CO781 / QIC 890:
Theory of Quantum Communication

Topics 4, part 4

Encoding classical information in quantum states
and retrieving it

Scenario 3: classical capacity of Q-boxes (cg-channels)
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Definition:

A Q-box is specified by {[)x‘lxeﬂ
\ —input alphabet

states on a common space, say, a d-dim system

If Alice inputs x, then, Bob gets [)x :
L5~ Q H=—

How to optimize communication rate using Q-boxes?
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1. Alice's message is m 4. Bob gets the output g systems
in the state Px.., ® - ® Px
2. She looks up code book e State f) m ® ®P mn
to find n classical inputs 5. He applies a measurement CDH
to the Q-boxes xy1 ... xyp that outputs m \ jointly for
3. She enters the inputs optimality

Codebook (known to Alice, Bob):

m=1: x11 ... x1j = X picked and fixed
so, the n states
are correlated for {[)X“xeﬂ
M=M: XM1 ... XMj =+ Xmp each m

given, no choice
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Classical notions still apply:
(M,n) code €n where n: #uses of Q-box, M: #messages (fcn of n)

For each €n
* Specification: * Performance
Codebook (known to both): Pe(m) = prob(m # m")
Mm=1: X171 ... Xy == X, (nonortho of q states, Bob's meas
cannot perfectly distinguish m)
m= Xip  eee Xjjoorer Xy E‘{DQ (Cn) — Flf\_ Z?c((lv\)
m=M: xuv1 ... XMj *** XMn ?Q (Cn) = Max \)C (m)

M

Bob's meas CDV\ (known to both)



Most general communication protocol using Q-boxes n times:
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Classical notions still apply:
(M,n) code €n where n: #uses of Q-box, M: #messages (fcn of n)

For each £n Codebook Bob's meas t. (,)

A rate R>0 is achievable If, NB 1: single-letter

2. smaller lacc if Bob

L
3 (M,n) codes, wlog(M) 2 R, Te(€n) — 0 / can't meas jointly

Theorem: Capacity of Q-box, C(Q) = max S(X:Q)
0(X) A= \xlxXxléb(),c

cf classical case C(N) = max |(X:Y)

0(x) A= T P ekl @ & prgie 1<y



Theorem: Capacity of Q-box, C(Q) = max S(X:Q)
0(X) /\ZﬁPxIIXX\GDFI

= max X({Px,f)x’;)
. p(X)
Proof ideas:

(1) For the direct coding theorem:

Conceptual:
(a) random codes for the codebook
(b) pretty good measurement for decoding

Technical:
(c) the packing lemma
(d) the gentle measurement lemma

(2) For the converse:

Fanos inequality
cqg-channel
product structure of Bob's received states



(1) For the direct coding theorem:
Fix any Q-box specified by {[)x]lxe@. , any distribution p(x)

(a) consider random codes for the codebook

Mm=1: €y = X11 ... X3j *++ Xqp
M=1i:Ci=X1 ... X ==+ Xy
M=M:Cy =XM1 ... XMj **+ XMp

where each % is drawn iid ~ p(x),
and reject ¢, if it is not strongly typical

To transmit m=i, Alice inputs 1 ... %j .+ %jh into Qm
Bob receives Y; = Pxil ® ++ Pu ® Pxin



| %Yo >
e.g., Let (Yo7 = lod

\\\/\> = COS{L o) + S]V\'EL >
(Y, > = Cos ¥ loy — g'm'g‘ 1>

S.L 04 1l + 0.3 11 (Hl + 03 Ikl = = \
Let Px = 09 (%l + o1 & wz>\ \th>
For example, the Q-box tries to emit |4« Closer pair
when the input is x, but with 10% "garbage" =
Let p(0) = 0.4, p(1l) = p(2) = 0.3.

For n = 20, codebook of M messages looks like: Bob's state

cl =10012 00210 12120 12200 §,% P@po@podp @ P@ + @0 @),
c2 = 02101 20120 02211 02112 ¥:= p.OP. 9 OPOPO »+  @P D),

cm=22011 10021 20010 10220  §.° P.OP.@L OPOPD 0 ©p, D),

roughly 8 "0"'s, 6 "1"'s, 6 "2"'s how distinguishable are they?
how large can M be?
what measurement to use?



e.g., c2 =02101 20120 02211 02112
¥,= ORI OLOP @ LORSLILOPL & LOLILIPIN & ROLI) IPOR

(1) allowing a small approx,

6S(p)

can project the 6 P s to typical space of roughly 2. dims

S(P)

7 P.’s to typical space of roughly > dims

S(P.)

7 pP.’s to typical space of roughly > " gims

(from p3-6 topic-2.2.pdf, precursor to Schumacher compression)

6S(p) 278((%) Z"IS(fz)

thus can project ¥, to a subspace of roughly 2 dims

Since all ci's are strongly typical, the same holds for each ¥

(2) meanwhile, ¥, consists of 20 iid draws of { p(x), [Jx‘l

Let [>= L P i) F:c_ (which by coincidence, is 1/2)
X

. . ] ® 20 . '?_OS(rJ
Projecting ¥, onto typical space of [3 of dim 2

doesn't change it very much (Schumacher compression).



Back to general Q-box, general p(x) ...
Yi = Pxil 9 Pu & Pxin

For large n, for each Y, for each x

there are approx np(x) ()x'g In known positions

P()L)S(()c)

which can be projected whp onto the 2 dim typical space

P()(.) S(()ac)
S0, Y can be projected whp onto a 'L >

P()L)S ()nc) .
dim space S .

dim space.

So, each Y; livesin a 1 >

For large n, all Y; also approx live in the typical space of f)

where [3 = S(Zpm (<) . This typical space S has 1ﬂ§(§\>(>¢) ) dim.

(This is by Schumacher compression of the n states, and the same
typical space contains all Y; .)
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If the Y:'s (or Si's) don't overlap too much, there is a

measurement for Bob to decode with small prob of error.

V\S(EP()(.) :L)
We expect to be able to pack = % () X7 into S.

N2 PO SiPse)
T PO0SH

]

zn)((?\mhpd) ~ M



More technical detail:

The distortions caused by various projections are upper bounded by:

(d) The gentle measurement lemma
(Winter IEEE TIT 45(7) p2481-2485, 1999)

Let ,0>,0,‘\v(r)£|, 0<ke< L
\

one element in the POVM for a meas
If —h»(f'e\ 2\-n < ifE corrto a likely outcome for()

then || E"i() £ - /) I, < 3’37[ <— then meas preservesp

In our problem, E is the projector onto some typical subspace.



More technical detail:

Bob uses the "pretty-good-measurement" (PGM) for the decoding.

(c) The pretty good measurement (Belavkin 75)

(d-dim, subnormalized states

d
Let 5,, 62, .. , 6k € Pos CC7) or states weighted by probs)

The PGM for { 61} 5, has POVM elements
M =6 T fori=1,2, ...,k
c Mer = T-2 ™

H _k c. positive semidefinite
where [ = Z‘ / spectral decomp
= 7_: g 1€<e;l

r:'_ = r 7\3 les3<e; (applying inv-square-root to the supp)

(N\>°, ley orthonormal )

(saw last lecture, for double trine)



NB M H:=6: Tt 30, M= e T
'E_ ‘E g N i .E N ’ HK‘H - I_Z.M-\
LM =L 6T 8= 26T
= = =) = 7_6 = L W 1€i<e;l
=riTrT = Zieel < L F—"=3:7\3 les<e;

L Bach Mi< T, 2.¥9i o0<Mi< T,

k.
mso v M = I— _iHI = T—glq)«jl > 0

(= k)

g__\/_/

. 0<& Mew €2 Pro-\,‘_{-ar <7T
My Ma  Mk+; form a POVM.



More technical detail:

Bob uses the "pretty-good-measurement" (PGM) for the decoding.

(b) The pretty good measurement (Belavkin 75)

Let 5., 6,.. , 6 € Pos(C*)

The PGM for { 61} 5, has POVM elements
M =T=6: T fori=1,2, ...,k
c M = T-2 M

K -1 -1
where "= 1 §; = &= % te<e;l , 7= T 2™ 1es¢<e;!

1zl K}

)

. Psed)
In our problem, 6 = X , K=M = Z“X({\)m {) !



More technical detail:

n X ({Pro .())4})

To show that (M,n) code exists for M = 2 with error ->0

(c) The packing lemma gives a precise upper bound on the
error probability averaged over messages and over the choice
of code, for the PGM, as a function of the dim of the common
space, and the dim of each ¥; .

T\E \)00 S(?\c)

P (G) < 20+T3m) + 2 « M
— n ST poo ) ™
. 2 X
prob of not in
typical spaces ) P} -
can be Z“X({W " f 14 for § =0

The rest are same as classical capacity through classical channel:

E?e(e‘n) SWW\\\ ‘% ECV\ S-t E?Q(@n) QW\F\H
= 3O L sk. Pe (Bn) swell  EXPUnge

bad words



More technical detail:

See notes for Lecture 12-13, Oct 25, 2016 for F2016 offerimg.



(2) For the converse:

nR

Suppose R>0 is an achievable rate, so, there are (Y"" ) codes

with vanishing error prob.
Suppose the code uses the codeword X -+ X, \,Jp Py x0)
By Fanos inequality, 3 {(é-)20 as €n 0 <t.

AR-flen € TN < Taee ({P@xaxa), pruo pue - @ s} )



(2) For the converse:

Suppose R>0 is an achievable rate, so, there are ("% ) codes
with vanishing error prob.

Suppose the code uses the codeword X. > --- X, Wi POy )

By Fanos inequality,
NR=T:7) £ Tac ( {P(:Qh-‘-xn) ) [ ® fxz‘@ ®/)xn})

< X ( (P ) {’&r®/)xz® ®/)1n})
— S (X\XL XV\ A B‘ B)_EV\>,\

N = Vu M) TP . @ XN D fat.@ ~.® f)x»\
A - )(w
X\ x'h B\

= S(B:- “Bn) 7 S(Bi Bnl Xy - Kn)
A\ SA \l

Tbg(@l\ L \3(1"'1“) g(g\--gv\\x‘-.x,)

Wi X

= TS =T, p Siprope)



= TSR =T, Pt S(po-opu)

— 'Z S(Q'l\ —_ z ‘)(1-"3(“) 'I_bg(fy‘u)

Wi Xn

product structure of
Bob's received states

= TSR — T pud) S(px)

AN= L Yu‘--scn) DGO .. @ XK D fx.&io ~.® )OJO\
Ais M
X\ XV\ B\ Bn

S(8)= S(Z fuen px)
= X S@_ pe) fx;> — Tb p i) g(fi.')

= T A({ o, f)m‘])

< wn V\Pr\&:( X ({P()ﬂ,faﬂl)‘



(Yo >
e.g., Let (¥o» 11, Y27 be as before

Mg

S.t. 0.4 W (Hfl + 0.3 (1 + 0.3 (Rl =

Let Px = 09 (&l + o1 \

For example, the Q-box tries to emit |4« S S
' ' . 1] 1" E—_ 2 !
when the input is x, but with 10% "garbage" = closer pair

C(Q) = Mo S(Q: ?xf;c) — i P)( S[fi)

p N
Foc ety 30 Py 0ATHK ] £ 008 [ M0k 18 )

= 045 (W )%e| T 003 14 X%
g({&) =~ [r (207 ‘u\mLc% oJYX

C(Q) = max S(iﬁgxﬁc) — h l008) = | =h(owos) = 0.,

)&y
et NP S
WArY KT ¥ [xz = < Doz 04 =0 =02
saw the code earlier A= ? {) >



