CO781 / QIC 890:

Theory of Quantum Communication

Topics 4, part 4

Encoding classical information in quantum states and retrieving it

Scenario 3: classical capacity of Q-boxes (cq-channels)

Copyright: Debbie Leung, University of Waterloo, 2020

Definition:

A Q-box is specified by
$$\{ p_x \}_{x \in \mathbb{N}}$$
 input alphabet

states on a common space, say, a d-dim system

If Alice inputs x, then, Bob gets
$$\rho_{\infty}$$
:

How to optimize communication rate using Q-boxes?

Most general communication protocol using Q-boxes n times:

- 1. Alice's message is m
- 2. She looks up code book to find n classical inputs to the Q-boxes $x_{m1} \dots x_{mn}$
- 3. She enters the inputs

- 4. Bob gets the output q systems in the state $\rho_{x_{m1}} \otimes \cdots \otimes \rho_{x_{mn}}$
- 5. He applies a measurement \mathfrak{D}_n that outputs m' jointly for optimality

Codebook (known to Alice, Bob):

given, no choice $\{\rho_x\}_{x\in\Omega}$

Most general communication protocol using Q-boxes n times:

Classical notions still apply:

(M,n) code C_n where n: #uses of Q-box, M: #messages (fcn of n)

For each Cn

* Specification:

Codebook (known to both):

$$m=1: x_{11} \dots x_{1j} \dots x_{1n}$$

$$m = i \quad x_{i1} \quad \dots \quad x_{ij} \quad \dots \quad x_{in}$$

$$m=M: x_{M1} \dots x_{Mj} \dots x_{Mn}$$

Bob's meas \mathcal{D}_n (known to both)

* Performance

$$Pe(m) = prob(m \neq m')$$

(nonortho of q states, Bob's meas cannot perfectly distinguish m)

Most general communication protocol using Q-boxes n times:

Classical notions still apply:

(M,n) code C_n where n: #uses of Q-box, M: #messages (fcn of n)

For each Codebook Bob's meas Pe (Co)

A rate R>0 is achievable if,

NB 1: single-letter

$$\text{cf classical case } C(N) = \max_{p(x)} |I(X:Y)|_{\Lambda = \sum_{x} p_{x}|x \times x| \otimes \sum_{y} |y| \times |y|}$$

Theorem: Capacity of Q-box,
$$C(Q) = \max_{p(x)} S(X:Q) \bigwedge_{1 \le \infty} S(X:Q) = \max_{p(x)} \sum_{x \in \mathbb{Z}} S(x) \sum_{$$

Proof ideas:

(1) For the direct coding theorem:

Conceptual:

- (a) random codes for the codebook
- (b) pretty good measurement for decoding

Technical:

- (c) the packing lemma
- (d) the gentle measurement lemma

(2) For the converse:

Fanos inequality cq-channel product structure of Bob's received states

(1) For the direct coding theorem:

Fix any Q-box specified by $\{\rho_x\}_{x\in\Omega}$, any distribution p(x)

(a) consider random codes for the codebook

$$m=1$$
: $c_1 = x_{11} \cdots x_{1j} \cdots x_{1n}$

$$m = i : C_i = x_{i1} \dots x_{ij} \dots x_{in}$$

$$m = M : C_M = x_{M1} \dots x_{Mj} \dots x_{Mn}$$

where each x_{ij} is drawn iid $\sim p(x)$, and reject c_i if it is not strongly typical

To transmit m=i, Alice inputs $x_{i1} \dots x_{ij} \dots x_{in}$ into $\mathbb{Q}^{\mathbf{x}^n}$ Bob receives $Y_i = \rho_{x_{i1}} \otimes \dots \rho_{x_{ij}} \otimes \dots \rho_{x_{in}}$

e.g., Let
$$| \Psi_0 \rangle = | 0 \rangle$$

$$| \Psi_1 \rangle = | \cos \frac{\pi}{3} | 0 \rangle + | \sin \frac{\pi}{3} | 1 \rangle$$

$$| \Psi_2 \rangle = | \cos \frac{\pi}{3} | 0 \rangle - | \sin \frac{\pi}{3} | 1 \rangle$$
s.t. $| 0.4 | \Psi_0 \rangle \langle \Psi_0 | + | 0.3 | \Psi_1 \rangle \langle \Psi_1 | + | 0.3 | \Psi_2 \rangle \langle \Psi_2 | = \frac{\pi}{2}$

Let
$$\rho_{x} = 0.9 | \frac{1}{x} \frac{1}{x} + 0.1 = \frac{1}{2}$$

Let
$$p(0) = 0.4$$
, $p(1) = p(2) = 0.3$.

For n = 20, codebook of M messages looks like:

$$c2 = 02101 \ 20120 \ 02211 \ 02112$$

 $c_M = 22011\ 10021\ 20010\ 10220$

how distinguishable are they? how large can M be? what measurement to use?

Bob's state

e.g., $c2 = 02101\ 20120\ 02211\ 02112$ $\mathcal{Y}_{2} = \rho_{0} \otimes \rho_{2} \otimes \rho_{1} \otimes \rho_{3} \otimes \rho_{1} \otimes \rho_{2} \otimes \rho_{3} \otimes \rho_{1} \otimes \rho_{2} \otimes \rho_{3} \otimes \rho_{3} \otimes \rho_{3} \otimes \rho_{4} \otimes \rho_{5} \otimes \rho$ (1) allowing a small approx, can project the 6 % 's to typical space of roughly 2 65(%) dims 7 β 's to typical space of roughly 2 75(β) dims 7 β 's to typical space of roughly 2 dims (from p3-6 topic-2.2.pdf, precursor to Schumacher compression) thus can project $\sqrt[3]{2}$ to a subspace of roughly $2^{65(\beta)}$ $2^{75(\beta)}$ $2^{75(\beta)}$ dims Since all ci's are strongly typical, the same holds for each $\Im z$ (2) meanwhile, γ_2 consists of 20 iid draws of $\{p(x), p_x\}$ Let $p = \sum_{x} p(x) p_{xx}$ (which by coincidence, is I/2) Projecting $\sqrt[3]{2}$ onto typical space of $\sqrt[8]{20}$ of dim $\sqrt[2]{20}$ doesn't change it very much (Schumacher compression).

Back to general Q-box, general p(x) ...

$$\forall i = \rho_{x_{i1}} \otimes \cdots \rho_{x_{ij}} \otimes \cdots \rho_{x_{in}}$$

For large n, for each Y_i for each x there are approx $\operatorname{np}(x)$ $\int_{\infty}^{\infty} \hat{s}$ in known positions which can be projected whp onto the $2^{n p(x) S(p_{\infty})}$ dim typical space

So, Y; can be projected whp onto a 2 dim space.

So, each Y; lives in a $2^{n\sum_{k}p(x)S(p_{k})}$ dim space S_{t} .

For large n, all Y_i also approx live in the typical space of $\int_{-\infty}^{\infty} f(x) \, dx$ where f(x) = S(x) f(x) f(x). This typical space S has $2^{f(x)} f(x) f(x)$ dim.

(This is by Schumacher compression of the n states, and the same typical space contains all $\{\cdot,\cdot\}$

If the $\chi_i'_5$ (or Si'_5) don't overlap too much, there is a measurement for Bob to decode with small prob of error.

We expect to be able to pack
$$\approx \frac{2^{NS(\frac{\gamma}{2}p(x)\beta_{sc})}}{2^{N\sum_{j}p(x)S(\beta_{sc})}} \quad \forall i \text{ into S.}$$

$$2^{NX(\{p(x),p_x\})} \approx M$$

The distortions caused by various projections are upper bounded by:

(d) The gentle measurement lemma

(Winter IEEE TIT 45(7) p2481-2485, 1999)

Let
$$\rho \geq 0$$
, $tr(\rho) \leq 1$, $0 \leq E \leq I$

one element in the POVM for a meas

In our problem, E is the projector onto some typical subspace.

Bob uses the "pretty-good-measurement" (PGM) for the decoding.

(c) The pretty good measurement (Belavkin 75)

Let
$$\delta_1$$
, δ_2 ,..., $\delta_k \in Pos(\mathbb{C}^d)$ (d-dim, subnormalized states or states weighted by probs)

The PGM for { 6; } k has POVM elements

(saw last lecture, for double trine)

$$= \frac{1}{2} \prod_{i=1}^{2} \prod_{j=1}^{2} \frac{1}{2} = \prod_{i=1}^{2} \frac{1}{2}$$

Also,
$$M_{k+1} = I - \sum_{i=1}^{k} M_i = I - \sum_{j=1}^{k} le_j x e_{j,1} \ge 0$$

$$1.0 \le M_{k+1} \le I$$

$$projector \le I$$

 $M_1 M_2 M_1 M_2 M_{K+1}$ form a POVM.

•
$$M_{i} = \Gamma^{-\frac{1}{2}} 6; \Gamma^{-\frac{1}{2}}$$

• $M_{k+1} = I - \sum_{i} M_{i}$
 $\Gamma = \sum_{i=1}^{k} 6; = \sum_{j} \lambda_{j} |e_{j} \times e_{j}|$
 $\Gamma^{-\frac{1}{2}} = \sum_{j} \lambda_{j}^{-\frac{1}{2}} |e_{j} \times e_{j}|$

Bob uses the "pretty-good-measurement" (PGM) for the decoding.

(b) The pretty good measurement (Belavkin 75)

Let
$$S_1$$
, S_2 ,..., $S_K \in Pos(C^4)$

The PGM for { 6; } k has POVM elements

•
$$M_i = \Gamma^{-\frac{1}{2}} \delta_i \Gamma^{-\frac{1}{2}}$$
 for $i = 1, 2, ..., k$

where
$$\Gamma = \sum_{i=1}^{k} 6_i = \sum_{j} \lambda_j |e_i\rangle\langle e_j|$$
, $\Gamma^{-\frac{1}{2}} = \sum_{j} \lambda_j^{-\frac{1}{2}} |e_i\rangle\langle e_j|$

In our problem,
$$6i = i$$
, $k = M = 2^{n \chi(\{p(x), p_{x}\})}$

To show that (M,n) code exists for $M = 2^{n \chi(\{p(x), p(x)\})}$ with error ->0

(c) The packing lemma gives a precise upper bound on the error probability averaged over messages and over the choice of code, for the PGM, as a function of the dim of the common space, and the dim of each χ_i .

$$\mathbb{E} P_{e}(\mathcal{C}_{n}) \leq 2(\int_{2}^{2} + \sqrt{3\eta_{1}}) + \frac{2^{n \sum_{k} p(x)} S(\beta_{k}c)}{2^{n} S(\sum_{k} p(x)\beta_{k}c)} \times M$$
prob of not in typical spaces
$$\operatorname{can be } 2^{n \chi(\{p(x), p(x)\} - \delta)} \text{ for } \delta \to 0$$

The rest are same as classical capacity through classical channel:

See notes for Lecture 12-13, Oct 25, 2016 for F2016 offerimg.

(2) For the converse:

Suppose R>0 is an achievable rate, so, there are $(2^{nR}, n)$ codes with vanishing error prob.

Suppose the code uses the codeword $X_1 \times_2 \cdots \times_n Wp P(X_1 \times_2 \cdots \times_n)$ By Fanos inequality, $\exists \{(\epsilon_n) \rightarrow 0 \ \alpha_s \ \epsilon_n \rightarrow 0 \ \varsigma_{t_n} \}$

$$nR - f(\epsilon_n) \leq I(w:Y) \leq I_{acc} \left(\left\{ p(x_1 x_2 ... x_n), p_{x_1} \otimes p_{x_2} \otimes ... \otimes p_{x_n} \right\} \right)$$

$$\frac{m}{\sum_{n=1}^{\infty}} \sum_{n=1}^{\infty} \sum_{n=1}^{$$

(2) For the converse:

Suppose R>0 is an achievable rate, so, there are $(2^{nR}, n)$ codes with vanishing error prob.

Suppose the code uses the codeword $x_1 x_2 \cdots x_n$ Wp $P(x_1 x_2 \cdots x_n)$ By Fanos inequality,

$$= \sum_{i} S(B_i) - \sum_{x_i \dots x_n} p(x_i \dots x_n) S(px_i \otimes \dots \otimes px_n)$$

$$= \sum_{i} S(\beta_i) - \sum_{x_i \dots x_n} p(x_i \dots x_n) \sum_{i} S(\beta_{x_i})$$

product structure of Bob's received states

$$= \sum_{i} S(\beta_i) - \sum_{i} b(x_i) S(bx_i)$$

$$S(\beta_i) = S(\sum_i p(x_i) p_{x_i})$$

$$= \sum_{i} S(\sum_{i} p(x_i) p_{x_i}) - \sum_{i} p(x_i) S(p_{x_i})$$

$$= \sum_{i} \chi(\{p(x_i), p_{x_i}\})$$

$$\leq n \max_{p(x)} \chi(\{p(x), px\}).$$

e.g., Let
$$140 > 141 > 142 >$$
 be as before

s.t.
$$0.4 \text{ 1%} \times \text{1/4} + 0.3 \text{ 1%} \times \text{1/4} + 0.3 \text{ 1%} \times \text{1/4} = \frac{\pi}{2}$$

Let $\rho_x = 0.9 \text{ 1/4} \times \text{1/4} + 0.1 = \frac{\pi}{2}$

$$C(G) = \frac{b^{\circ} \cdot b \cdot \cdot b^{\circ}}{w w x} \left\{ \left(\sum_{3}^{\chi = 1} b^{\chi} b^{\chi} \right) - \sum_{3}^{\chi = 1} b^{\chi} \right\} \left(b^{\chi} \right)$$

$$C(Q) = \max_{p_0, p_1, p_2} S\left(\frac{3}{\sum_{x=1}^{3}} p_x p_x\right) - h(0.05) = 1 - h(0.05) \approx 0.7.$$

$$\sum_{x=1}^{3} p_x p_x = \frac{7}{2} i, p_0 = 0.4, p_1 = p_2 = 0.3$$

saw the code earlier