CO781 / QIC 890:

Theory of Quantum Communication

Topic 5, part 4

Consequences of the LSD theorem

- -- so what IS the quantum capacity of a quantum channel?
- \* what we know (degradable channels, e.g., erasure channel)

Today

- -- bounds (continuity, 1-shot)
- \* what we know we don't know (nonadditivity of coherent info -- depolarizing channel)

Copyright: Debbie Leung, University of Waterloo, 2020

#### Recall:

$$Q^{(1)}(N) := \max_{|Y|} I_{c}(R)B)$$

$$= \max_{|Y|} (S_{B} - S_{RB}) I_{e}N(YXYYY)_{RB}$$

$$= \max_{|Y|} (S_{B} - S_{E})_{Q}$$

$$= |Y|$$

$$Q^{(r)}(N) := \frac{1}{r} Q^{(1)}(N^{e}r)$$

$$= \sup_{r} Q^{(r)}(N)$$

$$= \sup_{r} Q^{(r)}(N)$$

How to evaluate the coherent information for any arbitrary channel?

$$\mathcal{E}_{p}(p) = (1-p)p + p \text{ lexe}$$

input space A (2-dim) output space B1 (3-dim)

erasure prob error symbol ortho to all inputs

In general: each of the following is equivalent for the purpose of understanding channel coding and capacities:



(specified as a linear map from states on A to states on B)



(any isometric extension specified on a basis on A)



(U from above, V, W isometries)

$$\mathcal{E}_{P}(\rho) = (1-p)\rho + \rho \text{ lexe}$$
erasure prob erro

input space A (2-dim) output space B1 (3-dim)

erasure prob error symbol ortho to all inputs

Consider the following isometry from B1 to B1 B2:

- 1. Attach 10>B2
- 2. Apply unitary  $(|0X0| + |1X1|)_{B1} \otimes I_{B2} + |eXe|_{B1} \otimes \delta_{xB2}$

i.e., with no erasure, Bob gets 10>82, with erasure, Bob gets 11>82.

$$\sum_{p}^{p}(p) = (1-p) p_{B1} \otimes |0X0|_{B2} + p |exe|_{B1} \otimes |iXi|_{B2}$$

$$= (1-p) p_{B1} \otimes |0X0|_{B2} + p (tr p) |exe|_{B1} \otimes |iXi|_{B2}$$

drop '

this is called a "flagged" channel -the output includes a classical system (B2 here) labelling what channel has occurred to the input

$$\mathcal{E}_{p}(\rho) = (1-p) \rho_{BI} \otimes |0X0|_{B2} + \rho (tr \rho) |exe|_{BI} \otimes |IXII_{B2}$$

To evaluate the 1-shot coherent info: take any  $|\Psi\rangle_{RA}$  ,

$$\left[\mathbb{I}\otimes\mathcal{E}_{p}(1\Psi X\Psi 1)\right]_{RB_{1}B_{2}}=(1-p)|\Psi X\Psi 1\otimes 10X01|_{B_{2}}+p\left(\text{tr}_{B}|\Psi X\Psi 1\right)_{R}\otimes|1eXe|_{B_{1}}\otimes|1X11|_{B_{2}}$$

Recall when Bob has a classical system (B2 here), the coh info is a weighted average over this classical rand var (topic-5-1):

$$I_{c}(R) B_{1}B_{2} = (1-p) I_{c}(R) B_{1} + p I_{c}(R) B_{1}$$

$$[I \otimes E_{p}(14X41)]_{RB_{1}B_{2}} = (1-p) I_{c}(R) B_{1} + p I_{c}(R) B_{1}$$

$$S(B1) - S(RB1)$$

$$= (1-p) S (tr_{R} 14X41)_{B_{1}} + p (-) S (tr_{B} 14X41)_{R} = (1-2p) S$$

$$P \leq \frac{1}{2}, \text{ optimal } |Y| = \int_{\Sigma} (|0 \rangle + |1 \rangle), S = 1 \text{ equal entropies, say, s}$$

$$P > \frac{1}{2}, \qquad |Y| = |0 \rangle, S = 0$$

 $\mathbb{C}(\mathfrak{T}_p) = \max(1-2p,0).$  What about r-shot coherent info? Will see it's equal to 1-shot coh info!

# **Complementary channel**

Let N be any channel, U its isometric extension.

Def: A complementary channel of N, denoted N<sup>C</sup>, is given by:

$$N^{c}(p) = tr_{B}(upu^{+})$$



 $(N^c)^c = N$  up to the un-important isometries

$$\mathcal{E}_{p}(\rho) = (1-p) \rho_{BI} \otimes |0X0|_{B2} + \rho (tr \rho) |exe|_{BI} \otimes |IXII_{B2}$$

#### Isometric extension:

if • in |0>, swap the sys labelled x's



$$\xi_{p}^{c} = \xi_{1-p}!$$

## <u>Degradable channel</u>

Let N be any channel, U its isometric extension.

Def: N is called degradable if  $\exists \mathcal{L}$  (TCP map) s.t.  $\mathcal{L} \circ \mathcal{N} = \mathcal{N}^{c}$ .

Def: N is called anti-degradable if N c is degradable.

Def: N is called symmetric if N is both degradable & antidegradable.

#### **Intuition:**

If N is degradable, "Bob is better than Eve" (since Bob can post-process his channel output to obtain Eve's)

If N is antidegradable, "Eve is better than Bob"

## Degradable channel

Let N be any channel, U its isometric extension.

Def: N is called degradable if  $\exists \mathcal{L}$  (TCP map) s.t.  $\mathcal{L} \circ \mathcal{N} = \mathcal{N}^{c}$ .

Def:  $\mathfrak{D}$  is some times called the degrading map.

Let V be its isometric extension. When F is discarded, F goes to the env, thereby exchanging N and N  $^{\rm C}$ 



Degradable channel: EE sym Antidegradable channel: BB sym



A characterization for degradable or antidegradable channels up to isometries of the output and env, is an isometric extension:



s.t., for all inputs on A (or equivalently for the Choi-state), the output is invariant under swapping B' E', and

for degradable channel: B = B'F, E = E' antidegradable channel: B = B', E = E'F

$$\mathcal{E}_{p}(\rho) = (1-p) \rho_{B1} \otimes 10X0I_{B2} + p(tr \rho) lexel_{B1} \otimes 11X1I_{B2}$$

To understand degradability of  $\mathfrak{T}_{\mathfrak{f}}$ , try using  $\widetilde{\mathfrak{T}}_{\mathfrak{f}}$  as a degrading map where  $\widetilde{\mathfrak{T}}_{\mathfrak{f}}$  1. apply  $\mathfrak{T}_{\mathfrak{f}}$  to B1

2. replace the 2 erasure flags with their "or"

Proof:  $\widetilde{\mathcal{E}}_{\mathbf{q}} \circ \mathcal{E}_{\mathbf{p}}$  is an erasure channel

no erasure with prob (1-p)(1-q) = 1-p-q+pqso, prob of erasure = p+q-pq

Recall  $\mathcal{E}_{p}^{c} = \mathcal{E}_{p-p}$  which equals to  $\mathcal{E}_{q} \circ \mathcal{E}_{p} = \mathcal{E}_{p+q-pq}$  if 1-p = p+q-pq or (1-2p) = (1-p) q

if  $p \leq \frac{1}{2}$ ,  $\tilde{\xi}_{q=\frac{1-2p}{1-p}}$  is a degrading map for  $\xi_p$ ,  $\tilde{\xi}_p$  degradable for  $p \leq \frac{1}{2}$ 

if  $p \ge \frac{1}{2}$ ,  $\mathfrak{L}_{\mathfrak{p}}^{\mathfrak{p}} = \mathfrak{L}_{\mathfrak{p}}^{\mathfrak{p}}$  degradable.  $\mathfrak{L}_{\mathfrak{p}}^{\mathfrak{p}} = \mathfrak{L}_{\mathfrak{p}}^{\mathfrak{p}}$  antidegradable.

건는 is symmetric (also called the 50-50 erasure channel)

<u>Theorem</u> If N is antidegradable, then Q(N) = 0.

<u>Theorem'</u> If N is antidegradable, then one cannot send a single qubit with arbitrarily large number of uses of N.

Intuition: if there is a coding scheme transmitting quantum data to Bob, Eve can decode a copy too, implying cloning.

Proof (theorem'), by contradiction

Suppose there is some n, and a coding scheme that transmits one qubit with n uses of N with very small error.



expanding N into its isometric extension:

"black" -- by hypothesis



by symmetry of B1 ... Bn, E1' ... En', applying  $\mathfrak{J}_{\mathsf{N}}$  to E1' ... En' gives  $\rho$  Joint state on B1 ... Bn E1' ... En'  $\approx |\Psi\rangle^{\otimes 2}$ , contradicting no-cloning thm.

Remark on the last argument:

On 2 sys, if each has reduced state  $\rho$ , joint state need not be  $\rho^{\otimes 2}$ .

e.g., 
$$\frac{1}{\sqrt{L}} \left( \frac{A}{1000} + \frac{A}{1111} \right) \left\{ \frac{A}{B} \right\}$$
 reduced state  $\frac{T}{2}$  reduced state  $\frac{T}{2}$ 

Joint state on AC:  $\frac{1}{2} (|00 \times 00| + |11 \times 11|) \neq \frac{\pi}{2} \otimes \frac{\pi}{2}$ .

Remark on the last argument:

In our problem, we use the fact  $\rho$  is close to a pure state to conclude.

$$A$$
 reduced state  $ρ ≈ |Ψ χ Ψ | Φ$ 
 $B$  reduced system
 $C$  reduced state  $ρ ≈ |Ψ χ Ψ | Φ$ 

From (1), Uhlmann's thm, relation between purifications, and the fact joint state on ABC  $|\Psi\rangle$  and  $|\Psi\rangle_{\mathbb{R}}\otimes|\mathfrak{d}\rangle_{\mathbb{R}^{C}}$  both approx purifies A

From (2), Uhlmann's thm, and relation between purifications,  $|1\rangle_{BC}$  and  $|0\rangle_{B}|4\rangle_{C}$  both approx purifies C

$$\exists U \text{ unitary s.t. } |\lambda\rangle_{BC} \approx (U_B \otimes I_C) |0\rangle_B |\Psi\rangle_C = |\beta\rangle_B \otimes |\Psi\rangle_C$$

- $\langle \cdot \rangle_{\mathbb{R}} = \langle \cdot$
- !, joint state on AC ≈ IY) & IY) c or p<sup>⊗2</sup>

<u>Theorem</u> If N is antidegradable, then Q(N) = 0.

<u>Theorem'</u> If N is antidegradable, then one cannot send a single qubit with arbitrarily large number of uses of N.

Corollary 1 Q 
$$(\mathcal{L}_p) = 0 \quad \forall p \geq \frac{1}{2}$$

Recall noiseless classical channel:  $|\circ\rangle_A \to |\circ\circ\rangle_{B\bar{\epsilon}}$  so it's symmetric.  $|1\rangle_A \to |1\rangle_{B\bar{\epsilon}}$ 

Corollary 2: classical channels have 0 quantum capacity.

In fact, cannot comm 1 qubit even with arbitrarily many uses.

then 
$$Q^{(1)}(N_1 \otimes N_2) = Q^{(1)}(N_1) + Q^{(2)}(N_2)$$

Corollary If N is degradable, then  $Q(N) = Q^{(\iota)}(n)$   $\forall \ r \ Q^{(r)}(n) = Q^{(\iota)}(n)$ 

Devetak & Shor 0311131

The proof relies on the following two lemmas.

Lemma 1: for any state on 4 systems RTXY

- (i)  $S(RT|XY) \leq S(R|X) + S(T|Y)$
- (ii) with equality if the state is a product across RX / TY .

Proof: RHS - LHS

$$= S(R|X) + S(T|Y) - S(RT|XY)$$

$$= S(RX) - R(X) + S(TY) - S(Y) - [S(RTXY) - S(XY)]$$

= 
$$S(RX:TY) - S(X:Y) \geqslant \bigcirc$$
 so (i) holds  
 $\int tr R tr T \uparrow QMI$  nonincreasing under tracing  
 $S(X:TY)$ 

If state is a product across RX / TY, S(RX:TY) = 0, S(X:Y) = 0 so equality holds, proving (ii).

Lemma 2: If N is degradable,  $|\Psi\rangle_{RA}$  is any input, then  $I_c(R\rangle_B)_{I\otimes N(|\Psi X\Psi I)} = S(FIE)_6$ 



Proof: 
$$I_c(R)B)_{I\otimes N(IYXYI)}$$
  
=  $S(B) - S(E) = S(B'F) - S(E) = S(EF) - S(E) = S(F|E)_6$   
degradability, B' & E symmetric

Recall in general  $I_c(R)B) = S(B) - S(RB) = -S(R|B)$ 

So, for degradable channel, the coherent info exhibits properties "opposite" to usual (e.g., subadditive not superadditive ... as we'll see)

then 
$$Q^{(1)}(N_1 \otimes N_2) = Q^{(1)}(N_1) + Q^{(2)}(N_2)$$

Proof: [ $\geq$ ] Let  $|Y_1\rangle_{R_1A_1}$  attain the max of  $I_2(R_1\rangle B_1)_{I\otimes N_1(WXYI)}$ Similarly for  $|Y_2\rangle_{R_2A_2}$ .

$$Q^{(1)}(N_{1}\otimes N_{2}) \geq I_{c}(R_{1}R_{2} > B_{1}B_{2}) \underbrace{I_{R_{1}R_{2}} \otimes N_{1} \otimes N_{2} \left(|Y_{1}XY_{1}|_{R_{1}A_{1}} \otimes |Y_{2}XY_{2}|_{R_{2}A_{2}}\right)}_{=S(R1R2|B1B2)}$$
 product state over R1B1 / R2B2 
$$\frac{||\operatorname{lemma 1 (iii)}|}{||\operatorname{SR1}|B1) - \operatorname{SR2}|B2}$$
 
$$\frac{||}{||\operatorname{I}_{c}(R_{1} > B_{1})} \underbrace{I_{R_{1}} \otimes N_{1} \left(|Y_{1}XY_{1}|_{R_{1}A_{1}}\right)}_{=I_{R_{1}} \otimes N_{2} \left(|Y_{2}XY_{2}|_{R_{2}A_{2}}\right)} + I_{c}(R_{2} > B_{2}) \underbrace{I_{R_{2}} \otimes N_{2} \left(|Y_{2}XY_{2}|_{R_{2}A_{2}}\right)}_{=I_{R_{2}} \otimes N_{2} \left(|Y_{2}XY_{2}|_{R_{2}A_{2}}\right)}$$
 
$$\frac{||\operatorname{optimality of }|Y_{1}\rangle, |Y_{2}\rangle}{Q^{(1)}(N_{1}) + Q^{(2)}(N_{2})}$$

then 
$$Q^{(1)}(N_1 \otimes N_2) = Q^{(1)}(N_1) + Q^{(2)}(N_2)$$

Proof: [ $\leq$ ] Let  $|Y\rangle_{RA_1A_2}$  be the optimal input for  $N_1 \otimes N_2$ 

Let Bi = Bi' Fi, Ei = Ei' be output & env for Ei.

$$Q^{(i)}(N_i \otimes N_2)$$
=  $I_c(R > B_i B_2)_{|a|}$   
=  $S(F1F2 \mid E1E2)$  by lemma 2

 $\leq S(F1 | E1) + S(F2 | E2)$  by lemma 1 (i)



then 
$$Q^{(1)}(N_1 \otimes N_2) = Q^{(1)}(N_1) + Q^{(2)}(N_2)$$

Proof:  $[\leq]$  Let  $|\Psi\rangle_{RA_1A_2}$  be the optimal input for  $N_1 \otimes N_2$ 

Let Bi = Bi' Fi, Ei = Ei' be output & env for Ei.

$$Q^{(1)}(N_1 \otimes N_2)$$

$$= I_c(R > B_1 B_2)_{A}$$

= S(F1F2 | E1E2) by lemma 2

 $\leq S(F1 \mid E1) + S(F2 \mid E2)$  by lemma 1 (i)

$$= I_{c}(R_{1} > B_{1})_{|\mathcal{U}_{1}\rangle} + I_{c}(RA_{1} > B_{2})_{|\mathcal{U}_{2}\rangle}$$

$$RA_{2}$$

$$\leq Q_{(1)}(N') + Q_{(5)}(N^{5})$$



Summary: N degradable  $\langle \Longrightarrow \rangle$  N<sup>C</sup> antidegradable



$$Q(N) = Q^{(1)}(N)$$

$$O(N_c) = O$$



output for N B' F E' output for N C



e.g., erasure channel

$$\mathcal{L}_{P}$$
,  $P \leq \frac{1}{2}$ ,  $\mathbb{Q}(\mathcal{L}_{P}) = 1-2p$ 

sum<1 for p>0

$$\Sigma_{p}$$
,  $\rho \leq \frac{1}{2}$ ,  $Q(\Sigma_{p}) = 1-2p$   $\Sigma_{1-p}$ ,  $\rho \leq \frac{1}{2}$ ,  $Q(\Sigma_{1-p}) = 0$ 

$$\exists p \mid P \in [0,1], Q(\exists p) = 1-h(p)$$

(see 2016 lecture 18)

e.g., amplitude damping channel (see A4)