CO781 / QIC 890:
Theory of Quantum Communication

Topic 5, part 4

Consequences of the LSD theorem
-- so what IS the quantum capacity of a quantum channel?

* what we know (degradable channels, e.q., erasure channel)

-- bounds (continuity, 1-shot) Today

* what we know we don't know Thur
(nonadditivity of coherent info -- depolarizing channel)
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How to evaluate the coherent information for any arbitrary channel?



Example: erasure channel (on a qubit)
Input space A (2-dim)

EP (/>3 = (l—P) /J + P\ lexe | output space B1 (3-dim)

erasure prob error symbol ortho to all inputs

In general: each of the following is equivalent for the purpose of
understanding channel coding and capacities:

A B (specified as a linear map
N | from states on A to states on B)
A 1 B (any isometric extension
U . specified on a basis on A)
E
B |v [ B . .
A (U from above, V, W isometries)




Example: erasure channel (on a qubit) . .
Input space A (2-dim)

EP (/>§ = (-p) Pt P\ \e><ei| output space B1 (3-dim)

erasure prob error symbol ortho to all inputs

Consider the following isometry from B1 to B1 B2:
1. Attach lodg,
2. Apply unitary (loXol + (X)) ® Ty, + leXe|s, @ gypa

l.e., with no erasure, Bob gets l0yg, , with erasure, Bob gets 11>g; |

0

E;(/ﬂ = (l—P) /JB‘® IoXo\BL + P lexel;, o Xy,
AN

(I—P) fs‘ ® |OXO\BL + P (Tr ()) lexel, ® (1Xily,

/

this is called a "flagged" channel --
drop ' the output includes a classical system (B2 here)
labelling what channel has occurred to the input




Example: erasure channel (on a qubit)
To (Y = (1=p) p, @ loXol, + p (frp) texel, @ iy,
To evaluate the 1-shot coherent info: take any Y7, ,

[J_@EP(\‘{’X\H)]R = (1-p) \‘%X“HRBI@) |0X0\Bz+ p (Trg \‘kX\H)K® 18><€-IBI® Xl

182

Recall when Bob has a classical system (B2 here), the coh info is a
weighted average over this classical rand var (topic-5-1):

ST (RYBR) = (=P Te(RY8) + p Te(RY8))
[Tog,txen)] \ X / (trs vexel) @ rexer

S(B1) - S(RB1)
= (=p) S ety + p S (s = (1-2p) S

\ /

- P < -+, optimal “V>:j['i((00)+ltl)) _¢=( €qual entropies, say, s
- ]>>J,:, 1)Y= (069 , §= 0
Q)

oo ® (%) = max(1-2p,0).  What about r-shot coherent info?
Will see it's equal to 1-shot coh info!



Complementary channel

Let N be any channel, U its isometric extension.

Def: A complementary channel of N, denoted N, is given by:

N‘(p = trs(upu’)

B
A EE— A B
U - N ——
E%
B
. —e 7
! . A EE
E

(NC)L =N up to the un-important isometries



Example: erasure channel (on a qubit)

EP (/>§ = (|_P) /_)B‘@) IOXO\BL + P (Tr f) \e)(e_lm@ Xy,

Isometric extension:

A ¢ Bl
7 VA
B2
fixed initial [T=p (00 I
pure state for JrJFln) E?
the isometry
@)
x El

}

if o in |0>, swap the sys labelled x's

"erased or not" is
shared classical info



Degradable channel

Let N be any channel, U its isometric extension.

Def: N is called degradable if 3O (TCP map) s.t. JoN= N,

Def: N is called anti-degradable if NCis degradable.

Def: N is called symmetric if N is both degradable & antidegradable.

Intuition:

If N is degradable, "Bob is better than Eve"
(since Bob can post-process his channel output to obtain Eve's)

If N is antidegradable, "Eve is better than Bob"



Degradable channel

Let N be any channel, U its isometric extension.

Def: N is called degradable if 39 (TCP map) s.t. JoN= N,

Def: D) is some times called the degrading map.

Let V be its isometric extension. When F is discarded,
F goes to the env, thereby exchanging Nand N ¢

E
A BV~ _isometric A B
U Pl < . N
= extension
|
A B t B A E
U race N NG
E




Degradable channel: EE sym  Antidegradable channel: BB sym
E
-
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A characterization for degradable or antidegradable channels
up to isometries of the output and env, is an isometric extension:

BI
U —F

 c—

EI

A

s.t., for all inputs on A (or equivalently for the Choi-state),
the output is invariant under swapping B' E', and

for degradable channel: B = B'F, E = E'
antidegradable channel: B =B', E = E'F



Example: erasure channel (on a qubit)
Tpp) = (=) py @ loxol + p (i p) lexel, o txily,

To understand degradability of £¢ , try using %’1 as a degrading map

where szqb 1. apply Zq to Bl
2. replace the 2 erasure flags with their "or"

Claim: %10 Zf = EP“L’P%
Proof: %1° Zf IS an erasure channel

no erasure with prob (1-p)(1-g) = 1-p-g+pg
so, prob of erasure = p+Qg-pg

Recall E(f: 2(_‘) which equals to %10 Zf = ZP”L’(‘%

if 1-p = p+g-pg or (1-2p) = (1-p) g
ifp ¢+, %’1:%@ is a degrading map for Zp . . p c‘e%r‘ah‘oe_ bor Pt
ifp=<., €5 =2 degradable. . ¢p antidegradable.

Z+ is symmetric (also called the 50-50 erasure channel)



Theorem If N is antidegradable, then Q(N) = 0.

Theorem' If N is antidegradable, then one cannot send a single
qubit with arbitrarily large number of uses of N.

Intuition: if there is a coding scheme transmitting quantum data
to Bob, Eve can decode a copy too, implying cloning.

Proof (theorem'), by contradiction

Suppose there is some n, and a coding scheme that transmits one
qubit with n uses of N with very small error.

- /Dzl‘ﬂ

"black" -- by hypothesis

- P::H’)

%) —__>_§V\ Ne" oﬁn
expanding N into its isometric extension:
|\\’> ; gv\ . Bl ... Bn ODV\
W
F1...Fn
E1' ... En'|Dw

- P:H’)

by symmetry of B1 ... Bn, E1' ... En', applying s to E1' ... En' gives P

Joint state on B1 ... Bn E1' ... En' ~ [¥)®*, contradicting no-cloning thm.



Remark on the last argument:

On 2 sys, if each has reduced state {) , joint state need not be f‘gz :

€.g9. A 4— reduced state I’i
%{(\oooﬂ\m)) B
C 4— reduced state I’i

. L Tl
Joint state on AC: 1(\00}(00\%—\\\)(1\\) + %_@_,L



Remark on the last argument:

In our problem, we use the fact /J IS close to a pure state to conclude.

A 4— reduced state fﬁ IYXyl ©

B <— purifying system
C

4— reduced state fc: vXyl ©

From (1), Uhlmann's thm, relation between purifications, and the fact
joint state on ABC &) and \Y), @ |9>g both approx purifies A

JW unitary s.t. 13 & (Ta@ Wed) 14D, @ 10> = M@ 1dge

From (2), Uhlmann's thm, and relation between purifications,
> se  and  10)3 %) both approx purifies C

AW unitary s.t. Ao = (Uew Tc) lodpl¥re = IRET RS

.+ joint state on ABC |Z) = |¥), @ l(s>3® )

!, jointstate on AC = )@ Y)e ovr ()@z



Theorem If N is antidegradable, then Q(N) = 0.

Theorem' If N is antidegradable, then one cannot send a single
qubit with arbitrarily large number of uses of N.

Corollary 1 Q (Z)=0 VYp=+

Recall noiseless classical channel: loY% = loeo)ge soit's symmetric.
1 > V) ge

Corollary 2: classical channels have 0 quantum capacity.

In fact, cannot comm 1 qubit even with arbitrarily many uses.



Theorem If N1 and N2 are degradable,
then Q" (N,eN.) = @ (N + &% (na)

Corollary If N is degradable, then Q(N) = QU)(N
Y e Q7w = QMY

Devetak & Shor 0311131

The proof relies on the following two lemmas.



Lemma 1: for any state on 4 systems RTXY

(i) S(RT|XY) < S(R|X) + S(TI|Y)
(i) with equality if the state is a product across RX / TY .

Proof: RHS - LHS
= S(R|X) + S(T|Y) - S(RT|XY)
= S(RX) - R(X) 4+ S(TY) - S(Y) - [S(RTXY) - S(XY)]

= S(RX:TY) -S(X:Y) > o so (i) holds
trR tr Tf QMI nonincreasing under tracing
S(X:TY)

If state is a product across RX / TY, S(RX:TY) = 0, S(X:Y) =0
so equality holds, proving (ii).



Lemma 2: If N is degradable, Y>gp is any input,

then lc(R)B)I@N(\‘\’X‘YI) = S(FIE)s
where R
> < A B
U LF output space = B = B'F,
E } ¢ B'and E are symmetric

Proof: T.(RYB) TON ( 1¥X%])

= S5(B) - S(E) = 5(B'F) - S(E) = S(EF) - 5(E) = S(F[E) ¢

Recall in general I.(RYB) = S(B) - S(RB) = - S(R|B)

So, for degradable channel, the coherent info exhibits properties
"opposite" to usual (e.q., subadditive not superadditive ... as we'll see)



Theorem If N1 and N2 are degradable,

then Q" (N,®@N.) = @ (N + Q% (r)
Proof: [Z2] Let I{.)g.a. attain the max of IC(RJB()IW‘(WM)

Similarly for \2)g.a,.

QY (N@N.) = I, (R,Rs> B.8:)

IR-R-:.@ Ni® N, (l‘hX‘NR‘Al@ H’zx\rzlklAl)
| \ ~ A
-S(R1R2|B1B2) product state over R1B1 / R2B2
| lemma 1 (ii)

-S(R1|B1) - S(R2|B2)

|
I (R>8)

T I.(R.Y8:)

To,® N, ( |\hXLY|IR‘A‘) Te.® N, ( X1l R;A;)

|| optimality of 41, [2)

R (N + 8% (na)



Theorem If N1 and N2 are degradable,

then Q" (N,&N.) = Q" (NY 4 & (ny)

Proof: [<] Let \Y)ean. be the optimal input for N.® N,

Let Bi = Bi' Fi, Ei = Ei' be output & env for Ei.
Q" (N, ® N.) ¥

S(F1F2 | E1IE2) by lemma 2
< S(F1 | EL) + S(F2 | E2) bylemma 1 (i)

R
B1'
Al |7 LF1
E1'
A2 B2
u2 LF2




Theorem If N1 and N2 are degradable,

then Q" (N.@N.) = Q@ (N + &% ()

Proof: [<] Let \Y)gan be the optimal input for N.@ N.

—

edi?
Let Bi = Bi' Fi, Ei = Ei' be output & env for Ei. R |
Q" (N,®N.) ) 1.
_ Al |yp [FL o
=T (RY B82) —
= S(F1F2 | EIE2) by lemma 2 A2 T—p5
< S(F1 | E1) + S(F2 | E2) by lemma 1 (i) | F2
E2'

> |0)

= 1. (Rl>gl)\d‘> + 1. (RAVYB,)
Il

RA2

< RV N A QY (N

|o2?



Summary: N degradable (=  N¢antidegradable

Q(N)= QY (N) Q(NS)=0

sym
/7 N\
output for N B'F E' outputfor N©

i

A

sum<1 for p>0

e.g., erasure channel / \

e 0<%, Q)= 1-2p Zip o P, QlTp)=0
e.g., dephasing channel 2?([:): (Fkprprp2p2

EF f ?{-[ol‘]l &(i(ﬂ= 1‘h(p) @{Z\)C =0
(see 2016 lecture 18)

e.g., amplitude damping channel (see A4)



