CO781 / QIC 890:

Theory of Quantum Communication

Topics 4, part 5

Encoding classical information in quantum states and retrieving it

Scenario 4: classical capacity of quantum channels

Copyright: Debbie Leung, University of Waterloo, 2020

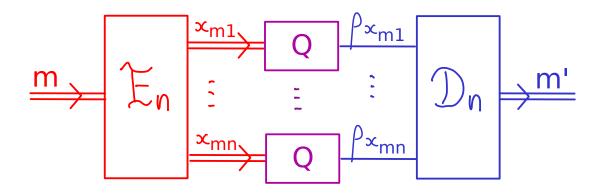
Definition:

A Q-box is specified by $\{\rho_{x}\}_{x \in \Omega}$

If Alice inputs x, then, Bob gets ρ_{∞} :

$$\xrightarrow{\mathsf{x}}$$
 Q $\xrightarrow{\mathsf{p}_{\mathsf{x}}}$

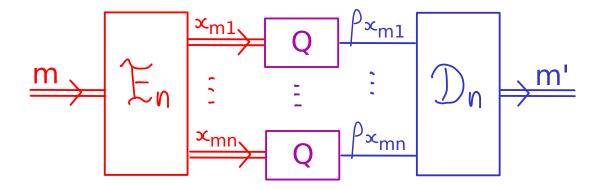
Most general communication protocol using Q-boxes n times:



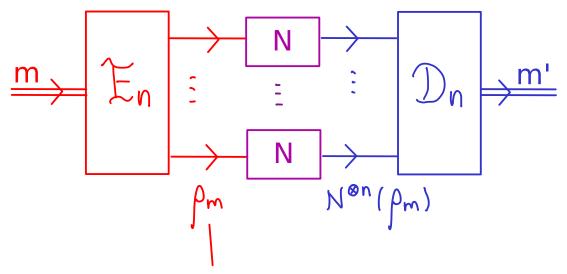
Theorem: Capacity of Q-box, $C(Q) = \max_{x \in \{P_x, P_x\}} \chi(\{P_x, P_x\})$

TODAY: classical capacity of quantum channels (the HSW theorem)

Most general communication protocol using Q-boxes n times:

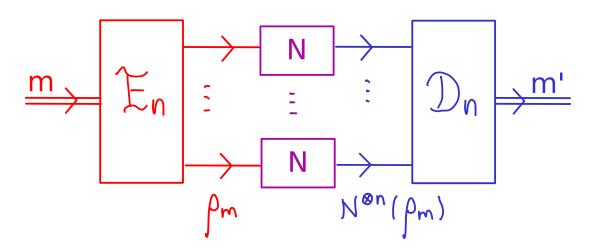


Most general comm protocol using a quantum channel n times:



potentially entanlged across the uses

Most general comm protocol using a quantum channel n times:



& fixed

for each m

- 1. Alice's message is m
- 2. She looks up code book to find the q input ρ_m for n uses of N picked

3. She enters the input

4. Bob gets the output q systems in the state $N^{\otimes n}(\rho_m)$

Concepts as defined before:

for each channel: (M,n) codes

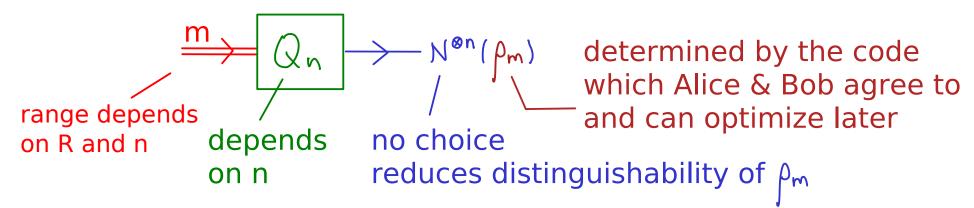
for each code: error for each message, average error, worse case error

for each channel: achievable rates, capacity

Relating the capacity of quantum channels to that of Q-boxes: Most general comm protocol using a quantum channel n times:



Identify a Q-box (a very big one) in the above n-use protocol:



Useful result from last lecture $(Q_n) = \max_{P_m} \chi(\{p_m, N^{\otimes n}(p_m)\})$

Will show that:

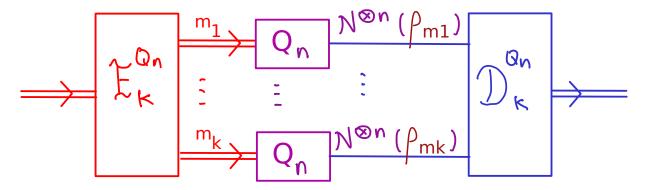
$$\frac{1}{N}$$
 capacity of Qn, optimized over n and $p_{M} = \text{capacity of N}$

Will do so in 2 (simple) steps:

- (1) LHS is achievable rate for N (direct coding thm for N based on Qn)
- (2) Converse that no rate above the LHS is achievable

Use Qn k times for large k:

(1) DIRECT CODING THM use Qn as a big Q-box



 $\approx K \subset (Q_n)$ bits comm with vanishing error, using N nk times So, $\frac{1}{h} \subset (Q_n)$ is an achievable rate for N for any $\{p_m\}$ and any n

$$\begin{array}{lll}
\vdots, & C(N) \geq \sup_{N} \max_{n} \frac{1}{n} C(Q_{n}) \\
& & \text{inputs to n uses of N} \\
& = \sup_{N} \max_{n} \max_{n} \chi(\{p_{m}, N^{\otimes n} | p_{m}\}) \\
& = \sup_{N} \left[\frac{1}{n} \max_{n} \chi(\{p_{m}, N^{\otimes n} | p_{m}\}) \right]
\end{array}$$

We next show the above IS an also an upper bound to any achievable rate, thus it is the capacity ...

What is the code?

- If you know C(N), to achieve rate C(N) δ $\exists \Gamma, \text{ r-use ensemble } \{ P_x, P_x \} \text{ with } \frac{1}{r} \chi(\{P_x, N^{\otimes r}(P_x)\}) \geqslant C(N) \frac{\delta}{2}$ These defines a Qr-box $x \Rightarrow Q_r \rightarrow N^{\otimes r}(P_x)$
- Now code for Qr-box: take random code of length k (large k):

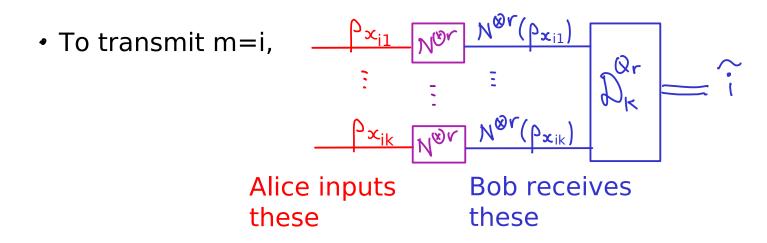
$$x_{11}$$
 ... x_{1j} ... x_{1k}

$$x_{i1}$$
 ... x_{ij} ... x_{ik}

$$x_{M1}$$
 ... x_{Mj} ... x_{Mk} for $M = 2$

$$k \left[\chi(\{\rho_x, N^{\otimes r}(\rho_x)\}) - \frac{\lambda}{2} \right]$$

where each x_{ij} drawn iid $\sim p(x)$, reject i-th row if not strongly typical

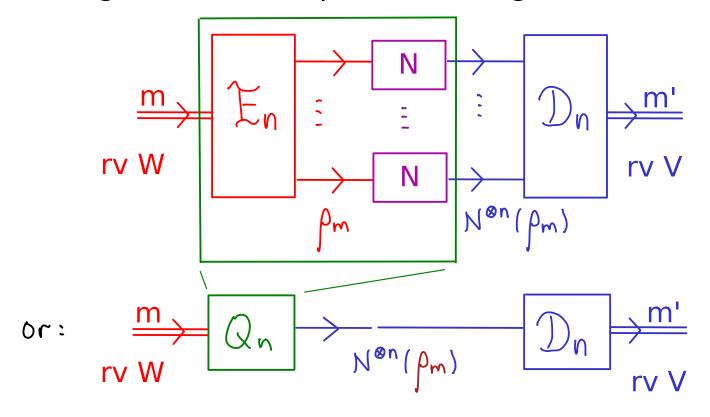


$$\begin{array}{l}
\text{I. } C(N) \geq \sup_{n} \max_{n} \frac{1}{n} C(Q_{n}) \\
\text{Inputs to n uses of N} \\
= \sup_{n} \left[\frac{1}{n} \max_{\{P_{m}, P_{m}\}} \chi(\{P_{m}, N^{\otimes n} | P_{m})\}) \right]$$

We next show the RHS IS an also an upper bound for any achievable rate, thus it is the capacity ...

(2) CONVERSE

Most general comm protocol using N n times:



no matter how large n is, how well β_m , β_m are chosen, if R achievable, $\epsilon_n \to 0$,

$$\begin{array}{l} NR \lesssim I(W:V) \leqslant I_{acc}\left(\left\{\rho_{m},N^{\otimes n}(\rho_{m})\right\}\right) \leqslant \max_{\left\{\rho_{m},\rho_{m}\right\}} I_{acc}\left(\left\{\rho_{m},N^{\otimes n}(\rho_{m})\right\}\right) \\ \leqslant \max_{\left\{\rho_{m},\rho_{m}\right\}} \chi\left(\left\{\rho_{m},N^{\otimes n}(\rho_{m})\right\}\right) \\ \leqslant R \leqslant \sup_{\left\{\rho_{m},\rho_{m}\right\}} \frac{1}{N} \max_{\left\{\rho_{m},\rho_{m}\right\}} \chi\left(\left\{\rho_{m},N^{\otimes n}(\rho_{m})\right\}\right). \end{array}$$

Putting (1) and (2) together, we obtain:

<u>Theorem (Holevo-Schumacher-Westmoreland) (HSW Thm)</u>:

$$C(N) = \int_{\Gamma}^{N} \frac{1}{\Gamma} \frac{\max}{\{\beta_{x}, \beta_{x}\}} \chi\left(\{\beta_{x}, N^{\otimes n}(\beta_{x})\}\right) =: \sup_{\Gamma} \chi^{(\Gamma)}(N)$$

$$\text{Where } \chi(N) := \max_{\{\beta_{x}, \beta_{x}\}} \chi(\{\beta_{x}, N(\beta_{x})\}) \text{ 1-shot Holevo info of N}$$

$$\text{arbitrary input to label } \chi \text{ 1 channel labeled by } \chi \text{ r-shot Holevo info of N}$$

$$\chi^{(\Gamma)}(N) := \frac{1}{\Gamma} \chi(N^{\otimes \Gamma}) = \frac{1}{\Gamma} \max_{\{\beta_{x}, \beta_{x}\}} \chi(\{\beta_{x}, N^{\otimes \Gamma}(\beta_{x})\})$$

$$\text{arbitrary input to label } \chi \text{ r channels labeled by } \chi$$

The capacity expression is called "regularized", optimized over r, then an optimization involving r uses of N. (Classical capacity of classical channels and Q-boxes are "single-letter" -- optimization involving 1 use of N.)

* Holevo: IEEE TIT 44 p269 (1998)
Schumacher and Westmoreland: PRA 56 p131 (1999)

Putting (1) and (2) together, we obtain:

<u>Theorem (Holevo-Schumacher-Westmoreland) (HSW Thm)</u>:

$$C(N) = \int_{\Gamma}^{N} \frac{1}{\Gamma} \frac{\max_{\{p_{x}, p_{x}\}}}{\{p_{x}, p_{x}\}} \chi \left(\{p_{x}, N^{\otimes n}(p_{x})\} \right) =: \sup_{\Gamma} \chi^{(\Gamma)}(N)$$
where $\chi(N) := \max_{\{p_{x}, p_{x}\}} \chi(\{p_{x}, N(p_{x})\})$ 1-shot Holevo info of N
$$\begin{cases} p_{x}, p_{x}\} \\ \text{label } \chi \end{cases}$$
arbitrary input to
$$\begin{cases} \text{label } \chi & \text{r-shot Holevo info of N} \end{cases}$$

$$\chi^{(\Gamma)}(N) := \frac{1}{\Gamma} \chi(N^{\otimes \Gamma}) = \frac{1}{\Gamma} \begin{cases} \max_{\{p_{x}, p_{x}\}} \chi(\{p_{x}, N^{\otimes \Gamma}(p_{x})\}) \\ \{p_{x}, p_{x}\} \end{cases}$$
arbitrary input to
$$\begin{cases} p_{x}, p_{x}\} \\ p_{x}, p_{x} \end{cases}$$
arbitrary input to
$$\begin{cases} p_{x}, p_{x}\} \\ p_{x}, p_{x} \end{cases}$$

if output states are product over the r uses, (e.g., if all input states are product or if the channel is "entanglement breaking") then, proof of converse for capacity of Q-boxes applies, and $\chi^{(r)}(N) = \chi(N)$

Def: in the expression
$$X(N) := \max_{\{P \times, P \times\}} X(\{P \times, N(P \times)\})$$

 $\{ P \times_{i} P^{*} \}$ is called the "optimal ensemble" for N if the max is attained on $\{ P \times_{i} P^{*} \}$

1. Finiteness of the optimal ensemble

Uhlmann 9701014, Schumacher and Westmoreland 9912122

(a) $\int_{-\infty}^{\infty} x' \, c$ can be chosen pure, AND

(b) d^2 states are sufficient, where $d = \min(d_{in}, d_{int})$

NB. thus the "max".

input, output dims of N

Proof: A3 Q3.

Def: in the expression $X(N) := \max_{\{p_{\infty}, p_{\times}\}} X(\{p_{\infty}, N(p_{\times})\})$

 $\{ P \times P^* \}$ is called the "optimal ensemble" for N if the max is attained on $\{ P \times P^* \}$

Def: X is strongly additive on N if $\forall N'$, $\chi(N \otimes N') = \chi(N) + \chi(N')$

Def: X is weakly additive on N if $\forall r$, $\chi^{(r)}(N) = \chi(N)$

Lemma: $\forall N, N', \chi(N \otimes N') \ge \chi(N) + \chi(N')$

Proof sketch:

Let $\{p_x, p_x\}$, $\{q_y, 6_y\}$ be optimal ensembles for N, N' respectively.

$$\chi(N \otimes N') > \chi(\{p_{\varkappa}q_{y}, N \otimes N'(p_{\varkappa} \otimes \epsilon_{y})\})$$
 try product ensemble $\{p_{\varkappa}q_{y}, p_{\varkappa} \otimes \epsilon_{y}\}$ for $N \otimes N'$ rewrite as QMI of $\Lambda \otimes \Lambda'$ equate to sum of QMI of Λ and QMI of Λ'

$$= \chi (\{p_x, N(p_x)\}) + \chi (\{q_y, N'(\delta_y)\})$$

= $\chi(N) + \chi(N')$

Def: in the expression
$$X(N) := \max_{\{P \times, P \times\}} X(\{P \times, N(P \times)\})$$

 $\{ P \times_{i} P^{*} \}$ is called the "optimal ensemble" for N if the max is attained on $\{ P \times_{i} P^{*} \}$

Def: X is strongly additive on N if $\forall N'$, $\chi(N \otimes N') = \chi(N) + \chi(N')$

Def: X is weakly additive on N if $\forall r$, $\chi^{(r)}(N) = \chi(N)$

Lemma: $\forall N, N', \chi(N \otimes N') \geq \chi(N) + \chi(N')$

2. Nonadditivity of Holevo information

Shor 0305035 + Hastings 0809.3972

$$(N)X + (N)X < (N \otimes N)X < (N \otimes N)X$$

$$\exists N \quad \text{st. } \chi^{(2)}(N) > \chi(N)$$

no known explicit example

equiv:

nonadditivity of ent of formation nonadditivity of min output entropy

See also:

Brandao, (M) Horodecki 0907.3210 Fukuda, King, Moser 0905.3697 Aubrun, Szarek, (E) Werner 0910.1189

<u>Useful consequences of lemma</u> $\forall N, N', \chi(N \otimes N') \geq \chi(N) + \chi(N')$

(a) lower bound for capacity:

$$C(N) = \sum_{i=1}^{n} \chi_{(i,j)}(N) \geqslant \chi_{(i,j)}(N) \geqslant \chi(N)$$

(b) characterization of zero capacity channels:

$$((N) = 0 \Leftrightarrow X(N) = 0 \Leftrightarrow \forall \rho N(\rho) = 6$$
 constant

Proof: (i)
$$(N) = 0 \Rightarrow \chi(N) = 0$$

then $\forall \{p_x, p_x\} \ \Lambda = \sum_{x} p_{xx} |x \times x| \otimes N(p_x) \text{ is a product state}$

then N can be simulated without communication!

himself

her input

3. Examples

$$\begin{split} &N_{p}\left(\rho\right)=\left(1-\rho\right)\rho+\rho\frac{T}{d} & \text{d-dim depolarizing channel} \\ &\chi\left(N_{p}\right)=\frac{max}{\{p_{x},1\eta_{x}\}} S\left(\frac{\Sigma}{x}p_{x}N(1\eta_{x})(\eta_{x})\right)-\frac{\Sigma}{x}p_{x}S\left(N(1\eta_{x})(\eta_{x})(\eta_{x})\right) \\ &\text{For the 2nd term, } N(1\eta_{x})(\eta_{x})=\left(1-\rho\right)1\eta_{x}(\eta_{x})+\rho\frac{T}{d}=\begin{bmatrix} 1-\rho&0\\0&0&0 \end{bmatrix}+\frac{\rho}{d}\begin{bmatrix}1&0\\0&0&0 \end{bmatrix} \\ &\text{Spectrum}=1-\rho+\frac{1}{d}, &\text{finde}\rho\text{ of }1\eta_{x}) &\text{in any basis including }1\eta_{x}) \\ &S\left(N(1\eta_{x})(\eta_{x})\right)=-\left(1-\rho+\frac{1}{d}\right)\log\left(1-\rho+\frac{1}{d}\right)-\left(d-1\right)\frac{1}{d}\log\frac{1}{d}=:\mathcal{I} \\ &2nd term=\frac{\Sigma}{x}p_{x}S\left(N(1\eta_{x})(\eta_{x})\right)=\frac{\Sigma}{x}p_{x}\mathcal{I}=\mathcal{I} \\ &2nd term=\frac{\Sigma}{x}p_{x}S\left(N(1\eta_{x})(\eta_{x})\right)-\mathcal{I} \\ &=\frac{\{p_{x},1\eta_{x}\}}{\{p_{x},1\eta_{x}\}} &S\left(\frac{\Sigma}{x}p_{x}N(1\eta_{x})(\eta_{x})(\eta_{x})\right)-\mathcal{I} \\ &=(\log d)-\mathcal{I} \end{aligned}$$

mixed Pauli channel

Ex: find
$$\chi(E_p)$$
 for $E_p(p) = (1-p)p + p \text{ lexel}$ erasure symbol erasure channel orthogonal to any input

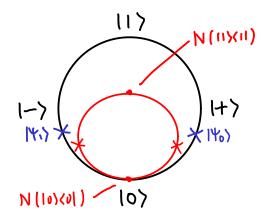
4. More distinguishable inputs need not have higher Holevo info!

$$N_{\delta}(\rho) = A_{\delta} \rho A_{\delta}^{\dagger} + A_{i} \rho A_{i}^{\dagger} \quad \text{amplitude damping channel (AD)}$$

$$A_{\delta} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\delta} \end{bmatrix}, \quad A_{i} = \begin{bmatrix} 0 & \sqrt{\delta} \\ 0 & 0 \end{bmatrix}$$

$$\frac{A_{0}}{A_{0}} + \frac{A_{1}}{A_{0}} + \frac{A_{1}}{A$$

 $(A \mid v) + b \mid i \rangle$ $(A \mid v) + b \mid i \rangle$ $(A \mid v) + b$



for any pair of orthogonal inputs $X \max at \rho_0 = \rho_1 = \frac{1}{2}, \quad X = 0.4567.$

for 2 such nonorthogonal inputs, ⟨Y₀|Y₁⟩ ≈ ως 80°, X = 0.4717

Fuchs PRL 79 1162 (1997) first example, 9912122 AD channel.

5. Hardness to estimate $\chi(N)$ Beigi & Shor 0707.2090

Let
$$C \in \mathbb{R}^{+}$$
. To decide whether $X(N) > C$ or $X(N) < C - E$ for $E = \frac{1}{poly(d)}$ is NP complete.

6. Continuity of C(N): Leung & Smith 0810.4931

- 7. Special channels with known additive Holevo info
- (a) If N is entanglement breaking, then χ is strongly additive on N

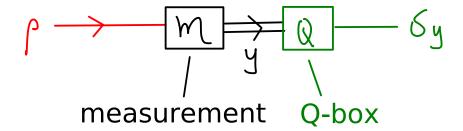
Cor: $C(N) = \chi(N)$

Def: N is entanglement breaking if,

 $\forall f_{RA}$, $I \otimes N(f_{RA})$ separable (i.e., being a mixture of product states)

e.g., classical channels and Q-boxes are entanglement breaking

Aside: characterization of entanglement breaking channels



Ex: show the characterization.

Hint: apply def of ent break to Choi matrix.

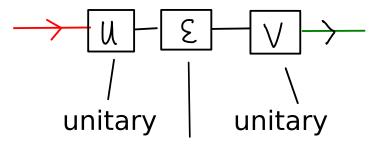
- 7. Special channels with known additive Holevo info (King 0103156)
- (b) χ is strongly additive on d-dim depolarizing channel $\chi_{\rm P}$

Cor:
$$C(N) = \chi(N) = ((v \circ d) - \tau)$$

(b) χ is strongly additive on qubit unital channels (N(I)=I)

Cor:
$$C(N) = \chi(N)$$

Aside: characterization of qubit unital channels



mixed Pauli channel

(c) Amplitude dampling channel is NOT known to have additive χ