optimal for F, ® F.

allowed but
not needed



Thm. Teee (Fi®@F.) = Lace (Fi) + Tace (Fa)

Proof: [ =7 suffices to find a measurement for F, ® F.
achieving mutual information given by RHS.

Let v|,, m. be optimal meas for F,,F. with outputs ¥\, Y.

We now analyse the mutual info between X1X2 and Y1Y2

if Y,@W. is applied to 3, ~ X, P 1
Q1Q2 of ensemble¥, @ F. i lSlis
Wz ~ Ko 6 X, ™ .
Toce (Fi®@F.) = (X1 X2 :Y1Y2) t
To TA M.® M2 (1) X1 independent of X2

= H(X1 X2) + H(Y1Y2) - H(X1 X2 Y1 Y2) Loy oo o v
= H(X1) + H(X2) + H(Y1) + H(Y2) - H(X1 Y1) - H(Y1 Y2)

= [H(X1) + H(Y1) - H(X1 Y1)l 1 g, ny &— reduced states of
+ [H(X2) + H(Y2) - H(Y1 Y2)l1om o) & Tolemor (A=rof)

= |(X11Y1)1®f/\.u\.) + |(X2:Y2)1@./\1(m
= Toce (F) ® Laee (82 (by optimality of W\, M)



Thm. Toace (FI®@F.) = Tace (Fi) + Tace (F.)

Proof: [S‘] 3¢, ~ K, Px,
Let |

. V| be any meas on Q1 Q2 3o~ Ry 6 X, "
with output space Y |

(X1 X2 :Y) = I(X1:Y) + I(X2:Y]|X1)

H(X1X2) + H(Y) H(X1) + H(Y) H(X2|X1) - H(X2|X1Y)
H(XL X2Y)  CHXLY) = H(X1X2) = H(X1) - H(X2X1Y)+ HX1Y)



Thm. Io\cc(/\[—',®r\Fz) = Io\cc(/\Fl) + Lace (,T:z)

Proof: [£7] <~ X, ler/\

Let be any meas on Q1 Q2 ' J
. W\ y Q Q o ~ X-;_ 63(7_ W\
with output space Y |
(X1 X2 :Y) = I(X1:Y) + I(X2:Y|X1)
H(X1X2) + H(Y) H(X1) + H(Y) H(X2|X1) - H(X2|X1Y)
H(X1I X2Y)  CHXY) = H(X1X2) < H(X1) - HOX2X1Y)YEHXLY)

(1) if X1, X2 independent, drawing state from F,
is part of meas of Q1

@ IS @ measurement on Q1 prepared in the ensemble’F,
a HXLY) € Taee (T

(2) 2Nnd term Z. Pu_l} l(XzY \ X(=JC() < W\::X l(Xz'—T\XI=x[) § 101&(?1)
p &1 \

prepare best (’x. as
:\ \']Wk l()(n %1:\( ) < Toce (’\F.) + Toce (Tz) part of meas of Q2

\‘\ Ikcc(/Fl@q:z) < Io\cC(/T:,) + Ia\Cc (’\Fz)



Tue
adaptive, vs joint A3

locking A3

upper bound by holevo info

holevo bound

araki lieb two-way holevo bound



