CO781 / QIC 890:
Theory of Quantum Communication

Topics 4, part 2 ctd

Encoding classical information in quantum states
and retrieving it

Scenario 1: accessible information (ctd)
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Recall 3 things from last lecture:

Definition:
Let N\ = :L: Bac \'>L><°c\>( ® PXQ .

Yq measurement on Q with output space Y

The accessible information for ensemble ¢ = {Px,Fﬁ IS

Io\cc_ (2\ = wax T XY
m IO (A)



The example of the trine: @
Define the ensemble £ with

p(0) = p(1) = p(2) = 1/3, Pr=1¥r<Yxl, (Yo7 = o)

\‘\/\> = COS% lo) + S'mf{- (1>

. \k\/7_> = COS:§‘ loy — S'm'fgi (1>
Optimal measurement

M\ = { Mk } 0.1, \‘\’\o>

M1 M2
Mo = \"\’o'L><‘\’o'L\:\\><|\ ><
M\ = ‘\\/\—L> <\\/\—L\ ] \L\/\—L> = S'IY\'EL loy — Cos {L (>

M2 = \"\’zl><"Vz_"L\ ) \“\/Z_'L > = Swm¥F oy + Cos T 01>

lacc = H(X) - H(X]Y) = (log 3) -1 = 0.5850.



Additivity of accessible info on product ensembles @

Let ,T:I = { P(:)C.\, {)aq\] , A[:,_ = {P()Cl\, 63@_&
The product ensemble of F,,F, is
’\F, ®F, = { P()C.\ P(}Cl\ : [—’;q@ 6.)(.7_\1

Thm. Lcc(q:,®/?,_) = Io\cc(fT:I) + Lace (,1:7.)

So, applying the 2 optimal measurements on the 2 ensembles
separately is optimal for the product ensemble.



e.g., for 2 draws of the trine ensemble,
there are 9 equiprobable 2-qubit states:

{Yo > (Yo ? (Yo > (Y, > (Yo > (Y, >
(¥, > (Yoo ¥y > (> v, > 1Y, >
Y, Y (Yo > Y, > 14, > Y, > 1Y, >

Optimal measurement can be chosen to be:

Mo ® HD M, ® HD Mz ® HD Mb = \\\/0—L> <\\/0—L‘
Mo ® M M, ® M, M, ® M, for M, = 14Tyt
Mo ® M, M, ® M, M, ® M, 2 = 1Y <t

Accessible info = 2 *0.5850 = 1.19 bit



A= 2 ’\g \3(,706‘( & W, X ¥l

3,

X
L=
"\v\é,a(a e o § o‘fv?mal
2{ =

/\?_: 2 t\g\xl?(xz( &) H}I'LXK{/X&[

3o

Wiax TOX Yy : %) = Lx 0.5%3

Today: exotic properties of lacc, and useful bounds and
consequences, including the Holevo bound.

Instead of 2 draws of the trines, next we consider the double trine.



The double trine: Define the ensemble £, with

82
p(0) = p(1) = p(2) = 1/3, pe=1%<ixt -, (Yo7 = lod

1> = Gos T oy + SmE 0>

\k\/2_> = (,OS:g‘ lo) — S'mJE‘- (1>

Note the difference of the double trine from 2 draws of the trine:
only 3 states here, and the two qubits are in identical states

You will work out some details in A3.
We consider 2-3 measurements briefly here.

We call the first and second qubit Q1 and Q2 resp.



The double trine: Define the ensemble £, with

p(0) = p(1) = p(2) = 1/3, (>,¢=wx><\m®2

(Yoo = lo)
(¥, > = Cos T oy + ST 01>
Consider the measurement V), : \¥27 = Cos 3 lod = SmF 01>

(1) on 1st qubit, apply optimal meas for 1 draw of trine
M\ = { Mk } K=0.0,2
Mo = 1Yo Y <Yt 1 = 113
M\ = \‘\’\l><‘\’\l\ | \‘\’\J'> = Sm¥ 10 — Cos T (1>
Mo = 102k 1955 = SnEF loy + s Ty

by symmetry
If outcome is "a" then {% IS ruled out. WLOG, let a=0.

Second qubit equally likely to be ¥, >, %, >.

(2) on 2nd qubit, apply optimal meas for ensemble {<4,\¢Y...



From last time:

Example 1. x=0, 1, p(0) = p(1) = 1/2,

(’x‘-‘\‘\’x><‘h¢\, (Yo> = alod+ LD
¥y = alody—bi>

Optimal measurement:
projective, along basis {1+, 1->}

We found all the p(xy) ...
lacc = I(X:Y) = H(X) - H(X]Y)

1 - h(1/2+ab)

AbL>So A

(Y, >

(o)

| Yo >

-y ¢«

- 1+



The double trine: Define the ensemble £, with

Q2
p(0) = p(1) = p(2) = 1/3, pux=1%xd<txt , (Yo7 = lod

€17 = Cos T lody + Sm¥F 0>
The measurement V|, : %27 = Cos T 10> = Sin¥ 01>
(1) on 1st qubit Q1, apply optimal meas for 1 draw of trine
got outcome "a" (rv A)

(2) conditioned on the first outocme being "a", a postmeas ensemble
is induced on 2nd qubit Q2: %: 4 4y hta, cia

apply optimal meas for ‘T each with prob 1/2
got outcome "b" (rv B|A=a)

What is the mutual info between X and AB? From A3: ~1.23038 bit

NB: this lower bounds lacc of the double trine, and exceeds
lacc of 2 indep draws of the trine (2 * 0.5850 = 1.19 bits)

* correlation between Q1, Q2 can increase mutual info between
X and meas outcome -- back to this later.
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The double trine: Define the ensemble £, with

B2
p(O) = p(l) = p(z) = 1/3, r%c:\‘\’x’?(‘\’x\ (Yo = loy
\\\/\> = C°S§ lo) + g'm'EL (1>
Consider the measurement V|3 : 27 = Cos 3 Tod = Sin§ 11>
Let T= pospirp, My=T1 py [ for g=0.1.2
M3 = I— MO_MI_MZ

v

If T= Thclea)edl , Me>0 , fwen T2 T W 10 Xl

N®: T SQ\)am\)\Q\ bt T2 W\owk wl be .

So, M3 M ay nol be Chanlle .



The double trine: Define the ensemble ¢, with

B2
p(0) = p(1) = p(2) = 1/3, px=1%r<ixt |, (%07 = lo)
17 = Cos T lod+ Sm¥F 0>
Consider the measurement V[3 : |27 = Cos 3 lod = SmnF 11>

Let r: /D°+/)\+{),_, {‘ f r—'“z dov Q:o.\,z
M3=I -Mi Mo

From A3: I(X:Y) = 1.3691 bit

NB: this exceeds the mutual info obtained by . with first
meas optimized on Q1, and use the outcome to optimize the
2nd meas on Q2 (1.23038 bit)

*a "joint measurement" on Q1 Q2 can exceed the mutual info
obtained from classically adapting 2nd meas on the 1st outcome

V|3 believed to be optimal for the double trine.
Final step in Decker's analysis in 0509122 is numerical.

Wootters in 0506149 found a separable meas with the same [(X:Y).



A= 2L Do @ (X b [ O = 2 2 0 X bul O
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will return to optimizing the correlation and measurement for
creating cbits ...



Example 4. (Un)Locking of accessible information

Consider an n-dim qguantum system, and the 2n states forming the
computational basis and a conjugate basis:

o), L1y, 12} -5 lv=-1)

Wio), Wiy, W2y .- Win-0

wheee U IVY = %E“m\“’ w'=1 , W primitive n-th root of unity
N

e.g., h=3 ,

o), 1Y, 12)

WloY = 75 (1Y + 11y +12))

Wi = = (1oY+wiy + ul2))

Wizy = 75 (o) + W 1y 4 wl2))



Example 4. (Un)Locking of accessible information

Consider an n-dim quantum system, and the 2n states forming the
computational basis and a conjugate basis:

\O), \|>) \Z> 1S ‘V‘-|)

Wio), Wiy, W2y + -+ Win=-1

wheee U IYY = JL_?LL\)”L\M. w'=1 , W primitive n-th root of unity
A

Ld‘_ 6x= UK |U$<U\\A”C 3= uwk, we loot, o, n-id ke {0y,

Consider 2n states on 2n-dims:

Pe= W Iy U ® KT, 3wk, e font o net ke {on1h
encode basis
n possible Info
messages

either in the computational or conjugate basis

Define 2 ensembles: ., = { Px, /)1"1 T2 4 px, Ox , Px= oy

i.e., each state in ¢, is obtained from ¢, by removing B.



Example 4. (Un)Locking of accessible information

¢, = \))(_/)x]I IR széx "Px—’—
Px= U lv»w\u”c ® [kl 3= vk, e ot won-n ke fou 1,

b= US 1oy Ut
attained by the meas:

O Tace (20 = log tan) gc{lm—u“ WA=
[ ' — A= )Ij

(D Tace (35) = S g n (A3, 0303088)

Removing 1 qubit (B) from ¢, reduces the accessible info by
Tace ($1) = Tace ($5) = log(2n) - 1/2 log(n) = 1 + 1/2 log(n) > S(B)

System B is like a "key" which locks the 1/2 log n bits of acc info
in system C.



In 0307104, (log n)g random bases (almost conjugate, easier to
analyse) suppresses the acc info to 3 4 _%: log n ,

Key size: O(log log n), amount locked: ~ log n (max on C).



* Accessible info assumes a measurement is applied.

* But the optimal choice of measurement is sensitive to additional

side info (or sensitive to small changes in the ensemble), which,
in the example, is the basis info.

Before 2004, most QKD papers used accessible info to measure the
security of QKD.

Want: [(K:K") small, K=K"' with high prob.

e K’
Al "i_{ = But Eve need not meas her state
: - iImmediate -- she can wait for Alice
eol K’ and Bob to use the key, and jointly
— attack the key and the application.

—_—

S In 0409078, "composable" security

measures are introdcued to resolve
these kind of problems.



Accessible iInformation and Holevo information

Recall {:{pm,f)x} N T pe ey ® P
The Holevo information for the ensemble
S(X:Q) = X{E) = ST Pxpa) = T puS{fe)

Theorem: Tacc ($) < X (&)

Proof: Lo (£) = wax T(X:Y) < S(X: Q)
v TOWL(A) /Y N

quantum data processing ineq
(or mono of QMI under TCP maps)

e.g., 21 in locking example, L (£2) = L \oq W
X (f;z_\ = \O%V\



Holevo bound: if a d-dim system is transmitted from Alice to
Bob, then, they can create at most log d cbits.

Proof: suppose there is a protocol consuming log d gbits that
allows Alice to comm one out of t messages to Bob

If her message is x, Bob receives the state(J,C.

Bob measures {)x and outputs y as his decoded message.

plé ——::? @: Y
Bob

Let x be uniformally distributed.
If x=y with high prob, log t ~ I(X:Y) (Fanos inequality)

5Iacc( XIE) Pac‘])
< X(ﬁ-'flf),ﬂ])

< SO £Px) < log d



Holevo information is unlockable

Recall the Araki-Lieb inequality and how much S and QMI change
when adding and discard systems:

[5(AB)-S(A) | < S(B) )} entropy and QMI
| S(AB:C) - S(A:C) | < 2 S(B) are unloackable

Let 63(_: TFB Fna ) Q’_l: {?’Q ?)c]]) iL:é-?x-) 6)(71
,\\: z \)x \X)(IlP\ @ Fx 8¢
Ny= 2 Px DL)(”“A@ 6x, = Teg(A)

K(E)= SRR () X(F)= StAC)

By the Araki-Lieb ineq for QMlI, \ XS0 —X(i‘i)\ < 2S(B)



Holevo bound in interactive protocol:
(Cleve, van Dam, Nielsen, Tapp 9708019)

Suppose Alice is allowed to send Ny qubits to Bob
Bob is allowed to send Na qubits to Alice

In any order in an interactive protocol with any # of rounds.
Then, Alice can communicate at most n =W, + N4 bits to Bob.

Proof: let Alice's message x occur with prob p(x).

After the j-th qubit of comm (Alice's and Bob's combined),
let Bob's state be f'sc:‘.

i.e., Bob has the quantum state of the ensemble ;= { P00, fs(j} .

Let Bob's final decoded message bey.

TO6Y) € Taee (Gn) € XlGa) S SO px ()x,,) S by
T nice 3 L Qubit
N=NptVlg < S(};L?)L riﬂﬂ I Alon S

unweldy Y
S Nptns = N



leving it

Goal: learn about X as much as possible via rv Y.

~ joint distribution p(xy)

Scenario 1: accessible information / states discrimination
Px ,P:L predetermined
Richard draws x with prob p(x), prepares F:L , gives state to Bob
Bob picks measurement
(a) max prob(X=Y): state discrimination
(b) max I(X:Y): accessible information



leving it

Goal: learn about X as much as possible viarv Y.

e

joint distribution p(xy)

Scenario 2: classical channel

Pm ; Yq predetermined POVM {My } My20, TMy=T
4
Alice chooses X,

corresponding stategi generated, and measured (with fixed meas),
outcome is given to Bob.

For each x, Bob receives y with prob p(y|x) = ’(’r Hj {%c

Last week: for large number of uses,
can create max_p(x) I(X:Y) cbits per use



trieving it

Goal: learn about X as much as possible viarv Y.

Q box X1 |Px

as if Alice presses a
button "x" and Q box
spits out [):L to Bob

Scenario 3: Q box

{31 predetermined

Alice chooses X,

corresponding state Fx” generated and available to Bob.
Bob picks measurement and obtains y.

If Bob sticks to optimal meas for I(X:Y) for each system,
this reduces to scenario 2.



trieving it

Goal: learn about X as much as possible via rv Y.

Q box X[ [P

as if Alice presses a
| button "x" and Q box
Scenario 3: Q box spits out Fx, to Bob

{3& predetermined

Alice chooses X,

corresponding state FX” generated and available to Bob.

Bob picks measurement and obtains y.

Scenario 3: for multiple uses, Bob can choose JOINT measurement.

Next lecture: for large number of uses of Q boxes, can create S(X:Q)
cbits per use, for N\ =7 P )l ® Fx .
x X Q



trievin

it

Goal: learn about X as much as possible viarv Y.,

TR

[ P50

Px_

Scenario 4: classical capacity of qguantum channel

given N

Alice chooses x, and Y (the input to n uses of N)
F:L is the channel output available to Bob.

~Y

o=t

Bob picks measurement and obtains y.
Scenario 4: for multiple uses, Bob can choose JOINT measurement.

Optimized: C(N) classical capacity of guantum channel N (next Thur).



