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The no-signalling principle

Optimality of superdense coding and teleportation

CO781 / QIC 890: 

Theory of Quantum Communication

Topic 1, part 2

What is communication of data? 



Locality of quantum mechanics

Suppose Alice and Bob each holds one quantum 
system, and they share a joint initial state.

If Alice measures her system A, the GLOBAL state  
(and Bob's state on B) post-measurement may depend 
her measurement outcome.  

e.g., sharing 

Alice measures along the basis.  

If her outcome is "0" Bob's state is 

If her outcome is "1" Bob's state is 

Question: can Alice signal to Bob (transmitting a 
message) by measuring her system? 



Question: can Alice signal to Bob (transmitting a 
message) by measuring her system? 

Better not!  

1. Alice cannot control the outcome, so, even though
    Bob can find out Alice's measurement outcome, 
    the net result is the sharing of a random bit.  

    Resource inequality: ebit        rbit

2. Bob doesn't even know if Alice has made the meas
    or if she ever would.  Any measurement Bob can  
    perform depends on his local state, WHETHER Alice 
    has measured or not.  Bob's state is



Alice cannot communicate 1 classical bit to Bob
if no system physically moves from Alice to Bob.

The no-signalling principle

Implied by any of the following:

1. Without a system moving between Alice and Bob, their 
    operations commute -- neither can affect the other.  

2. Bob's state is well defined.  (Comm causes state change.) 

3. Quantum mechanics.  
m

m'arbitrarily correlated 
initial state indep of m

can depend on m

canNOT depend on m
Bob's initial state indep of m

indep of mA

B

k

for each k can depend on m, but need to average over k (then no dependence on m)



Consequences of the no-signalling principle:

C1. No-signalling principle holds even if we allow unlimited 
amount of entanglement and back comm (from Bob-to-Alice)

C2. Cannot communicate 1 out of s+t messages using a 
noiseless classical channel with input size s, even with 
unlimited entanglement for any t, s

there is no free lunch ...

C3. Cannot communicate an (s+t)-dim system using a 
noiseless quantum channel with input dim s, even with 
unlimited entanglement for any t, s

there is no discounted lunch ...

Qns: do C2, C3 hold if unlimited back communication 
from Bob to Alice is available?  (Do not discuss ...) 



Proof:

For C1, argument 3 for no-signalling principle still hold

For C2, we use a useful proof technique: 

To disprove the possibility of certain task using suspiciously 
little comm, assume a protocol exists, replace the comm by 
a random guess of the message, get a contradiction.

PS for quantum comm, we sometimes replace Bob's channel 
output by the max mixed state.



C2. Cannot communicate 1 out of s+t messages using a 
noiseless classical channel with input size s, even with 
unlimited entanglement for any t, s

Pf: suppose the opposite.  So, there is a protocol P using
a noiseless classical channel N with input size s and 
consuming some state        , and
Bob outputs m' = m.  

m     {1,2,...,s+t}

WLOG pure -- purify in Alice's lab

m

no back comm
sole transmission in P

absorb Bob's earlier
operations into here

most generally, Alice operates on m and her share of    
obtains the channel input b (+remaining sys) & sends it

m'

N

P
b

b

 = m



Modify P to P' by removing N, Alice not sending b, and Bob
choosing a random b' from {1,2,...,s}.  

m

m'

N

P

b
b

 = m

m

m"

P'
b

b'

For P', with prob 1/s, b'=b and m"=m'=m.  
* This holds for arbitrary M.  In particular, take M to be the 
uniformly distributed over (s+t) values, so does M". *  
Meanwhile m=m" with prob 1/s. So, M, M" not independent, 
contradicting the conclusion from argument 3 to show the 
no-signalling principle.

rv M"

rv M



Alternatively, given I(M:M")>0, we can view P' as a "noisy 
channel" from Alice to Bob with positive capacity so with many 
uses can communicate nearly noiselessly (wk 4).  

We can use protocol P' many times -- this consumes more 
entangled states and still requires no communication.  The 
conclusion still contradict the no-signalling principle.



We proved C1, C2 from more elementary principles.

For C3, we use a central idea in this course -- 
that of composition of protocols -- to prove our claim.

(Many of the results in this course have multiple, 
non-equivalent proofs.) 



C3. Cannot communicate an (s+t)-dim system using a 
noiseless quantum channel with input dim s, even with 
unlimited entanglement for any t, s

Pf: Useful fact, if entanglement is free, 1 qbit = 2 cbits

Reason: SD implies 1 qbit + 1 ebit       2 cbits 
TP implies 2 cbits + 1 ebit      1 qbit

Expect C3 reduces to C2.

Suppose there is a protocol P approximating the identity
map from X1 to X2 in diamond norm by consuming an 
s-dim noiseless quantum channel. 

N

P

Y1
Y2

X1

dim(X1) = dim(X2) = s+t ,  dim(Y1) = dim(Y2) = s

X2

Again, proof by contradiction.



N

P

Y1
Y2

X1

dim(X1) = dim(X2) = s+t ,  dim(Y1) = dim(Y2) = s

X2

Modify P in 2 ways to get P': 
1. simulate N with TP using a noiseless classical channel with s   inputs 
2. use P (+entanglement) in SD to communicate 1-of-(s+t)  messages

m

P(TP)

Y1
Y2

X1

X2

TP

Bell
m'=m

P'=SD(P(TP))

 (+entanglement)



Overall, SD(P(TP)) uses a noiseless classical channel to transmit 
k    {1,2,..., s  } and 3 entangled states.  It communicates m
{1,2,...,(s+t)  }.  This contradicts C1 if t>0.  

m

P(TP)

Y1
Y2

X1

X2

TP

Bell
m'=m

P'=SD(P(TP))



In the language of resource inequalities: 

C1: 

C2: s cbits  +  ent 

C3: s qbits  +  ent 

We proved C3 using SD, TP, and C2: 

By contradiction, if C3 holds for some r, s > 0 &       , then,

  cbits     +  ent r cbits

(r+s) cbits

(r+s) qbits

s qbits  + (r+s) qbits

By TP: s ebits + 2s cbits s qbits

Substitute TP into (meaning using TP to simulate qbit consumed in     )
(note arithmetic in RI corr to protocol compositions)

s ebits + 2s cbits + (r+s) qbits

+(r+s) ebits +(r+s) ebits s ebits + 2s cbits + (r+s) qbits

2(r+s) cbits 
so contradicts C2 ... 



Other useful results in QM: 

- Unlimited classical comm cannot produce 1 ebit or 1 cbit. 
- Cannot comm 1 out of (s+t) messages by physically 
  moving an s-dim system (Holevo's Theorem)



The no-signalling principle
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Optimality of superdense coding and teleportation



Superdense coding and teleportation:

If entanglement is free, these two communication 
protocols are inverses of one another:

2 bits of 
communication

1 qubit 
of communication

teleportation

superdense
    coding

Furthemore, each protocol is optimal, because of 
the other protocol ! 



Proof: 
Suppose, by contradiction, there is a protocol T that 
communicates a qubit while consuming an entangled 
state        and sending c < 2 classical bits.  

Optimality of teleportation: 

Any method to communicate one qubit using unlimited 
entanglement must send at least 2 bits.  

approx in diamond norm distance
     asymptotic (2c cbits + ent     qbits)

Idea: if X is suspiciously too good to be true, compose 
X with a known protocol Y to get Z so good that it 
gives a contradiction.  

X: protocol T sending fewer than 2 classical bits
Y: superdense coding
Composition: use T to comm the qubit in Y
Z: sending too much classical data with entanglement



Superdense coding (this holds): 

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Alice sends system C to Bob (2-dim).

Bob measures
along the Bell 
basis to get v. 

1 2

3

4

C



Superdense coding (still holds IF protocol T exists): 

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Alice sends system C (2-dim) A to Bob 
USING PROTOCOL T.  

Bob measures
along the Bell 
basis to get v. 

1 2

3

4

comm



Superdense coding (still works if method T exists): 

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Bob measures
along the Bell 
basis to get v. 

1 2

3

4

B'

A'

M
c bits

D

state in M
recovered 
in D

Alice sends system C (2-dim) A to Bob 
USING PROTOCOL T.  

comm



Z: method to send 2 classical bits v using c bits
& entanglement

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Alice sends c bits to Bob

Bob measures
along the Bell 
basis to get v. 

1 2

3

4

B'

A'

M
c bits

D

state in M
recovered 
in D

Alice also operates 
on M and A'.

Bob operates 
on D, 
then



Proof summary: 
Suppose, by contradiction, there is a protocol T to 
communicate a qubit while consuming some 
entangled state        and sending c < 2 classical bits.  

Optimality of teleportation: 

Any method to communicate one qubit using 
entanglement must send at least 2 bits.  

New scheme now communicates 2 bits using                
and by sending c < 2 bits. 

Then, take superdense coding scheme, and send the 
qubit in SD coding by method T.  

This contradicts C2.  So, protocol T cannot exist.  



In resource inequalities:

If + c bits 1 qbit

then + c bits 1 qbit
+ 1 ebit + 1 ebit

2 cbits by SD

Thus  c       2.  (due to C2)



superdense coding

no discounted 
lunch principle C2

From the original teleportation paper: 

figure drawn as a  
postscript file by 
the late Asher Peres



Optimality of superdense coding: 

Any method to communicate 2 bits using 
entanglement must send at least 1 qubit.  

Proof: exercise / self-study.  


