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Locality of quantum mechanics

Suppose Alice and Bob each holds one quantum
system, and they share a joint initial state.

If Alice measures her system A, the GLOBAL state
(and Bob's state on B) post-measurement may depend
her measurement outcome.

e.g., sharing 1= (165a (05 + 19 [17¢)

Alice measures along the { (o), |17} basis.

If her outcome is "0" Bob's state is (o) .
If her outcome is "1" Bob's state is | 1) .

Question: can Alice signal to Bob (transmitting a
message) by measuring her system?



Question: can Alice signal to Bob (transmitting a
message) by measuring her system?

Better not!

1. Alice cannot control the outcome, so, even though
Bob can find out Alice's measurement outcome,
the net result is the sharing of a random bit.

Resource inequality: ebit > rbit

2. Bob doesn't even know if Alice has made the meas
or if she ever would. Any measurement Bob can

perform depends on his local state, WHETHER Alice

has measured or not. Bob's stateis T
>



The no-signalling principle

Alice cannot communicate 1 classical bit to Bob
If no system physically moves from Alice to Bob.

Implied by any of the following:

1. Without a system moving between Alice and Bob, their
operations commute -- neither can affect the other.

2. Bob's state is well defined. (Comm causes state change.)

3. Quantum mechanics. can depend on m
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for each k can depend on m, but need to average over k (then no dependence on m)



Consequences of the no-signalling principle:

C1. No-signalling principle holds even if we allow unlimited
amount of entanglement and back comm (from Bob-to-Alice)

there is no free lunch ...

C2. Cannot communicate 1 out of s+t messages using a
noiseless classical channel with input size s, even with
unlimited entanglement forany t, s & %",

C3. Cannot communicate an (s+t)-dim system using a
noiseless quantum channel with input dim s, even with
unlimited entanglement forany t,s & %'

there is no discounted lunch ...

Qns: do C2, C3 hold if unlimited back communication
from Bob to Alice is available? (Do not discuss ...)



Proof:
For C1, argument 3 for no-signalling principle still hold
For C2, we use a useful proof technique:

To disprove the possibility of certain task using suspiciously
little comm, assume a protocol exists, replace the comm by
a random guess of the message, get a contradiction.

PS for guantum comm, we sometimes replace Bob's channel
output by the max mixed state.



C2. Cannot communicate 1 out of s+t messages using a
noiseless classical channel with input size s, even with
unlimited entanglement forany t, s & %",

Pf: suppose the opposite. So, there is a protocol P using
a noiseless classical channel N with input size s and

consuming some state |Y ), and ‘d m € {1,2,...,s+t}
Bob outputs m' = m. \

WLOG pure -- purify in Alice's lab

most generally, Alice operates on m and her share of |Y 5
obtains the channel input b (+remaining sys) & sends it
/
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Modify P to P' by removing N, Alice not sending b, and Bob
choosing a random b' from {1,2,...,s}.
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For P', with prob 1/s, b'=b and m"=m'=m.

* This holds for arbitrary M. In particular, take M to be the
uniformly distributed over (s+t) values, so does M", *
Meanwhile m=m" with prob 1/s. So, M, M" not independent,
contradicting the conclusion from argument 3 to show the
no-signalling principle.



Alternatively, given I(M:M")>0, we can view P' as a "noisy
channel" from Alice to Bob with positive capacity so with many
uses can communicate nearly noiselessly (wk 4).

We can use protocol P' many times -- this consumes more
entangled states and still requires no communication. The
conclusion still contradict the no-signalling principle.



We proved C1, C2 from more elementary principles.

For C3, we use a central idea In this course --
that of composition of protocols -- to prove our claim.

(Many of the results in this course have multiple,
non-equivalent proofs.)



C3. Cannot communicate an (s+t)-dim system using a
noiseless quantum channel with input dim s, even with
unlimited entanglement forany t,s & %'

Pf: Useful fact, if entanglement is free, 1 gbit = 2 cbits
Reason: SD implies 1 gbit + 1 ebit > 2 cbits
TP implies 2 cbits + 1 ebit > 1 gbit

Expect C3 reduces to C2. Adgain, proof by contradiction.

Suppose there is a protocol P approximating the identity

map from X1 to X2 in diamond norm by consuming an
s-dim noiseless quantum channel.

X1 P
Y1

| N
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dim(X1) = dim(X2) = s+t, dim(Y1l) = dim(Y2) = s
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dim(X1) = dim(X2) = s+t, dim(Y1l) = dim(Y2) = s

Modify P in 2 ways to get P": (+entanglement)
1. simulate N with TP using a noiseless classical channel with s ®inputs
2. use P (+entanglement) in SD to communicate 1-of-(s+t)*messages

m P'=SD(P(TP))

€ 1, 65t

X1 P(TP)
61\/\ Y1 Ke{ 2, -5

TP
\U(> ( iji\mm%l_ Y2 |

\ e
= _‘:‘\\7\ﬂ ]

[74d
M&

X2 m'=m

Bell




Overall, SD(P(TP)) uses a noiseless classical channel to transmit

ke {1,2,...,

s} and 3 entangled states.

{1,2,...,(s+t)*}. This contradicts C1 if t>0.
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In the language of resource inequalities:

Cl: Yr>o ﬁ(wcbits<_+ ent Zrcbits%)
C2: Yr,s>0 — (s cbits + ent = (r+s) cbits )
C3: Yrs>o — (s gbits + ent = (r+s) gbits )

We proved C3 using and C2:

By contradiction, if C3 holds for somer, s >0 & |Y) then,
s gbits + Y, = (r+s) gbits %)

By TP: s ebits + 2s cbits = s gbits

Substitute TP into @ (meaning using TP to simulate gbit consumed in(%))
(note arithmetic in RI corr to protocol compositions)

s ebits + 2s cbits + [¥) = (r+s) gbits (P

s ebits + 2s cbits + |Y) +(r+s) ebits = (r+s) gbits +(r+s) ebits
>

so contradicts C2 ... 2(r+s) cbits  (by €B)



Other useful results in QM:

- Unlimited classical comm cannot produce 1 ebit or 1 cbit.
- Cannot comm 1 out of (s+t) messages by physically
moving an s-dim system (Holevo's Theorem)
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Superdense coding and teleportation:

If entanglement is free, these two communication
protocols are inverses of one another:

superdd_ense
2 bits of =" 1 qubit

communication > of communication
teleportation

Furthemore, each protocol is optimal, because of
the other protocol !



_ . _ approx in diamond norm distance
Optimality of teleportation: / asymptotic (2c cbits + ent > gbits)

Any method to communicate one qubit using unlimited
entanglement must send at least 2 bits.

Proof:

Suppose, by contradiction, there is a protocol T that
communicates a qubit while consuming an entangled
state |/v\> and sending ¢ < 2 classical bits.

Idea: If X is suspiciously too good to be true, compose
X with a known protocol Y to get Z so good that it
gives a contradiction.

X: protocol T sending fewer than 2 classical bits

Y: superdense coding

Composition: use T to comm the qubitinY

Z: sending too much classical data with entanglement



Superdense coding (this holds):

@ Alice sends system C to Bob (2-dim).

N —
2. - \_

B —
ebit shared To comm "v" Bob measures
by Alice (A) Alice applies along the Bell
and Bob (B) Pauli-v, for v basis to get v.

in {0,X,y,z}.



Superdense coding (still holds IF protocol T exists):

~comm |
@ Alice senrds system C (2-dim) A to Bob

USING PROTOCOL T.

A
éV
| 2.) -

B —
ebit shared To comm "v" Bob measures
by Alice (A) Alice applies along the Bell
and Bob (B) Pauli-v, for v basis to get v.

in {0,X,y,z}.



Superdense coding (still works if method T exists):

comm

@ Alice serds system C (2-dim) A to Bob
USING PROTOCOL T.

o

AI

&bits

BI

D

state in M
recovered
iIn D

—

ebit shared To comm "v"
by Alice (A) Alice applies
and Bob (B) Pauli-v, for v

in {0,X,y,z}.

@

Bob measures
along the Bell
basis to get v.



Z: method to send 2 classical bits v using c bits

& entanglement

@ Alice sends c bits to Bob

&bits

M
A /
6V AI
P
|2.) B’
B

D

state in M
recovered
in D

— \/

ebit shared To comm "v"
by Alice (A) Alice applies
and Bob (B) Pauli-v, for v

in {0,X,y,z}.

Bob operates @

on D,

Bob measures
then along the Bell
basis to get v.

Alice also operates

on M and A'.



Optimality of teleportation:

Any method to communicate one qubit using
entanglement must send at least 2 bits.

Proof summary:

Suppose, by contradiction, there is a protocol T to
communicate a qubit while consuming some
entangled state |//\> and sending c < 2 classical bits.

Then, take superdense coding scheme, and send the
qubit in SD coding by method T.

New scheme now communicates 2 bits using |/\> NEN
and by sending c < 2 bits.

This contradicts C2. So, protocol T cannot exist.



In resource inequalities:

If |/v\> + c bits = 1 gbit

then I/\A> + c bits =2 1 gbit 2 2 cbits by SD
+ 1 ebit + 1 ebit

Thus ¢ > 2. (dueto C2)

—



From the original teleportation paper:

figure drawn as a
< postscript file by
the late Asher Peres

e /EPR-1

FIG. 2. Spacetime diagram of a more complex 4-way cod- <—— S u pe rd e n Se COd i n g

ing scheme in which the modulated EPR particle (wavy line)
is teleported rather than being transmitted directly. This dia-
gram can be used to prove that a classical channel of two bits
of capacity is necessary for teleportation. To do so, assume
on the contrary that the teleportation from A’ to B’ uses an
internal classical channel of capacity C < 2 bits, but is still
able to transmit the wavy particle’s state accurately from A’
to B’, and therefore still transmit the external two-bit mes-
sage accurately from B to A. The assumed lower capacity W
C < 2 of the internal channel means that if B’ were to guess
the internal classical message superluminally instead of wait-

ing for it to arrive, his probability 27¢ of guessing correctly NoO d iSCO U nted

would exceed 1/4, resulting in a probability greater than 1/4 \ \
for successful superluminal transmission of the external two- I UNC h p F'NNCI p | e C 2
bit message from B to A. This in turn entails the existence
of two distinct external two-bit messages, r and s, such that >‘
P(r|s), the probability of superluminally receiving r if s was
sent, is less than 1/4, while P(r|r), the probability of super-
luminally receiving r if » was sent, is greater than 1/4. By
redundant coding, even this statistical difference between r

and s could be used to send reliable superluminal messages;
therefore reliable teleportation of a two-state particle cannot

be achieved with a classical channel of less than two bits of
capacity. By the same argument, reliable teleportation of an
N-state particle requires a classical channel of 2log,(N) bits J
capacity.




Optimality of superdense coding:

Any method to communicate 2 bits using
entanglement must send at least 1 qubit.

Proof: exercise / self-study.



