CO781 / QIC 890:
Theory of Quantum Communication

Topics 4, part 5

Encoding classical information in quantum states
and retrieving it

Scenario 4: classical capacity of quantum channels

Copyright: Debbie Leung, University of Waterloo, 2020



o LAST TIME
Definition: L

A Q-box is specified by {[)x‘lxeﬂ

If Alice inputs x, then, Bob gets [)x ;

Xt Q P

S /En 5 - : ®m L
xmn\, Q [)xmn

Theorem: Capacity of Q-box, C(Q) = max X({Px,fbd)
p(x)

TODAY: classical capacity of quantum channels (the HSW theorem)
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1. Alice's message is m 4. Bob gets the output g systems
I &n
2. She looks up code book In the state N (JO”‘)
to find the g input Pe 5. He applies a measurement CDn
AN '
for n uses of N E(I%!(edd that outputs m \ jointly for
3. She enters the input x€ optimality
for each m

Concepts as defined before:

for each channel: (M,n) codes
for each code: error for each message, average error, worse case error
for each channel: achievable rates, capacity



Relating the capacity of qguantum channels to that of Q-boxes:

Most general comm protocol using a quantum channel n times:
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Identify a Q-box (a very big one) in the above n-use protocol:

%Z &.,\ %-N”“(f%) determined by the code
pd / / \ which Alice & Bob agree to

range depends  / | and can optimize later
on R and n depends no choice

on n reduces distinguishability of JO”‘

Useful result from last lecture C (Qn) = max X ({pw, N9 {fm)ﬁ)
P



Will show that:

-v'; capacity of Qn, optimized over n and /’M = capacity of N

Will do so in 2 (simple) steps:
(1) LHS is achievable rate for N (direct coding thm for N based on Qn)

(2) Converse - that no rate above the LHS is achievable



: _ (1) DIRECT CODING THM
Use On ktimes for large ki use Qn as a big Q-box
NP (Prp)
1\ ml
Qn 7 Qn | Qn

#:EK - - ~ @K
mk\ Q N®n (Pmk)
N 1

N 1%

~ K C (Qn) bits comm with vanishing error, using N nk times
So, + ¢ (Q.) is an achievable rate for N for any {fm} and any n

LOCINY = sup Max £ (@)
Nl
R~ iInputs to n uses of N

— gM\P Max L wmax ({PV\,N@V\{(M\)H)

n i(’m& " P
—_ " L A Yw
— sn\o [v\ “V)"“m%‘m\] L ({om. N f()m)ﬁ)]

We next show the above IS an also an upper bound to any achievable rate,
thus it is the capacity ...



What is the code?
» If you know C(N), to achieve rate C(N) - ¢
3, r-use ensemble { Px. f ] with & X({peN®Tipeid) = (W) - £

AN

These defines a Qr-box x. == Q. +N®r(Px)

* Now code for Qr-box: take random code of length k (large k):

X171 s DC]_J' e Xk
DCi]_ xij xik

k (XN pat) - &)
XML ... Xpj e Xmg for Mz 2

where each % drawn iid ~ p(x), reject i-th row if not strongly typical

N (pss)

» To transmit m=i, .Pxil NO”

- Qr r>
: @K — |

Pxik N N®r(.PXik)

Alice inputs Bob receives
these these



L CINY = S\A‘D M Ax ',';C(Qn)
4 i()mﬁ
Kinputs to n uses of N

g:\\\‘, [¢ wmx\] X (Lo, Nwlfm)'])]

n QPM)()""

I

We next show the RHS IS an also an upper bound for any achievable rate,
thus it is the capacity ...



(2) CONVERSE
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no matter how large n is, how well Pw ,[’M are chosen,
If R achievable, ¢, - o0,
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Putting (1) and (2) together, we obtain:
Theorem (Holevo-Schumacher-W

C(N) = $p ¢ My A (Lpeo N (pIY) = sup X7 (N)

Where X (N):= max  X({p<,Nipx)3) 1-shot Holevo info of N
{.F’C" [')1-3
| "\
arbitrary inputto
label x 1 channel

labeled by X r-shot Holevo info of N
X O (N)= L X(N®) =+ {max Y e N i)
Pe. P }
|\

arbitrary input to
label x r channels labeled by x

The capacity expression is called "reqularized", optimized overr,
then an optimization involving r uses of N. (Classical capacity of

classical channels and Q-boxes are "single-letter" -- optimization
involving 1 use of N.)

* Holevo: IEEE TIT 44 p269 (1998)
Schumacher and Westmoreland: PRA 56 p131 (1999)



Putting (1) and (2) together, we obtain:

Theorem (Holevo- -
COND = 5up sy A (R N(pY) =2 Sup X7 (N)

Where X (N):= max  X({p,Nip«)3) 1-shot Holevo info of N
{‘Px—) [31-.5
| "\
arbitrary inputto
label x 1 channel

labeled by x r-shot Holevo info of N
X (N)= L X(N®) = {max K{pe, N (p)})
Pt P}
|\

arbitrary input to
label x r channels labeled by x

If output states are product over the r uses,

(e.q., if all input states are product or if the channel
Is "entanglement breaking") then, proof of converse
for capacity of Q-boxes applies, and X (N) = X (N)



Optimizing the Holevo information of a channel:

Def: in the expression X(N) := max X ({Px. N(px)})
(P}

{p<.px} is called the "optimal ensemble" for N
if the max is attained on {Px,fx}

1. Finiteness of the optimal ensemble

Uhlmann 9701014, Schumacher and Westmoreland 9912122
(a) /)>c '« can be chosen pure, AND

(b) d? states are sufficient, where d = min (din, d,ut )

\/
NB. thus the "max". Input, output dims of N

Proof: A3 Q3.



Optimizing the Holevo information of a channel:

Def: in the expression X (N) :

[

max x(wx.mfm
{Pep)

{px.px} is called the "optimal ensemble" for N

if the max is attained on {Pf-sfx}

Def: X is strongly additive on N if ¥ N’, X{(N&nN) = X (N) +X(N)
Def: X is weakly additive on N if ¥r., XY'(N) = X (N)

Lemma: ¥V N, N, X(NeN) = X(N)+ X (N)

Proof sketch :

Let {bx, \sx\; . {34 .44} be optimal ensembles for N, N' respectively.

. , try product ensemble
XANeN) = X ({peqy . NeN (Pxd6y)}) P{‘F‘:w o6y} for NoN
rewrite as QMI of Ag N’

equate to sum of QMI of A and QMI of N

= (4 N Y) + X (149 N(6)1)
= X (N) + X (N)



Optimizing the Holevo information of a channel:

Def: in the expression X(N) := max X ({px. N(px)})
(P}

{px.px} is called the "optimal ensemble" for N
if the max is attained on {p<.fx}

Def: X is strongly additive on N if ¥ N’, X(N&nN) = X(N) + X (N)
Def: X is weakly additive on N if ¥, XN = XN
Lemma: ¥V N, N/, X(NaN) = X(N)+ X (N)

2. Non itivity of Holevo information equiv:
, nonadditivity of ent of formation
Shor 0305035 + Hastings 0809.3972

nonadditivity of min output entropy
IN, N ¢t X(NeN) > XIN) + X (N])

I N s¢t. X™(N) > X (N)

no known explicit example See also:

Brandao, (M) Horodecki 0907.3210
Fukuda, King, Moser 0905.3697
Aubrun, Szarek, (E) Werner 0910.1189



Useful consequences of lemma VY N,N‘, X(NeN) = X (N)+ X (N)

(a) lower bound for capacity:
CNY = sub X0y 2 X7n) 2 XN

(b) characterization of zero capacity channels:
(=0 & AMN=0 & ¥p N(f-= 6 tonctent

Proof: () CNY=0 = YX(N)= D0

) < = :
( \‘f KINY= O {"‘f:frt} S(A Q)A=§L\>,f. ('xkxlt@N(f)x.)

then \]{?x‘ g A= T Du bexel @ N(px) S o product Xate

f
then \l(’ N(f)?—é Lonstant

(TG) \'E' \d(’ N ((')T- 6 Lonstant

Then N n be Ciwmuwlated Without OQ(MM\An'\uft'uv\,’

_ﬁ“é\ §——> \% C(NY >0, yiwldes Co

Alice discards Bob produces
her input § himself

LCN) =0



Optimizing the Holevo information of a channel:

3. Examples
Np (p) = Q=p)p + P d-dim depolarizing channel
X [Np) = ex S(Z PeNOtXl)) = T pe S{N(11<]))

{Px 1)
For the 2nd term, N(\to<tl) = (1=P) 1| + P— [‘P 0O + & .D
O -, O
S pectram = el R R ENE S ‘mgﬁ(‘p ok %) in any basis
EnET including \tx»

SINOtocel)) = = (V-048) tog (V=94 8) = (d-1) Fuad =T
2nd term = 2 P> S(N(\‘\’ﬁ(\\’xl)) = 2 P T =T

S XINpY = max S PeNtel)) -

T
P 1ad)
~— ~ -

attained when Z Px N(1text) =% when Px= g, I¥x) =

= QD% Aj - - (d"fck 'QXQTC\SC)



Ex: find X (N) fgw N(r\: 0.%{) + 0.5 Xfx'\ + 0\087};/)%

r\)_x)_ \‘\’o\u\‘\ ’s

mixed Pauli channel

Ex: find X (Ey) ~or Ep(p) = (-p)p + p leXel
~Es fgo Hf CF . erasure symbol

erasure channel orthogonal to any input



Optimizing the Holevo information of a channel:

4. More distinguishable inputs need not have higher Holevo info !
N+ (|>) = Aof Ar o+ A P At amplitude damping channel (AD)

ol MERE

Ro 5 Qo)+ b (i3 11y ,
Aloy+ buy < \f 10y, 1y ground and excited states
A

b {¥ 10 then, AD describes de-excitation.
“7 N (i)
for any pair of orthogonal inputs
=Y My  Xomax ab pe=pi=d, X=045¢7.
N o) .
for 2 such nonorthogonal inputs,
N(Inal) 7 1oy {MGIY) = (s g0, X= o417

Fuchs PRL 79 1162 (1997) first example, 9912122 AD channel.



Optimizing the Holevo information of a channel:

5. Hardness to estimate X(N) Beigi & Shor 0707.2090
et c€RT . To decide whether XINY> ¢ or XINY< c-€

f{;)r <= — s NP cow@e‘tc.
Pb\ (d)
N

wn ‘)v\"' dim

6. Continuity of C(N): Leung & Smith 0810.4931

lC(I\I\—C(M\\ < 9 \\N—M\\O loﬁ dout, + W h ([ 1IN-M1[,)



Optimizing the Holevo information of a channel:

7. Special channels with known additive Holevo info

(a) If N is entanglement breaking, then X is strongly additive on N
Cor: C(N) = X(N)

Def: N is entanglement breaking if,
Vf“’ X@N(r)m separable (i.e., being a mixture of product states)

e.g., classical channels and Q-boxes are entanglement breaking

Aside: characterization of entanglement breaking channels
P71 M =0 | 6y
| 4

measurement Q-box

Ex: show the characterization.
Hint: apply def of ent break to Choi matrix.



Optimizing the Holevo information of a channel:

7. Special channels with known additive Holevo info  (King 0103156)
(b) X is strongly additive on d-dim depolarizing channel NF
Cor: C(N) = X(N) = ([\)%A) - T
(b) X is strongly additive on qubit unital channels (N(1)=1)
Cor: C(N) = X(N)
Aside: characterization of qubit unital channels
— ULV P

/ \

unitary unitary
mixed Pauli channel

SU0= (o pepy-pa) pt Qe XPXE Py X P4 PRAfE

(c) Amplitude dampling channel is NOT known to have additive Xx



